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Abstract

A computational methodology is proposed to: (i) characterize the upstream and/or downstream
network of a targeted sector i, (ii) uncover the cascade of layers of links in the network, and (iii)
measure the degree of network resilience. The methodology is implemented using Turkiye’s 2018
input-output data to characterize the gaps and the type of policy reforms required to address them
in the context of the targeted manufacturing sector. Market and competition policy reforms are
discussed from a network perspective in such a way as to enhance the productivity of the manu-
facturing sector. Three findings are noteworthy. First, production activities of the manufacturing
sector have strong links with regulated general purpose service sectors, including financial, energy-
water-gas, and transport and ICT. Therefore, improved competition in the manufacturing sector
will not necessarily increase its productivity even if competition policies perfectly support the mar-
ket for manufacturing products. Second, the source − sink structure of Turkiye’s manufacturing
network illustrates that the manufacturing sector is the most dominant, whereas transport-ICT,
energy-water-gas, and construction sectors are the potential sinks where large chunk of input flow
ends up. Third, the cascade of three layers of links suggests that the upstream network of the
manufacturing sector has a moderate level of resilience against the complete disruption of the
intermediate layer.
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1 Introduction

A growing number of studies in the literature model production networks to investigate the mech-

anisms that create shocks to aggregate output. Most suggest that distortions at upstream firms or

industries create cascade of avalanches hitting the key downstream sectors characterized by substantial

resource misallocation and then the process works backward resulting in additional distortions in the

upstream industries.1 Interactions between sources of distortions and sinks where they land need better

understanding. Those studies fall short of characterizing the critical pathways of interactions among

industries, although they recognize the key role that highly central industries and their interactions

along the pathways play in the creation of shocks at the macro level.

This study aims to contribute to the literature by proposing a computational methodology - three

complementary algorithms - designed in such a way as to characterize a production network represented

by an input-output matrix. For illustrative purposes, the methodology is applied using Turkiye’s 2018

input-output data: (i) to identify the upstream and/or downstream networks of the targeted (or

prioritized) manufacturing sector (MA2), (ii) to uncover the cascade of layers of links in the networks,

and (iii) to measure the degree of network resilience based on a graph-theoretic concept of community

(or cluster). Therefore, it serves as an ex-ante policy diagnostic tool for assessing alternative policy

reforms concerning the network of the targeted sector. With this methodology, we can extract critical

information on the key network characteristics of MA2, allowing for the identification of the gaps in

the production network and the design of effective market and policy reforms required to address them.

Addressing them through policy reforms necessarily implies improvements in network structure that

is expected to increase the productivity of MA2. More specifically, given the production network of

MA2, specific pathways and/or communities of sectors and their interactions are explored for policy

reforms to avoid the cascading effects of distortions in the network of MA2 on aggregate output. In

other words, the study assumes that the dynamics of a production network are endogenous to policies

and institutional arrangements.

The implementation starts with the extraction of the pathways of critical backward (input-demand)

and forward (output-supply) binary links, all of which represent MA2’s production network.2 It con-

tinues with the identification of cascade of layers of critical input-demand linkages of MA2. Under-

standing the cascading structure of sectors in MA2’s ”upstream” network is important as it provides

a different approach to analyzing the interaction between the layers of sectors in its network. Here,

the focus shifts away from an isolated pathway of individual sectors to the interaction of the layers (or

groups) of sectors. The former analysis stresses the role of binary sectoral links and their importance

along each pathway for productivity improvement in MA2. However, the latter analysis characterizes

the role of layers of links and their importance for improving the productivity in MA2. In the final

stage, the resilience of MA2’s network is measured by using edge betweenness centrality scores of those

edges in between communities implied by MA2’s network. We make use of the idea that the more

connected a network is, the more resilient it is. In line with this idea, the average of edge betweenness

centralities over between-community edges of MA2’s network is assumed to approximate the degree
1See Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012); Acemoglu, Ozdaglar, and Tahbaz-Salehi (2010); Car-

valho (2008, 2014) among others.
2The methodology is flexible in that any sector can be targeted at will, and the outputs from the implementation of

the three algorithms will be available instantly.
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of the connectedness of the network.

The key findings are three-fold. First, in network-based policy design, it is highly critical to

consider the interdependencies of regulated and seemingly competitive sectors. Efficiencies gained in

liberalized markets via pro-competitive PMR can easily be wasted before final consumers benefit from

them as regulated industries may exercise their market power to confiscate part of the efficiency gain

created in competitive markets. Improved competition in a single market may not generate the desired

outcome even if competition policies perfectly support that market because benefits from competition

may not spread over the rest of the network due to disruptions in the cascade of interdependencies con-

cerned. Second, a network-based policy design should start with the identification of the “dominant”

source and the “subordinate” sink sector(s), and those in between. The source − sink structure

of Turkiye’s manufacturing network illustrates that the manufacturing sector is the most dominant,

whereas telecommunications and transport, energy and construction sectors are the potential sinks

where large chunk of input flow ends up. Agriculture, finance and oil extraction-mining seem to be

interactive sectors. Third, the cascade of three layers of links are identified, and the upstream net-

work of the manufacturing sector is found to have a mediocre level of resilience against the complete

disruption of the intermediate layer of the network.

The remainder of this paper is structured as follows. Section 2 proposes a conceptual framework for

exploring how pro-competitive product market reforms (PMR) can affect the structure of a production

network is such a way as to deliver the desired outcomes. Section 3 provides a critical overview of recent

studies in policy design from a network perspective. Section 4 develops a computational methodology

based on the application of three complementary algorithms aimed to characterize the network of a

targeted sector. We show how to identify the upstream network of a targeted sector MA2, construct

the cascade of layers of links in the network, and measure the network resilience against disruptions.

Section 5 overviews the properties of the 2018 input-output production network of Turkiye. Section 6

implements the algorithms and discusses the key findings in relation to potential productivity effects

of pro-competitive PMR in Turkiye. Section 7 discusses how to use the findings in the formulation

of network-based PMR to improve the efficiency of the upstream network of MA2. Finally, Section 8

concludes the paper with some suggestions for future research.

2 A framework for network-based policy design

From a network perspective, production is considered as the culmination of the dynamic interaction

of various sectors along pathways of links. The realization of a given pathway depends on the imple-

mentation of right policies and the availability of productive capacities required by the sector linkages

along that pathway. Therefore, an insufficient or a missing capacity and/or a distortionary policy

will hinder, if not block, the realization of the entire pathway. The focus should, therefore, be on the

simultaneous development of sector- and network-specific productive capacities, as well as the imple-

mentation of right policies and institutional arrangements. Table 1 presents a conceptual framework,

which is mathematically specified in Equ. 1, to motivate the relation between network constructs

(such as pathways, cascade of layers, community structure, etc.) and their potential effects on the

productivity of the targeted sector as a response to network-based policy and institutional reforms.
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We conjecture that the dynamics of the production network is endogenous to policy and institutional

reforms. Examples of such reforms are also given to show how to improve the productivity of a targeted

sector.

In our context, the key question is the identification of markets and policy reforms that are likely to

enhance most the network dynamics of a targeted sector i. To describe it formally, sector i’s production

within an input-output production network, denoted by N , depends on changes in five factors:

Yi = Ni f(Ki(C), Li(C),Mi(C) |Y−i). (1)

Ni denotes an exogenously evolving network of sector i, such as a pathway of sector links, or a cascade

of links, or a community where sector i is a member of; Ni = n(Pi) assumes that market institutions

and competition policy reforms concerning sector i, denoted by Pi, influence the dynamics of sector

i’s network; C, general purpose productive capacity that augments primary production inputs, capital

Ki and labor Li. M−i denotes a vector of intermediate inputs that sector i purchases from the rest of

the economy (including its own output). Y−i denotes an exogenous vector of outputs of the rest of the

economy, influencing sector i’s production through pathways of sector linkages. Note that technological

change is embodied in productive capacities C.

There is no shortage of economic policies that directly or indirectly affect the quality of sectoral

interactions, and hence, the dynamics of production network. This paper considers the implications

of market and competition policy reforms (henceforth, policy reforms) for the efficiency of sectoral

production. We conjecture that the efficiency depends not only the implementation of good policies

promoting competition but also the intrinsic properties of the production network. Competition law

and policy aims to create an enabling environment - a level playing field - that facilitates the con-

nectedness of (topologically) distant, and possibly disadvantaged, producers, and in doing so, increases

their production possibilities. Competition process works effectively if new producers enter the market,

compete on the merits and do not benefit from undue advantages. Regarding the network properties,

connectedness of producers is only one of the properties that improves efficiency. The higher the degree

of network connectedness, the faster the flow of price and quantity information and the easier sectors in

the market concerned will be able to meet their input suppliers to trade. Since, in a connected network,

the flow of information and sector interaction take place in a speedy manner, the likelihood of a sector

to meet its input supplier is high. To sum up, a competitive environment improves connectedness, and

in return, connectedness further promotes competition.

Competition policy affects the dynamics of production network through removing anti-competitive

regulations (see examples of regulatory barriers in Table 1), enforcing anti-trust laws to regulate car-

tel agreements that raise the costs of key inputs and final products . Preventing anti-competitive

mergers, abuse of dominance, and ensuring competitive neutrality are among other policy options that

benefit consumers through competitive pricing. Pro-competitive product market reforms (PMR) are

designed to achieve public policy objectives by minimizing dominance or entry restrictions or rules

that are conducive to collusive outcomes or costs to compete in the market, as well as by removing

the conditions that create favorable environment for certain sectors or distortions at the level playing

field. Such reforms also aim to remove regulatory barriers to competition, including, but not lim-

ited to, minimum capital requirements, increased cost of doing business, protection of incumbents,
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Table 1: A framework for linking policy reforms with network dynamics
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excessive restrictions on the expansion of and potential discrimination against more-efficient firm, and

burdensome requirements to obtain operating permits.

In recent empirical research, competition and the institutional set up behind it have been found

to be an important determinant of total factor productivity growth at the industry and firm levels

(Acemoglu et al., 2012; Aghion & Schankerman, 2004; Barone & Cingano, 2011; Bouis, Duval, &

Eugster, 2016; Buccirossi, Ciari, Duso, Spagnolo, & Vitale, 2013; Gal & Hijzen, 2016). Specifically,

pro-competitive PMR - policies and institutions that intensify product market competition - are found

to increase productivity by reducing the market share of less efficient firms, increasing the incentive

of firms to reduce costs, and stimulating entry by new low-cost firms. PMR that reduce barriers to

entry in regulated industries (EGW , TSC, WHS, EST ) are also found to increase the productivity

as their general purpose outputs tend to be widely used as inputs elsewhere in the economy. There

are systematic and plausible differences in the effects of PMR across firms of different size across the

different industries. In network industries, small firms tend to benefit most from pro-competitive PMR,

while larger ones downsize to reduce costs and maintain market share. Deregulation yields positive

spillovers on firms in downstream industries through input-output linkages. Research also finds that

lower service regulation in EST and EGW increases value added, productivity, and export growth in

downstream service intensive industries.

Most empirical research focus on the competition-productivity link within an industry. Yet, ex-

pected rents from innovation or technology adoption and the corresponding within-industry incentives

to improve productivity may be reduced by lack of competition in upstream sectors that sell intermedi-

ate inputs that are necessary to production in downstream industries (Bourles, Cette, Lopez, Mairesse,

& Nicoletti, 2010; Carvalho, 2008, 2014). In other words, if there is market power in upstream sectors

and if firms in downstream industries have to negotiate terms of their contracts with suppliers, part of

the rents expected downstream from adopting best-practice techniques will be confiscated by interme-

diate input suppliers. This will in turn reduce incentives to improve efficiency and curb productivity

in downstream industries, even if competition may be thriving there. Moreover, lack of competition in

upstream sectors can also generate barriers to entry that curb competition in downstream industries as

well, further reducing pressures to improve efficiency in these industries. For example, overly restrictive

regulation in banking and finance (FIN) can reduce the range of available sources of financing for all

firms in the economy.

The first line of empirical research suggests from a single sector perspective that productivity

improvement is merely an outcome of pro-competitive PMR. The second line of research, however,

considers a broader view from a network perspective that network dynamics is important to determine

the productivity effects of PMR. By stressing the role of intermediary network mechanisms between

policy reforms and productivity, the current study adopts the latter perspective to characterize en-

dogenous network constructs. Namely, it conjectures that the network structure would change over

time through pro-competitive PMR.3

3Atalay, Hortacsu, Roberts, and Syverson (2011) models network formation by assuming three processes. The first
is the permanent bankruptcy of a firm; the second, reconnecting of surviving firms; and the third, emergence of new
firms. The structure of a production network with these growth and decay features in which links and firms appear and
disappear probabilistically can be approximated using the model network. Here, the important point is to predict the
probabilities for each ex-ante PMR to influence the three processes described. The current study does not predict such
probabilities but give a qualitative assessment of PMR as to their potential impact on the performance of sectors in a
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3 Related literature

This paper contributes to the growing toolbox of policy analysts, developing an automated, computa-

tional methodology to explore the dynamics of an input-output production network. Drawing on the

properties of the network constructs given in Table 1, it illustrates how to study the implications of

these properties for aggregate production, elaborates on the design of network-based policies aimed to

improve the performance of the existing network architect and reduce the risk of disruptions along the

critical pathways of sectors (Schweitzer et al., 2009). Equ. 1 is a mere summary of what we aim to

achieve in this paper.

Recent studies elaborate on how pathways of input-output linkages in a production network are

likely to amplify the adverse effects of distortions in upstream industries and their cascading effects

sooner or later hit downstream industries (Acemoglu et al., 2012, 2010; Bigio & Laâo, 2020; Carvalho,

2008, 2014; Jovanovic, 1987). Production network approach views aggregate shock as an endogenous

outcome of micro shocks propagating across input linkages. These networks have also been studied to

analyze the economy-wide effects of disruptions in value and supply chains (Kim, Chen, & Linderman,

2015; Perera, Perera, & Kasthurirathna, 2017; Steiner & Ali, 2009; Xiao, Sun, Meng, & Cheng, 2017),

to design innovation policies to promote technology, innovation and knowledge communities (Ahrweiler,

Pyka, & Gilbert, 2004; Breschi & Malerba, 2005; Coe & Bunnell, 2003; Judge, Fryxell, & Dooley, 1997;

Lynn, Aram, & Reddy, 1997; Pyka, 2014), and to better understand the systemic risk from cascading

liquidity shocks spilling over to other sectors (Kiyotaki & Moore, 1997). Although the objectives of

these studies vary somewhat, their main focus has been on developing policy diagnostic tools to identify

network-wide systemic problems/inefficiencies and design polices to encounter them. In essence, our

methodology is similar in purpose to some of these studies but also differs from them in that we develop

an automated, computational method to uncover hidden patterns in a production network and develop

a measure of network resilience with respect to disruptions in the linkages of a given sector (Wagner

& Neshat, 2010).

Our point of departure from conventional statistical methods is the shift from the significance of

relations between factors to the significance of relational patterns, such as community, clique, shortest

path among others (Fortunato, 2010; Hric, Darst, & Fortunato, 2014; Newman & Girvan, 2004; Porter,

Onnela, & Mucha, 2009; Sugiyama, Tagawa, & Toda, 1981). Graph-theoretic concepts serve as the

core elements of our algorithms to learn from large data sets (Bollobás, 2012; Newman, 2004; Newman

& Girvan, 2004). Production network data is one such dataset that is often exploited to identify

complex patterns of critical relations and learn from them to improve policy design (Atalay et al., 2011;

Carvalho, 2014; Liu, 2019). The community detection algorithms have been widely applied to identify

technology, innovation, knowledge, and production communities (Fichter, 2009; Kandylas, Upham, &

Ungar, 2008; Lynn et al., 1997). Weitz, Carlsen, Nilsson, and Skånberg (2018) apply network analysis

to assess contextual interactions of Sustainable Development targets of the 2030 Agenda of the UN

with a view to designing economic development policies. The analysis derives information on targets

with the most and least positive influence on the development process, guiding policy efforts towards

more productive areas.

Equ. 1 conjectures that pro-competitive PMR can reshape the production network by minimizing

production network.
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dominance or entry restrictions or rules that are conducive to collusive outcomes, as well as by removing

the conditions that create favorable environment for certain sectors or distortions at the level playing

field. Using firm-level data and sectoral information on input-output linkages, Gal and Hijzen (2016)

analyze the productivity effects of pro-competitive PMR in regulated industries (EGW , TSC, WHS,

EST ). PMR are found to increase the productivity as their general purpose outputs tend to be

widely used as inputs elsewhere in the economy . There are systematic and plausible differences in

the effects of PMR across firms of different size across the different industries. More specifically, in

network industries, small firms tend to benefit most from pro-competitive PMR, while larger ones

downsize to reduce costs and maintain market share. The findings confirm the positive effect of

PMR on downstream firms through backward linkages within the same country, but also provide some

indication that these effects also extend to firms abroad. Likewise, the economic effects of major PMR

are also studied by Bouis et al. (2016) in some of the historically most protected non-manufacturing

industries (electricity and gas, land transport, air transport, postal services, and telecommunications).

They find that reductions in barriers to entry yield large increases in output and labor productivity

over a five-year horizon. Providing a clear case for intensifying PMR efforts in economies with weak

growth prospects, these findings also rationalize the potential emergence of new network constructs to

further affect aggregate output growth.

Product market imperfections, such as legal barriers to entry in some non-manufacturing markets,

that curb competition in upstream sectors will negatively affect the productivity of downstream sectors

(Bourles et al., 2010). Trickle-down effects work through two main channels. Firstly, anticompetitive

regulations in an upstream sector can reduce competition downstream if access to downstream markets

requires using intermediate inputs produced upstream. For example, if financial market regulations

narrow the range of available financial instruments, access to finance by downstream sectors can be

made difficult, thereby curbing new entry and firm growth. Secondly, even if anticompetitive upstream

regulations do not restrict market access downstream, they can still curb incentives to improve efficiency

in downstream sectors. If markets for intermediate inputs are imperfect, downstream sectors may

have to negotiate with suppliers. In this case, regulations that increase suppliers market power can

reduce incentives to improve efficiency downstream, as part of the rents that downstream firms expect

from such improvements will have to be shared with suppliers of the intermediate inputs that are

necessary for downstream production. While most analyses of this issue have focused on the effects

of these regulations on the productivity of the sectors directly concerned, the main point is that

such regulations can also have powerful indirect depressing effects on the productivity of other sectors

through input-output linkages. Barone and Cingano (2011) study the effects of anti-competitive service

regulation by examining whether OECD countries with less anti-competitive regulation see better

economic performance in manufacturing industries that use less-regulated services more intensively.

They find that lower service regulation increases value added, productivity, and export growth in

downstream service intensive industries. The regulation of professional services and energy provision

(EST , EGW ) has particularly strong negative growth effects in service dependent industries.

Delalibera, Ferreira, Gomes, and Soares (2023) is closely related to our paper in that they analyze

the effects of economic policy reform - tax policy reforms in Brazil - from a production network

perspective. The structure of production network is shown to deliver some relevant results that would

8



be impossible to observe in a standard model. The upstreamness metric developed by Antràs, Chor,

Fally, and Hillberry (2012) is used to understand how the tax reform changes the distance of sectors to

final demand, that is, the tax reform changes the structure of the network. The complete tax reform is

reevaluated taking into account some cases where groups of sectors - communities - can be subsidized

or taxed more heavily. For example, the sectors with the highest carbon emissions can be taxed more

heavily for the reason that the most important sectors of the economy are those with a strong link

within the production pathway, that is, those with a high demand for inputs and which are critical

suppliers to other sectors. Atalay et al. (2011) develops a model of network formation that better

matches the attributes, such as the connectivity distribution, of an actual economic network. Using

processes for firm death, reattachment of its links among surviving firms, and a mix of the preferential

attachment mechanisms and random attachment, the model matches observed macro distribution of

firm connectedness. Comparing the model and actual networks provides information on how much the

actual network is away from the model network. Knowing the differences and/or similarities between

the two networks is important for designing PMR aimed to reform a targeted sector or a community

of sectors that are in its immediate neighborhood.

4 A computational methodology

In what follows, we explain the steps involved in the development of three complementary algorithms.

We start with the extraction of pathways based on backward binary links (Algorithm I), continuing

with the extraction of cascade of layers of groups of binary links (Algorithm II), and ending with the

measurement of network resilience (Algorithm III), that is, the stability of the connectedness of binary

links. Information derived from the implementation of the algorithms is an important input for the

analysis of a targeted (usually prioritized) sector’s production network. Summarized in Table 2, the

key features of three algorithms should provide us with information for evidence-based policy design.

4.1 Algorithm I. Targeting a sector

This algorithm establishes a subgraph in which targeted sector i’s upstream (backward or supply)

and downstream (forward or demand) linkages are combined to analyze sector i’s input and output

structure. The Leontief inverse matrix represents backward linkages of a production system of an

economy, derived from the proportion of input purchases in total output. Likewise, the Ghosh inverse

matrix represents forward linkages of an intermediate consumption system of an economy, derived from

the proportion of output sales in total final demand. Forward linkages measure changes in output values

in response to changes in primary input prices (Dietzenbacher, 1997; Ghosh, 1958). Following Loviscek

(1982), both backward and forward linkages are concurrently used in order to obtain an accurate

picture of interindustry input-output structure (Loviscek, 1982). In case of sector i, for example, this

algorithm identifies the pathways of input providers to sector i (i.e., upstream to sector i) and of

consumers of sector i’s output (i.e., downstream to sector i). By integrating supply and demand-side

information, the Algorithm establishes a unified network of sector i.

The link-wise cascading structure constructed by Algorithm I starts with targeting sector i. In

the first step, the immediate input providers of sector i are identified. In the second step, the input
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Table 2: Interrelationships among three Algorithms and information for policy analysis
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Table 3: An example input-output matrix

users
A B C D E Y XD

suppliers

A 10 60 5 9 12 4 100
B 20 30 40 30 30 50 200
C 10 20 20 90 60 200 400
D 30 12 24 120 90 324 600
E 6 24 12 21 15 222 300
V A 24 54 299 330 93
XS 100 200 400 600 300

providers of sector i’s immediate input providers are identified and so on. This process would result

in layers of binary links, and each layer be associated with a sector that has bearing on sector i’s

production. From the graph-theoretic perspective, one-edge links of sector i to its immediate input

providers define upstream links, which are regarded as sector i′s structural connections. The upstream

cascading arises when sector i is connected to immediate input providers of its own immediate input

providers through two-edge pathways (i.e., two steps away from sector i). Such a cascading behavior

may extend to three-edge, four-edge or higher order links between sector i and the rest of the network.

For purposes of clarity, an example input-output (IO) matrix in Table 3 is used to demonstrate

step-by-step the implementation of Algorithm I. This matrix consists of five components. The first is an

intermediate consumption sub-matrix (X) with five sectors, {A, B, C, D, E}, as users and suppliers.

The second is a column-vector of final consumption (Y); the third, a column-vector of total demand

(XD); the fourth, a row-vector of value-added (VA); and the fifth, a row-vector of total supply (XS).

Sub-matrix X and total output supply XS are used to calculate the backward technical coefficients

matrix, Ab = [Xij/X
j
S] (see Table 4(2)). The Leontief inverse matrix, Mb[m] ≡ (I − Ab)

−1, defines

the so-called backward multiplier matrix with m denoting elements of this matrix, where I stands

for an identity matrix with dimension(5, 5) (see Table 4(3)). For notational simplicity, we denote

Mb[m] ≡ Mb. In order to focus on the analysis of inter-sectoral connectivity, the diagonal cells

in Mb[m] are replaced with zeros; that is, Mb − diag[Mb] (see Table 4(4)).4 The matrix, Mb[x], in

Table 4(5) is obtained through column-wise standardization of Mb−diag[Mb]. In doing so, individual

multipliers of a user sector are adjusted to reflect the relative importance of a supplier in the output

multiplier of the user sector. The standardized matrix Mb[x] is the only input used in targeting a

sector by setting an arbitrary threshold significance level (for example, 0.25 ≤ x) with x being matrix

elements greater than or equal to 0.25. The matrix Mb(0.25 ⩽ x) given in Table 4(6) is a reduced

form of Mb[x], which includes only the cells greater than or equal to 0.25. Suppose that a user sector

A is targeted to identify the entire chain of its direct and indirect suppliers (i.,e input suppliers of user

sector A) side; that is, to identify the entire pathway (or chain) of upstream sectors of user A.

Using backward multipliers in Mb represents half through the targeting exercise because a backward
4The diagonal elements of the multiplier matrix are set to be equal to zero, in order to focus on the inter-sectoral

connectivity. An empirical regularity is that a large majority of IO multiplier matrices are diagonally dominant as their
diagonal multipliers are larger than one. The reason is that a sector produces part of its total input demand in addition to
the production of inputs demanded by the rest of the sectors in the economy. Miller and Blair (2009, pp. 90-96) explain
this within inter-regional IO framework, and Henderson and Evans (2017) explains the same issue with an example IO
matrix <https://www.fwrc.msstate.edu/pubs/implan_2017.pdf>.
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Table 4: Input-output matrix: Backward multipliers

[1] X
A B C D E

A 10 60 5 9 12
B 20 30 40 30 30
C 10 20 20 90 60
D 30 12 24 120 90
E 6 24 12 21 15

[4] Mb − diag[Mb]
A B C D E

A 0 0.48 0.08 0.07 0.14
B 0.38 0 0.17 0.13 0.24
C 0.30 0.30 0 0.25 0.36
D 0.58 0.39 0.15 0 0.52
E 0.16 0.23 0.07 0.08 0

Total 1.43 1.40 0.46 0.54 1.26

[2] Ab = [X/XS ]
A B C D E

A 0.10 0.30 0.01 0.02 0.04
B 0.20 0.15 0.10 0.05 0.10
C 0.10 0.10 0.05 0.15 0.20
D 0.30 0.06 0.06 0.20 0.30
E 0.06 0.12 0.03 0.04 0.05

[5] M b[x]
A B C D E

A 0 0.34 0.17 0.14 0.11
B 0.27 0 0.36 0.25 0.19
C 0.21 0.22 0 0.46 0.28
D 0.41 0.28 0.33 0 0.41
E 0.11 0.16 0.15 0.15 0

[3] Mb[m] = (I −Ab)
−1

A B C D E
A 1.26 0.48 0.08 0.07 0.14
B 0.38 1.37 0.17 0.13 0.24
C 0.30 0.30 1.12 0.25 0.36
D 0.58 0.39 0.15 1.34 0.52
E 0.16 0.23 0.07 0.08 1.12

[6] M b[0.25 ≤ x]
A B C D E

A 0 0.34 0 0 0
B 0.27 0 0.36 0.25 0
C 0 0 0 0.46 0.28
D 0.41 0.28 0.33 0 0.41
E 0 0 0 0 0

linkage defines only the input providers of a targeted sector. To be complete, other half should be based

on forward multipliers in Mf [m] ≡ (I−Af )
−1 (the so-called Ghosh inverse matrix) as a forward linkage

defines the output linkage of the targeted sector (see Table 5(3)). For notational simplicity, we use

Mf . The only difference between the derivation of backward and forward multipliers is that the latter

uses the forward coefficients matrix, Af = [Xji/X
j
D], given in Table 5(2) to calculate the row-wise

standardized matrix, Mf [x] (see Table 5(5)). The matrix Mf (0.25 ⩽ x) in Table 5(6) is a reduced

form of Mf , which includes only the cells greater than or equal to 0.25. Suppose that a supplier sector

A is targeted to identify the entire pathway (or chain) of its direct and indirect users (i.,e consumers

of output produced by supplier sector A); that is, to identify the entire chain of downstream sectors

of supplier A.5

Having derived the backward and forward reduced forms, Mb(0.25 ⩽ x) and Mf (0.25 ⩽ x), the

next step is to combine them to identify the upstream and downstream pathways of targeted sector

A, and map these pathways as a single network with a view to examining the connectivity of the

upstream and downstream sectors of A. Replicating the targeting exercise for the rest of the sectors

in the IO matrix would generate five networks, one for each sector. In what follows, the algorithm for

computing and mapping the upstream and downstream networks of A is described in three steps using

the example IO matrix.6

5The reader is referred to Miller and Blair (2009) for an extensive description of how to use input-output matrices in
policy analysis.

6The Algorithms have been developed by the authors. Mathematica Codes developed at
<https://mathematica.stackexchange.com/questions/210169/how-can-i-generate-a-tailor-made-directed-graph-from-
a-given-matrix> have been extended to identify cascades of links and compute network resilience. The extended
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Table 5: Input-output matrix: Forward multipliers

[1] X
A B C D E

A 10 60 5 9 12
B 20 30 40 30 30
C 10 20 20 90 60
D 30 12 24 120 90
E 6 24 12 21 15

[4] Mf − diag[Mf ]
A B C D E Total

A 0 0.96 0.30 0.44 0.43 2.14
B 0.19 0 0.33 0.40 0.36 1.29
C 0.08 0.15 0 0.37 0.27 0.87
D 0.10 0.13 0.10 0 0.26 0.59
E 0.05 0.15 0.079 0.16 0 0.45

[2] Af = [X/XD]
A B C D E

A 0.10 0.60 0.05 0.09 0.12
B 0.10 0.15 0.20 0.15 0.15
C 0.025 0.05 0.05 0.225 0.15
D 0.05 0.02 0.04 0.20 0.15
E 0.02 0.08 0.04 0.07 0.05

[5] Mf [x]
A B C D E

A 0 0.45 0.14 0.21 0.20
B 0.15 0 0.26 0.31 0.28
C 0.09 0.18 0 0.43 0.31
D 0.17 0.22 0.17 0 0.44
E 0.12 0.34 0.20 0.35 0

[3] Mf [m] = (I −Af )
−1

A B C D E
A 1.26 0.96 0.30 0.44 0.43
B 0.19 1.37 0.33 0.40 0.36
C 0.08 0.15 1.12 0.37 0.27
D 0.10 0.13 0.10 1.34 0.26
E 0.05 0.15 0.079 0.16 1.12

[6] Mf [0.25 ≤ x]
A B C D E

A 0 0.45 0 0 0
B 0 0 0.326 0.31 0.28
C 0 0 0 0.43 0.31
D 0 0.34 0 0 0.44
E 0 0 0 0.35 0

Step 1 (using Mb(0.25 ⩽ x): At an arbitrarily set significance level, 0.25, from input side, we

target user sector A associated with the 1st column of Mb(0.25 ⩽ x). This means that those numbers

equal to or greater than 0.25 in the 1st column are considered as significant enough from the user

perspective, in which case there are two significant linkages. One is from B to A with a coefficient of

0.27 (denoted as B → A), and another is from D to A with a coefficient of 0.41 (denoted by D → A).7

Then, moving to the 2nd column associated with user sector B, we observe that A also provides input

to B (denoted by A→ B) with a strength level of 0.34, and that D provides input to B (denoted by

D → B) with a strength level of 0.28. We then move on to identify the significant suppliers of user

sector D associated with the 4th column. Suppliers B and C provide input to user D through the two

linkages denoted by B → D and C → D with the strength levels of 0.25 and 0.46, respectively. Finally,

we identify suppliers of user sector C by moving to the 3rd column, in which case suppliers B and

D are observed as significant with the strength levels of 0.36 for the linkage B → C and 0.33 for the

Algorithms will be available upon request. Many thanks go to @kglr in Mathematica forum for his valuable
programming support.

7The technical terms used throughout the paper warrant clarifications. A pathway of sectors is used to mean a set of
directed binary links (one-to-one), connection of which generates a flow from a source to sink sector. For example, given
a 2-edge pathway of three sectors, {MA1 → CST → EST}, there are two binary links, {MA1 → CST,CST → EST},
each one of which shows a directed link (→) established between two sectors only. Along this 2-edge pathway, MA1
represents a source, and EST a sink. These definitions distinguish a pathway from a binary link. The minimum length
of a pathway is 2 edges. A directed link indicates the direction of flow of either money or material or influence. In the
context of an upstream (downstream) pathway, a binary link MA1 → CST implies that CST receives material inputs
(outputs) from MA1 or that MA1 supplies the inputs (output) that CST uses (consumes) in its production process. The
terms, supply network and production network, are used interchangeably to refer to a collection of sectors that exchange
material inputs used in their production processes. A k-edge pathway refers to a pathway consisting of k binary links.
For example, k=3 implies a set of binary links, {MA1 → CST, CST → EST, EST → WHS}, and a 3-edge pathway,
{MA1 → CST → EST → WHS}.
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linkage D → C. This completes the search of significant direct and indirect suppliers of the targeted

user sector A. Important to note is that, although the IO matrix has five sectors, the search for the

suppliers of user A results in a directed network of four sectors, implying that, at the preset threshold

level, sector E is irrelevant for sector A. Combining all of the binary linkages identified in this step

generates the directed network, which consists of a set of eight binary linkages when user sector A is

targeted:

Ainput = {B → A, D → A, A→ B, D → B, B → D, C → D, B → C, D → C}. (2)

Step 2 (using Mf (0.25 ⩽ x): At the same significance level, 0.25, from output side, we target

supplier sector A associated with the 1st row of Mf (0.25 ⩽ x). This means that those numbers equal

to or greater than 0.25 in the 1st row are considered as significant enough from the supplier perspective,

in which case there is one significant linkage from A to B with the strength level of 0.45 (denoted as

A → B). Then, moving to the 2nd row associated with supplier sector B, we observe three linkages

from B: B → C with a strength level of 0.26, B → D with a strength level of 0.31, and B → E with a

strength level of 0.28. We then move on to identify the significant users of supplier sector C associated

with the 3rd row. Supplier C provides output to users D and E, which are respectively denoted by

C → D and C → E with the strength levels of 0.43 and 0.31. Supplier D associated with the 4th

row provides output to user E (denoted by D → E) with the strength level of 0.44. Finally, supplier

E associated with the 5th row provides output to users B and D, which are denoted by E → B and

E → D with the strength levels of 0.34 and 0.35, respectively. This completes the search of significant

direct and indirect users of the targeted supplier sector A. Combining all of the binary output linkages

identified in this step generates the directed network, which consists of a set of nine binary linkages

when supplier sector A is targeted:

Aoutput = {A→ B, B → C, B → D, B → E, C → D, C → E, D → E, E → B, E → D}. (3)

Step 3: It should be noted that, Ainput network in 2 and Aoutput network in 3 have four common

linkages given in Equ. 4:

Ainput ∩ Aoutput = {A→ B, B → C, B → D, C → D}, (4)

which simultaneously carry both input (denoted by solid blue arrows) and output (denoted by solid

red arrows).

To sum up, when sector A is targeted in input markets, its upstream linkages represent the input

supply network; when it is targeted in output markets, its downstream linkages represent the output

supply network. Combining the two networks fully characterizes sector A’s connectivity (i.e., all the

linkages that matter for A at the given threshold strength level of 0.25) both in input and output

markets. In the next step, community structure of the combined network and edges bridging the

communities are extracted to examine the connectivity of the network. As an illustration of the

outputs generated by Algorithm I, see Fig. 4.
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4.2 Algorithm II. Constructing cascade of layers of links

This algorithm extends the link-wise cascading structure constructed by Algorithm I to uncover layers

of links surrounding sector i. Using a directed network, gi, constructed by Algorithm I, Algorithm

II extracts cascade of layers of links in gi by repeatedly implementing Mathematica’s Neighbor-

hoodGraph[gi, i] code. This code gives the graph neighborhood of a targeted sector i in the graph

g.

1. Let L1
i denote first-order layer of the targeted sector i, which is constructed by one-edge (both

In- and Out- edges are included) neighborhood graph, N1
i , of i using NeighborhoodGraph[gi, i],

where N1
i = {S1

i , E
1
i } with S1

i being the set of sectors and E1
i being the set of links between

sectors in N1
i . By definition, layer 2 is:

L1
i = E1

i .

2. Suppose S1
i = {j, k,m} and for each sector in S1

i , one-edge neighborhood graph is constructed:

N1
j , N1

k , N1
m. Define layer 2 as:

L2
i =

⋃
z=j,k,m

(E2
z\E1

i ) ≡ E2
i , whereN2

i = {S2
i , E

2
i }.

3. Suppose S2
i = {s, u, t} and for each sector in S2

i , one-edge neighborhood graph is constructed:

N2
s , N2

u , N2
t . Define layer 3 as:

L3
i =

⋃
z=s,u,t

(E2
z\E2

i ) ≡ E3
i , whereN3

i = {S3
i , E

3
i }.

This process is repeated until all the sectors in gi are exhausted. By construction, the following

identity holds:

gi ≡
⋃

n=1,2,3

Ln
i .

4.3 Algorithm III. Measuring network resilience

Using graph-theoretic measures of community and edge betweenness centrality (EBC), this algorithm

approximates the average network resilience by a 4-step procedure:

1. Given a multiplier threshold interval (α1, α2), implement Algorithm I to construct sector i′s

upstream network, denoted by gUi (α1, α2) ≡ gUi ;

2. Suppose that gUi has communities8 denoted by Cgui
. Identify the set of between-community edges

in Cgui
(denoted by BCE(Cgui

));

8A community or cluster is a grouping of sectors that interact through a relatively large number of binary links while
minimizing the number of binary links with other communities. Consider, for example, the community structure in
Fig. 7(a). Three communities are connected through seven binary links. All the communities are linked with two-sided
complex interaction. Community 1 including MA2 carries its effect on AGF in Community 2, which in turn carries
its influence on FIN in Community 3. It is a cyclic community structure. See Fortunato (2010); Fortunato, Latora,
and Marchiori (2004); Granell, Darst, Arenas, Fortunato, and Gomez (2015); Hric et al. (2014) for community detection
algorithms.
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3. For each edge e(k, l) ∈ BCE(Cgui
), compute the resilience level of edge e(k, l) in gUi by:

Rgui
(e(k, l)) = 1−

(
# of shortest paths from j to i that pass through e(k, l)

# of shortest paths from j to i

)
≡ R(e).

4. Compute the average resilience level of the network gUi by:

R1(g
U
i ) =

( ∑
eR(e)

# of edges inBCE(Cgui
)

)
. (5)

5. Suppose that gUi has no community. The network resilience level is then computed by:

R2(g
U
i ) = 1−

(
sumof centrality scores of in/out edges of the sector hit with shock

sumof centrality scores of all edges in the network

)
. (6)

The EBC measure given in item 3 describes the frequency at which an edge lies on the shortest

path between pairs of nodes in a network. A production network is said to have community

structure if the sectors of the network can be grouped into sets of sectors such that each set of

sectors is densely connected internally and sparsely connected between groups.

5 Properties of input-output data

5.1 Input-output data

The input-output (IO) data used in the implementation are obtained from OECD’s IO database for the

most recent available year 2018.9 The OECD IO matrices with 35 sectors have been aggregated to 15

sectors by using the 2008 UN definitions for sector aggregation (United Nations, European Commission,

International Monetary Fund, Organisation for Economic Co-operation and Development, and World

Bank, 2009).10 The aggregation allows for a comparative analysis of the IO systems across countries.

Our aggregation divides “Manufacturing sector” into two sub-sectors: MA1 in our analysis covers the

petroleum and refinery activities, while MA2 captures the rest of the 16 manufacturing sub-sectors.

MA2 is an important sector as it represents the agglomeration of 16 inter-connected industrial sub-

sectors and that it is a high-priority sector in Turkiye.

5.2 Qualitative graph-theoretic properties

Under the Leontief production function, all inputs are critical and every input creates an input bot-

tleneck if it is missing. Since input-output networks at the industry level are extremely dense, under

the Leontief function, almost any industry can cause substantial downstream disruptions. The linear

production function, in contrast, assumes no critical inputs at all. Downstream shock propagation only

occurs when the total input level is insufficient. In reality, some of the inputs an industry employs

are in fact not critical for production (Pichler, Pangallo, del Rio-Chanona, Lafond, & Farmer, 2022),

and in the short-run, the associated technical coefficients can be scaled down or set to be equal to
9see <https://stats.oecd.org/Index.aspx?DataSetCode=IOTSI4_2018> for OECD input-output data for 64 countries

over 14 years from 2005 through 2018.
10Information on sector aggregation from 35 to 15 sectors is available upon request.
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Figure 1: Distribution of backward and forward multipliers in 2018

zero, while the industry continues its production. Therefore, scaling down some of the technical coeffi-

cients because of non-critical input use is not in contradiction with the analysis based on the adjusted

input-output linkages. Selectively focusing on the midrange multipliers, for example, those that fall in

between 1st Quartile (Q1) and 3rd Quartile (Q3) , conjectures that the production function in play is

between the Leontief and the linear specifications. The choice of multiplier interval can be changed at

will if the targeting analysis aims to characterize those sectors with a given multiplier size.

To better understand the structure of Turkey’s 2018 production network, we first select the multi-

pliers in the interval between Quartile 1 (Q1 = 0.005) and Quartile 3 (Q3 = 0.08), and then apply a

threshold significance level to further narrow down the interval. For each sector, those multipliers that

account for at least 20 percent of their multiplier sum are used in the construction of the upstream and

downstream networks. This two-stage selection procedure accounts for differences in the supply-use

size of each sector. The multipliers selected account for about 80 percent of the interactions in the

production network (see Fig. 1).

Several properties are noteworthy. The first property is critical for modeling the production net-

work as a weighted, directed graph. If the multiplier matrix is strongly asymmetric (symmetric), a

directed (undirected) graph configuration will be suitable for the representation of Turkiye’s production

network. A low (high) correlation coefficient (ρ) between the upper and lower triangular multipliers

rationalizes the formulation of the network as a directed (undirected) graph. The correlation coeffi-

cients of backward and forward multipliers shown in Fig. 2, which are respectively ρB = 0.14 and

ρF = −0.04, suggest that Turkiye’s production network in 2018 can be analyzed by using a directed

graph configuration. Regarding backward and forward weights (or technical coefficients), the corre-

lation coefficients between upper and lower triangular elements are not significant either, which are

ρB = 0.17 and ρF = 0.04, respectively (see the figures in the 2nd column of Fig. 2). This is natural

because sector i’s input demand from sector j is not necessarily equal to sector j’s demand for the out-

put of sector i. As to the correlation between multipliers and weights implied by the 2018 production

network, a much stronger positive correlation is observed in the case of input supply (backward) as

opposed to output demand (forward), which are ρB = 0.93 and ρF = 0.89, respectively (see the figures

in the 3rd column of Fig. 2). Altogether, these statistics suggest that the 2018 production network
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Table 6: Sectoral eigenvector centrality scores and (c, e) - coordinates of gUMA2

Communities Sectors (cause, effect) Dominance Centrality

C1

MA2 (0.16, 0.11) large 0.18 - high
CST (0.10, 0.15) medium 0.22 - high
EGW (0.09, 0.11) medium 0.18 - high

C2
FIN (0.12, 0.14) medium 0.07 - low
TSC (0.07, 0.07) small 0.11 - moderate

C3

AGF (0.12, 0.11) medium 0.12 - moderate
EST (0.15, 0.00) medium 0.001 - very low
CO12 (0.13, 0.15) medium 0.08 - low
MA1 (0.07, 0.15) small 0.04 - low

can be modeled as a weighted, directed graph, and hence, critical information for evidence-based policy

reforms can be obtained by applying graph-theoretic concepts.

The second property provides information about a sector’s linkage preference that directly affects

its productivity. Sectoral eigenvector centrality scores suggest that linkages originating from high-

scoring sectors contribute more to the score of a sector than linkages from low-scoring sectors.11 A

high (low) eigenvector centrality score means that a sector is connected to many sectors with high

scores, and that most (least) of the input flow in the network is likely to end up with. In other words,

the centrality measure indicates the limiting probability distribution of the flow across sectors. The

eigenvector centrality score of MA2, 0.18, follows that of CST, 0.22, while MA1, FIN , and CO12

have scores on the lower end (Table 6). This property reveals that CST and MA2 do business with

those sectors with high centrality, as opposed to FIN doing business mostly with non-central sectors.

This observation points to the need for increasing policy efforts to strengthen the linkage between FIN

and MA2. This finding further implies that FIN should innovate new financial instruments to fund

investment in MA2 in particular and in the rest of the economy in general.

The third property concerns the degree of sector i’s dominance. In a directed graph, sector i

has both “cause (c)” (sum of sector i’s out-degree multipliers) and "effect (e)" (sum of sector i’s in-

degree multipliers). The “cause” and “effect” of sector i serve as one measure of the flow size, while

the centrality serves as an indication of where that flow ends up. The relation between dominance

and centrality can be analyzed under nine different cases (Table 7). A striking difference between

sectors with the largest flow and sectors that absorb that flow suggests the presence of a non-trivial

structure to flows that do not necessarily drive economic activity towards the largest sectors. Each

case demonstrates a distinct feature of the network. For productivity improvement, case 1 (large-high)

represents the most desirable situation in which case a sector is dominant (with large flow size) and

highly central (with high flow absorption). This suggests that that sector causes the largest impact

(measured by multipliers), while at the same time absorbing the largest flow in the rest of the network.

Under these conditions, a disruption or a shock to that sector is expected to lead to the largest

reduction in aggregate output (Acemoglu et al., 2010). MA2 is found to be the most dominant sector

(case 1) that is expected to significantly drive aggregate output, followed by CST and EGW (case
11Eigenvector centrality of a sector increases by connections to high degree sectors. When high degree sectors are

preferentially directly connected to one another, and low degree sectors are preferentially connected to one another - ten-
dency for sectors to connect to other sectors with similar properties ”positive assortativity” - eigenvector centralization
will be high.

18



F
ig

ur
e

2:
P

ro
pe

rt
ie

s
of

T
ur

ki
ye

’s
20

18
pr

od
uc

ti
on

ne
tw

or
k

19



Table 7: The extent of impact on aggregate output through MA2’s upstream network: gUMA2

Dominance
large medium small

C
en

tr
al

it
y high case1: significant (MA2) case2: substantial (CST , EGW ) case3: small

moderate case4: substantial case5: average (AGF ) case6: tiny (TSC)
low case7: small (CO12, FIN) case8: negligible (EST ) case9: insignificant (MA1)

2). {MA2, EGW,CST} are the most influential and the most central sectors in which case most flow

ends up with these sectors shown as large circles (see Fig. 3). AGF under case 5 follows case 2.

{CO12, F IN} under case 7 are less impactful compared to AGF because of their low centrality. EST

under case 7 has a negligible impactful compared to case 7 because a very tiny flow ends up this this

sector. The rest of the sectors, {EST, TSC,MA1}, that respectively fall under under cases (6, 8, 9)

are not expected to drive the variability in aggregate output.

The second and third properties are illustrated using a visual diagnostic tool for characterizing the

network (Fig. 3). This figure also illustrates the fourth property community structure” of the network.

The hard-core sectors all belong to the same community (as indicated by the same color, which is pur-

ple), implying that these sectors have more interactions among themselves than their interactions with

others in the network. Community 1, C1 = {MA2, CST,EGW}, has the largest average centrality,

followed by Community 3, C3 = {EST,CO12, AGF,MA1}, and Community 2, C2 = {FIN, TSC}.
Community 1 generates the largest flow through MA2 while absorbing the highest flow through CST

and EGW , and they are all connected within the same community. Therefore, community 1 is to

be prioritized for policy reforms to increase aggregate output. Although critical for overall economic

growth, community 2 remains weak both in terms of flow size and flow absorption. Policy reforms

should also prioritize this community as they produce general purpose services widely used in the rest

of the economy. The figure also shows critical input suppliers of MA2, {FIN,AGF,CST}, and users

of its output, {AGF,CST,EGW}.Therefore, it should also be a priority for policy reforms to create

an enabling environment for MA2’s suppliers and users.

The final property of Turkiye’s production network concerns the implementation of pro-competitive

PMR. Research shows that most of sectoral indicators of pro-competitive PMR relate to four network

sectors, {EGW , TSC, WHS, EST} (Alemani, Klein, Koske, Vitale, & Wanner, 2016; Koske, Wanner,

Bitetti, & Barbiero, 2015). Regulations in these sectors are mainly about the organization of network

access to potential service providers. For example, regulations in WHS typically take the form of

entry barriers, specific restrictions for large firms and the flexibility of shops in terms of opening hours

and prices; those in EST relates to barriers to entry and the way services are delivered and includes,

amongst others, rules governing the recognition of qualifications and the determination of fees and

prices. Recent empirical studies provide some evidence that the benefits of pro-competitive regulations

tend to materialize only over time, but yield somewhat conflicting insights with respect to the possible

presence of short-term costs (Bassanini, 2015; Bouis et al., 2016). In the context of Turkiye, the four

network sectors concerned account for about 41 percent of GDP in 2018. Their economic significance

is wide since most of their output is heavily used as inputs in production elsewhere in the economy.

Per USD cost of labor, these sectors invest 2 cents, 43 cents, 59 cents, and 14 cents, respectively.

In other words, TSC and WHS have received relatively large investments per labor cost. However,
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Bubble Properties: (1) Position: Coordinates of dominancy (row-wise sum) and subordinacy
(column-wise sum of multipliers); (2) Shape: Size of eigenvector centrality score; (3) Color:
Communities of sectors; (4) Arrows: In-degree (red) or Out-degree (blue) edges with edge weights.

Figure 3: Sector dominance, eigenvector centrality, degree, and community structure

regarding the targeted sector MA2, accounting for 0.6 percent of GDP, only 11 percent of labor cost

has been invested. FIN , the main input supplier of MA2, accounts for 3 percent of GDP and invests

5 percent of labor cost. These observations suggest that successfully implementing pro-competitive

PMR in MA2 and FIN calls for a stable political environment and a strong fiscal space to ensure the

continuity of the reforms that are likely to yield short-term costs. Otherwise, for political economy

reasons, incumbents are likely to fall on the short-term, less-productive policy reform.

6 An application

6.1 Algorithm I: Key findings and policy implications

Algorithm I generates four hierarchically layered graphs. Fig. 4(a) exhibits the ”upstream”network

of input suppliers of MA2; (b) the ”downstream” network of users of MA2’s output; (c) the com-

bined network of ”upstream” and ”downstream” linkages of MA2; and lastly, (d) the structural and

ancillary links of MA2 from the combined network in (c). The linkage patterns embedded in the four

graphs provide critical information for evidence-based policy design to improve MA2’s contribution to

aggregate output.

The first pattern observed from Fig. 4(a) is that MA2 has two-way links to CSTand AGF ,

followed by its binary links to FIN and EGW . MA2 also operates within two cycle-pathways,

{MA2 → AGF → CST → MA2} and {MA2 → EGW → CST → MA2}, implying that any input

MA2 receives from FIN would necessarily go through these cycle-pathways. AGF and EGW along

these pathways act as intermediary sectors that can control the flow of inputs into CST , which in turn

creates a multiplier effect back on MA2. A similar multiplier effect on MA2 can also be established

by any input into AGF ’s production process through, {CO12→ AGF → CST →MA2→ AGF}.
The second pattern concerns the impact of MA1’s and TSC’s input supply to FIN , which in turn
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provides inputs to MA2 through, {MA1 → FIN → MA2} and {TSC → FIN → MA2}. In the

sense of hierarchy, this implies that FIN is the source and the upstream sector to MA2. Therefore,

distortions accumulating in FIN would have substantial negative effect on the productivity of MA2.

In case that financial market regulations narrow the range of available financial instruments, MA2’s

access to finance would be risked, thereby curbing new entry and market growth. In this case, MA2 may

have to negotiate with FIN , and that can result in loss of rents that MA2 expects to earn. Together,

the first and second patterns suggest that policy reforms should consider the following pathways:

{MA1, TSC} → FIN →MA2↔ {CST ← {AGF,EGW}}, (7)

to design effective policy reforms to promote MA2’s production. This requires not only to address

MA2’s weak linkages but also to consider the weaknesses of the network itself:

{MA1, TSC, FIN,MA2, AGF,EGW,CST}. (8)

Network-based policy reforms targeting MA2’s productivity need to identify mechanisms causing

”distortions” (sub-optimal prices) in MA2’s market, as well as the distortions in markets of sec-

tors in Equ. 8. Having said that, a particular attention should be paid to distortions and misallocation

of resources taking place along the pathways in Equ. 7. The convoluted distortions and misallocations

created by backward input demand linkages cause the ”upstream”network of MA2 to become clut-

tered with imperfections. Ultimately, MA2 becomes the sink for accumulated distortionary effects,

experiencing the highest distortion level (Liu, 2019). At some point in time, the distortions accumu-

lated in MA2 can burst if it goes beyond its carrying capacity, playing a much larger role in generating

aggregate volatility in the economy-wide production network. Informed policy reforms should ease the

wider diffusion of effects of the shock before it reaches back at MA2.

Centralities of sectors along the pathways in 7 call attention to two potential bottlenecks originating

from FIN and AGF that absorb a relatively small size of inputs flowing in the rest of the production

network. This is in turn likely to cause contraction in MA2’s production. On the positive side, CST

has a facilitating linkage with MA2 as it absorbs a very large flow of input and redirects it to MA2,

which would improve MA2’s production. These findings point to the need for increased policy efforts to

strengthen the linkage between FIN and MA2 and efforts promoting financial innovations to expand

MA2’s production possibilities.

The difference between input “generating” sectors, {MA2, CO12, F IN,AGF}, and input “absorbing”

sectors, {CST,MA2, EGW,AGF}, suggests that the largest flow absorbers {CST,EGW} do not nec-

essarily drive economic activities of the largest input generators {MA2, CO12}. That is, there is a

linkage gap between absorbers and generators:

{CST,EGW}︸ ︷︷ ︸
absorbers

→ {MA2, CO12}︸ ︷︷ ︸
generators

, (9)

pointing out the need to design policy reforms to promote the discharging of the accumulated input

in the absorbing sectors. This can be achieved either by establishing new channels between the ab-

sorbing and generating sectors or by investing in areas to promote new activities that will close the
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gap. Pro-competitive PMR should consider the peculiarities of EGW and CO12 , both of which are

regulated general service sectors, outputs of which are widely used as inputs elsewhere in the economy

(Gal & Hijzen, 2016). TSC, another highly regulated general purpose service sector, is also critical for

productivity improvement especially in FIN that serves as an important input supplier of MA2. Re-

ductions in barriers to entry to most protected non-manufacturing network industries, {EGW,TSC},
lead small firms to benefit most from pro-competitive PMR (Bouis et al., 2016). Therefor, intensifying

PMR efforts in these sectors should strengthen Turkiye’s growth prospects.

More interestingly, these regulated and protected industries are spread across the three communities

embedded in MA2’s upstream network:

{MA2, EGW,CST}︸ ︷︷ ︸
community 1

> {CO12, AGF,MA1}︸ ︷︷ ︸
community 2

> {TSC,FIN}︸ ︷︷ ︸
community 3

, (10)

which are ranked with respect to the average community centrality. The ranked communities also

suggest that reductions in barriers to entry to community 3 promises the largest productivity gains

from pro-competitive PMR, followed by community 2. Since every community includes at least one

regulated industry, PMR related to regulated industries in general will strengthen growth prospects

for MA2. For productivity growth in the upstream network of MA2, policy reforms should further

target, {FIN →MA2, EGW → TSC}, to create a virtuous cycle between community 1 and 3.

Pro-competitive PMR also have substantial bearing for the immediate consumers, {HLT,ENT,HOT},
of MA2’s output. Their output demand and MA1’s and EST ’s demand from them (red links in Fig.

4(b)) are translated to input requirements for MA2 to meet the new demand (red links ending up

with EST and MA1 in Fig. 4(c)). This new demand triggers a whole bunch of backward linkages in

MA2’s production network, with the shortest pathway transmitting the input requirement signal to

MA2:

{EST,MA1}︸ ︷︷ ︸
signal entry points

→ FIN →MA2. (11)

Pro-competitive PMR should guide the “signal entry points” in such a way as to improve their signal

transmission mechanisms. For example, subsidies to strengthen competitive neutrality in MA1’s mar-

ket would create opportunities for small disadvantaged firms to enter the market, increasing the flow of

price-quantity information across firms and opportunities for FIN to design new financial instruments

that would be available for MA2. Since FIN operates in a non-competitive environment, competition

policy reforms should concurrently ensure the enforcement of competition law in FIN .

As seen from the combined upstream and downstream networks in Fig. 4(d), the immediate

environment of MA2 includes only MA2’s direct links to its neighbors, as well as the links between

its neighbors denoted by the red links in Fig. 4(d). This environment is called “structural” cluster as

the interactions taking place in this environment are immediately passing on to MA2. The figure also

shows that {EST, TSC,CO12,MA1} fall in the “ancillary” cluster as the interactions in this cluster

will take time to influence the structural cluster. Such a layered structure suggests that policy priority

should be given to the structural cluster to sustain MA2’s production at least in the short run. In

the long-run, however, policies that influence the interactions in the ancillary cluster be developed to
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avoid a collapse of the production network of MA2 in case of a shock to its critical sectors.

Research conjectures that upstream sectors in a given production network play an important role

in the amplification of exogenous shocks (Pichler et al., 2022). In the context of input supply-input

use “upstream” network, the amplification of an input-use “demand” shock to MA2 would depend on

which sectors, {AGF , CST , FIN}, are involved in spreading the shock. The elasticity of aggregate

output to the shock to a given sector depends on the linkage strength of that sector. That the three

sectors have one-edge links with MA2 implies that, depending on the linkage strength, the shock to any

of these sectors would have deleterious effect on MA2’s production. To generate critical information

for evidence-based design of policy interventions, some of the properties of {MA2, AGF , CST , FIN}

can be uncovered ex-ante to know how systemic the shock is. For example, as proposed by Pichler et

al. (2022), scenario analyses can be carried to measure the impact on the aggregate output of a single

shock (i.e., by computing the output elasticity of that shock) to a single sector.12 Knowing the relation

between the shock and output multipliers of the sectors concerned is a valuable information for policy

design. A low (high) shock elasticity of output multipliers in a sector would imply that the shock is

not disrupting much the production process in that sector.

Furthermore, in the context of MA2’s “upstream” network, the distortions accumulated in {AGF ,

CST , FIN} would lead to resource misallocation in MA2, resulting in a sub-optimal production, the

effects of which would pass on the “downstream” network of consumers of MA2’s output (Atalay, 2017).

Through MA2’s direct binary links to its customers, {HLT,ENT,HOT}, the effects of the shock will

be observed across all the sectors in the “downstream” network of MA2 (see Fig. 4(b)). Eventually,

through the connections of consumers to input-suppliers of MA2 in the “upstream” network, aggregate

output growth in Turkiye will be at risk. The question is how to avoid the spread of the shock. Two

viable strategies exist. The first, mildly protective strategy is to regulate the links of input-suppliers

of MA2, {AGF → MA2, CST → MA2, F IN → MA2}, and MA2’s output supplies on the demand

side, {MA2→ HLT,MA2→ ENT,MA2→ HOT}. Policy design would be relatively less troubling

and less costly as the number of links considered gets smaller. Therefore, for government facing limited

fiscal capacity, the identified sets of links should further be prioritized. The second, strongly protective

strategy is to regulate not only the links of input suppliers and customers of MA2 but also those links

among the neighbors of MA2. Prioritization of the links is more relevant under this strategy as the

number of links can quickly and exponentially increase with the inclusion of the neighboring sectors of

MA2 (see the structural (red colored) links in Fig. 4(d)).

The longer the pathway, the higher the upstream sector’s distortion centrality. Topologically,

EST is an exogenous sector in the upstream network of MA2 as it has no in-coming links at the

implemented threshold multiplier level. Thus, it can only transmit its own distortions to two sectors

{CO12,MA1}, the users of EST ′s output. Conversely, CST is influenced by an accumulated amount

of distortions as it has multiple links to {MA2, EGW,AGF}. The larger the distortions in its upstream

sectors, the larger the resource misallocation in CST as it takes its price-quantity information from

the upstream distorted markets. The large (small) bubble size of CST (EST ) shown in Fig. 3 is an

indication of this conjecture. A policy implication for MA2 of this conjecture is that pro-competitive
12Scenario analyses can be carried out using the RAS matrix balancing method, which is more practical compared

to the cross-entropy method. See Holỳ and Šafr (2023) for the equivalence of the RAS method with the cross-entropy
method for matrix balancing.
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PMR should target upstream sectors, {CST,AGF,FIN}, to mitigate the distortions. Investing in

markets where most-dominant and most-distorted upstream sectors interact would improve efficiency

and reduce aggregate losses because an inefficient economy allocates too few factor inputs upstream

and too many downstream. Policy interventions would improve efficiency only if they redirect the

factor input to the dominant and distorted upstream sectors. In hierarchical production networks (the

generalization of vertical networks), similar to networks in Fig. 4(a, b), upstream sectors tend to have

higher distortion centrality because imperfections accumulate through backward linkages.

Applying Sugiyama’s layered graph algorithm (Sugiyama et al., 1981),13 we refine the ”upstream”

network of MA2 (Fig. 4(a)). The vertical links are isolated from the the upward links (see Fig. 5(a,

b)). Fig. 5(a) shows that {EST, FIN} occupy top of the hierarchy, while {CST, TSC} bottom of the

hierarchy and MA2 functions as a midstream sector. The distortion centrality in MA2 is expected to

be smaller than that in the upstream sectors and larger than that in the downstream sectors. There

are 6 binary links working against the vertical hierarchy in the network: {MA1 → FIN, TSC →
FIN,AGF →MA2, CST →MA2, AGF → CO12, CST → EGW} (see Fig. 5(b)). The two isolated

networks can be analyzed as a causal influence network to explore functional dependencies across

sectors (Ay & Polani, 2008). Adopting the pure hierarchical structures described, we conjecture that,

with only one link from FIN to MA2, the priority for public support should be given to FIN in order

to reduce the distortion in FIN , which would in turn reduce the misallocation in MA2 and then in the

downstream sectors {AGF,EGW,CST, TSC}. From policy design perspective, and the observation

that CST and TSC are at the bottom of the hierarchy, EST and FIN are to be supported to minimize

the distortions that cause misallocation of resource use in MA2 and in AGF, EGW , CST, and TSC.

CST and AGF work as counteracting forces through their upward links affecting the misallocation in

MA2. This all points out that there is a potential aggregate productivity gain if MA2, AGF , and

CST collaborate on a common cause. Since MA2 and CST are members of the same community,

the collaboration concerned can be justified more easily on the grounds that these two sectors have

already been interacting strongly. The second type of collaboration concerns the collaboration of

sectors from two different communities, which are, by definition, connected through low-strength links.

Hence, the second collaboration between AGF and MA2 would require more efforts to strengthen

their interactions.

6.2 Algorithm II: Key findings and policy implications

Algorithm II identifies potential amplification mechanisms by uncovering cascades of layers of sectoral

linkages. If a single sector fails, it may force other sectors to fail as well, which may eventually lead

to failure cascades and the breakdown of the production network, referred to in the literature as

systemic risk. This algorithm reshapes the ”upstream” network of MA2 as a cascade of layers of

links (see Fig. 6). The resulting layered network can be used to elaborate on the effects on MA2’s

production of a shock to one of the critical input suppliers of MA2. The pathway through which the
13A layered graph drawing algorithm - also known as hierarchical layout or Sugiyama algorithm - places the vertices of

a graph into horizontal layers (virtual horizontal lines) such that the links, modeling the relationships, point in a uniform
direction. This algorithm is based on an acyclic graph structure and works with an unweighted adjacency matrix in
which existing links take on score 1, non-existing links score 0. This implies that the layering does not consider the
actual edge weights which may take on values other than 1 and 0.
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(a) Upstream network of MA2, gUMA2 (b) Downstream network of MA2, gDMA2

(c) Networks in (a) and (b) combined (d) Structural (red) and ancillary (blue) links in (c)

Figure 4: Turkiye 2018: Targeting sector MA2 using IO matrix with 15 sectors

(a) Downward network in Fig.4(a) (b) Upward network in Fig.4(a)

Figure 5: Downward and upward hierarchical structure of gUMA2
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shock penetrates into downstream sectors would provide us with more information that can be used

to design layer-specific pro-competitive PMR.

Fig. 6, a policy diagnostic tool, shows three layers of links uncovered from a hierarchical network

in Fig. 4(a). EST occupies the outmost Layer 3 (blue colored circle with blue arrows), implying that

it is the single furthest sector that indirectly supplies input to MA2. The midstream Layer 2 (green

colored circles with green arrows) includes three sectors, {CO12,MA1, TSC}, that provide inputs

to two sectors, {FIN,AGF}, placed in the innermost Layer 1 (red colored circles with red arrows)

centered around MA2. Layer 1 includes five sectors, {FIN,AGF,CST,EGW,MA2}. This cascade

structure offers a new perspective for designing pro-competitive PMR to improve the productivity

of MA2. In case of a shock to the economy-wide production network, there are alternative policies

to minimize the adversities that MA2 is likely to encounter. From the point of maximizing MA2’s

production, public policy should target Layer 1 to correct the accumulated distortions in {FIN,AGF},
which have direct bearing for the productivity of MA2. Depending on the sectors inflicted by the shock,

policies should also target them individually and the layer they belong to. For example, if MA1 is hit

by a shock, FIN should be the sector of interest to policy makers because MA1 is only two linkages

away from MA2, {MA1→ FIN →MA2}, through which the effects of the shock will penetrate into

MA2 in Layer 1. The effect of the shock to MA1 will also penetrate into MA2 through a delayed

effect along the pathway, {MA1→ FIN → CO12→ AGF →MA2}. Public support to improve the

resilience of FIN and AGF should slow down the penetration, and hence, in the short run, Layer 1

will buy time to improve the resilience of the sectors in it.

Competition policy enforcement, market reforms and institutions need to be elaborated to identify

the areas that need to be strengthened to promote the productivity of MA2. Investment strategies

can be designed. An obvious one is to invest in infrastructure to strengthen the resilience of FIN

and AGF through improved market connectivity and access (i.e., investments in TSC) so that the

penetration from Layer 2 to 1 of the effects of the shock can be minimized. Renewed investments in

ICT would help catalyze the connectedness in the upstream network of MA2. Furthermore, two-way

flows of inputs, {CO12 ↔ AGF, TSC ↔ FIN}, also justify public support to CO12 and TSC to

reduce the distortionary effects on sectors in Layer 1 since the effects of the shock would amplify due

to the two-way flow of inputs.

6.3 Algorithm III: Key findings and policy implications

Algorithm III measures the resilience of the ”upstream” network of MA2. Two measures of network

resilience are proposed: one for a network with communities, another for a network without commu-

nities. In the case of communities, the resilience indicator is constructed at four steps explained in

Section 4.3. The idea is simple: the more connected a network is, the more resilient it is. Namely,

if the communities are connected with a large number of links, it is more likely that the upstream

network is more resilient against shocks because severely hit links can be quickly replaced with others.

MA2’s upstream network has a total of 19 links (see Fig. 7(b)), 7 of which are in between

communities, {FIN → CO12,MA1 → FIN,FIN → MA2,MA2 ↔ AGF,AGF → CST,EGW →
TSC} (see Fig. 7(a)). In other words, more than one-third of the links in the network should be hit

severely for the entire network to breakdown. The centrality scores in our case are calculated using the
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Figure 6: Turkiye 2018: Cascade of layers in the upstream network gUMA2

link weights (i.e., multipliers), considering that links have different multipliers. The indicator given

in Equ. 5 approximates the degree of resilience of MA2’s network as R1(g
U
MA2) = 0.43, implying a

moderate resilience level based on the centrality scores of the relevant links (see Fig. 7(b)). The higher

the score of a link is, the lower the network resilience with respect to that link is. If one link in between

communities is disrupted completely, and if that link has a large edge-betweenness centrality score,

then the resilience of the network with respect to that link will be low. The point of departure of

this measure is that the connectedness of communities relies on the importance (i.e., edge betweenness

centrality score) of between-community edges.

In the case of a network with no community, the importance of all incoming and outgoing links

of a disrupted sector(s) is considered to measure the network resilience by Equ. 6. Here, the focus

is on the connectedness of the entire network concerned with respect to the disrupted sector(s). If,

for example, FIN and AGF are disrupted in an isolated manner, the network resilience will be

R2(g
U
MA2, F IN) = (1 − 0.33) = 0.67 and R2(g

U
MA2, AGF ) = (1 − 0.27) = 0.73, respectively. The

average resilience level over the two disrupted links is 0.70 (= (0.67 + 73)/2). Assuming the complete

breakdown of Layer 2 in the cascade analyzed in Section 6.2 means that all the links in that layer

become non-operative due to a shock. That is, the following set of links,

{CO12↔ AGF,FIN → CO12, CO12→MA1,MA1→ FIN, TSC ↔ FIN},

are severely disrupted, in which case the measure of network resilience with respect to Layer 2 is

calculated as R2(g
U
MA2, Layer 2) = 0.27. To improve the resilience of the network, policy interventions

should selectively target those links which appear more often along the shortest paths, including

{R(CO12→ AGF )︸ ︷︷ ︸
0.35

, R(TSC → FIN)︸ ︷︷ ︸
0.35

, R(MA1→ FIN)}︸ ︷︷ ︸
0.32

,
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Normalized eigenvector centrality scores
(edge resilience measure)

Edges / Scores Edges / Scores
TSC → FIN 0.35 AGF → CO12 0.20
CO12→ AGF 0.35 CST →MA2 0.18
MA2→ EGW 0.32 EST → CO12 0.15
MA1→ FIN 0.32 MA2→ CST 0.12
FIN→ CO12 0.29 FIN → TSC 0.09
EGW→ TSC 0.29 EST →MA1 0.09
FIN→MA2 0.26 EGW → CST 0.09
CO12→MA1 0.26 CST → EGW 0.09
AGF→MA2 0.23 AGF→ CST 0.09
MA2→ AGF 0.20

(a) Community structure of gUMA2 in Fig. 4(a) (b) EBC scores of edges in gUMA2 in Fig. 4(a)
Note: Emboldened edges link communities.

Figure 7: Community structure and EBCs of gUMA2

where the numbers below each link, e, represent the resilience level, R(e), associated with that link.

6.4 Evolution of the production network

We move beyond the 2018 single-snapshot network of MA2 by allowing a time-dependent resolution

of the network. This allows us to characterize the evolutionary path of MA2’s network during the

period 2005-2018. Using the multipliers in between Q1 and Q3 and then selecting those binary links

accounting for more than 20% of the variation in MA2’s output multiplier, we identify a time-series

map of MA2’s network by a single-shot application of Algorithm I for each year from 2005 through

2018 (Fig. 8).

Few observations are noteworthy to assess the changes in the structure of MA2’s network. First,

FIN is observed to be connected to MA2 during the entire period 2005-2018, followed by AGF ’s and

CST ’s linkages to MA2 during 2007-2011 and 2016-2018, and EGW ’s linkages in 2009 and during

2015-2018. Second, during the most recent period 2016-2018, a more pronounced structure arises

in which case MA2 is always linked to {FIN,AGF,CST,EGW}; the set of sectors in the network

remains constant at 9; and in two of three networks, FIN and EST act as upstream sectors relative to

MA2. Third, in all these hierarchical networks, MA2 occupies a midstream position along the existing

pathways. This suggests that policy reforms to improve the productivity of MA2 need to primarily

consider the potential expected impact of its immediate neighbors.

Likewise, the time evolution of community structures of MA2’s networks reveals that MA2 and

FIN have shared a common community during 2011-2015 while sharing different communities dur-

ing 2016-2018. This suggests that their linkage strength levels decreased during the latter period.

Moreover, during the latter period, FIN and TSC have always shared the same community, implying

that their links got stronger during 2016-2018. This may partly imply a weakening linkage between

FIN and MA2. Finally, during 2016-2018, {MA2, EGW,CST} have always remained in the same

community, pointing out that the strength of their binary linkages has remained as strong.
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7 Discussion

The period 2000-2022 has been especially tough for Turkiye due to a series of political and economic

crises combined with the global financial crisis. Turkiye has gone through the 2000- 2001 financial

crisis, followed by the 2008-2009 crisis that took place due to the global spreading of mortgage crisis in

the US. The most recent 2018-2022 crisis emerged from the deteriorating investment environment both

in domestic and international markets. On top of this, the COVID-19 pandemic and the war in Ukraine

increased the severity of the crisis. These crises seem to originate mainly from adverse developments

in the monetary economy, however, it is undeniable that various political-economic factors deepened

the crises. The needed reforms to strengthen government fiscal space were not undertaken, including,

among others, reforms in tax schemes, agricultural support, financial intermediation, and investment

programs (Keyder, 2022). The delay increased the burden on the real side of the economy, putting

a heavy strain on the long-time prioritized manufacturing sector in particular and the production

economy in general.

As analyzed in more detail by Acemoglu and Ucer (2015), Turkiye experienced reasonably high-

quality growth during the 2002-2006 period in between the 2001 and 2008 crises. With almost 6% per

capita (per annum), the Turkish economy experienced its fastest per capita growth since the 1960s.

Turkey’s growth performance during this period was notable because it came with relatively high pro-

ductivity growth. About half of the growth in per capita GDP during this period stemmed from total

factor productivity (TFP) growth, which increased by about 3% per annum between 2002 and 2006.

Much of this TFP growth was driven by the “structural” shift in employment from agriculture to man-

ufacturing and service sectors. The share of manufacturing in GDP in constant prices increased from

around 22% in 2001 to almost 24% in 2007. On the political account, a new government formed in 2002

started with the legacy of an enabling institutional-economic environment facilitated by the previous

government, capitalized on the already-existing strong relations with the EU, and promised a more

democratic and socially inclusive process of development. A new jump-start got the economy running

again, catalyzing the establishment of growth-generating interactions in the production economy.

In 2008, adversities due to the global financial crisis arrested global economic growth. Predatory

lending arising from the lack of competition in loan markets, the bursting of the US housing bubble,

and excessive risk-taking in global financial institutions resulted in the bursting of the financial bubble.

Finance, real estate, and construction sectors were the sources of troubles. It started in the financial

sector but quickly spread over the real economy. In Turkiye, the 2008 growth rate was 1.1%, and

in 2009, it was -4.7%. In May 2009, capacity utilization in the manufacturing sector declined to

62%.(Keyder, 2022)

The 2018-2022 crisis grew out of a combination of factors: high indebtedness, current account

deficit, and appreciation of Turkish Lira. The period of cheap credit and public sector’s support to

the construction sector ended, halting the construction-based economic growth. During 2018-2020,

GDP growth was 2.8%, 0.9% and 1.8% , respectively (Keyder, 2022). With the COVID-19 pandemic,

the situation got worse with disruptions in the global value chains that adversely affected many firms,

leading to increasing unemployment and decreasing consumption. To protect firms and consumers,

the government provided direct financial support to businesses and income support to the most needy

population groups. This has further increased the budget deficit, leading to expansion of money supply
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and hence high inflation.

Against this short background of the crises Turkiye has gone through, MA2’s network structure

demonstrated in Fig. 3 helps us to better assess the existing structural inefficiencies (as of 2018)

and develop potentially strategic partnerships across sectors to address them. Progress in the most

subordinate sectors is more uncertain, and high dependency on other sectors can delay progress in the

sector in question, even if the measures aimed directly to the sector are successful. Highly subordinate

sectors (CST , EGW , TSC) have the least control over their own issues. Rather than surrendering

to this fact, it should be a strong motivation to nurture relationships with the sectors (such as MA2)

that hold the key to their productivity. Because of uncertainty, selecting a highly subordinate sector

as a flagship sector would not be very strategic, even if the potential influence is strong. On the other

hand, dominant sectors (such as MA2, CO12) receive very little support from other sectors or are

weakly connected to the rest of the network. Their dependence on progress in other sectors is low.

Not benefitting from network effects, they may need more targeted support.

Network perspective to policy design may guide the formation of cross-sector collaboration. In

many networks, the distribution of links is unevenly distributed; they form communities of high con-

centrations of links with low concentrations of links in-between the communities. The identification of

such communities within the upstream network of MA2 can help policy makers to develop compre-

hensive implementation strategies and organize implementation beyond just a ranking of individual

sectors. Sectors forming a community can make a good coalition; they influence each other positively;

and they have a shared interest in handling the links to other communities. The set of sectors in a com-

munity may be different from the present logic of how responsibility is divided (e.g., across ministries

by policy area or topic). Exploring communities can thus present an effective way to build strategic

partnerships.

In general, sectors in a production network operate in a complex environment where competitive

and regulated producers engage in trade, distortions and imperfections amplify the scale of a disrup-

tion, and cascade of sectoral links heightens the systemic risk. MA2, a priority sector for Turkiye,

and its upstream network have to survive in this challenging environment while pushing aggregate

output towards the frontier. To accomplish this, policy reforms should take into account the defining

characteristics of the key pathways of sectoral interactions. Suppose, for example, that MA2 sells its

competitively-priced output to regulated monopolistic sector, EGW , which will lead to higher rents

in EGW as its regulated input price will be higher than its competitively-priced input. EGW would

gain from pro-competitive PMR in MA2. An opposite price incompatibility arises when FIN sells at

the regulated price to MA2 operating in a competitive market. This will raise the competitive price

of MA2’s output and hence lower the demand, which would subsequently lead to misallocation of re-

sources in MA2’s production process. This mechanism is important when studying distortions in the

upstream network (input suppliers) of MA2 that may cause MA2 to use the wrong suppliers, leading

MA2 to use lower-productivity techniques or higher-cost inputs (Oberfield, 2018). The transmission

mechanism reveals that, along a pathway of sectoral links,

{competitive︸ ︷︷ ︸
MA2

→ regulated︸ ︷︷ ︸
EGW

→ competitive︸ ︷︷ ︸
MA2

} =⇒MA2′s profit ↓, (12)
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part of the profit of MA2 will be confiscated by the regulated industry, EGW . It further reveals:

{regulated︸ ︷︷ ︸
FIN

→ competitive︸ ︷︷ ︸
MA2

→ regulated︸ ︷︷ ︸
EGW

} =⇒ EGW ′s profit ↓, (13)

that high prices in FIN raise the cost of MA2’s production and depress the demand for its output,

which would subsequently reduce MA2’s profits. In this case, regulated industry price would be rising

due to price distortions in MA2 as input supplier of EGW . This time, misallocation of resources would

take place in the regulated industry EGW . Such dynamic sectoral interactions along a pathway are

harmful not only for the source but also for the sink sectors. It is also harmful for the entire upstream

network of MA2 as such the accumulated price distortions would lead to a wider scale of resource

misallocation and lower the productivity of the network. The effects of disruptions would amplify

through backward linkages in the production network, increasing the systemic risk and the likelihood

of the breakdown of the entire network. To minimize the welfare loss due to misallocation of resources

in MA2 and improve network resilience to disruptions, pro-competitive PMR can target FIN and

EGW to remove dominance and blockades to firms’s entry to market, as well as to enforce competition

policy and institutional changes supporting competitive neutrality. All these efforts should enhance

MA2′s productivity and aggregate output growth.

The productivity of MA2 will be severely affected along:

{regulated︸ ︷︷ ︸
TSC

↔ regulated︸ ︷︷ ︸
FIN

→ competitive︸ ︷︷ ︸
MA2

} =⇒MA2′s profit ↓, (14)

including two regulated sectors as upstream input suppliers of MA2. This suggests that pro-competitive

PMR should target TSC and FIN , both of which are subject to severe market imperfections. Imperfect

competition in the two heavily regulated upstream sectors would first amplify resource misallocation

in their own activities. The accumulated distortions in these upstream sectors would then lead to

significant misallocation of resources in MA2, resulting in much reduced profits. In order to unlock the

productivity of MA2, PMR and institutional reforms should be undertaken to reduce price distortions

in TSC and FIN .

The resilience of MA2’s production network relates to the level of systemic risk embodied in the

cascade structure of the network. With the information obtained from the analysis of MA2’s network,

layer-specific regulations and/or institutional structures can be designed to control the penetration

of detrimental effects of a disruption in the production process of MA2. For example, in the case of

disruptions in TSC, the regulated pathway, {EGW → TSC → FIN}, should be prioritized to address

potential adversities that might arise due to bottlenecks in TSC (Fig. 6). However, the main issue is

much wider than the disruptions in TSC. It is the concentration of regulated sectors or markets along

that pathway, laying the ground for the conditions that are cohesive to cartel creation. In this case,

systemic risk would elevate to a level that can result in the breakdown of the production network of

MA2. In practice, the resilience of the network is also about whether or not the involved sectors along

the pathway have sufficient productive capacities.14 All of the regulated sectors requires advanced
14Productive capacities are defined as the productive resources, entrepreneurial capabilities and production linkages

that together determine a country’s ability to produce goods and services that will help it grow and develop, see
<https://unctad.org/topic/least-developed-countries/productive-capacities-index>.
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technology and skilled labor, and meeting the demand for the skilled labor and new technology takes

time and requires resources. At the network level, the resilience can be strengthened not only by PMR

and institutional reforms but also by investing in productive capacity development to meet the demand

for new capacities in FIN and TSC.

Critical backward linkages of a mix of regulated and competitive sectors, {EGW,TSC, FIN} being

regulated and {MA2, AGF,CST} being competitive, have been characterized in the previous sections

as:

{EGW → TSC → FIN}, {MA2→ AGF,MA2→ CST}, {FIN →MA2,MA2→ EGW}.

The impact on MA2 of pro-competitive PMR along these pathways should be reassessed. Take, for

example. the first pathway {EGW → TSC → FIN}. Energy market liberalization relating to EGW ,

such as privatization, competition, and regulation in both gas and electricity, is expected to lead to lower

prices, but industrial consumers are likely to gain disproportionately. Opening transport markets to

competition in TSC reduces the prices of transportation services, a key input for producers and traders

in general. Entry liberalization and deregulation of TSC and EGW are likely to create a particularly

substantial positive impact on growth because their general purpose services are widely used in the rest

of the economy. Competition among service providers, such as firms in FIN , can help to increase the

effectiveness of cash transfers, the functioning of voucher systems for agriculture subsidies, and reduce

information asymmetry on quality of services. Reforms and regulations to promote competition in

FIN would also reduce hidden costs of transactions and rules that increase discriminatory treatment,

as well as improve SMEs’ access to financial instruments and encourage firms in FIN to innovate

financial intermediation instruments. In Turkiye, the direct linkage, FIN → EST , is particularly

weak (see Fig. 4(a)), representing an area for pro-competitive PMR interventions. The availability

and pricing of credit is key to support SMEs and low-income individuals to start and develop new

SMEs. On the other hand, removing price floors and other restrictions on legal services under EST is

positively associated with greater productivity in professional services.

Competition among processors would benefit farmers (MA2→ AGF ) by increasing the farm gate

price of the crop and therefore improve their livelihood. For instance, in the case where the firm with

the largest market shares splits, an average income of producing households can increase. Although it

could be argued that lower prices for producers could be passed on to lower prices for end consumers,

the presence of buyer power coupled with high market power in selling to customers limits this pass-

through to consumers, as implied by Equ. 12, it is instead monopsony intermediaries who would benefit

from lower prices. Enabling widespread use of generic drugs through elimination of anti-substitution

laws (i.e., pro-competitive PMR in pharmaceutical industry under MA2) would substantially increase

consumers’ savings through the linkage (MA2→ HLT ) (see Fig. 4(b)).

8 Concluding remarks

This paper developed and demonstrated a computational methodology for gaining a systemic insight

into policy design from a production network perspective. It builds on graph-theoretic concepts and a

typology of sectoral interaction patterns. It is systemic as it analyzes potential network-wide effects of a
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policy intervention. As a policy diagnostic tool, the key strength of the methodology is to support policy

making, with a high degree of transparency and opportunity for engagement compared to modeling

approaches. It induces policy decision makers to look outside their turf and think systematically

about how they influence, and are influenced, by others. It also brings scientific knowledge into the

evidence-based policy-making process.

Across many economies, MA2 has been a priority sector expected to catalyze the productivity

in the rest of the economy. Turkiye has also prioritized MA2 hoping to promote the productivity.

However, except for a limited period, MA2 has not met expectations due to various domestic and global

adversities. This paper proposes a methodology to identify the gaps, bottlenecks, and weaknesses in

a production network. Using the 2018 input-output data of Turkiye, the paper uncovered some of

the challenges facing the upstream network of MA2 and presented ways to design policy reforms to

address them.

The key findings are three-fold. First, in network-based policy design, it is highly critical to consider

the interdependencies of regulated and seemingly competitive sectors. Efficiencies gained in liberalized

markets via pro-competitive PMR can easily be wasted before final consumers benefit from them as

regulated industries may exercise their market power to confiscate part of the efficiency gain created

in competitive markets. Improved competition in a single market may not generate the desired out-

come even if competition policies perfectly support that market because benefits from competition may

not spread over the rest of the network due to disruptions in the cascade of interdependencies con-

cerned. Second, a network-based policy design should start with the identification of the “dominant”

source and the “subordinate” sink sector(s), and those in between. The source − sink structure

of Turkiye’s manufacturing network illustrates that the manufacturing sector is the most dominant,

whereas telecommunications and transport, energy and construction sectors are the potential sinks

where large chunk of input flow ends up. Agriculture, finance and oil extraction-mining seem to be

interactive sectors. Third, the cascade of three layers of links are identified, and the upstream net-

work of the manufacturing sector is found to have a mediocre level of resilience against the complete

disruption of the intermediate layer of the network.

The methodology proposed is by no means final, but opens up a new avenue for computational

analysis of a production network with a view to designing policy reforms to promote an efficient

upstream network of a targeted sector. However, the lack of a benchmark production network structure

against which the network structure of the targeted sector can be contrasted makes the current analysis

more of an exploration of existing sectoral interdependencies and their policy implications.

Future research is desirable in two broad areas. On the theoretical account, the complexities of

interacting market structures (including competitive, monopolist, oligopolist), the speed and size of

price transmission between interacting markets, the measurement of resource misallocation in down-

stream sectors due to distortions in the upstream sectors, and welfare effects comprise the challenges

ahead. On the empirical account, there are more challenges concerning both data refinement and em-

pirical market studies. First of all, using aggregate input-output data creates a completely connected

production network as non-existent firm-level links are essentially ignored by the aggregation at the

sectoral level. Refined firm-level data would be more appropriate to capture the effects at the micro

level, which can deviate from the aggregate effects. Big data creation efforts are increasing, and our
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methodology can be applied to micro-level data to capture critical micro-level interdependencies. In

the absence of firm-level data, a second best strategy would be to quantify how much of an input

used by a sector is essential for its main production activity. As we observe at the aggregate level,

ENT supplies not-so-small input to MA1’s production activity. This can be attributed to the cater-

ing input purchased by MA1, which is obviously not an essential production input used in MA1.

By disentangling of essential input from non-essential input, the aggregate input-output production

network can be adjusted to base the network analysis only on the use of essential inputs. With such

adjustment, some links across sectors may disappear even at the aggregate level, giving rise a more

realistic representation of input-output data. A similar adjustment can be pursued by distinguishing

between easily substitutable inputs and crucial, hard-to-substitute inputs where firms are locked-in

and switching costs are large. Alternative (or refined) network data can be then analyzed to paint a

more realistic picture of interdependencies in the network concerned.
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