MPRA

Beyond Conditional Second Moments: Does Nonparametric Density Modelling Matter to Portfolio Allocation?

Li, Chenxing and Maheu, John M

Center for Economics, Finance and Management Studies, Hunan University, DeGroote School of Business, McMaster University

11 September 2023

Online at https://mpra.ub.uni-muenchen.de/118470/
MPRA Paper No. 118470, posted 13 Sep 2023 13:28 UTC

Beyond Conditional Second Moments: Does Nonparametric Density Modelling Matter to Portfolio Allocation?*

Chenxing $\mathrm{Li}^{\dagger} \quad$ John M. Maheu ${ }^{\ddagger}$

September 2023

Abstract

This paper investigates the economic importance of nonparametrically/semiparametrically modelling the shape and the change in the unknown distribution of returns in portfolio allocation problems from a Bayesian perspective. Besides parametric multivariate GARCH (MGARCH) benchmark models for returns, we consider an MGARCH with innovations following a Dirichlet process mixture and an infinite hidden Markov model (IHMM). We introduce a new Bayesian semiparametric model that combines the MGARCH component with the IHMM for innovations. This new model nonparametrically approximates both the shape and evolution through time of the unknown distribution of returns beyond that captured by the MGARCH part. The results show that the Bayesian nonparametric/semiparametric models lead to improved statistical forecast accuracy and economic gains for a quadratic utility and CRRA utility investor. The new model makes the greatest gains. Portfolio choice is improved by modelling beyond the conditional second moments.

Keywords: Multivariate GARCH, IHMM, Bayesian nonparametric, Portfolio allocation, Transaction costs

JEL codes: C53; C58; C14; C32; C11; C34

[^0]
1 Introduction

It is well known that the accurate modelling of conditional covariances improves portfolio outcomes (Fleming et al., 2001; Guidolin and Timmermann, 2007; Pettenuzzo and Timmermann, 2011; Bollerslev et al., 2018, and many others). However, it is not clear whether modelling the unknown shape of the distribution and allowing the shape to change over time is important. This goes beyond second moments and can impact asymmetry and various tail shapes. Is it worth the additional costs of model complexity and estimation to use more sophisticated specifications? The first contribution of this paper is to investigate the economic importance of time variation in the multivariate return distribution over and above second moments through an extensive application to portfolio optimization. The second contribution is to propose a new multivariate Bayesian semiparametric model that approximates the shape and various dynamic features of the unknown conditional distribution.

Dynamics in conditional second moments are well acknowledged in multivariate financial time series. Multivariate GARCH (MGARCH) models (Bollerslev et al., 1988; Engle and Kroner, 1995; Bollerslev, 1990; Engle, 2002) and their leptokurtic extensions (see Pesaran and Pesaran, 2010; Kawakatsu, 2006; Bonato, 2012, and many others) have been extensively developed to capture the gradual changes in conditional covariance matrices.

To further capture the unknown shape of the return innovation distribution, in addition to the highly persistent dynamics of conditional covariances, Jensen and Maheu (2013) and Maheu and Shamsi Zamenjani (2021) add a Dirichlet process mixture (DPM) model to the multivariate GARCH model (MGARCH-DPM). This Bayesian semiparametric model approximates the unknown distribution of conditional returns by mixing an infinite number of multivariate normal kernels with a Dirichlet process prior (Antoniak, 1974). Mixtures of normals can capture distributional features such as skewness, kurtosis, and asymmetric tails for any continuous distribution. In the MGARCH-DPM model, the DPM component relaxes the parametric assumption that the innovation distribution is known, but the mixture weights remain constant, and any time variation in the return distribution can only come from the GARCH part of the model.

The new Bayesian semiparametric model introduced in this paper extends the MGARCHDPM model directly by replacing the DPM with an infinite hidden Markov model (IHMM). The IHMM proposed by Beal et al. (2002) has Markovian mixing weights that are constructed from a hierarchical Dirichlet process (HDP) prior formalized by Teh et al. (2006). The shape of the unknown distribution can change over time. The DPM version is also nested as a special case. The IHMM can also be seen as a Bayesian nonparametric extension of the Markov switching model as it generalizes the predefined finite number of states into an infinite number of states. Conditional return distributions are approximated by mixing an infinite number of normal kernels, and for each period, the mixture weights depend on which state the previous period was in.

The IHMM has been applied to economic and financial time series since econometricians introduced it from computer science. Univariate examples include Song (2014) and Jochmann (2015) on inflation rates, Maheu and Yang (2016) on short-term interest rates and Jin et al. (2022) on macroeconomic and financial forecasting. Multivariate applications in Jin and Maheu (2016); Jin et al. (2019); Hou (2017) focus on estimation and forecast improvements from the IHMM but do not consider whether it is beneficial for portfolio decisions.

Although the IHMM extends the Markov switching models into an unbounded state space, a regime-switching model may not be able to capture the smooth changes in conditional second moments (Rydén et al., 1998). The infinite hidden Markov multivariate GARCH model (MGARCH-IHMM) in this paper uses the MGARCH component to capture the strong persistence
in covariance dynamics and allows the IHMM component to focus on approximating the changes in the unknown shape of the conditional distribution of returns. The IHMM component is also able to capture the potential state recurrence in addition to abrupt changes in variance levels.

Our MGARCH-IHMM is related to Dufays (2016) who applies the IHMM with a univariate GARCH model for demeaned data where skewness is not allowed. This paper extends his work to a flexible multivariate setting that allows for time-varying covariance, skewness, and kurtosis at the same time. We parameterize the MGARCH component to avoid any path dependence issue that can arise in switching GARCH models (Bauwens et al., 2010), making estimation tractable with MCMC methods for IHMM. Although we document the forecast performance of this new model and others, our focus is on the economic value of the IHMM component for portfolio choice.

The portfolio problem involves maximizing expected utility subject to a wealth constraint and transaction costs. To make the problem realistic, we impose no-short-selling restriction and a separate case with no short-selling and no leverage-trading at the same time. From a Bayesian perspective, the expected utility is taken with respect to the predictive distribution. In the nonparametric/semiparametric models, this will involve integrating out parameter uncertainty as well as distributional uncertainty. Following MCMC estimation, the draws from the predictive density are constructed to empirically estimate an investor's expected utility, which is maximized to solve for the optimal portfolio weights.

Model estimation and portfolio choice use monthly returns of the Fama-French 5 industry portfolios. Several benchmark parametric MGARCH models, along with the nonparametric IHMM and semiparametric MGARCH-DPM and MGARCH-IHMM, are used for portfolio choice. Posterior results show that, in addition to the smooth volatility changes captured by the MGARCH component, significant parameter changes are present from the IHMM portion of the specifications. Posterior estimates indicate many active components in mixture models, and multivariate measures of skewness and kurtosis indicate departures from normality.

In terms of out-of-sample forecasts, the MGARCH-IHMM model performs significantly better than all benchmark models through predictive likelihoods. It also has the most accurate predictive covariance measured against monthly realized covariance. Then does this forecast improvement lead to better portfolio outcomes?

We compute an ex-post break-even performance fee that equates the utility performance of two portfolios optimized from different models. This fee represents the annualized return the investor would pay to switch from one model to another to perform portfolio optimization. Overall, with a quadratic or CRRA utility, the investor would pay a positive fee against all alternative models to obtain forecasts from the MGARCH-IHMM. The fees are substantial. For example, a quadratic utility investor would pay a $1-3 \%$ annual fee to move from one of the parametric MGARCH models to the proposed semiparametric alternative. Similar results are obtained for the CRRA investor with the relative performance of the nonparametric/semiparametric models improving. These results hold for various levels of transaction costs and risk aversion.

DeMiguel et al. (2007) point out that the equally-weighted (EW) buy-and-hold portfolio is robust to parameter uncertainty and difficult to beat. We show that although the EW portfolio is competitive, the MGARCH-IHMM model strictly dominates it based on utility outcomes. The Sharpe ratios of these portfolios support this as well.

We conclude that dynamic density modelling using the nonparametric (IHMM) and semiparametric (MGARCH-IHMM and MGARCH-DPM) specifications in the paper does matter to portfolio choice. The nonparametric and semiparametric models, to the extent that they improve not only the predictive covariance but also the predictive mean, lead to better portfolio outcomes for a quadratic utility investor. For the CRRA investor who will be sensitive to the whole distri-
bution of wealth and not just the mean and variance, all of the nonparametric and semiparametric models tend to provide a stronger result than parametric alternatives. A robust and useful second best model is the EW portfolio. It never achieves the top outcomes of the most sophisticated MGARCH-IHMM but it is competitive in all cases.

This paper is organized as follows. Section 2 presents the portfolio allocation problem of the investor for a given utility function and discusses the transaction cost and optimization. The next section focuses on the new MGARCH-IHMM, including estimation and forecasting in addition to detailing several benchmark models. Section 4 discusses the returns series used to estimate models and perform portfolio allocation. Section 5 presents the posterior estimations of the models and compares their out-of-sample forecast performance. Section 6 compares the portfolio allocation performance of different econometric models under different risk-aversion levels, transaction costs and trading restriction settings. Section 7 concludes, while the appendices contain additional details on models and estimation steps.

2 Utility-Based Portfolio Optimization

We make use of the following notation. Let \boldsymbol{R}_{t} denote the simple return vector from N risky assets and $R_{f, t}$ be the return from the risk-free asset. ${ }^{1}$ Let the information set be $\boldsymbol{R}_{1: t-1}=\left\{\boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{t-1}\right\}$ and $\boldsymbol{\iota}$ be a vector of 1 .

2.1 Dynamic Optimal Portfolio Weights

Consider a rational and risk-averse investor whose utility function is $U(W)$, where W denotes their wealth. Each period, they distribute their wealth into N risky assets and the risk-free asset. Without loss of generality, assume that their wealth is set as 1 at the beginning of each period. The investor rebalances their portfolio given the information set $\boldsymbol{R}_{1: t-1}$ for period t by maximizing their conditional expected utility:

$$
\begin{gather*}
\max _{\boldsymbol{w}_{t}} \mathrm{E}\left[U\left(W_{t}\right) \mid \boldsymbol{R}_{1: t-1}\right] \tag{1a}\\
\text { where } \quad W_{t}=1+\boldsymbol{w}_{t}^{\prime} \boldsymbol{R}_{t}+\left(1-\boldsymbol{w}_{t}^{\prime} \boldsymbol{\iota}\right) R_{f, t}-C\left(\boldsymbol{w}_{t}, \boldsymbol{w}_{t-1}\right) . \tag{1b}
\end{gather*}
$$

\boldsymbol{w}_{t} represents the vector of the portfolio weights for the risky assets, and $C(\cdot)$ is the transaction cost incurred when rebalancing at the end of period t and is a function of \boldsymbol{w}_{t}. We focus on two realistic cases that investors are likely to face. The first is the no-short-sale constraint ($w_{i, t} \geq 0$ for each asset i). Jagannathan and Ma (2003) show this can lead to less extreme weights and better portfolio outcomes. The second case is the no-short-sales and no-leverage-trading constraint ($w_{i, t} \geq 0$ for each asset i and $\sum_{i=1}^{N} w_{i, t} \leq 1$) which means the investor cannot borrow to invest in risky assets.

In selecting the optimal portfolio at time t, the investor is subject to the transaction fee,

$$
\begin{equation*}
C\left(\boldsymbol{w}_{t}, \boldsymbol{w}_{t-1}\right)=c \sum_{i=1}^{N}\left|w_{i, t}-w_{i, t-1}\right|+c\left|\sum_{i=1}^{N} w_{i, t}-\sum_{i=1}^{N} w_{i, t-1}\right| . \tag{2}
\end{equation*}
$$

Here, c denotes the flexible fee as a certain percentage of the wealth. The first term represents the portfolio turnover due to the rebalancing of each asset in the risky portfolio. The second term

[^1]represents the change in the position of the risk-free asset. Note that in contrast to others, such as Bollerslev et al. (2018), in which turnover and transaction costs are ex-post, our investor optimizes their portfolio subject to these costs.

The analytical solution for this problem is generally unavailable, but a numerical solution can be found. In practice, we approximate expected utility with draws from the predictive distribution of the econometric model \mathcal{M}_{i} for \boldsymbol{R}_{t} given $\boldsymbol{R}_{1: t-1}$ through,

$$
\begin{align*}
\mathrm{E}\left[U\left(W_{t}\right) \mid \boldsymbol{R}_{1: t-1}, \mathcal{M}_{i}\right] & \approx \frac{1}{M} \sum_{m=1}^{M} U\left(W_{t, \mathcal{M}_{i}}^{(m)}\right) \tag{3a}\\
W_{t, \mathcal{M}_{i}}^{(m)} & =1+\boldsymbol{w}_{t}^{\prime} \boldsymbol{R}_{t, \mathcal{M}_{i}}^{(m)}+\left(1-\boldsymbol{w}_{t}^{\prime} \boldsymbol{\iota}\right) R_{f, t}-C\left(\boldsymbol{w}_{t}, \boldsymbol{w}_{t-1}\right), \tag{3b}
\end{align*}
$$

where $\boldsymbol{R}_{t, \mathcal{M}_{i}}^{(m)}$ is simulated from the predictive distribution for \boldsymbol{R}_{t} by model \mathcal{M}_{i}, and M is the total number of draws. As discussed below, the draws from the predictive distribution will integrate out parameter uncertainty and, in the nonparametric/semiparametric models, distributional uncertainty.

2.2 Break-even Management Fees

Since the notion of "risk" can go beyond the second moment of a return distribution which traditional measures like the Sharpe ratio use, we consider the break-even performance fee an investor is willing to pay to switch from one econometric specification of returns to another (e.g., Fleming et al., 2001) to compare models. The fee embodies the risk-return trade-off that the investor has based on their utility function.

Given an out-of-sample period from $t+1$ to T, a utility function $U(W)$ and two models \mathcal{M}_{A} and \mathcal{M}_{B}, we compute the optimal weights for each model at each time following the discussion above. ${ }^{2}$ Given the optimal weights, the realized wealth for each model can be computed, $\left\{W_{i, l}\right\}_{l=t+1}^{T}$ for $i=A, B$. The performance fee, Δ, that an investor would pay to move from model \mathcal{M}_{A} to \mathcal{M}_{B} is found by equating the ex-post utility as

$$
\begin{equation*}
\sum_{l=t+1}^{T} U\left(W_{A, l}-\Delta \mid \mathcal{M}_{A}\right)=\sum_{l=t+1}^{T} U\left(W_{B, l} \mid \mathcal{M}_{B}\right) \tag{4}
\end{equation*}
$$

and solving for Δ.

3 Models

In this section, we present the various multivariate models of returns used to solve the portfolio optimization problem. We begin with the new model that nonparametrically allows for time dependence in the distribution coupled with a multivariate GARCH specification. As this is a new model, we present more details on the model than the other benchmarks, including estimation and simulation from the predictive density. Following this, we briefly detail existing nonparametric models from the literature with some extensions. These are the MGARCH-DPM of Jensen and Maheu (2013); Maheu and Shamsi Zamenjani (2021) and a version of the IHMM from Maheu

[^2]and Yang (2016) without a multivariate GARCH component. Finally, the benchmark multivariate GARCH models with parametric return distributions are considered. These existing models, except for IHMM, allow the conditional covariance to change but the innovation distribution is constant through time.

3.1 MGARCH-IHMM

To investigate the importance of general distributional shapes and changes over time beyond second moments, this paper proposes a sophisticated model that extends an MGARCH structure to capture general nonparametric patterns. The proposed Bayesian semiparametric model consists of an MGARCH component and an IHMM component. Let \boldsymbol{r}_{t} be an $N \times 1$ vector of log-returns, and $\boldsymbol{r}_{1: T}=\left\{\boldsymbol{r}_{1}, \boldsymbol{r}_{2}, \ldots, \boldsymbol{r}_{T}\right\}$. Define $\boldsymbol{\theta}=\left\{\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{2}, \ldots\right\}$ as the set of state-dependent parameters, where $\boldsymbol{\theta}_{j}=\left\{\boldsymbol{\mu}_{j}, \boldsymbol{\Sigma}_{j}\right\}$. Let $\boldsymbol{\Theta}$ be the joint set of all parameters. The stick-breaking representation (Sethuraman, 1994; Teh et al., 2006) of the model is as follows:

$$
\begin{gather*}
\boldsymbol{\Gamma}\left|\beta_{0} \sim G E M\left(\beta_{0}\right), \quad \boldsymbol{\Pi}_{j}\right| \alpha_{0}, \boldsymbol{\Gamma} \sim D P\left(\alpha_{0}, \boldsymbol{\Gamma}\right) \tag{5a}\\
s_{t} \mid s_{t-1}, \boldsymbol{\Pi} \sim \operatorname{catagorical}\left(\boldsymbol{\Pi}_{s_{t-1}}\right) \tag{5b}\\
p\left(\boldsymbol{r}_{t} \mid \boldsymbol{\Theta}, s_{t-1}\right)=\sum_{k=1}^{\infty} \pi_{s_{t-1} k} N\left(\boldsymbol{r}_{t} \mid \boldsymbol{\mu}_{k}, \boldsymbol{H}_{t}^{1 / 2} \boldsymbol{\Sigma}_{k} \boldsymbol{H}_{t}^{1 / 2^{\prime}}\right) \tag{5c}\\
\boldsymbol{\mu}_{k} \sim N\left(\boldsymbol{b}_{0}, \boldsymbol{B}_{0}\right), \quad \boldsymbol{\Sigma}_{k} \sim I W\left(\boldsymbol{\Sigma}_{0}, \nu+N\right) \tag{5d}\\
\boldsymbol{H}_{t}=\boldsymbol{C} \boldsymbol{C}^{\prime}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)^{\prime}+\boldsymbol{\beta} \boldsymbol{\beta}^{\prime} \odot \boldsymbol{H}_{t-1} \tag{5e}
\end{gather*}
$$

where $\boldsymbol{\Gamma}=\left(\gamma_{1}, \gamma_{2}, \ldots\right)^{\prime}, \boldsymbol{\Pi}_{j}=\left(\pi_{j 1}, \pi_{j 2}, \ldots\right)$. To be more specific,

$$
\begin{array}{rlrl}
\gamma_{k} & =\tilde{\gamma}_{k} \prod_{l=1}^{k-1}\left(1-\tilde{\gamma}_{l}\right), & & \tilde{\gamma}_{k} \sim \operatorname{Beta}\left(1, \beta_{0}\right), \\
\pi_{j k} & =\tilde{\pi}_{j k} \prod_{l=1}^{k-1}\left(1-\tilde{\pi}_{j l}\right), & \tilde{\pi}_{j k} \sim \operatorname{Beta}\left(\alpha_{0} \gamma_{k}, \alpha_{0}\left(1-\sum_{l=1}^{k} \gamma_{l}\right)\right) . \tag{6b}
\end{array}
$$

$\operatorname{GEM}\left(\beta_{0}\right)^{3}$ is a general stick-breaking process of (6a) with a concentration parameter β_{0}. As shown in equation $(5 \mathrm{c})$, the conditional distribution of the returns is a mixture of an infinite number of Gaussian kernels with a vector of weights $\boldsymbol{\Pi}_{j} . \boldsymbol{\Pi}_{j}$ is the j th row of the infinitely dimensional squared transition matrix Π and a draw from a particular Dirichlet process. s_{t} denotes the state/cluster for time $t . s_{t}, \boldsymbol{\mu}_{s_{t}}$ and $\boldsymbol{\Sigma}_{s_{t}}$ are determined by the IHMM component, and \boldsymbol{H}_{t} is determined by the MGARCH component. $\boldsymbol{H}_{t}^{1 / 2}$ is the Cholesky decomposition of $\boldsymbol{H}_{t} . \quad \boldsymbol{\Sigma}_{s_{t}}$ is parameterized around an identity matrix. The general level and long-run dynamics of conditional volatility are captured by the GARCH component, and $\boldsymbol{\Sigma}_{s_{t}}$ serves as an amplifier to either boost or shrink the conditional covariance from \boldsymbol{H}_{t}. Clearly, when $\boldsymbol{\mu}_{s_{t}}=\mathbf{0}$ and $\boldsymbol{\Sigma}_{s_{t}}=\boldsymbol{I}$, the MGARCH-IHMM reduces to a parametric MGARCH model.

The IHMM component of this model is a Bayesian nonparametric one that employs a hierarchical Dirichlet process (HDP). (5a) represents this HDP structure. This component is essentially an infinitely dimensional Markov-switching model. It is designed to capture the sudden changes in the conditional distribution through a regime-switching scheme, and all of the states can recur with certain probabilities. To ensure this recurrence, another Dirichlet process is required to

[^3]share the atoms among all the bottom-layer Dirichlet processes. $\pi_{j k}$ indicates the probability of switching from state j to state k. Note that in the MGARCH-DPM model, $\pi_{s_{t-1} k}=\pi_{k}$ for all $t=1, \ldots, T$, so the MGARCH-IHMM is more flexible and nests the MGARCH-DPM model of Jensen and Maheu (2013) as a special case. Because the MGARCH-IHMM is a Bayesian semiparametric model, where one does not need to impose any distributional assumption to the conditional return distributions, it can capture features such as asymmetries and fat tails. Moreover, unlike the DPM, which is another Bayesian nonparametric model, but where the conditional distribution is static, the IHMM also nonparametrically approximates the unknown period-by-period evolution of the conditional distributions.

The MGARCH component (5e) takes a variant of the diagonal BEKK-GARCH representation (Engle and Kroner, 1995). \boldsymbol{C} is an $N \times N$ lower triangular matrix, $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\eta}$ are $N \times 1$ vectors, and \odot is the Hadamard operator representing element-by-element multiplication. The parameter restriction of $\alpha_{i}^{2}+\beta_{i}^{2}<1$ for all $i=1, \ldots, N$ is imposed for stationarity in $\boldsymbol{H}_{t} .{ }^{4}$ Unlike traditional MGARCH models, the effect of the lagged return shock is centred around the additional parameter $\boldsymbol{\eta}$. This specification, on one hand, avoids the path dependence problem in estimation since \boldsymbol{H}_{t} is not a function of the states. On the other hand, it allows \boldsymbol{H}_{t} to capture the potential asymmetric volatility feedback effect. When $\boldsymbol{r}_{t-1}>\boldsymbol{\mu}_{s_{t-1}}>\boldsymbol{\eta}$, the distance between \boldsymbol{r}_{t-1} and $\boldsymbol{\eta}$ is greater than that between \boldsymbol{r}_{t-1} and $\boldsymbol{\mu}_{s_{t-1}}$, and this would increase \boldsymbol{H}_{t} as in an asymmetric dynamic covariance (ADC) model (Kroner and Ng, 1998). However, the MGARCH-IHMM does not enforce an asymmetric volatility feedback or the sign of this asymmetry but any feedback is instead learned from data. The posterior estimates of Fama-French 5 industry portfolio returns show that η_{i} is generally greater than $\mu_{i, s_{t-1}}$ for each asset i, indicating a negative feedback in volatility empirically.

The state-dependent parameters $\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$ allow us to identify potential regime switches. Furthermore, mixing over $\boldsymbol{\mu}_{k}$ also generates possible skewness in conditional return distributions, and mixing over $\boldsymbol{\Sigma}_{k}$ generates kurtosis. Since the mixture weights are Markovian, the unknown conditional distribution is allowed to change over time in an unknown pattern.

In summary, the proposed MGARCH-IHMM retains all the advantages of both the MGARCH model and the IHMM. It approximates both the shape and the period-by-period evolution of the unknown conditional distributions semiparametrically.

3.2 Hierarchical Priors

Prior settings are important when estimating Bayesian nonparametric/semiparametric models where the number of active states is estimated jointly with other parameters. To allow learning on new state-dependent parameters, we employ hierarchical priors. The base measure parameters are now estimated from the state-dependent parameters instead of being preset as constants. This allows the base measure to learn from the data and can improve out-of-sample forecasts and portfolio outcomes (Maheu and Yang, 2016).

The following set of hierarchical priors motivated by Song (2014) are used:

$$
\begin{equation*}
\boldsymbol{b}_{0} \sim N\left(\boldsymbol{h}_{0}, \boldsymbol{H}_{0}\right), \quad \boldsymbol{B}_{0} \sim I W\left(\boldsymbol{A}_{0}, a_{0}\right), \quad \boldsymbol{\Sigma}_{0} \sim W\left(\boldsymbol{C}_{0}, d_{0}\right), \quad \nu \sim \operatorname{Exp}\left(g_{0}\right) . \tag{7}
\end{equation*}
$$

Then $\boldsymbol{b}_{0}, \boldsymbol{B}_{0}, \boldsymbol{\Sigma}_{0}$ and ν are drawn conditional on both the hierarchical priors and the corresponding state-dependent parameters ($\boldsymbol{\mu}_{k}$ and $\boldsymbol{\Sigma}_{k}$).

[^4]
3.3 Covariance Targeting

In the MGARCH component, \boldsymbol{C} has $N(N+1) / 2$ parameters to estimate, while $\boldsymbol{\alpha}, \boldsymbol{\beta}$ and $\boldsymbol{\eta}$ all have N parameters, respectively. The number of parameters grows quadratically in \boldsymbol{C} and linearly in $\boldsymbol{\theta}_{H}=\{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\eta}\}$. Hence, by targeting the symmetric $\boldsymbol{C} \boldsymbol{C}^{\prime}$ matrix instead of estimating it in the main MCMC procedure reduces the complexity of posterior sampling. Let $\overline{\boldsymbol{\mu}}=\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{r}_{t}$ be the sample mean and $\overline{\boldsymbol{H}}=\frac{1}{T} \sum_{t=1}^{T}\left(\boldsymbol{r}_{t}-\overline{\boldsymbol{\mu}}\right)\left(\boldsymbol{r}_{t}-\overline{\boldsymbol{\mu}}\right)^{\prime}$ be the sample covariance. Assuming $\mathrm{E}\left(\boldsymbol{H}_{t}\right)=\overline{\boldsymbol{H}}$ for all $t=1, \ldots, T$, then in the MGARCH-IHMM, $\boldsymbol{C} \boldsymbol{C}^{\prime}$ can be replaced as

$$
\begin{equation*}
\boldsymbol{C} \boldsymbol{C}^{\prime}=\overline{\boldsymbol{H}} \odot\left[\mathbf{1}-\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime}-\boldsymbol{\beta} \boldsymbol{\beta}^{\prime}\right]-\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot(\overline{\boldsymbol{\mu}}-\boldsymbol{\eta})(\overline{\boldsymbol{\mu}}-\boldsymbol{\eta})^{\prime} \tag{8}
\end{equation*}
$$

where $\mathbf{1}$ is an $N \times N$ matrix with all the elements being 1 . This result only holds for a restricted version of the model. See Appendix A for details. Note that any draw of $\boldsymbol{\theta}_{H}$ from the posterior that results in non-positive definite $\boldsymbol{C} \boldsymbol{C}^{\prime}$ is rejected.

3.4 Sampling Algorithm

The MGARCH-IHMM is estimated through an MCMC algorithm. For the nonparametric component (IHMM), we employ the beam sampler introduced by Van Gael et al. (2008) (see also Fox et al., 2011; Maheu and Yang, 2016). Similar to the slice sampler for the DPM model, the beam sampler partitions the infinite number of states in the IHMM into a finite set of active states with assigned observations and an additional remaining state where no observation is allocated. This allows for standard finite Markov switching posterior simulation methods (Chib, 1996) to be employed. Conditional on the states, the MGARCH parameters can be sampled with a multivariate random-walk proposal. Detailed steps of posterior simulations are found in Appendix B.

Collecting M MCMC samples after dropping a suitable amount of burn-in samples, the posterior moments of some function $g(\cdot)$ can be computed by

$$
\mathrm{E}\left[g(\theta) \mid \boldsymbol{r}_{1: T}\right] \approx \frac{1}{M} \sum_{m=1}^{M} g\left(\theta^{(m)}\right)
$$

where $\theta^{(m)}$ is the m th MCMC draw of the given parameter θ.

3.5 Predictive Density

A key input into model comparison, forecasting and hence portfolio choice is the predictive density of a model. For a general model \mathcal{M}_{A}, this is defined as

$$
\begin{equation*}
p\left(\boldsymbol{r}_{t+1} \mid \boldsymbol{r}_{1: t}, \mathcal{M}_{A}\right)=\int p\left(\boldsymbol{r}_{t+1} \mid \boldsymbol{r}_{1: t}, \boldsymbol{\Theta}, \mathcal{M}_{A}\right) p\left(\boldsymbol{\Theta} \mid \boldsymbol{r}_{1: t}, \mathcal{M}_{A}\right) d \boldsymbol{\Theta} \tag{9}
\end{equation*}
$$

where $p\left(\boldsymbol{r}_{t+1} \mid \boldsymbol{r}_{1: t}, \boldsymbol{\Theta}, \mathcal{M}_{A}\right)$ is the data density for \boldsymbol{r}_{t+1} given data $\boldsymbol{r}_{1: t}$ and parameter vector $\boldsymbol{\Theta}$ and $p\left(\boldsymbol{\Theta} \mid \boldsymbol{r}_{1: t}, \mathcal{M}_{A}\right)$ is the posterior density of $\boldsymbol{\Theta}$ given $\boldsymbol{r}_{1: t}$.

Computing the expected utility for portfolio choice will require simulating from the predictive density. For each MCMC draw $\boldsymbol{\Theta}^{(m)}$ from the posterior, we simulate a $\boldsymbol{r}_{t+1}^{(m)}$ using the data density. In practice, for the MGARCH-IHMM this will require simulating a future state which may be a new state that requires a draw from the hierarchical prior.

The predictive likelihood evaluates the predictive density at the realized \boldsymbol{r}_{t+1} and is the basis of model comparison. For \mathcal{M}_{A}, the predictive likelihood can be estimated as $\frac{1}{M} \sum_{m=1}^{M} p\left(\boldsymbol{r}_{t+1} \mid \boldsymbol{r}_{1: t}, \boldsymbol{\Theta}^{(m)}, \mathcal{M}_{A}\right)$ with $\boldsymbol{\Theta}^{(m)}$ draws from $p\left(\boldsymbol{\Theta} \mid \boldsymbol{r}_{1: t}, \mathcal{M}_{A}\right)$.

Although our main focus is portfolio choice, we also document the econometric gains in density forecasts that the models provide by comparing predictive likelihoods. This is computed out-ofsample recursively as detailed in Appendix C. The log-predictive likelihood over the out-of-sample period $t+1, \ldots, T$ for model \mathcal{M}_{A} is

$$
\begin{equation*}
\log P L_{A}=\log p\left(\boldsymbol{r}_{t+1: T} \mid \boldsymbol{r}_{1: t}, \mathcal{M}_{A}\right)=\sum_{l=t}^{T-1} \log p\left(\boldsymbol{r}_{l+1} \mid \boldsymbol{r}_{1: l}, \mathcal{M}_{A}\right) \tag{10}
\end{equation*}
$$

Models with larger $\log P L$ are more consistent with the observed data and the log-Bayes factor in favour of \mathcal{M}_{A} vs \mathcal{M}_{B}, is $\log B F_{A B}=\log P L_{A}-\log P L_{B}$. A log-Bayes factor greater than 5 is usually considered strong evidence for model \mathcal{M}_{A}.

3.6 Other Models

We include the following semiparametric and fully nonparametric models as well as purely parametric models.

MGARCH-DPM A semiparametric multivariate GARCH model where the innovation is a mixture with constant weights can be written as follows:

$$
\begin{gathered}
\boldsymbol{\Gamma}\left|\beta_{0} \sim G E M\left(\beta_{0}\right), \quad s_{t}\right| \boldsymbol{\Gamma} \sim \text { catagorical }(\boldsymbol{\Gamma}) \\
\boldsymbol{r}_{t} \mid \boldsymbol{\theta}, \boldsymbol{H}_{t}, \boldsymbol{\Pi}, s_{t} \sim N\left(\boldsymbol{\mu}_{s_{t}}, \boldsymbol{H}_{t}^{1 / 2} \boldsymbol{\Sigma}_{s_{t}} \boldsymbol{H}_{t}^{1 / 2^{\prime}}\right) \\
\boldsymbol{\mu}_{s_{t}} \sim N\left(\boldsymbol{b}_{0}, \boldsymbol{B}_{0}\right), \quad \boldsymbol{\Sigma}_{s_{t}} \sim I W(\boldsymbol{V}, \nu+N) \\
\boldsymbol{H}_{t}=\boldsymbol{C}^{\prime}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)^{\prime}+\boldsymbol{\beta} \boldsymbol{\beta}^{\prime} \odot \boldsymbol{H}_{t-1} .
\end{gathered}
$$

This model replaces the IHMM component of the MGARCH-IHMM with a DPM component. The DPM model is a special case of the IHMM, where the mixture is static instead of Markovian, so the MGARCH-DPM model is nested within the MGARCH-IHMM, as discussed in Section 3. $\boldsymbol{C C}^{\prime}$ is targeted as in equation (8).

IHMM A fully nonparametric multivariate model with regime switching is specified as

$$
\begin{aligned}
\boldsymbol{\Gamma} \mid \beta_{0} \sim G E M\left(\beta_{0}\right), & \boldsymbol{\Pi}_{j} \mid \alpha_{0}, \boldsymbol{\Gamma} \sim D P\left(\alpha_{0}, \boldsymbol{\Gamma}\right) \\
s_{t} \mid s_{t-1}, \boldsymbol{\Pi} \sim \text { catagorical }\left(\boldsymbol{\Pi}_{s_{t-1}}\right), & \boldsymbol{r}_{t} \mid s_{t}, \boldsymbol{\theta} \sim N\left(\boldsymbol{\mu}_{s_{t}}, \boldsymbol{\Sigma}_{s_{t}}\right) \\
\boldsymbol{\mu}_{s} \sim N\left(\boldsymbol{b}_{0}, \boldsymbol{B}_{0}\right), & \boldsymbol{\Sigma}_{s} \sim I W(\boldsymbol{V}, \nu+N)
\end{aligned}
$$

This model is nested within the MGARCH-IHMM when $\boldsymbol{H}_{t}=\boldsymbol{I}$ for all t. The same set of hierarchical priors in (7) is also employed in this model. The only way to capture conditional heteroskedasticity is through changes in $\boldsymbol{\mu}_{s_{t}}$ and $\boldsymbol{\Sigma}_{s_{t}}$.

MGARCH-N A fully parametric multivariate GARCH model with normal innovations is specified as

$$
\begin{aligned}
\boldsymbol{r}_{t} & =\boldsymbol{\mu}+\boldsymbol{H}_{t}^{1 / 2} \boldsymbol{z}_{t}, \quad \boldsymbol{z}_{t} \stackrel{\mathrm{iid}}{\sim} N(\mathbf{0}, \boldsymbol{I}), \\
\boldsymbol{H}_{t} & =\boldsymbol{C} \boldsymbol{C}^{\prime}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot\left(\boldsymbol{r}_{t-1}-\boldsymbol{\mu}\right)\left(\boldsymbol{r}_{t-1}-\boldsymbol{\mu}\right)^{\prime}+\boldsymbol{\beta} \boldsymbol{\beta}^{\prime} \odot \boldsymbol{H}_{t-1},
\end{aligned}
$$

where, through covariance targeting, $\boldsymbol{C C ^ { \prime }}$ is defined as

$$
\boldsymbol{C} \boldsymbol{C}^{\prime}=\overline{\boldsymbol{H}} \odot\left(\mathbf{1}-\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime}-\boldsymbol{\beta} \boldsymbol{\beta}^{\prime}\right) .
$$

MGARCH-A A fully parametric asymmetric multivariate GARCH model with normal innovations is specified as

$$
\begin{aligned}
\boldsymbol{r}_{t} & =\boldsymbol{\mu}+\boldsymbol{H}_{t}^{1 / 2} \boldsymbol{z}_{t}, \quad \boldsymbol{z}_{t}^{\mathrm{iid}} \sim N(\mathbf{0}, \boldsymbol{I}), \\
\boldsymbol{H}_{t} & =\boldsymbol{C} \boldsymbol{C}^{\prime}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)^{\prime}+\boldsymbol{\beta} \boldsymbol{\beta}^{\prime} \odot \boldsymbol{H}_{t-1},
\end{aligned}
$$

where $\boldsymbol{C} \boldsymbol{C}^{\prime}$ is targeted as in equation (8). Unlike the MGARCH-N model, this model can capture the potential shock asymmetry in volatility feedback through $\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)$.

4 Data

The data used in this paper includes monthly holding period returns of the Fama-French 5 industry portfolios, consisting of Consumer, Manufacture, High Tech, Health and Other portfolios, and the 1-month Treasury bill rate from the website of Kenneth French. ${ }^{5}$ All of the returns range from July 1926 to December 2020 at a monthly frequency (1,134 observations). The model estimation uses the associated continuous compounded returns scaled by 100. In addition, monthly realized covariances are computed as the outer product of the daily return vector of the 5 assets. This is used to compare predictive covariances from models.

Panel A of Table 1 illustrates some descriptive statistics of the five industry portfolio logreturns. All of the industries are negatively skewed and leptokurtic. Panel B shows that all five industries are highly correlated.

5 Model Estimates and Forecasts

Before analyzing the economic gains in portfolio allocation, we report model estimates and comparisons of out-of-sample forecasts. We focus on the new semiparametric MGARCH-IHMM model.

5.1 Hyper parameters

The hyper parameters for the priors, the hyper priors and the hierarchical priors are common across models and between posterior estimations and out-of-sample forecasts for comparability in the results. Following Fox et al. (2011), the hyper priors for the HDP concentration parameters β_{0} and α_{0} are assumed as

$$
\begin{equation*}
\beta_{0} \sim \operatorname{Gamma}(2,8), \quad \alpha_{0} \sim \operatorname{Gamma}(2,8), \tag{11}
\end{equation*}
$$

[^5]where $\mathrm{E}\left(\beta_{0}\right)=\mathrm{E}\left(\alpha_{0}\right)=0.25$. During estimation, these hyper priors strongly favour less active states for better state identification and faster computation. The hyper prior for the concentration parameter of the DPM is also assumed to be distributed as $\operatorname{Gamma}(2,8)$. The hierarchical priors discussed in Section 3.2 are assumed as
\[

$$
\begin{equation*}
\boldsymbol{b}_{0} \sim N(\mathbf{0}, \boldsymbol{I}), \quad \boldsymbol{B}_{0} \sim I W(\boldsymbol{I}, N+2), \quad \boldsymbol{\Sigma}_{0} \sim W\left(\frac{\boldsymbol{I}}{N+2}, N+2\right), \quad \nu \sim \operatorname{Exp}\left(\frac{1}{N+2}\right) \tag{12}
\end{equation*}
$$

\]

and ensures $E\left[\boldsymbol{\Sigma}_{0}\right]=\boldsymbol{I}, E[\nu]=N+2$ and using these values centers the hierarchical prior for $\boldsymbol{\Sigma}_{k}$ on \boldsymbol{I}. For the MGARCH parameters $\boldsymbol{\theta}_{H}=(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\eta})^{\prime}$, assume a truncated multivariate normal prior

$$
\begin{equation*}
\boldsymbol{\theta}_{H} \sim N(\mathbf{0}, \boldsymbol{I}) \mathbb{1}\left\{\alpha_{i}>0, \beta_{i}>0, \alpha_{i}^{2}+\beta_{i}^{2}<1, \text { for all } i\right\}, \tag{13}
\end{equation*}
$$

where $\alpha_{i}>0$ and $\beta_{i}>0$ are imposed for parameter identification and $\alpha_{i}^{2}+\beta_{i}^{2}<1$ for covariance targeting.

5.2 In-Sample Estimation

In all models, the first 20,000 iterations were discarded as burn-in, and the next $20,000 \mathrm{MCMC}$ samples were collected for posterior inference. This section summarizes the results of the full sample estimates, consisting of 1,106 observations.

Table 2 lists the posterior estimates of the non-state-dependent parameters for the five models, and the assets in \boldsymbol{r}_{t} are indexed in the same order as in Table 1. The MGARCH-IHMM, the MGARCH-DPM, the MGARCH-N and the MGARCH-A models all have a high $\boldsymbol{\beta}$ that is above 0.92 , and low $\boldsymbol{\alpha}$ that is below 0.31 in general. As mentioned in Section 3, $\boldsymbol{\eta}$ helps to capture an asymmetric volatility feedback. The $\boldsymbol{\eta}$ estimates are often considerably larger than the sample mean of returns in Table 1 as well as the estimates of $\boldsymbol{\mu}$ in the parametric MGARCH models. This indicates an asymmetric volatility response to return shocks for the Fama-French 5 industry portfolio returns. Put another way, bad news (negative shocks) has a larger impact on future \boldsymbol{H}_{t} than good news (positive shocks). The MGARCH persistence measure $\left(\alpha_{i}^{2}+\beta_{i}^{2}\right)$ is very similar in all models, although each of the individual α_{i} and β_{i} values are a bit different.

Comparing the semiparametric MGARCH-IHMM and the nonparametric IHMM, the MGARCHIHMM has higher concentration parameters $\left(\alpha_{0}=1.619\right.$ and $\left.\beta_{0}=0.914\right)$ than the IHMM $\left(\alpha_{0}=0.992\right.$ and $\left.\beta_{0}=0.772\right)$ and a greater number of active states $(K=9.783$, compared to $K=7.812$). The MGARCH-DPM model has the lowest concentration parameter ($\beta_{0}=0.387$) and the least number of active states $(K=4.834)$.

Figure 1 plots the posterior mean of several time-varying parameters for the MGARCH-IHMM. The top plot shows the posterior mean of the average over the five portfolios of $\boldsymbol{\mu}_{s_{t}}$. The other three plots show the log-determinants of the posterior mean for the time-varying second-moment parameters. As discussed earlier, $\boldsymbol{\Sigma}_{s_{t}}$ has a prior centred around the identity matrix whose logdeterminant is 0 . To the extent that $\boldsymbol{\Sigma}_{s_{t}}$ differs from the identity, this indicates that \boldsymbol{H}_{t} is scaled or shrunk as it enters the covariance of the normal kernel of the mixture. The figure shows this to be a regular occurrence and highlights deviations from the MGARCH-A model.

While many of the active states are there to approximate the tails and shapes of the conditional return distribution, three main active states are apparent: a bull state with high expected returns and low state-dependent volatility (white background), a bear state with low expected returns and high state-dependent volatility (red background) and a correction state with both low expected
returns and low state-dependent volatility (grey background). Note that these are states that have been identified in addition to the GARCH effect, indicating that the regular MGARCH-N model is insufficient in capturing the full dynamics of the conditional distribution.

The last graph of Figure 1 plots the log-determinant of the posterior mean of the overall conditional covariance from each model, namely $\boldsymbol{H}_{t}^{1 / 2} \boldsymbol{\Sigma}_{s_{t}} \boldsymbol{H}_{t}^{1 / 2^{\prime}}$ for the MGARCH-IHMM and MGARCH-DPM, $\boldsymbol{\Sigma}_{s_{t}}$ for the IHMM, and \boldsymbol{H}_{t} for the MGARCH-N and MGARCH-A. All the models roughly track the same trend. The two middle plots show that the MGARCH-IHMM decomposes the strong persistent component into \boldsymbol{H}_{t} and abrupt discrete changes to $\boldsymbol{\Sigma}_{s_{t}}$.

A heat map of the three main states discussed above is found in Figure 2 for the MGARCHIHMM. This displays the empirical probability that two periods share the same state. The redder the colour, the higher the probability of sharing states. Most periods fall within the bull state, but there are several exceptions. The bear state is shared by multiple eras, including but not limited to the Great Depression, from March 1928 to September 1933; the Stagflation, from September 1973 to March 1975; the Savings and Loan Crisis, from November 1989 to October 1990; the Dotcom Bubble, from May 1998 to September 2001; the 2008 Financial Crisis, from November 2007 to April 2009; the US-China Trade War, from October 2018 to May 2019; and the recent Coronavirus Crash, from January to August 2020. The correction state mainly corresponds to the pre- and post-WW2 market corrections from the bull markets.

5.3 Out-of-Sample Forecasts

A recursive prediction is performed for 360 out-of-sample periods from January 1991 to December 2020 by re-estimating each model, each period and computing the one period ahead log-predictive likelihood, predictive mean and predictive covariance. We compute point forecasts based on 20,000 simulations for a model's predictive density.

Table 3 compares the performance of those recursive forecasts. The MGARCH-IHMM produces large improvements against all models with the second most competitive model being the MGARCH-DPM. The importance of the MGARCH dynamics is clear from the MGARCH-A and MGARCH-N models having a larger log-predictive likelihood value than the IHMM which omits that feature.

There is little to differentiate the predictive mean forecasts among the models. ${ }^{6}$ Turning to the predictive covariance forecasts measured against monthly realized covariance, the best point forecasts are from the MGARCH-IHMM. Similar to the log-predictive likelihood rankings, the MGARCH component is important to competitive forecasts with the IHMM performing the worst.

Finally, dynamic infinite mixture models such as the MGARCH-IHMM can capture various tail shapes and asymmetries. To see if these are present, we plot the Mardia (1970) multivariate skewness and kurtosis measures for the predictive density over the out-of-sample periods. The time series is shown in Figure 3 along with the Mardia measure for the normal distribution. There is a clear deviation from the normal distribution as well as evidence that the Mardia multivariate measures change dramatically over time.

Do the improved forecasts given by the MGARCH-IHMM and to a lesser extent the MGARCHDPM, transfer over to better portfolio choice outcomes? This is the question we turn to in the next section.

[^6]
6 Empirical Portfolio Choice

6.1 Quadratic Utility

The first set of results is for portfolio optimization with quadratic utility,

$$
U(W)=W-\frac{a}{2(1+a)} W^{2}
$$

where a is the risk aversion parameter, the absolute risk aversion is $\frac{a}{1+a-a W}$ and the relative risk aversion is $\frac{a W}{1+a-a W}$. The portfolio is optimized when $a=\{2,4,6\}$ for all five econometric models with transaction costs $c=\{0 \%, 1 \%, 2 \%\}$, respectively. We use $M=20,000$ from the predictive distribution of a model to estimate (3a). Due to the possible corner solution, a simplex method is used for optimization with 100 different initial values being used to avoid a local optimum. The Brent-Dekker method is used to find the scalar root in equation (4). Each econometric model is recursively estimated to compute the draws from the respective predictive density of the returns to estimate (3a) at each point in the out-of-sample period (January 1991 to December 2020).

In addition to the benchmark models listed in Section 3.6, we consider two equally-weighted portfolios. The first one optimizes a two-asset allocation problem which consists of a risky, equallyweighted portfolio and a risk-free asset (EW + RF). The second is a buy-and-hold strategy of an equally-weighted portfolio that consists of the Fama-French 5 industry portfolios and a riskfree asset (EW), where each component has a weight of $1 / 6$. The buy-and-hold EW portfolio is recommended by DeMiguel et al. (2007) as very competitive primarily because it has no parameter uncertainty or transaction costs.

Table 4 reports the annualized fee that an investor is willing to pay for switching from the econometric model in the first column to the MGARCH-IHMM. This fee is based on the ex-post utility using the same out-of-sample period as the statistical forecast evaluations. In practice, short-selling can be very expensive or unavailable for many investors, so we impose a restriction where short-selling is not permitted for any risky asset (referred as "No Short-Selling", $w_{i, t} \geq 0$ for all $i=1, \ldots, N)$.

In Panel A, a quadratic utility investor, with a few exceptions, is always willing to pay a positive annualized fee to switch from any benchmark model to the MGARCH-IHMM, regardless of the risk-averse parameter or the transaction costs. Most of the fees are in the $1-2$ percent range but several are larger. For example, for $a=2$ and $c=0$ the fee is 3.24% and 3.29% to move from the MGARCH-A and MGARCH-N to the MGARCH-IHMM. This can only come from better predictive mean and predictive covariance forecasts. Table 3 shows it is the latter that provides improvements. In general, the fee declines as risk aversion a increases while the fee increases with transaction costs c. The one notable exception to these results is the EW portfolio. An investor is willing to pay a positive fee to move from this portfolio to the MGARCH-IHMM for low risk aversion $a=2$, but would not be willing to switch for higher risk aversion parameters and nonzero transaction costs. Thus the advantage of the MGARCH-IHMM specification for the quadratic utility investor is in the low risk aversion setting.

As expected, imposing the additional constraint of no leverage-trading leads to lower performance fees in Panel B. The fees are often around or below the 1% level for $a=2$ but increase for larger risk aversion levels for many cases. For $a=2$ and $c=1 \%$, an investor would pay a positive fee for the MGARCH-IHMM forecasts over all the benchmark models. The EW portfolio performance is stronger with no leverage-trading. For example, only in the $a=2$ case are performance fees consistently positive, favouring the MGARCH-IHMM while other cases favour the EW.

The Sharpe ratios for each of the model portfolios are found in Table 5. The MGARCH-IHMM is uniformly the best except for two cases, where the MGARCH-IHMM ranks the second best. As risk aversion and transaction costs increase, the MGARCH-IHMM provides a better outcome against all other econometric models. The EW portfolio has a uniform Sharpe ratio of 0.1880 as the portfolio is not a function of risk aversion or transaction costs. It does provide a robust result and, after the MGARCH-IHMM, is the most reliable Sharpe ratio in each situation.

In summary, the improved point forecasts of the MGARCH-IHMM often translate into positive performance fees that the investor would pay to obtain these forecasts and resulting positive portfolio outcomes compared to many benchmarks. The fee greatly depends on the risk aversion parameter as well as the transaction costs and other constraints imposed. The MGARCH-IHMM consistently provides the largest Sharpe ratios.

6.2 CRRA Utility

Next, we turn to the investor with constant relative risk-averse (CRRA) utility,

$$
U(W)=\frac{W^{1-a}}{1-a}
$$

where $a \geq 0$. Relative risk aversion is a and absolute risk aversion is $\frac{a}{W}$. Unlike quadratic utility, expected utility will be sensitive to the shape of the distribution of wealth through returns. As such, the quality of density forecasts as measured by the log-predictive likelihoods may be a better rank of model inputs to portfolio choice.

As before, Table 6 reports the annualized fee that a CRRA investor will pay to move from the model in the first column to the MGARCH-IHMM over the out-of-sample period (January 1991 to December 2020). For any case in this table, the investor is willing to pay a positive fee to obtain forecasts from the MGARCH-IHMM to make portfolio decisions. Unlike the quadratic utility case, performance fees are always positive. This indicates the importance of the density beyond the summary moments of predictive mean and covariance in portfolio choice.

We also see the semiparametric MGARCH-DPM preferred over the parametric MGARCH-A and MGARCH-N models as shown by a smaller performance fee. Indeed, all the semiparametric and nonparametric models (MGARCH-IHMM, MGARCH-DPM, IHMM) perform relatively better against the parametric MGARCH-A and MGARCH-N in the CRRA utility case. This shows the importance of modelling the whole distribution for portfolio choice.

In the case of no short-selling (Panel A), after considering the transaction costs, the EW portfolio becomes one of the best models after the MGARCH-IHMM, especially when the investor is more risk-averse. When $a=4$ or 6 , an investor is willing to pay no more than 83 bps annually to switch from the EW to the MGARCH-IHMM optimized portfolio, while the investor is often willing to pay substantially more for switching from other benchmark models to the MGARCH-IHMM. As with quadratic utility, the performance fees in favour of the MGARCH-IHMM are largest for the low risk aversion case of $a=2$.

Table 7 reports Sharpe ratios for each of the model portfolios. As in the quadratic utility case, the MGARCH-IHMM is the dominant model, except for a few exceptions where the MGARCHIHMM is the second best. The nonparametric and semiparametric models, MGARCH-IHMM, MGARCH-DPM and IHMM are often better when transaction costs are present than the parametric MGARCH volatility models. We see the same values of the EW portfolio uniformly in different cases.

With only no short-selling restriction, the optimal portfolio calls for active margin-buying for the CRRA investor. Figure 4 displays the total weight allocated to risky assets for various models and settings. Leverage trading is a number above one and indicates borrowing at the risk-free rate to invest in risky assets. From the left side of these subfigures, we see the investor will borrow to invest most of the time, and that leverage can be high during some periods. For example, at the beginning of 1991 when $a=2$, the investor borrows over 200% of their initial wealth to invest. This strategy can be risky when transaction costs are involved.

When there are no transaction costs, the investor can adjust their portfolio freely and it is optimal to only hold risky assets, without holding the risk-free asset. The exception to this is a bear market, namely during the Dotcom Bubble, the 2008 Financial Crisis, the US-China Trade War or the recent COVID-19 Crash. When transaction costs are imposed, instead of pursuing market timing aggressively, it is better to gradually change positions to lower transaction costs. This does not necessarily advocate a buy-and-hold strategy because the relative weights for each individual risky asset can still change even when the net risky holding is stable. Nevertheless, it does provide some insight into the case which the EW portfolio performs well when $c \neq 0$ and $a=4,6$.

Similar to the scenario in Panel A, Panel B of Table 6 shows the MGARCH-IHMM model outperforms all benchmarks regardless of risk aversion level with additional no-leverage-trading restrictions. The annualized fee that the investor is willing to pay varies between 0.23% and 1.88% with no transaction costs and between 0.13% and 2.72% when transaction costs are included. The other Bayesian semiparametric model MGARCH-DPM, along with the nonparametric model IHMM and the EW, are the second-best performers.

The right-hand side of Figure 4 shows the impact of the additional constraint of no leveragetrading on the risky weights. Risky positions are reduced substantially, but the investor is very often close to being fully invested in risky assets with a risky weight just under one.

The Sharpe ratios of the different investment strategies for the CRRA investor are found in Table 7. These results confirm the dominance of the nonparametric/semiparametric models found in Table 6. When the performance of these models diminishes with higher transaction costs, the EW portfolio becomes an attractive second best choice. Although not directly comparable due to the different utility functions, in many cases the CRRA investor obtains a larger Sharpe ratio (14 out of 18) using the MGARCH-IHMM than the quadratic utility investor using the same model.

Dynamic density modelling using the nonparametric/semiparametric specifications in this paper does matter to portfolio choice. The nonparametric and semiparametric models, to the extent that they improve not only the predictive covariance but also the predictive mean, lead to better portfolio outcomes for a quadratic utility investor. For the CRRA investor who will be sensitive to the whole distribution of wealth and not just the mean and variance, all of the nonparametric and semiparametric models tend to provide a stronger result than parametric alternatives. A robust and useful second best model is the EW portfolio. It never achieves the top outcomes of the most sophisticated MGARCH-IHMM specification but it is competitive in all cases.

7 Conclusions

This paper investigates the economic importance of nonparametrically/semiparametrically modelling the shape and the change of the unknown distribution of returns in portfolio allocation problems from a Bayesian perspective. Besides parametric multivariate GARCH (MGARCH) benchmark models for returns, we consider an MGARCH with innovations following a Dirichlet
process mixture and an infinite hidden Markov model (IHMM). We introduce a new Bayesian semiparametric model that combines the MGARCH component with the IHMM for innovations. This new model nonparametrically approximates both the shape and evolution through time of the unknown distribution of returns beyond that captured by the MGARCH part.

The MGARCH-IHMM shows a clear advantage against the benchmark MGARCH-DPM, IHMM, MGARCH-N and MGARCH-A models in terms of density forecasts as well as point forecasts for realized covariance. The MGARCH-IHMM captures distributional features such as changing conditional skewness and kurtosis.

Empirical results from a utility-based portfolio optimization show that a risk-averse investor, whose utility function is quadratic or CRRA, is always willing to pay a positive fee that is economically significant for switching from the parametric benchmark models, including equally weighted portfolios, to the more sophisticated Bayesian nonparametric and semiparametric models. The new MGARCH-IHMM is the best performing model among them based on performance fees and Sharpe ratios This result is robust to different risk-aversion levels and transaction costs.

We conclude that Bayesian nonparametric/semiparametric models can lead to improved statistical forecast accuracy and economic gains for an investor. Portfolio choice is improved by modelling beyond the conditional second moments.

References

Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. The Annals of Statistics, pages 1152-1174.

Bauwens, L., Preminger, A., and Rombouts, J. V. K. (2010). Theory and inference for a Markov switching GARCH model. The Econometrics Journal, 13(2):218-244.

Beal, M. J., Ghahramani, Z., and Rasmussen, C. E. (2002). The infinite hidden Markov model. In Advances in Neural Information Processing Systems, pages 577-584.

Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a multivariate generalized ARCH model. The Review of Economics and Statistics, pages 498-505.

Bollerslev, T., Engle, R. F., and Wooldridge, J. M. (1988). A capital asset pricing model with time-varying covariances. Journal of Political Economy, 96(1):116-131.

Bollerslev, T., Patton, A. J., and Quaedvlieg, R. (2018). Modeling and forecasting (un)reliable realized covariances for more reliable financial decisions. Journal of Econometrics, 207(1):71-91.

Bonato, M. (2012). Modeling fat tails in stock returns: a multivariate stable-GARCH approach. Computational Statistics, 27(3):499-521.

Chib, S. (1996). Calculating posterior distributions and modal estimates in Markov mixture models. Journal of Econometrics, 75(1):79-97.

DeMiguel, V., Garlappi, L., and Uppal, R. (2007). Optimal versus naive diversification: How inefficient is the 1/N portfolio strategy? The Review of Financial Studies, 22(5):1915-1953.

Dufays, A. (2016). Infinite-state Markov-switching for dynamic volatility. Journal of Financial Econometrics, 14(2):418-460.

Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business \& Economic Statistics, 20(3):339-350.

Engle, R. F. and Kroner, K. F. (1995). Multivariate simultaneous generalized ARCH. Econometric Theory, 11(1):122-150.

Fleming, J., Kirby, C., and Ostdiek, B. (2001). The economic value of volatility timing. The Journal of Finance, 56(1):329-352.

Fox, E. B., Sudderth, E. B., Jordan, M. I., and Willsky, A. S. (2011). A sticky HDP-HMM with application to speaker diarization. The Annals of Applied Statistics, pages 1020-1056.

Guidolin, M. and Timmermann, A. (2007). Asset allocation under multivariate regime switching. Journal of Economic Dynamics and Control, 31(11):3503-3544.

Hou, C. (2017). Infinite hidden Markov switching VARs with application to macroeconomic forecast. International Journal of Forecasting, 33(4):1025-1043.

Jagannathan, R. and Ma, T. (2003). Risk reduction in large portfolios: Why imposing the wrong constraints helps. The Journal of Finance, 58(4):1651-1683.

Jensen, M. J. and Maheu, J. M. (2013). Bayesian semiparametric multivariate GARCH modeling. Journal of Econometrics, 176(1):3-17.

Jin, X. and Maheu, J. M. (2016). Bayesian semiparametric modeling of realized covariance matrices. Journal of Econometrics, 192(1):19-39.

Jin, X., Maheu, J. M., and Yang, Q. (2019). Bayesian parametric and semiparametric factor models for large realized covariance matrices. Journal of Applied Econometrics, 34(5):641-660.

Jin, X., Maheu, J. M., and Yang, Q. (2022). Infinite Markov pooling of predictive distributions. Journal of Econometrics, 228(2):302-321.

Jochmann, M. (2015). Modeling U.S. inflation dynamics: A Bayesian nonparametric approach. Econometric Reviews, 34(5):537-558.

Kawakatsu, H. (2006). Matrix exponential GARCH. Journal of Econometrics, 134(1):95-128.
Kroner, K. F. and Ng, V. K. (1998). Modeling asymmetric comovements of asset returns. The Review of Financial Studies, 11(4):817-844.

Maheu, J. M. and Shamsi Zamenjani, A. (2021). Nonparametric dynamic conditional beta. Journal of Financial Econometrics, 19(4):583-613.

Maheu, J. M. and Yang, Q. (2016). An infinite hidden Markov model for short-term interest rates. Journal of Empirical Finance, 38:202-220.

Mardia, K. V. (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3):519-530.

Pesaran, B. and Pesaran, M. H. (2010). Conditional volatility and correlations of weekly returns and the var analysis of 2008 stock market crash. Economic Modelling, 27(6):1398-1416.

Pettenuzzo, D. and Timmermann, A. (2011). Predictability of stock returns and asset allocation under structural breaks. Journal of Econometrics, 164(1):60-78.

Pitman, J. (2002). Poisson-Dirichlet and GEM invariant distributions for split-and-merge transformations of an interval partition. Combinatorics, Probability and Computing, 11(5):501-514.

Rydén, T., Teräsvirta, T., and Åsbrink, S. (1998). Stylized facts of daily return series and the hidden Markov model. Journal of Applied Econometrics, 13(3):217-244.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, pages 639650.

Song, Y. (2014). Modelling regime switching and structural breaks with an infinite hidden Markov model. Journal of Applied Econometrics, 29(5):825-842.

Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):1566-1581.

Van Gael, J., Saatci, Y., Teh, Y. W., and Ghahramani, Z. (2008). Beam sampling for the infinite hidden Markov model. In Proceedings of the 25th International Conference on Machine Learning, pages 1088-1095. ACM.

Table 1: Descriptive Statistics of the Industry Portfolio Returns
Panel A: Univariate statistics

Industry	Mean	Median	StDev	Skewness	Ex.Kurtosis	Min	Max
Consumer	0.8818	1.2324	5.2714	-0.5883	6.7366	-33.6592	36.2349
Manufacture	0.7977	1.2669	5.5026	-0.4705	7.4474	-36.9037	36.1374
High Tech	0.8373	1.2472	5.5998	-0.6536	3.9009	-31.1702	29.1475
Health	0.9314	1.0989	5.5460	-0.6361	7.4813	-41.6728	31.5759
Other	0.7118	1.2768	6.3401	-0.2871	8.1140	-35.7104	46.2160

Panel B: Correlations

	Consumer	Manufacture	High Tech	Health	Other
Consumer	1.0000	0.8749	0.8175	0.7828	0.8832
Manufacture	0.8749	1.0000	0.8101	0.7448	0.8935
High Tech	0.8175	0.8101	1.0000	0.7098	0.8031
Health	0.7828	0.7448	0.7098	1.0000	0.7416
Other	0.8832	0.8935	0.8031	0.7416	1.0000

${ }^{1 .}$ Source: Kenneth French's Data Library.
${ }^{2 .}$ Fama-French 5 industry portfolios, log-returns in percentage.
${ }^{3 .}$ From July 1926 to December 2020, 1,134 observations.

Table 2: Posterior Estimates

MGARCH-IHMM:
$\boldsymbol{\Gamma}\left|\beta_{0} \sim \operatorname{GEM}\left(\beta_{0}\right), \quad \boldsymbol{\Pi}_{j}\right| \alpha_{0}, \boldsymbol{\Gamma} \sim D P\left(\alpha_{0}, \boldsymbol{\Gamma}\right)$
$s_{t} \mid s_{t-1}, \boldsymbol{\Pi} \sim$ catagorical $\left(\boldsymbol{\Pi}_{s_{t-1}}\right)$
$\boldsymbol{r}_{t} \mid \boldsymbol{\Theta}, \boldsymbol{H}_{t}, \boldsymbol{\Pi}, s_{t} \sim N\left(\boldsymbol{\mu}_{s_{t}}, \boldsymbol{H}_{t}^{1 / 2} \boldsymbol{\Sigma}_{s_{t}} \boldsymbol{H}_{t}^{1 / 2^{\prime}}\right)$
$\boldsymbol{H}_{t}=\boldsymbol{C} \boldsymbol{C}^{\prime}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)^{\prime}+\boldsymbol{\beta} \boldsymbol{\beta}^{\prime} \odot \boldsymbol{H}_{t-1}$

IHMM:
$\boldsymbol{\Gamma}\left|\beta_{0} \sim \operatorname{GEM}\left(\beta_{0}\right), \quad \boldsymbol{\Pi}_{j}\right| \alpha_{0}, \boldsymbol{\Gamma} \sim D P\left(\alpha_{0}, \boldsymbol{\Gamma}\right)$

$$
s_{t} \mid s_{t-1}, \boldsymbol{\Pi} \sim \operatorname{catagorical}\left(\boldsymbol{\Pi}_{s_{t-1}}\right)
$$

$$
\boldsymbol{r}_{t} \mid s_{t}, \boldsymbol{\Theta}, \mathcal{F}_{t-1} \sim N\left(\boldsymbol{\mu}_{s_{t}}, \boldsymbol{\Sigma}_{s_{t}}\right)
$$

MGARCH-N:

MGARCH-DPM:

$$
\boldsymbol{H}_{t}=\boldsymbol{C} \boldsymbol{C}^{\prime}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot\left(\boldsymbol{r}_{t-1}-\boldsymbol{\mu}\right)\left(\boldsymbol{r}_{t-1}-\boldsymbol{\mu}\right)^{\prime}+\boldsymbol{\beta} \boldsymbol{\beta}^{\prime} \odot \boldsymbol{H}_{t-1}
$$

$\boldsymbol{\Gamma}\left|\beta_{0} \sim \operatorname{GEM}\left(\beta_{0}\right), \quad s_{t}\right| \boldsymbol{\Gamma} \sim \operatorname{catagorical}(\boldsymbol{\Gamma})$
$\boldsymbol{r}_{t} \mid \boldsymbol{\Theta}, \boldsymbol{H}_{t}, \boldsymbol{\Pi}, s_{t} \sim N\left(\boldsymbol{\mu}_{s_{t}}, \boldsymbol{H}_{t}^{1 / 2} \boldsymbol{\Sigma}_{s_{t}} \boldsymbol{H}_{t}^{1 / 2^{\prime}}\right)$
MGARCH-A:

$$
\boldsymbol{H}_{t}=\boldsymbol{C} \boldsymbol{C}^{\prime}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)^{\prime}+\boldsymbol{\beta} \boldsymbol{\beta}^{\prime} \odot \boldsymbol{H}_{t-1}
$$

$$
\boldsymbol{r}_{t}=\boldsymbol{\mu}+\boldsymbol{H}_{t}^{1 / 2} \boldsymbol{z}_{t}
$$

$$
\boldsymbol{H}_{t}=\boldsymbol{C} \boldsymbol{C}^{\prime}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)^{\prime}+\boldsymbol{\beta} \boldsymbol{\beta}^{\prime} \odot \boldsymbol{H}_{t-1}
$$

	MGARCH-IHMM		MGARCH-DPM		IHMM		MGARCH-N		MGARCH-A	
	Mean	0.95 DI								
μ_{1}							0.7586	(0.5143,1.0043)	0.7944	(0.5488,1.0373)
μ_{2}							0.7141	(0.4703,0.9591)	0.7443	(0.5034,0.9872)
μ_{3}							0.7869	(0.5403,1.0327)	0.7851	(0.5359,1.0305)
μ_{4}							0.8317	(0.5620,1.0937)	0.8368	(0.5651,1.1050)
μ_{5}							0.5930	(0.3095,0.8787)	0.6652	(0.3803,0.9486)
α_{1}	0.2404	(0.2278, 0.2525)	0.2513	(0.2426,0.2604)			0.2644	(0.2541, 0.2732)	0.2575	(0.2466,0.2678)
α_{2}	0.2554	(0.2373, 0.2691)	0.2621	(0.2521,0.2723)			0.2738	(0.2624,0.2882)	0.2820	(0.2681,0.2944)
α_{3}	0.2589	(0.2443, 0.2696)	0.2891	(0.2798,0.3000)			0.3013	(0.2787,0.3208)	0.3014	(0.2894,0.3168)
α_{4}	0.2524	(0.2328, 0.2747)	0.2743	(0.2510,0.3069)			0.2807	(0.2594,0.2999)	0.2643	(0.2491,0.2869)
α_{5}	0.2556	(0.2425, 0.2698)	0.2618	(0.2484,0.2749)			0.2896	(0.2730,0.3049)	0.2897	(0.2768,0.3040)
β_{1}	0.9477	(0.9385, 0.9556)	0.9422	(0.9327,0.9514)			0.9452	(0.9391,0.9510)	0.9471	(0.9404,0.9527)
β_{2}	0.9485	(0.9402, 0.9573)	0.9446	(0.9364,0.9516)			0.9455	(0.9384,0.9517)	0.9419	(0.9344,0.9489)
β_{3}	0.9425	(0.9334, 0.9512)	0.9328	(0.9224,0.9411)			0.9328	(0.9222,0.9443)	0.9319	(0.9229,0.9395)
β_{4}	0.9361	(0.9188, 0.9490)	0.9249	(0.9049,0.9428)			0.9336	(0.9208,0.9450)	0.9390	(0.9276,0.9483)
β_{5}	0.9470	(0.9396, 0.9534)	0.9426	(0.9337,0.9503)			0.9359	(0.9266,0.9454)	0.9348	(0.9253,0.9426)
η_{1}	2.1068	(1.5072, 2.6198)	2.3519	(1.6730,2.8626)					1.3033	(0.6774, 1.7108)
η_{2}	1.7347	(1.2468, 2.2381)	1.9518	(1.2454,2.5057)					1.0098	(0.4078,1.3683)
η_{3}	1.3616	(0.8971, 1.9095)	1.5638	(0.9139,2.1334)					0.6037	(0.0804,1.0255)
η_{4}	1.8997	(1.2746, 2.5574)	1.9541	(1.2088,2.5770)					0.9182	(0.2964,1.4279)
η_{5}	2.3398	(1.6549, 3.0103)	2.6564	(1.7991,3.3445)					1.5565	(0.9303,2.0199)
α_{0}	1.6190	(0.9509, 2.5345)			0.9919	$(0.5945,1.4988)$				
β_{0}	0.9140	(0.3807, 1.6428)	0.3872	(0.1115,0.8235)	0.7723	(0.3303, 1.4078)				
K	9.7826	(6.0000,13.0000)	4.8338	(3.0000,8.0000)	7.8118	(7.0000,10.0000)				

Table 3: Out-of-Sample Forecasts

Model	\log PL	\log BF	RMSFE	
				Pred Mean
	Pred Cov			
MGARCH-IHMM	$\mathbf{- 4 4 7 8 . 6 0 2}$	-	4.1480	$\mathbf{9 3 . 5 3 7}$
MGARCH-DPM	-4492.075	13.4731	4.1487	99.603
IHMM	-4550.889	72.2869	$\mathbf{4 . 1 3 4 0}$	144.611
MGARCH-A	-4521.526	42.9239	4.1493	100.984
MGARCH-N	-4523.410	44.8084	4.1508	101.391

1. Data starts in July 1926, the out-of-sample period is from January 1991 to December 2020.
2. Log BF is the MGARCH-IHMM against the model in the first column.
3. RMSFE is the mean of the L^{2} norm of the vector forecast error for the predictive mean of \boldsymbol{r}_{t}, while it is the mean of the spectral norm of the matrix difference between the predictive covariance and the monthly realized covariance.

Table 4: Annualized Fees a Quadratic Investor Is Willing to Pay

$$
\begin{gathered}
U(W)=W-\frac{a}{2(1+a)} W^{2} \\
W_{t}=1+\boldsymbol{w}_{t}^{\prime} \boldsymbol{R}_{t}+\left(1-\boldsymbol{w}_{t}^{\prime} \boldsymbol{\iota}\right)-C\left(\boldsymbol{w}_{t}, \boldsymbol{w}_{t-1}\right) \\
C\left(\boldsymbol{w}_{t}, \boldsymbol{w}_{t-1}\right)=c \sum_{i=1}^{N}\left|w_{i, t}-w_{i, t-1}\right|+c\left|\sum_{i=1}^{N} w_{i, t}-\sum_{i=1}^{N} w_{i, t-1}\right|
\end{gathered}
$$

$a$$c$	$a=2$			$a=4$			$a=6$		
	0\%	1%	2\%	0\%	1\%	2\%	0\%	1\%	2\%
Panel A: No Short-Selling									
MGARCH-DPM	1.12\%	6.30\%	7.00\%	0.75\%	2.87\%	4.00\%	0.67\%	1.61\%	1.98\%
IHMM	0.04\%	4.15\%	7.02\%	1.48\%	3.16\%	3.25\%	0.33\%	1.52\%	1.63\%
MGARCH-A	3.24\%	3.67\%	3.72\%	1.66\%	1.71\%	1.96\%	1.39\%	1.45\%	1.52\%
MGARCH-N	3.29%	3.74\%	3.98\%	1.52\%	1.70\%	1.97\%	1.31\%	1.37\%	1.41\%
EW+RF	4.32\%	4.66\%	3.53\%	2.40\%	2.21\%	2.00\%	1.67\%	1.63\%	1.46\%
EW	6.39\%	3.88\%	2.76\%	1.44\%	-0.13\%	-0.34\%	0.77\%	-0.19\%	-0.37\%
Panel B: No Short-Selling and No Leverage-Trading									
MGARCH-DPM	-0.12\%	2.93\%	3.69\%	0.41\%	2.29\%	2.53\%	0.61\%	1.35\%	1.73\%
IHMM	0.62\%	4.15\%	4.37\%	0.17\%	2.17\%	2.29\%	0.21\%	1.08\%	1.22\%
MGARCH-A	0.39\%	0.50\%	0.85\%	1.19\%	1.42\%	1.53\%	1.07\%	1.10\%	1.32\%
MGARCH-N	0.27\%	0.49\%	0.58\%	0.93\%	1.22\%	1.90\%	0.93\%	1.00\%	1.46\%
EW+RF	0.31\%	1.29\%	1.22\%	1.58\%	2.06\%	1.86\%	1.55\%	1.32\%	1.26\%
EW	0.67\%	0.53\%	0.47\%	0.63\%	-0.26\%	-0.47\%	0.66\%	-0.49\%	-0.57\%

1. No Short-Selling indicates a constraint of $w_{i, t} \geq 0$ for all $i=1, \ldots, N$ is imposed in the optimization problem; and No Leverage-Trading indicates that a constraint of $\sum_{i=1}^{N} w_{i, t} \leq 1$ is imposed in the optimization problem.
2. IHMM means an investor switches from IHMM to MGARCH-IHMM.
3. A positive fee means the MGARCH-IHMM is better, and a negative fee means the corresponding model in column one is better.
4. $\mathrm{EW}+\mathrm{RF}$ indicates optimizing a two-asset allocation problem which consists of a risky, equally-weighted portfolio and a risk-free asset. EW indicates a buy-and-hold strategy of an equally-weighted portfolio that consists of the Fama-French 5 industry portfolios and a risk-free asset (each component has a weight of $1 / 6$).

Table 5: Ex-Post Sharpe Ratios of a Quadratic Investor's Optimal Portfolio

$$
\begin{gathered}
U(W)=W-\frac{a}{2(1+a)} W^{2}, \\
W_{t}=1+\boldsymbol{w}_{t}^{\prime} \boldsymbol{R}_{t}+\left(1-\boldsymbol{w}_{t}^{\prime} \boldsymbol{\iota}\right)-C\left(\boldsymbol{w}_{t}, \boldsymbol{w}_{t-1}\right), \\
C\left(\boldsymbol{w}_{t}, \boldsymbol{w}_{t-1}\right)=c \sum_{i=1}^{N}\left|w_{i, t}-w_{i, t-1}\right|+c\left|\sum_{i=1}^{N} w_{i, t}-\sum_{i=1}^{N} w_{i, t-1}\right| .
\end{gathered}
$$

$a$$c$	$a=2$			$a=4$			$a=6$		
	0\%	1%	2%	0\%	1%	2%	0\%	1\%	2%
Panel A: No Short-Selling									
MGARCH-IHMM	0.2416	0.2365	0.2149	0.2233	0.1904	0.1954	0.2040	0.1769	0.1889
MGARCH-DPM	0.2271	0.1539	0.1189	0.2046	0.1045	0.0613	0.1777	0.0803	0.0602
IHMM	0.2347	0.1547	0.0859	0.1926	0.0457	0.0380	0.1890	0.0503	0.0479
MGARCH-A	0.2006	0.1875	0.1772	0.1766	0.1342	0.1185	0.1410	0.0588	0.0492
MGARCH-N	0.2009	0.1906	0.1725	0.1797	0.1328	0.1185	0.1429	0.0651	0.0540
EWTF	0.1904	0.1786	0.1786	0.1489	0.1080	0.1080	0.1075	0.0363	0.0363
EW	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880
Panel B: No Short-Selling and No Leverage-Trading									
MGARCH-IHMM	0.2005	0.2007	0.2032	0.2088	0.1911	0.1968	0.1971	0.1551	0.1811
MGARCH-DPM	0.2001	0.1617	0.1430	0.1967	0.1184	0.1139	0.1759	0.0868	0.0488
IHMM	0.1781	0.0933	0.0919	0.1989	0.1066	0.0835	0.1874	0.0581	0.0498
MGARCH-A	0.1876	0.1855	0.1863	0.1715	0.1406	0.1299	0.1473	0.0646	0.0492
MGARCH-N	0.1881	0.1952	0.2002	0.1770	0.1481	0.1150	0.1524	0.0725	0.0074
EWTF	0.1832	0.1786	0.1786	0.1489	0.1080	0.1080	0.1075	0.0363	0.0363
EW	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880

1. No Short-Selling indicates a constraint of $w_{i, t} \geq 0$ for all $i=1, \ldots, N$ is imposed in the optimization problem; and No Leverage-Trading indicates that a constraint of $\sum_{i=1}^{N} w_{i, t} \leq 1$ is imposed in the optimization problem.
2. The number indicates the ex-post Sharpe ratio as the result of the realized return from the optimized weights for a model. Bold entries are the largest Sharpe ratio in a column.
3. $\mathrm{EW}+\mathrm{RF}$ indicates optimizing a two-asset allocation problem which consists of a risky, equally-weighted portfolio and a risk-free asset. EW indicates a buy-and-hold strategy of an equally-weighted portfolio that consists of the Fama-French 5 industry portfolios and a risk-free asset (each component has a weight of $1 / 6$).

Table 6: Annualized Fees a CRRA Investor Is Willing to Pay

$$
\begin{gathered}
U(W)=\frac{W^{1-a}}{1-a}, \\
W_{t}=1+\boldsymbol{w}_{t}^{\prime} \boldsymbol{R}_{t}+\left(1-\boldsymbol{w}_{t}^{\prime} \boldsymbol{\iota}\right)-C\left(\boldsymbol{w}_{t}, \boldsymbol{w}_{t-1}\right) \\
C\left(\boldsymbol{w}_{t}, \boldsymbol{w}_{t-1}\right)=c \sum_{i=1}^{N}\left|w_{i, t}-w_{i, t-1}\right|+c\left|\sum_{i=1}^{N} w_{i, t}-\sum_{i=1}^{N} w_{i, t-1}\right|
\end{gathered}
$$

$a$$c$	$a=2$			$a=4$			$a=6$		
	0\%	1\%	2\%	0\%	1\%	2\%	0\%	1\%	2\%
Panel A: No Short-Selling									
MGARCH-DPM	0.81\%	1.74\%	2.20\%	0.78\%	1.30\%	1.60\%	0.65\%	1.12\%	1.31\%
IHMM	0.35\%	0.75\%	1.20\%	0.13\%	0.97\%	1.58\%	0.25\%	1.22\%	1.35\%
MGARCH-A	2.74\%	2.31\%	3.55\%	1.85\%	2.13\%	2.57\%	1.36\%	1.84\%	1.99\%
MGARCH-N	1.93\%	1.65\%	2.67\%	1.26\%	2.34\%	2.57\%	0.98\%	1.81\%	2.08\%
$\mathrm{EW}+\mathrm{RF}$	4.09\%	3.33\%	3.75\%	2.24\%	2.76\%	2.98\%	1.62\%	2.10\%	2.28\%
EW	5.97\%	2.64\%	3.06\%	1.34\%	0.53\%	0.74\%	0.83\%	0.40\%	0.59\%

Panel B: No Short-Selling and No Leverage-Trading

MGARCH-DPM	0.31%	0.13%	0.65%	0.86%	0.84%	1.16%	0.85%	0.90%	1.22%
IHMM	1.16%	0.40%	0.93%	1.07%	0.55%	0.60%	0.71%	0.68%	0.77%
MGARCH-A	0.37%	0.42%	1.15%	1.35%	1.88%	2.04%	1.03%	1.45%	1.68%
MGARCH-N	0.23%	0.41%	1.47%	1.52%	2.07%	2.10%	1.22%	1.60%	1.92%
EW+RF	0.34%	1.40%	1.56%	1.88%	2.61%	2.72%	1.72%	1.86%	2.13%
EW	0.73%	0.72%	0.88%	0.98%	0.39%	0.49%	0.92%	0.17%	0.43%

1. No Short-Selling indicates a constraint of $w_{i, t} \geq 0$ for all $i=1, \ldots, N$ is imposed in the optimization problem; and No Leverage-Trading indicates that a constraint of $\sum_{i=1}^{N} w_{i, t} \leq 1$ is imposed in the optimization problem.
2. IHMM means an investor switches from IHMM to MGARCH-IHMM.
3. A positive fee means the MGARCH-IHMM is better, and a negative fee means the corresponding model in column one is better.
4. $\mathrm{EW}+\mathrm{RF}$ indicates optimizing a two-asset allocation problem which consists of a risky, equally-weighted portfolio and a risk-free asset. EW indicates a buy-and-hold strategy of an equally-weighted portfolio that consists of the Fama-French 5 industry portfolios and a risk-free asset (each component has a weight of $1 / 6$).

Table 7: Ex-Post Sharpe Ratios of a CRRA Investor's Optimal Portfolio

$$
\begin{gathered}
U(W)=\frac{W^{1-a}}{1-a} \\
W_{t}=1+\boldsymbol{w}_{t}^{\prime} \boldsymbol{R}_{t}+\left(1-\boldsymbol{w}_{t}^{\prime} \boldsymbol{\iota}\right)-C\left(\boldsymbol{w}_{t}, \boldsymbol{w}_{t-1}\right) \\
C\left(\boldsymbol{w}_{t}, \boldsymbol{w}_{t-1}\right)=c \sum_{i=1}^{N}\left|w_{i, t}-w_{i, t-1}\right|+c\left|\sum_{i=1}^{N} w_{i, t}-\sum_{i=1}^{N} w_{i, t-1}\right|
\end{gathered}
$$

$a$$c$	$a=2$			$a=4$			$a=6$		
	0\%	1\%	2\%	0\%	1\%	2	0\%	1\%	2\%
Panel A: No Short-Selling									
MGARCH-IHMM	0.2385	0.2151	0.2284	0.2214	0.2089	0.2174	0.2050	0.1886	0.1996
MGARCH-DPM	0.2317	0.2063	0.2055	0.2040	0.1712	0.1710	0.1815	0.1307	0.1310
IHMM	0.2299	0.2221	0.2226	0.2133	0.1864	0.1659	0.1924	0.1404	0.1254
MGARCH-A	0.2033	0.1908	0.1803	0.1713	0.1420	0.1341	0.1452	0.0735	0.0793
MGARCH-N	0.2120	0.1982	0.1945	0.1841	0.1336	0.1333	0.1573	0.0766	0.0713
EWTF	0.1903	0.1796	0.1796	0.1500	0.1124	0.1124	0.1100	0.0455	0.0454
EW	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880
Panel B: No Short-Selling and No Leverage-Trading									
MGARCH-IHMM	0.2014	0.2041	0.1965	0.2164	0.2004	0.2021	0.2042	0.1824	0.1949
MGARCH-DPM	0.1917	0.1957	0.1929	0.1943	0.1780	0.1764	0.1778	0.1296	0.1272
IHMM	0.1685	0.1961	0.1908	0.1843	0.1915	0.1944	0.1806	0.1435	0.1531
MGARCH-A	0.1886	0.1957	0.1924	0.1777	0.1473	0.1469	0.1576	0.0854	0.0928
MGARCH-N	0.1885	0.1916	0.1871	0.1719	0.1405	0.1441	0.1527	0.0771	0.0725
EWTF	0.1839	0.1796	0.1796	0.1500	0.1124	0.1124	0.1100	0.0455	0.0454
EW	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880	0.1880

1. No Short-Selling indicates a constraint of $w_{i, t} \geq 0$ for all $i=1, \ldots, N$ is imposed in the optimization problem; and No Margin-Trading indicates that a constraint of $\sum_{i=1}^{N} w_{i, t} \leq 1$ is imposed in the optimization problem.
2. The number indicates the ex-post Sharpe ratio as the result of the realized return from the optimized weights for a model. Bold entries are the largest Sharpe ratio in a column.
3. EW + RF indicates optimizing a two-asset allocation problem which consists of a risky, equally-weighted portfolio and a risk-free asset. EW indicates a buy-and-hold strategy of an equally-weighted portfolio that consists of the Fama-French 5 industry portfolios and a risk-free asset (each component has a weight of $1 / 6$).

Figure 1: (Log Determinants of) the Posterior Means of the Time-Varying Parameters over Time

Figure 2: Heat Map of States Estimated by the MGARCH-IHMM

Out-of-Sample Mardia Skewness

Figure 3: Mardia Skewness and Kurtosis

Figure 4: Risky Positions in the Portfolio Optimized with MGARCH-IHMM over Time

Appendix A Proof of Covariance Targeting of $C C^{\prime}$

In a reduced form of the MGARCH-IHMM, where $\boldsymbol{\Sigma}_{t}=\boldsymbol{I}$ for all t, referring to equation (5e), the unconditional expectation of \boldsymbol{H}_{t} is

$$
\begin{aligned}
\mathrm{E}\left(\boldsymbol{H}_{t}\right) & =\boldsymbol{C} \boldsymbol{C}^{\prime}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot \mathrm{E}\left[\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)\left(\boldsymbol{r}_{t-1}-\boldsymbol{\eta}\right)^{\prime}\right]+\boldsymbol{\beta} \boldsymbol{\beta}^{\prime} \odot \mathrm{E}\left(\boldsymbol{H}_{t-1}\right) \\
& =\boldsymbol{C} \boldsymbol{C}^{\prime}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot \mathrm{E}\left[\left(\boldsymbol{r}_{t-1}-\overline{\boldsymbol{\mu}}+\overline{\boldsymbol{\mu}}-\boldsymbol{\eta}\right)\left(\boldsymbol{r}_{t-1}-\overline{\boldsymbol{\mu}}+\overline{\boldsymbol{\mu}}-\boldsymbol{\eta}\right)^{\prime}\right]+\boldsymbol{\beta} \boldsymbol{\beta}^{\prime} \odot \mathrm{E}\left(\boldsymbol{H}_{t-1}\right) \\
& =\boldsymbol{C} \boldsymbol{C}^{\prime}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot \overline{\boldsymbol{H}}+\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot(\overline{\boldsymbol{\mu}}-\boldsymbol{\eta})(\overline{\boldsymbol{\mu}}-\boldsymbol{\eta})^{\prime}+\boldsymbol{\beta} \boldsymbol{\beta}^{\prime} \odot \mathrm{E}\left(\boldsymbol{H}_{t-1}\right) .
\end{aligned}
$$

Further assuming $\mathrm{E}\left(\boldsymbol{H}_{t}\right)=\overline{\boldsymbol{H}}$ for all $t=1, \ldots, T$, we have

$$
\boldsymbol{C} \boldsymbol{C}^{\prime}=\overline{\boldsymbol{H}} \odot\left[\mathbf{1}-\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime}-\boldsymbol{\beta} \boldsymbol{\beta}^{\prime}\right]-\boldsymbol{\alpha} \boldsymbol{\alpha}^{\prime} \odot(\overline{\boldsymbol{\mu}}-\boldsymbol{\eta})(\overline{\boldsymbol{\mu}}-\boldsymbol{\eta})^{\prime}
$$

where 1 is an $N \times N$ matrix with all the elements being 1 .

Appendix B Posterior Sampling Details

Recall that $\boldsymbol{\Gamma}=\left(\gamma_{1}, \ldots, \gamma_{K}, \gamma_{R}\right)^{\prime}$ and $\boldsymbol{\Pi}_{j}=\left(\pi_{j 1}, \ldots, \pi_{j K}, \pi_{j R}\right)$, where $\gamma_{R}=\sum_{k=K+1}^{\infty} \gamma_{k}=$ $1-\sum_{k=1}^{K} \gamma_{k}$ and $\pi_{j R}=\sum_{k=K+1}^{\infty} \pi_{j k}=1-\sum_{k=1}^{K} \pi_{j k}$. The sampling steps are:

1. Sample $u_{1: T} \mid \boldsymbol{\Gamma}, \boldsymbol{\Pi}$. The auxiliary slice variable $U=\left\{u_{t}\right\}_{t=1}^{T}$ is drawn by $u_{1} \sim U\left(0, \gamma_{s_{1}}\right)$ and $u_{t} \sim U\left(0, \pi_{s_{t-1} s_{t}}\right)$.
2. Update K. Similar to the DPM model, if K does not meet the condition

$$
\begin{equation*}
\min \left\{u_{t}\right\}_{t=1}^{T}>\max \left\{\pi_{j R}\right\}_{j=1}^{K} \tag{14}
\end{equation*}
$$

then K needs to be increased by $1\left(K^{\prime}=K+1\right)$ and all of the corresponding parameters need to be drawn from the base measure. In addition, since a new "major" state is introduced, $\boldsymbol{\Gamma}$ and Π also need to be updated accordingly:
(a) $\Theta_{K^{\prime}} \sim H$;
(b) Draw $v \sim \operatorname{Beta}\left(1, \beta_{0}\right)$, then update $\boldsymbol{\Gamma}=\left(\gamma_{1}, \ldots, \gamma_{K}, \gamma_{K^{\prime}}, \gamma_{R}\right)^{\prime}$, where $\gamma_{K^{\prime}}=v \gamma_{R}$ and $\gamma_{R}=(1-v) \gamma_{R}$
(c) Draw $v_{j} \sim \operatorname{Beta}\left(\alpha_{0} \gamma_{K^{\prime}}, \alpha_{0} \gamma_{R}\right)$, update $\Pi_{j}=\left(\pi_{j 1}, \ldots, \pi_{j K}, \pi_{j K^{\prime}}, \pi_{j R}\right)$ for $j=1, \ldots, K$, where $\pi_{j K^{\prime}}=v \pi_{j R}$ and $\pi_{j R}=(1-v) \pi_{j R}$;
(d) Draw the K^{\prime} th row of $\boldsymbol{\Pi}, \boldsymbol{\Pi}_{K^{\prime}}$, by $\boldsymbol{\Pi}_{K^{\prime}} \sim \operatorname{Dir}\left(\alpha_{0} \gamma_{1}, \ldots, \alpha_{0} \gamma_{K}, \alpha_{0} \gamma_{K^{\prime}}, \alpha_{0} \gamma_{R}\right)$.

Repeat the above steps until inequality (14) holds.
3. The forward filter for $s_{1: T} \mid \boldsymbol{r}_{1: T}, u_{1: T}, \boldsymbol{\Gamma}, \boldsymbol{\Pi}, \boldsymbol{\Theta}, \boldsymbol{H}_{1: T}$. Iterating the following steps forward from 1 to T :
(a) The prediction step for the initial state s_{1} is as follows:

$$
\begin{equation*}
p\left(s_{1}=k \mid u_{1}, \boldsymbol{\Gamma}\right) \propto \mathbb{1}\left(u_{1}<\gamma_{k}\right), \quad k=1, \ldots, K \tag{15}
\end{equation*}
$$

for the following states $s_{2: T}$:

$$
\begin{equation*}
p\left(s_{t}=k \mid \boldsymbol{r}_{1: t-1}, u_{1: t}, \boldsymbol{\Pi}, \boldsymbol{\Theta}, \boldsymbol{H}_{1: t-1}\right) \propto \sum_{j=1}^{K} \mathbb{1}\left(u_{t}<\pi_{j k}\right) p\left(s_{t-1}=j \mid \boldsymbol{r}_{1: t-1}, u_{1: t-1}, \boldsymbol{\Pi}, \boldsymbol{\Theta}, \boldsymbol{H}_{1: t-1}\right) \tag{16}
\end{equation*}
$$

(b) The update step for $s_{1: T}$:

$$
\begin{equation*}
p\left(s_{t}=k \mid \boldsymbol{r}_{1: t}, u_{1: t}, \boldsymbol{\Pi}, \boldsymbol{\Theta}, \boldsymbol{H}_{1: t}\right) \propto p\left(\boldsymbol{r}_{t} \mid \boldsymbol{r}_{t-1}, \boldsymbol{\Theta}_{k}, \boldsymbol{H}_{t}\right) p\left(s_{t}=k \mid \boldsymbol{r}_{1: t-1}, u_{1: t}, \boldsymbol{\Pi}, \boldsymbol{\Theta}, \boldsymbol{H}_{1: t-1}\right) \tag{17}
\end{equation*}
$$

4. The backward sampler for $s_{1: T} \mid \boldsymbol{r}_{1: T}, u_{1: T}, \boldsymbol{\Pi}, \boldsymbol{\Theta}, \boldsymbol{H}_{1: T}$. Sample the states $s_{1: T}$ using the previously filtered values backward from T to 1 :
(a) for the terminal state s_{T} directly from $p\left(s_{T} \mid \boldsymbol{r}_{1: T}, u_{1: T}, \boldsymbol{\Pi}, \boldsymbol{\Theta}, \boldsymbol{H}_{1: T}\right)$
(b) for the rest states,

$$
\begin{equation*}
p\left(s_{t}=k \mid s_{t+1}=j, \boldsymbol{r}_{1: t}, u_{1: t+1}, \boldsymbol{\Pi}, \boldsymbol{\Theta}, \boldsymbol{H}_{1: t}\right) \propto \mathbb{1}\left(u_{t+1}<\pi_{k j}\right) p\left(s_{t}=k \mid \boldsymbol{r}_{1: t}, u_{1: t}, \boldsymbol{\Pi}, \boldsymbol{\Theta}, \boldsymbol{H}_{1: t}\right) \tag{18}
\end{equation*}
$$

5. Sample $c_{1: K} \mid s_{1: T}, \boldsymbol{\Gamma}, \alpha_{0} . c_{1: K}$ is essential for sampling $\boldsymbol{\Gamma}$, and it counts balls of different colours in the "oracle" urn. Fox et al. (2011) propose simulating c_{k} from the hierarchical Pòlya urn scheme instead of sampling it.
(a) Count the number of each transition type, $n_{j k}$, for the number of times switching from state j to state k.
(b) Simulate an auxiliary trail variable $x_{i} \sim \operatorname{Bernoulli}\left(\frac{\alpha_{0} \gamma_{k}}{i-1+\alpha_{0} \gamma_{k}}\right)$, for $i=1, \ldots, n_{j k}$. If the trial is successful, an "oracle" urn step is involved at the i th step towards $n_{j k}$, and we increase the corresponding "oracle" counts, $o_{j k}$, by one.
(c) $c_{k}=\sum_{j=1}^{K} o_{j k}$.
6. Sample β_{0}. Following Fox et al. (2011); Maheu and Yang (2016), assume a Gamma prior $\beta_{0} \sim \operatorname{Gamma}\left(a_{1}, b_{1}\right)$, and let $c=\sum_{j=1}^{K} c_{j}$,
(a) $\nu \sim$ Bernoulli $\left(\frac{c}{c+\beta_{0}}\right)$
(b) $\lambda \sim \operatorname{Beta}\left(\beta_{0}+1, c\right)$
(c) $\beta_{0} \sim \operatorname{Gamma}\left(a_{1}+K-\nu, b_{1}-\log \lambda\right)$
7. Sample α_{0}. Following Fox et al. (2011), assume a Gamma prior $\alpha_{0} \sim \operatorname{Gamma}\left(a_{2}, b_{2}\right)$, and let $n_{j}=\sum_{k=1}^{K} n_{j k}$,
(a) $\nu_{j} \sim \operatorname{Bernoulli}\left(\frac{n_{j}}{n_{j}+\alpha_{0}}\right)$
(b) $\lambda_{j} \sim \operatorname{Beta}\left(\alpha_{0}+1, n_{j}\right)$
(c) $\alpha_{0} \sim \operatorname{Gamma}\left(a_{2}+c-\sum_{j=1}^{K} \nu_{j}, b_{2}-\sum_{j=1}^{K} \log \left(\lambda_{j}\right)\right)$
8. Sample $\boldsymbol{\Gamma} \mid c_{1: K}, \beta_{0}$. Given the "oracle" urn counts $c_{1: K}$ and the property of the Dirichlet process, the conjugate posterior is

$$
\begin{equation*}
\boldsymbol{\Gamma} \mid c_{1: K}, \beta_{0} \sim \operatorname{Dir}\left(c_{1}, \ldots, c_{K}, \beta_{0}\right) \tag{19}
\end{equation*}
$$

9. Sample $\boldsymbol{\Pi} \mid n_{1: K, 1: K}, \boldsymbol{\Gamma}, \alpha_{0}$. Similarly, the conjugate posterior of $\boldsymbol{\Pi}_{j}$ is

$$
\begin{equation*}
\boldsymbol{\Pi}_{j} \mid n_{j, 1: K}, \boldsymbol{\Gamma}, \alpha \sim \operatorname{Dir}\left(\alpha_{0} \gamma_{1}+n_{j 1}, \ldots, \alpha_{0} \gamma_{K}+n_{j K}, \alpha_{0} \gamma_{R}\right) \tag{20}
\end{equation*}
$$

10. Sample $\boldsymbol{\Theta} \mid \boldsymbol{r}_{1: T}, s_{1: T}, \boldsymbol{H}_{1: T}$. Assume conjugate priors $\boldsymbol{\mu} \sim N\left(\boldsymbol{b}_{0}, \boldsymbol{B}_{0}\right)$ and $\boldsymbol{\Sigma} \sim I W\left(\boldsymbol{\Sigma}_{0}, \nu+N\right)$. Define $\boldsymbol{Y}_{k} \equiv\left\{\boldsymbol{H}_{t}^{-1 / 2} \boldsymbol{r}_{t} \mid s_{t}=k\right\}_{t=2}^{T}$ and $\boldsymbol{X}_{k} \equiv\left\{\boldsymbol{H}_{t}^{-1 / 2} \mid s_{t}=k\right\}_{t=2}^{T}$. The linear model is now

$$
\begin{equation*}
\boldsymbol{Y}_{k}=\boldsymbol{X}_{k} \boldsymbol{\mu}_{k}+\boldsymbol{\epsilon}_{k}, \quad \boldsymbol{\epsilon}_{k} \sim N\left(\mathbf{0}, \boldsymbol{\Sigma}_{k}\right) \tag{21}
\end{equation*}
$$

The posteriors are

$$
\begin{align*}
p\left(\boldsymbol{\mu}_{k} \mid \boldsymbol{Y}_{k}, \boldsymbol{\Sigma}_{k}, \boldsymbol{H}_{1: T}\right) & \sim \prod_{t: s_{t}=k} p\left(\boldsymbol{Y}_{t} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \boldsymbol{H}_{t}\right) p\left(\boldsymbol{\mu}_{k}\right) \tag{22}\\
& \sim N\left(\boldsymbol{M}_{\mu}, \boldsymbol{V}_{\mu}\right) \tag{23}
\end{align*}
$$

where

$$
\begin{align*}
\boldsymbol{M}_{\mu} & =\boldsymbol{V}_{\mu}\left(\sum_{t: s_{t}=k} \boldsymbol{H}_{t}^{-1 / 2^{\prime}} \boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{H}_{t}^{-1 / 2} \boldsymbol{r}_{t}+\boldsymbol{B}_{0}^{-1} \boldsymbol{b}_{0}\right) \tag{24}\\
\boldsymbol{V}_{\mu} & =\left(\sum_{t: s_{t}=k} \boldsymbol{H}_{t}^{-1 / 2^{\prime}} \boldsymbol{\Sigma}_{k}^{-1} \boldsymbol{H}_{t}^{-1 / 2}+\boldsymbol{B}_{0}^{-1}\right)^{-1} \tag{25}
\end{align*}
$$

and

$$
\begin{align*}
p\left(\boldsymbol{\Sigma}_{k} \mid \boldsymbol{Y}_{k}, \boldsymbol{\mu}_{k}, \boldsymbol{H}_{1: T}\right) & \propto \prod_{t: s_{t}=k} p\left(\boldsymbol{r}_{t} \mid \boldsymbol{\mu}_{k}, \boldsymbol{\Sigma}_{k}, \boldsymbol{H}_{t}\right) p\left(\boldsymbol{\Sigma}_{k}\right) \tag{26}\\
& \sim I W(\overline{\boldsymbol{\Sigma}}, \bar{\nu}+N) \tag{27}
\end{align*}
$$

where

$$
\begin{align*}
\bar{\nu} & =T_{k}+\nu=\sum_{t=1}^{T} \mathbb{1}\left(s_{t}=k\right)+\nu \tag{28}\\
\overline{\boldsymbol{\Sigma}} & =\sum_{t: s_{t}=k} \boldsymbol{H}_{t}^{-1 / 2}\left(\boldsymbol{r}_{t}-\boldsymbol{\mu}_{k}\right)\left(\boldsymbol{r}_{t}-\boldsymbol{\mu}_{k}\right)^{\prime} \boldsymbol{H}_{t}^{-1 / 2^{\prime}}+\boldsymbol{\Sigma}_{0} \tag{29}
\end{align*}
$$

11. Sample hierarchical priors.
(a) Sample $\boldsymbol{b}_{0} \mid \boldsymbol{\mu}_{1: K}, \boldsymbol{B}_{0}, \boldsymbol{h}_{0}, \boldsymbol{H}_{0} \sim N\left(\boldsymbol{\mu}_{b}, \boldsymbol{\Sigma}_{b}\right)$, where

$$
\begin{align*}
\boldsymbol{\mu}_{b} & =\boldsymbol{\Sigma}_{b}\left(\boldsymbol{B}_{0}^{-1} \sum_{k=1}^{K} \boldsymbol{\mu}_{k}+\boldsymbol{H}_{0}^{-1} \boldsymbol{h}_{0}\right) \tag{30}\\
\boldsymbol{\Sigma}_{b} & =\left(K \boldsymbol{B}_{0}^{-1}+\boldsymbol{H}_{0}^{-1}\right)^{-1} \tag{31}
\end{align*}
$$

(b) Sample $\boldsymbol{B}_{0} \mid \boldsymbol{\mu}_{1: K}, \boldsymbol{b}_{0}, a_{0}, \boldsymbol{A}_{0} \sim I W\left(\boldsymbol{\Omega}_{B}, \omega_{b}\right)$, where

$$
\begin{align*}
\omega_{b} & =K+a_{0} \tag{32}\\
\boldsymbol{\Omega}_{B} & =\sum_{k=1}^{K}\left(\boldsymbol{\mu}_{k}-\boldsymbol{b}_{0}\right)\left(\boldsymbol{\mu}_{k}-\boldsymbol{b}_{0}\right)^{\prime}+\boldsymbol{A}_{0} \tag{33}
\end{align*}
$$

(c) Sample $\nu \mid \sigma_{1: K}^{2}, s_{0}, g_{0}$. There is no easily applicable conjugate prior for ν so a MetropolisHastings step needs to be applied. Implement a Gamma proposal following Maheu and Yang (2016):

$$
\begin{equation*}
\nu^{\prime} \left\lvert\, \nu \sim \operatorname{Gamma}\left(\tau, \frac{\tau}{\nu}\right)\right. \tag{34}
\end{equation*}
$$

and the acceptance rate is

$$
\begin{equation*}
\min \left\{1, \frac{p\left(\nu^{\prime} \mid \boldsymbol{\Sigma}_{1: K}, s_{0}, g_{0}\right) / q\left(\nu^{\prime} \mid \nu\right)}{p\left(\nu \mid \boldsymbol{\Sigma}_{1: K}, s_{0}, g_{0}\right) / q\left(\nu \mid \nu^{\prime}\right)}\right\} \tag{35}
\end{equation*}
$$

(d) Sample $\boldsymbol{\Sigma}_{0} \mid \boldsymbol{\Sigma}_{1: K}, v_{0}, \boldsymbol{C}_{0}, d_{0} \sim W\left(\boldsymbol{C}_{s}, d_{s}\right)$, where

$$
\begin{align*}
\boldsymbol{C}_{s} & =\left(\sum_{k=1}^{K} \boldsymbol{\Sigma}_{k}^{-1}+\boldsymbol{C}_{0}^{-1}\right)^{-1} \tag{36}\\
d_{s} & =K(\nu+N)+d_{0} \tag{37}
\end{align*}
$$

12. Sample the GARCH parameters $\boldsymbol{\theta}_{H}=\{\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\eta}\} \mid \boldsymbol{r}_{1: T}, s_{1: T}, \boldsymbol{\Theta}$. With normal prior $\boldsymbol{\theta}_{H} \sim$ $N(\mathbf{0}, \boldsymbol{I})$, the posterior is

$$
\begin{equation*}
p\left(\boldsymbol{\theta}_{H} \mid \boldsymbol{r}_{1: T}, s_{1: T}, \boldsymbol{\Theta}\right) \sim \prod_{t=1}^{T} p\left(\boldsymbol{r}_{t} \mid \boldsymbol{\Theta}, \boldsymbol{H}_{t}\right) p\left(\boldsymbol{\theta}_{H}\right) \tag{38}
\end{equation*}
$$

Apply a random-walk Metropolis-Hastings algorithm to sample $\boldsymbol{\alpha}$ and $\boldsymbol{\beta} . \boldsymbol{C}$ is jointly targeted.

Appendix C Out-of-Sample Forecast Algorithms

The predictive likelihood for an out-of-sample period $t+1$ can be computed in the following steps:

1. Estimate the model for $\boldsymbol{r}_{1: t}$ and collect M posterior samples for $\left\{\boldsymbol{\Theta}^{(i)}, \boldsymbol{\theta}_{H}^{(i)}, \boldsymbol{\Pi}^{(i)}, s_{1: t}^{(i)}, K^{(i)}\right\}_{i=1}^{M}$ as described in Section 3.4 and Appendix B.
2. Simulate the state indicator from equation (5b):

$$
s_{t+1}^{(i)} \mid s_{t}^{(i)}, \boldsymbol{\Pi}^{(i)} \sim \operatorname{catagorical}\left(\boldsymbol{\Pi}_{s_{t}^{(i)}}^{(i)}\right)
$$

3. If $s_{t+1}^{(i)} \leq K^{(i)}$, then the posterior of $\boldsymbol{\Theta}_{s_{t+1}^{(i)}}^{(i)}$ is already drawn. Otherwise state $s_{t+1}^{(i)}$ is inactive and without any assigned observation, so the posterior of $\boldsymbol{\Theta}_{s_{t+1}^{(i)}}^{(i)}$ is essentially the prior. Draw $\Theta_{s_{t+1}}^{(i)}$ from the base measure $\boldsymbol{\mu}_{s_{t+1}^{(i)}}^{(i)} \sim N\left(\boldsymbol{b}_{0}^{(i)}, \boldsymbol{B}_{0}^{(i)}\right)$ and $\boldsymbol{\Sigma}_{s_{t+1}^{(i)}}^{(i)} \sim I W\left(\boldsymbol{\Sigma}_{0}^{(i)}, \nu^{(i)}+N\right)$.
4. Propagate $\boldsymbol{H}_{t+1}^{(i)}$ from equation (5e):

$$
\boldsymbol{H}_{t+1}^{(i)}=\boldsymbol{C}^{(i)} \boldsymbol{C}^{(i)^{\prime}}+\boldsymbol{\alpha}^{(i)} \boldsymbol{\alpha}^{(i)^{\prime}} \odot\left(\boldsymbol{r}_{t}-\boldsymbol{\eta}^{(i)}\right)\left(\boldsymbol{r}_{t}-\boldsymbol{\eta}^{(i)}\right)^{\prime}+\boldsymbol{\beta}^{(i)} \boldsymbol{\beta}^{(i)^{\prime}} \odot \boldsymbol{H}_{t}^{(i)}
$$

5. Evaluate the predictive likelihood for the realized return \boldsymbol{r}_{t+1} conditional on every MCMC sample (i)

$$
p\left(\boldsymbol{r}_{t+1} \mid \boldsymbol{r}_{1: t}, \boldsymbol{\Theta}_{s_{t+1}^{(i)}}^{(i)}, \boldsymbol{\theta}_{H}^{(i)}\right)=N\left(\boldsymbol{r}_{t+1} \mid \boldsymbol{\mu}_{s_{t+1}^{(i)}}^{(i)}, \boldsymbol{H}_{t+1}^{(i) 1 / 2} \boldsymbol{\Sigma}_{s_{t+1}^{(i)}}^{(i)} \boldsymbol{H}_{t+1}^{(i) 1 / 2^{\prime}}\right),
$$

where $N(\boldsymbol{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$ is a multivariate normal density with mean $\boldsymbol{\mu}$ and covariance $\boldsymbol{\Sigma}$ evaluated at \boldsymbol{x}.
6. Average out the conditional predictive likelihoods with respect to the MCMC draws

$$
p\left(\boldsymbol{r}_{t+1} \mid \boldsymbol{r}_{1: t}\right) \approx \frac{1}{M} \sum_{i=1}^{M} p\left(\boldsymbol{r}_{t+1} \mid \boldsymbol{r}_{1: t}, \mathbf{\Theta}_{s_{t}^{(i)}}^{(i)}, \boldsymbol{\theta}_{H}^{(i)}\right) .
$$

To simulate from the predictive distribution, replace the above Step 5 with the following step:

- Generate predictive draw $\boldsymbol{r}_{t+1}^{(i)}$ from $\boldsymbol{r}_{t+1}^{(i)} \sim N\left(\boldsymbol{\mu}_{s_{t+1}^{(i)}}^{(i)}, \boldsymbol{H}_{t+1}^{(i) 1 / 2} \boldsymbol{\Sigma}_{s_{t+1}}^{(i)} \boldsymbol{H}_{t+1}^{(i) 1 / 2^{\prime}}\right)$ for every MCMC sample (i).

[^0]: *Maheu is grateful for financial support from SSHRC of Canada.
 ${ }^{\dagger}$ Center for Economics, Finance and Management Studies, Hunan University, China, lichenxing@hnu.edu.cn
 ${ }^{\ddagger}$ DeGroote School of Business, McMaster University, maheujm@mcmaster.ca

[^1]: ${ }^{1}$ For each element in $\boldsymbol{R}_{t}, R_{i, t}=\exp \left(r_{i, t}\right)-1$, where $r_{i, t}$ is the log return for asset i predicted from the econometric model.

[^2]: ${ }^{2}$ Note that each model \mathcal{M}_{A} and \mathcal{M}_{B} are re-estimated at each point in the out-of-sample period to obtain draws from the predictive density.

[^3]: ${ }^{3}$ GEM stands for Griffiths, Engen, and McCloskey. See Pitman (2002) as an example.

[^4]: ${ }^{4}$ This will be true for a prior expectation of $\mathrm{E}\left(\boldsymbol{\Sigma}_{k}\right)=\boldsymbol{I}$ but in general need not be true for other posterior parameter values.

[^5]: ${ }^{5}$ The 1-month T-bill rate serves as the risk-free investment in the portfolio optimization.

[^6]: ${ }^{6}$ The forecast error is computed from the difference between the realized \boldsymbol{r}_{t} and the predicted mean of \boldsymbol{r}_{t} from a model.

