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Abstract

This paper investigates the economic importance of nonparametrically/semiparametrically
modelling the shape and the change in the unknown distribution of returns in portfolio al-
location problems from a Bayesian perspective. Besides parametric multivariate GARCH
(MGARCH) benchmark models for returns, we consider an MGARCH with innovations fol-
lowing a Dirichlet process mixture and an infinite hidden Markov model (IHMM). We intro-
duce a new Bayesian semiparametric model that combines the MGARCH component with
the IHMM for innovations. This new model nonparametrically approximates both the shape
and evolution through time of the unknown distribution of returns beyond that captured
by the MGARCH part. The results show that the Bayesian nonparametric/semiparametric
models lead to improved statistical forecast accuracy and economic gains for a quadratic
utility and CRRA utility investor. The new model makes the greatest gains. Portfolio choice
is improved by modelling beyond the conditional second moments.
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1 Introduction
It is well known that the accurate modelling of conditional covariances improves portfolio outcomes
(Fleming et al., 2001; Guidolin and Timmermann, 2007; Pettenuzzo and Timmermann, 2011;
Bollerslev et al., 2018, and many others). However, it is not clear whether modelling the unknown
shape of the distribution and allowing the shape to change over time is important. This goes
beyond second moments and can impact asymmetry and various tail shapes. Is it worth the
additional costs of model complexity and estimation to use more sophisticated specifications? The
first contribution of this paper is to investigate the economic importance of time variation in the
multivariate return distribution over and above second moments through an extensive application
to portfolio optimization. The second contribution is to propose a new multivariate Bayesian
semiparametric model that approximates the shape and various dynamic features of the unknown
conditional distribution.

Dynamics in conditional second moments are well acknowledged in multivariate financial time
series. Multivariate GARCH (MGARCH) models (Bollerslev et al., 1988; Engle and Kroner, 1995;
Bollerslev, 1990; Engle, 2002) and their leptokurtic extensions (see Pesaran and Pesaran, 2010;
Kawakatsu, 2006; Bonato, 2012, and many others) have been extensively developed to capture the
gradual changes in conditional covariance matrices.

To further capture the unknown shape of the return innovation distribution, in addition to
the highly persistent dynamics of conditional covariances, Jensen and Maheu (2013) and Maheu
and Shamsi Zamenjani (2021) add a Dirichlet process mixture (DPM) model to the multivariate
GARCH model (MGARCH-DPM). This Bayesian semiparametric model approximates the un-
known distribution of conditional returns by mixing an infinite number of multivariate normal
kernels with a Dirichlet process prior (Antoniak, 1974). Mixtures of normals can capture distribu-
tional features such as skewness, kurtosis, and asymmetric tails for any continuous distribution.
In the MGARCH-DPM model, the DPM component relaxes the parametric assumption that the
innovation distribution is known, but the mixture weights remain constant, and any time variation
in the return distribution can only come from the GARCH part of the model.

The new Bayesian semiparametric model introduced in this paper extends the MGARCH-
DPM model directly by replacing the DPM with an infinite hidden Markov model (IHMM). The
IHMM proposed by Beal et al. (2002) has Markovian mixing weights that are constructed from
a hierarchical Dirichlet process (HDP) prior formalized by Teh et al. (2006). The shape of the
unknown distribution can change over time. The DPM version is also nested as a special case. The
IHMM can also be seen as a Bayesian nonparametric extension of the Markov switching model as
it generalizes the predefined finite number of states into an infinite number of states. Conditional
return distributions are approximated by mixing an infinite number of normal kernels, and for
each period, the mixture weights depend on which state the previous period was in.

The IHMM has been applied to economic and financial time series since econometricians intro-
duced it from computer science. Univariate examples include Song (2014) and Jochmann (2015)
on inflation rates, Maheu and Yang (2016) on short-term interest rates and Jin et al. (2022) on
macroeconomic and financial forecasting. Multivariate applications in Jin and Maheu (2016); Jin
et al. (2019); Hou (2017) focus on estimation and forecast improvements from the IHMM but do
not consider whether it is beneficial for portfolio decisions.

Although the IHMM extends the Markov switching models into an unbounded state space,
a regime-switching model may not be able to capture the smooth changes in conditional sec-
ond moments (Rydén et al., 1998). The infinite hidden Markov multivariate GARCH model
(MGARCH-IHMM) in this paper uses the MGARCH component to capture the strong persistence
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in covariance dynamics and allows the IHMM component to focus on approximating the changes
in the unknown shape of the conditional distribution of returns. The IHMM component is also
able to capture the potential state recurrence in addition to abrupt changes in variance levels.

Our MGARCH-IHMM is related to Dufays (2016) who applies the IHMM with a univariate
GARCH model for demeaned data where skewness is not allowed. This paper extends his work to
a flexible multivariate setting that allows for time-varying covariance, skewness, and kurtosis at
the same time. We parameterize the MGARCH component to avoid any path dependence issue
that can arise in switching GARCH models (Bauwens et al., 2010), making estimation tractable
with MCMC methods for IHMM. Although we document the forecast performance of this new
model and others, our focus is on the economic value of the IHMM component for portfolio choice.

The portfolio problem involves maximizing expected utility subject to a wealth constraint and
transaction costs. To make the problem realistic, we impose no-short-selling restriction and a
separate case with no short-selling and no leverage-trading at the same time. From a Bayesian
perspective, the expected utility is taken with respect to the predictive distribution. In the non-
parametric/semiparametric models, this will involve integrating out parameter uncertainty as well
as distributional uncertainty. Following MCMC estimation, the draws from the predictive density
are constructed to empirically estimate an investor’s expected utility, which is maximized to solve
for the optimal portfolio weights.

Model estimation and portfolio choice use monthly returns of the Fama-French 5 industry port-
folios. Several benchmark parametric MGARCH models, along with the nonparametric IHMM and
semiparametric MGARCH-DPM and MGARCH-IHMM, are used for portfolio choice. Posterior
results show that, in addition to the smooth volatility changes captured by the MGARCH com-
ponent, significant parameter changes are present from the IHMM portion of the specifications.
Posterior estimates indicate many active components in mixture models, and multivariate measures
of skewness and kurtosis indicate departures from normality.

In terms of out-of-sample forecasts, the MGARCH-IHMM model performs significantly better
than all benchmark models through predictive likelihoods. It also has the most accurate predictive
covariance measured against monthly realized covariance. Then does this forecast improvement
lead to better portfolio outcomes?

We compute an ex-post break-even performance fee that equates the utility performance of two
portfolios optimized from different models. This fee represents the annualized return the investor
would pay to switch from one model to another to perform portfolio optimization. Overall, with a
quadratic or CRRA utility, the investor would pay a positive fee against all alternative models to
obtain forecasts from the MGARCH-IHMM. The fees are substantial. For example, a quadratic
utility investor would pay a 1 – 3% annual fee to move from one of the parametric MGARCH
models to the proposed semiparametric alternative. Similar results are obtained for the CRRA
investor with the relative performance of the nonparametric/semiparametric models improving.
These results hold for various levels of transaction costs and risk aversion.

DeMiguel et al. (2007) point out that the equally-weighted (EW) buy-and-hold portfolio is
robust to parameter uncertainty and difficult to beat. We show that although the EW portfolio
is competitive, the MGARCH-IHMM model strictly dominates it based on utility outcomes. The
Sharpe ratios of these portfolios support this as well.

We conclude that dynamic density modelling using the nonparametric (IHMM) and semi-
parametric (MGARCH-IHMM and MGARCH-DPM) specifications in the paper does matter to
portfolio choice. The nonparametric and semiparametric models, to the extent that they improve
not only the predictive covariance but also the predictive mean, lead to better portfolio outcomes
for a quadratic utility investor. For the CRRA investor who will be sensitive to the whole distri-
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bution of wealth and not just the mean and variance, all of the nonparametric and semiparametric
models tend to provide a stronger result than parametric alternatives. A robust and useful second
best model is the EW portfolio. It never achieves the top outcomes of the most sophisticated
MGARCH-IHMM but it is competitive in all cases.

This paper is organized as follows. Section 2 presents the portfolio allocation problem of the
investor for a given utility function and discusses the transaction cost and optimization. The next
section focuses on the new MGARCH-IHMM, including estimation and forecasting in addition to
detailing several benchmark models. Section 4 discusses the returns series used to estimate models
and perform portfolio allocation. Section 5 presents the posterior estimations of the models and
compares their out-of-sample forecast performance. Section 6 compares the portfolio allocation
performance of different econometric models under different risk-aversion levels, transaction costs
and trading restriction settings. Section 7 concludes, while the appendices contain additional
details on models and estimation steps.

2 Utility-Based Portfolio Optimization
We make use of the following notation. Let Rt denote the simple return vector from N risky assets
and Rf,t be the return from the risk-free asset.1 Let the information set be R1:t−1 = {R1, . . . ,Rt−1}
and ι be a vector of 1.

2.1 Dynamic Optimal Portfolio Weights
Consider a rational and risk-averse investor whose utility function is U(W ), where W denotes
their wealth. Each period, they distribute their wealth into N risky assets and the risk-free asset.
Without loss of generality, assume that their wealth is set as 1 at the beginning of each period.
The investor rebalances their portfolio given the information set R1:t−1 for period t by maximizing
their conditional expected utility:

max
wt

E [U(Wt)|R1:t−1] (1a)

where Wt = 1 +w′

tRt + (1−w′

tι)Rf,t − C(wt,wt−1). (1b)

wt represents the vector of the portfolio weights for the risky assets, and C(·) is the transaction cost
incurred when rebalancing at the end of period t and is a function of wt. We focus on two realistic
cases that investors are likely to face. The first is the no-short-sale constraint (wi,t ≥ 0 for each
asset i). Jagannathan and Ma (2003) show this can lead to less extreme weights and better portfolio
outcomes. The second case is the no-short-sales and no-leverage-trading constraint (wi,t ≥ 0 for
each asset i and

∑N
i=1 wi,t ≤ 1) which means the investor cannot borrow to invest in risky assets.

In selecting the optimal portfolio at time t, the investor is subject to the transaction fee,

C(wt,wt−1) = c

N
∑

i=1

|wi,t − wi,t−1|+ c

∣

∣

∣

∣

∣

N
∑

i=1

wi,t −
N
∑

i=1

wi,t−1

∣

∣

∣

∣

∣

. (2)

Here, c denotes the flexible fee as a certain percentage of the wealth. The first term represents
the portfolio turnover due to the rebalancing of each asset in the risky portfolio. The second term

1For each element in Rt, Ri,t = exp(ri,t)−1, where ri,t is the log return for asset i predicted from the econometric
model.
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represents the change in the position of the risk-free asset. Note that in contrast to others, such as
Bollerslev et al. (2018), in which turnover and transaction costs are ex-post, our investor optimizes
their portfolio subject to these costs.

The analytical solution for this problem is generally unavailable, but a numerical solution can
be found. In practice, we approximate expected utility with draws from the predictive distribution
of the econometric model Mi for Rt given R1:t−1 through,

E [U(Wt)|R1:t−1,Mi] ≈
1

M

M
∑

m=1

U(W
(m)
t,Mi

), (3a)

W
(m)
t,Mi

= 1 +w′

tR
(m)
t,Mi

+ (1−w′

tι)Rf,t − C(wt,wt−1), (3b)

where R
(m)
t,Mi

is simulated from the predictive distribution for Rt by model Mi, and M is the
total number of draws. As discussed below, the draws from the predictive distribution will inte-
grate out parameter uncertainty and, in the nonparametric/semiparametric models, distributional
uncertainty.

2.2 Break-even Management Fees
Since the notion of “risk” can go beyond the second moment of a return distribution which tradi-
tional measures like the Sharpe ratio use, we consider the break-even performance fee an investor
is willing to pay to switch from one econometric specification of returns to another (e.g., Fleming
et al., 2001) to compare models. The fee embodies the risk-return trade-off that the investor has
based on their utility function.

Given an out-of-sample period from t+1 to T , a utility function U(W ) and two models MA and
MB, we compute the optimal weights for each model at each time following the discussion above.2
Given the optimal weights, the realized wealth for each model can be computed, {Wi,l}

T
l=t+1 for

i = A,B. The performance fee, ∆, that an investor would pay to move from model MA to MB is
found by equating the ex-post utility as

T
∑

l=t+1

U(WA,l −∆|MA) =
T
∑

l=t+1

U(WB,l|MB), (4)

and solving for ∆.

3 Models
In this section, we present the various multivariate models of returns used to solve the portfolio
optimization problem. We begin with the new model that nonparametrically allows for time
dependence in the distribution coupled with a multivariate GARCH specification. As this is a new
model, we present more details on the model than the other benchmarks, including estimation and
simulation from the predictive density. Following this, we briefly detail existing nonparametric
models from the literature with some extensions. These are the MGARCH-DPM of Jensen and
Maheu (2013); Maheu and Shamsi Zamenjani (2021) and a version of the IHMM from Maheu

2Note that each model MA and MB are re-estimated at each point in the out-of-sample period to obtain draws
from the predictive density.
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and Yang (2016) without a multivariate GARCH component. Finally, the benchmark multivariate
GARCH models with parametric return distributions are considered. These existing models, except
for IHMM, allow the conditional covariance to change but the innovation distribution is constant
through time.

3.1 MGARCH-IHMM
To investigate the importance of general distributional shapes and changes over time beyond
second moments, this paper proposes a sophisticated model that extends an MGARCH structure
to capture general nonparametric patterns. The proposed Bayesian semiparametric model consists
of an MGARCH component and an IHMM component. Let rt be an N × 1 vector of log-returns,
and r1:T = {r1, r2, . . . , rT}. Define θ = {θ1,θ2, . . . } as the set of state-dependent parameters,
where θj =

{

µj,Σj

}

. Let Θ be the joint set of all parameters. The stick-breaking representation
(Sethuraman, 1994; Teh et al., 2006) of the model is as follows:

Γ|β0 ∼ GEM (β0) , Πj|α0,Γ ∼ DP (α0,Γ) (5a)
st|st−1,Π ∼ catagorical(Πst−1) (5b)

p (rt|Θ, st−1) =
∞
∑

k=1

πst−1kN
(

rt

∣

∣

∣
µk,H

1/2
t ΣkH

1/2
t

′
)

(5c)

µk ∼ N (b0,B0) , Σk ∼ IW (Σ0, ν +N) (5d)
H t = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)′ + ββ′ ⊙H t−1 (5e)

where Γ = (γ1, γ2, . . . )
′, Πj = (πj1, πj2, . . . ). To be more specific,

γk = γ̃k

k−1
∏

l=1

(1− γ̃l) , γ̃k ∼ Beta (1, β0) , (6a)

πjk = π̃jk

k−1
∏

l=1

(1− π̃jl) , π̃jk ∼ Beta

(

α0γk, α0

(

1−
k
∑

l=1

γl

))

. (6b)

GEM(β0)
3 is a general stick-breaking process of (6a) with a concentration parameter β0. As shown

in equation (5c), the conditional distribution of the returns is a mixture of an infinite number of
Gaussian kernels with a vector of weights Πj. Πj is the jth row of the infinitely dimensional squared
transition matrix Π and a draw from a particular Dirichlet process. st denotes the state/cluster
for time t. st, µst and Σst are determined by the IHMM component, and H t is determined by
the MGARCH component. H

1/2
t is the Cholesky decomposition of H t. Σst is parameterized

around an identity matrix. The general level and long-run dynamics of conditional volatility are
captured by the GARCH component, and Σst serves as an amplifier to either boost or shrink
the conditional covariance from H t. Clearly, when µst = 0 and Σst = I, the MGARCH-IHMM
reduces to a parametric MGARCH model.

The IHMM component of this model is a Bayesian nonparametric one that employs a hierar-
chical Dirichlet process (HDP). (5a) represents this HDP structure. This component is essentially
an infinitely dimensional Markov-switching model. It is designed to capture the sudden changes
in the conditional distribution through a regime-switching scheme, and all of the states can re-
cur with certain probabilities. To ensure this recurrence, another Dirichlet process is required to

3GEM stands for Griffiths, Engen, and McCloskey. See Pitman (2002) as an example.

6



share the atoms among all the bottom-layer Dirichlet processes. πjk indicates the probability of
switching from state j to state k. Note that in the MGARCH-DPM model, πst−1k = πk for all
t = 1, . . . , T , so the MGARCH-IHMM is more flexible and nests the MGARCH-DPM model of
Jensen and Maheu (2013) as a special case. Because the MGARCH-IHMM is a Bayesian semipara-
metric model, where one does not need to impose any distributional assumption to the conditional
return distributions, it can capture features such as asymmetries and fat tails. Moreover, unlike
the DPM, which is another Bayesian nonparametric model, but where the conditional distribution
is static, the IHMM also nonparametrically approximates the unknown period-by-period evolution
of the conditional distributions.

The MGARCH component (5e) takes a variant of the diagonal BEKK-GARCH representation
(Engle and Kroner, 1995). C is an N × N lower triangular matrix, α, β and η are N × 1
vectors, and ⊙ is the Hadamard operator representing element-by-element multiplication. The
parameter restriction of α2

i +β2
i < 1 for all i = 1, . . . , N is imposed for stationarity in H t.4 Unlike

traditional MGARCH models, the effect of the lagged return shock is centred around the additional
parameter η. This specification, on one hand, avoids the path dependence problem in estimation
since H t is not a function of the states. On the other hand, it allows H t to capture the potential
asymmetric volatility feedback effect. When rt−1 > µst−1

> η, the distance between rt−1 and
η is greater than that between rt−1 and µst−1

, and this would increase H t as in an asymmetric
dynamic covariance (ADC) model (Kroner and Ng, 1998). However, the MGARCH-IHMM does
not enforce an asymmetric volatility feedback or the sign of this asymmetry but any feedback is
instead learned from data. The posterior estimates of Fama-French 5 industry portfolio returns
show that ηi is generally greater than µi,st−1 for each asset i, indicating a negative feedback in
volatility empirically.

The state-dependent parameters µk and Σk allow us to identify potential regime switches.
Furthermore, mixing over µk also generates possible skewness in conditional return distributions,
and mixing over Σk generates kurtosis. Since the mixture weights are Markovian, the unknown
conditional distribution is allowed to change over time in an unknown pattern.

In summary, the proposed MGARCH-IHMM retains all the advantages of both the MGARCH
model and the IHMM. It approximates both the shape and the period-by-period evolution of the
unknown conditional distributions semiparametrically.

3.2 Hierarchical Priors
Prior settings are important when estimating Bayesian nonparametric/semiparametric models
where the number of active states is estimated jointly with other parameters. To allow learning
on new state-dependent parameters, we employ hierarchical priors. The base measure parame-
ters are now estimated from the state-dependent parameters instead of being preset as constants.
This allows the base measure to learn from the data and can improve out-of-sample forecasts and
portfolio outcomes (Maheu and Yang, 2016).

The following set of hierarchical priors motivated by Song (2014) are used:

b0 ∼ N (h0,H0) , B0 ∼ IW (A0, a0) , Σ0 ∼ W (C0, d0) , ν ∼ Exp (g0) . (7)

Then b0, B0, Σ0 and ν are drawn conditional on both the hierarchical priors and the corresponding
state-dependent parameters (µk and Σk).

4This will be true for a prior expectation of E(Σk) = I but in general need not be true for other posterior
parameter values.
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3.3 Covariance Targeting
In the MGARCH component, C has N(N + 1)/2 parameters to estimate, while α, β and η all
have N parameters, respectively. The number of parameters grows quadratically in C and linearly
in θH = {α,β,η}. Hence, by targeting the symmetric CC ′ matrix instead of estimating it in the
main MCMC procedure reduces the complexity of posterior sampling. Let µ̄ = 1

T

∑T
t=1 rt be the

sample mean and H̄ = 1
T

∑T
t=1(rt− µ̄)(rt− µ̄)′ be the sample covariance. Assuming E (H t) = H̄

for all t = 1, . . . , T , then in the MGARCH-IHMM, CC ′ can be replaced as

CC ′ = H̄ ⊙ [1−αα′ − ββ′]−αα′ ⊙ (µ̄− η) (µ̄− η)′ , (8)

where 1 is an N ×N matrix with all the elements being 1. This result only holds for a restricted
version of the model. See Appendix A for details. Note that any draw of θH from the posterior
that results in non-positive definite CC ′ is rejected.

3.4 Sampling Algorithm
The MGARCH-IHMM is estimated through an MCMC algorithm. For the nonparametric com-
ponent (IHMM), we employ the beam sampler introduced by Van Gael et al. (2008) (see also Fox
et al., 2011; Maheu and Yang, 2016). Similar to the slice sampler for the DPM model, the beam
sampler partitions the infinite number of states in the IHMM into a finite set of active states with
assigned observations and an additional remaining state where no observation is allocated. This
allows for standard finite Markov switching posterior simulation methods (Chib, 1996) to be em-
ployed. Conditional on the states, the MGARCH parameters can be sampled with a multivariate
random-walk proposal. Detailed steps of posterior simulations are found in Appendix B.

Collecting M MCMC samples after dropping a suitable amount of burn-in samples, the poste-
rior moments of some function g(·) can be computed by

E [g(θ)|r1:T ] ≈
1

M

M
∑

m=1

g
(

θ(m)
)

,

where θ(m) is the mth MCMC draw of the given parameter θ.

3.5 Predictive Density
A key input into model comparison, forecasting and hence portfolio choice is the predictive density
of a model. For a general model MA, this is defined as

p(rt+1|r1:t,MA) =

∫

p(rt+1|r1:t,Θ,MA)p(Θ|r1:t,MA)dΘ, (9)

where p(rt+1|r1:t,Θ,MA) is the data density for rt+1 given data r1:t and parameter vector Θ and
p(Θ|r1:t,MA) is the posterior density of Θ given r1:t.

Computing the expected utility for portfolio choice will require simulating from the predictive
density. For each MCMC draw Θ

(m) from the posterior, we simulate a r
(m)
t+1 using the data density.

In practice, for the MGARCH-IHMM this will require simulating a future state which may be a
new state that requires a draw from the hierarchical prior.
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The predictive likelihood evaluates the predictive density at the realized rt+1 and is the basis of
model comparison. For MA, the predictive likelihood can be estimated as 1

M

∑M
m=1 p(rt+1|r1:t,Θ

(m),MA)

with Θ
(m) draws from p(Θ|r1:t,MA).

Although our main focus is portfolio choice, we also document the econometric gains in density
forecasts that the models provide by comparing predictive likelihoods. This is computed out-of-
sample recursively as detailed in Appendix C. The log-predictive likelihood over the out-of-sample
period t+ 1, . . . , T for model MA is

logPLA = log p(rt+1:T |r1:t,MA) =
T−1
∑

l=t

log p(rl+1|r1:l,MA). (10)

Models with larger logPL are more consistent with the observed data and the log-Bayes factor
in favour of MA vs MB, is logBFAB = logPLA − logPLB. A log-Bayes factor greater than 5 is
usually considered strong evidence for model MA.

3.6 Other Models
We include the following semiparametric and fully nonparametric models as well as purely para-
metric models.

MGARCH-DPM A semiparametric multivariate GARCH model where the innovation is a
mixture with constant weights can be written as follows:

Γ|β0 ∼ GEM (β0) , st|Γ ∼ catagorical(Γ)

rt|θ,H t,Π, st ∼ N
(

µst ,H
1/2
t ΣstH

1/2
t

′
)

µst ∼ N (b0,B0) , Σst ∼ IW (V , ν +N)

H t = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)′ + ββ′ ⊙H t−1.

This model replaces the IHMM component of the MGARCH-IHMM with a DPM component. The
DPM model is a special case of the IHMM, where the mixture is static instead of Markovian, so
the MGARCH-DPM model is nested within the MGARCH-IHMM, as discussed in Section 3. CC ′

is targeted as in equation (8).

IHMM A fully nonparametric multivariate model with regime switching is specified as

Γ|β0 ∼ GEM (β0), Πj|α0,Γ ∼ DP (α0,Γ)

st|st−1,Π ∼ catagorical(Πst−1), rt|st,θ ∼ N
(

µst ,Σst

)

µs ∼ N (b0,B0), Σs ∼ IW (V , ν +N) .

This model is nested within the MGARCH-IHMM when H t = I for all t. The same set of
hierarchical priors in (7) is also employed in this model. The only way to capture conditional
heteroskedasticity is through changes in µst and Σst .
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MGARCH-N A fully parametric multivariate GARCH model with normal innovations is spec-
ified as

rt = µ+H
1/2
t zt, zt

iid
∼N(0, I),

H t = CC ′ +αα′ ⊙ (rt−1 − µ) (rt−1 − µ)′ + ββ′ ⊙H t−1,

where, through covariance targeting, CC ′ is defined as

CC ′ = H̄ ⊙ (1−αα′ − ββ′) .

MGARCH-A A fully parametric asymmetric multivariate GARCH model with normal innova-
tions is specified as

rt = µ+H
1/2
t zt, zt

iid
∼N(0, I),

H t = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)′ + ββ′ ⊙H t−1,

where CC ′ is targeted as in equation (8). Unlike the MGARCH-N model, this model can capture
the potential shock asymmetry in volatility feedback through (rt−1 − η).

4 Data
The data used in this paper includes monthly holding period returns of the Fama-French 5 industry
portfolios, consisting of Consumer, Manufacture, High Tech, Health and Other portfolios, and the
1-month Treasury bill rate from the website of Kenneth French.5 All of the returns range from
July 1926 to December 2020 at a monthly frequency (1,134 observations). The model estimation
uses the associated continuous compounded returns scaled by 100. In addition, monthly realized
covariances are computed as the outer product of the daily return vector of the 5 assets. This is
used to compare predictive covariances from models.

Panel A of Table 1 illustrates some descriptive statistics of the five industry portfolio log-
returns. All of the industries are negatively skewed and leptokurtic. Panel B shows that all five
industries are highly correlated.

5 Model Estimates and Forecasts
Before analyzing the economic gains in portfolio allocation, we report model estimates and com-
parisons of out-of-sample forecasts. We focus on the new semiparametric MGARCH-IHMM model.

5.1 Hyper parameters
The hyper parameters for the priors, the hyper priors and the hierarchical priors are common
across models and between posterior estimations and out-of-sample forecasts for comparability in
the results. Following Fox et al. (2011), the hyper priors for the HDP concentration parameters
β0 and α0 are assumed as

β0 ∼ Gamma(2, 8), α0 ∼ Gamma(2, 8), (11)
5The 1-month T-bill rate serves as the risk-free investment in the portfolio optimization.
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where E(β0) = E(α0) = 0.25. During estimation, these hyper priors strongly favour less active
states for better state identification and faster computation. The hyper prior for the concentration
parameter of the DPM is also assumed to be distributed as Gamma(2, 8). The hierarchical priors
discussed in Section 3.2 are assumed as

b0 ∼ N (0, I) , B0 ∼ IW (I, N + 2) , Σ0 ∼ W

(

I

N + 2
, N + 2

)

, ν ∼ Exp

(

1

N + 2

)

, (12)

and ensures E[Σ0] = I, E[ν] = N + 2 and using these values centers the hierarchical prior for
Σk on I. For the MGARCH parameters θH = (α,β,η)′, assume a truncated multivariate normal
prior

θH ∼ N(0, I)1{αi > 0, βi > 0, α2
i + β2

i < 1, for all i}, (13)

where αi > 0 and βi > 0 are imposed for parameter identification and α2
i + β2

i < 1 for covariance
targeting.

5.2 In-Sample Estimation
In all models, the first 20,000 iterations were discarded as burn-in, and the next 20,000 MCMC
samples were collected for posterior inference. This section summarizes the results of the full
sample estimates, consisting of 1,106 observations.

Table 2 lists the posterior estimates of the non-state-dependent parameters for the five models,
and the assets in rt are indexed in the same order as in Table 1. The MGARCH-IHMM, the
MGARCH-DPM, the MGARCH-N and the MGARCH-A models all have a high β that is above
0.92, and low α that is below 0.31 in general. As mentioned in Section 3, η helps to capture an
asymmetric volatility feedback. The η estimates are often considerably larger than the sample
mean of returns in Table 1 as well as the estimates of µ in the parametric MGARCH models.
This indicates an asymmetric volatility response to return shocks for the Fama-French 5 industry
portfolio returns. Put another way, bad news (negative shocks) has a larger impact on future H t

than good news (positive shocks). The MGARCH persistence measure (α2
i + β2

i ) is very similar in
all models, although each of the individual αi and βi values are a bit different.

Comparing the semiparametric MGARCH-IHMM and the nonparametric IHMM, the MGARCH-
IHMM has higher concentration parameters (α0 = 1.619 and β0 = 0.914) than the IHMM
(α0 = 0.992 and β0 = 0.772) and a greater number of active states (K = 9.783, compared to
K = 7.812). The MGARCH-DPM model has the lowest concentration parameter (β0 = 0.387)
and the least number of active states (K = 4.834).

Figure 1 plots the posterior mean of several time-varying parameters for the MGARCH-IHMM.
The top plot shows the posterior mean of the average over the five portfolios of µst . The other
three plots show the log-determinants of the posterior mean for the time-varying second-moment
parameters. As discussed earlier, Σst has a prior centred around the identity matrix whose log-
determinant is 0. To the extent that Σst differs from the identity, this indicates that H t is scaled
or shrunk as it enters the covariance of the normal kernel of the mixture. The figure shows this to
be a regular occurrence and highlights deviations from the MGARCH-A model.

While many of the active states are there to approximate the tails and shapes of the conditional
return distribution, three main active states are apparent: a bull state with high expected returns
and low state-dependent volatility (white background), a bear state with low expected returns and
high state-dependent volatility (red background) and a correction state with both low expected
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returns and low state-dependent volatility (grey background). Note that these are states that have
been identified in addition to the GARCH effect, indicating that the regular MGARCH-N model
is insufficient in capturing the full dynamics of the conditional distribution.

The last graph of Figure 1 plots the log-determinant of the posterior mean of the overall
conditional covariance from each model, namely H

1/2
t ΣstH

1/2
t

′

for the MGARCH-IHMM and
MGARCH-DPM, Σst for the IHMM, and H t for the MGARCH-N and MGARCH-A. All the
models roughly track the same trend. The two middle plots show that the MGARCH-IHMM
decomposes the strong persistent component into H t and abrupt discrete changes to Σst .

A heat map of the three main states discussed above is found in Figure 2 for the MGARCH-
IHMM. This displays the empirical probability that two periods share the same state. The redder
the colour, the higher the probability of sharing states. Most periods fall within the bull state, but
there are several exceptions. The bear state is shared by multiple eras, including but not limited to
the Great Depression, from March 1928 to September 1933; the Stagflation, from September 1973
to March 1975; the Savings and Loan Crisis, from November 1989 to October 1990; the Dotcom
Bubble, from May 1998 to September 2001; the 2008 Financial Crisis, from November 2007 to
April 2009; the US-China Trade War, from October 2018 to May 2019; and the recent Coronavirus
Crash, from January to August 2020. The correction state mainly corresponds to the pre- and
post-WW2 market corrections from the bull markets.

5.3 Out-of-Sample Forecasts
A recursive prediction is performed for 360 out-of-sample periods from January 1991 to December
2020 by re-estimating each model, each period and computing the one period ahead log-predictive
likelihood, predictive mean and predictive covariance. We compute point forecasts based on 20,000
simulations for a model’s predictive density.

Table 3 compares the performance of those recursive forecasts. The MGARCH-IHMM pro-
duces large improvements against all models with the second most competitive model being the
MGARCH-DPM. The importance of the MGARCH dynamics is clear from the MGARCH-A and
MGARCH-N models having a larger log-predictive likelihood value than the IHMM which omits
that feature.

There is little to differentiate the predictive mean forecasts among the models.6 Turning to
the predictive covariance forecasts measured against monthly realized covariance, the best point
forecasts are from the MGARCH-IHMM. Similar to the log-predictive likelihood rankings, the
MGARCH component is important to competitive forecasts with the IHMM performing the worst.

Finally, dynamic infinite mixture models such as the MGARCH-IHMM can capture various
tail shapes and asymmetries. To see if these are present, we plot the Mardia (1970) multivariate
skewness and kurtosis measures for the predictive density over the out-of-sample periods. The
time series is shown in Figure 3 along with the Mardia measure for the normal distribution. There
is a clear deviation from the normal distribution as well as evidence that the Mardia multivariate
measures change dramatically over time.

Do the improved forecasts given by the MGARCH-IHMM and to a lesser extent the MGARCH-
DPM, transfer over to better portfolio choice outcomes? This is the question we turn to in the
next section.

6The forecast error is computed from the difference between the realized rt and the predicted mean of rt from
a model.
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6 Empirical Portfolio Choice
6.1 Quadratic Utility
The first set of results is for portfolio optimization with quadratic utility,

U(W ) = W −
a

2(1 + a)
W 2,

where a is the risk aversion parameter, the absolute risk aversion is a
1+a−aW

and the relative risk
aversion is aW

1+a−aW
. The portfolio is optimized when a = {2, 4, 6} for all five econometric models

with transaction costs c = {0%, 1%, 2%}, respectively. We use M = 20, 000 from the predictive
distribution of a model to estimate (3a). Due to the possible corner solution, a simplex method is
used for optimization with 100 different initial values being used to avoid a local optimum. The
Brent-Dekker method is used to find the scalar root in equation (4). Each econometric model is
recursively estimated to compute the draws from the respective predictive density of the returns
to estimate (3a) at each point in the out-of-sample period (January 1991 to December 2020).

In addition to the benchmark models listed in Section 3.6, we consider two equally-weighted
portfolios. The first one optimizes a two-asset allocation problem which consists of a risky, equally-
weighted portfolio and a risk-free asset (EW + RF). The second is a buy-and-hold strategy of
an equally-weighted portfolio that consists of the Fama-French 5 industry portfolios and a risk-
free asset (EW), where each component has a weight of 1/6. The buy-and-hold EW portfolio is
recommended by DeMiguel et al. (2007) as very competitive primarily because it has no parameter
uncertainty or transaction costs.

Table 4 reports the annualized fee that an investor is willing to pay for switching from the
econometric model in the first column to the MGARCH-IHMM. This fee is based on the ex-post
utility using the same out-of-sample period as the statistical forecast evaluations. In practice,
short-selling can be very expensive or unavailable for many investors, so we impose a restriction
where short-selling is not permitted for any risky asset (referred as “No Short-Selling” , wi,t ≥ 0
for all i = 1, . . . , N).

In Panel A, a quadratic utility investor, with a few exceptions, is always willing to pay a
positive annualized fee to switch from any benchmark model to the MGARCH-IHMM, regardless
of the risk-averse parameter or the transaction costs. Most of the fees are in the 1 – 2 percent
range but several are larger. For example, for a = 2 and c = 0 the fee is 3.24% and 3.29% to move
from the MGARCH-A and MGARCH-N to the MGARCH-IHMM. This can only come from better
predictive mean and predictive covariance forecasts. Table 3 shows it is the latter that provides
improvements. In general, the fee declines as risk aversion a increases while the fee increases with
transaction costs c. The one notable exception to these results is the EW portfolio. An investor
is willing to pay a positive fee to move from this portfolio to the MGARCH-IHMM for low risk
aversion a = 2, but would not be willing to switch for higher risk aversion parameters and non-
zero transaction costs. Thus the advantage of the MGARCH-IHMM specification for the quadratic
utility investor is in the low risk aversion setting.

As expected, imposing the additional constraint of no leverage-trading leads to lower perfor-
mance fees in Panel B. The fees are often around or below the 1% level for a = 2 but increase for
larger risk aversion levels for many cases. For a = 2 and c = 1%, an investor would pay a positive
fee for the MGARCH-IHMM forecasts over all the benchmark models. The EW portfolio perfor-
mance is stronger with no leverage-trading. For example, only in the a = 2 case are performance
fees consistently positive, favouring the MGARCH-IHMM while other cases favour the EW.
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The Sharpe ratios for each of the model portfolios are found in Table 5. The MGARCH-IHMM
is uniformly the best except for two cases, where the MGARCH-IHMM ranks the second best.
As risk aversion and transaction costs increase, the MGARCH-IHMM provides a better outcome
against all other econometric models. The EW portfolio has a uniform Sharpe ratio of 0.1880 as
the portfolio is not a function of risk aversion or transaction costs. It does provide a robust result
and, after the MGARCH-IHMM, is the most reliable Sharpe ratio in each situation.

In summary, the improved point forecasts of the MGARCH-IHMM often translate into positive
performance fees that the investor would pay to obtain these forecasts and resulting positive
portfolio outcomes compared to many benchmarks. The fee greatly depends on the risk aversion
parameter as well as the transaction costs and other constraints imposed. The MGARCH-IHMM
consistently provides the largest Sharpe ratios.

6.2 CRRA Utility
Next, we turn to the investor with constant relative risk-averse (CRRA) utility,

U(W ) =
W 1−a

1− a
,

where a ≥ 0. Relative risk aversion is a and absolute risk aversion is a
W

. Unlike quadratic utility,
expected utility will be sensitive to the shape of the distribution of wealth through returns. As
such, the quality of density forecasts as measured by the log-predictive likelihoods may be a better
rank of model inputs to portfolio choice.

As before, Table 6 reports the annualized fee that a CRRA investor will pay to move from
the model in the first column to the MGARCH-IHMM over the out-of-sample period (January
1991 to December 2020). For any case in this table, the investor is willing to pay a positive fee
to obtain forecasts from the MGARCH-IHMM to make portfolio decisions. Unlike the quadratic
utility case, performance fees are always positive. This indicates the importance of the density
beyond the summary moments of predictive mean and covariance in portfolio choice.

We also see the semiparametric MGARCH-DPM preferred over the parametric MGARCH-A
and MGARCH-N models as shown by a smaller performance fee. Indeed, all the semiparametric
and nonparametric models (MGARCH-IHMM, MGARCH-DPM, IHMM) perform relatively better
against the parametric MGARCH-A and MGARCH-N in the CRRA utility case. This shows the
importance of modelling the whole distribution for portfolio choice.

In the case of no short-selling (Panel A), after considering the transaction costs, the EW
portfolio becomes one of the best models after the MGARCH-IHMM, especially when the investor
is more risk-averse. When a = 4 or 6, an investor is willing to pay no more than 83 bps annually to
switch from the EW to the MGARCH-IHMM optimized portfolio, while the investor is often willing
to pay substantially more for switching from other benchmark models to the MGARCH-IHMM.
As with quadratic utility, the performance fees in favour of the MGARCH-IHMM are largest for
the low risk aversion case of a = 2.

Table 7 reports Sharpe ratios for each of the model portfolios. As in the quadratic utility case,
the MGARCH-IHMM is the dominant model, except for a few exceptions where the MGARCH-
IHMM is the second best. The nonparametric and semiparametric models, MGARCH-IHMM,
MGARCH-DPM and IHMM are often better when transaction costs are present than the para-
metric MGARCH volatility models. We see the same values of the EW portfolio uniformly in
different cases.
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With only no short-selling restriction, the optimal portfolio calls for active margin-buying for
the CRRA investor. Figure 4 displays the total weight allocated to risky assets for various models
and settings. Leverage trading is a number above one and indicates borrowing at the risk-free rate
to invest in risky assets. From the left side of these subfigures, we see the investor will borrow to
invest most of the time, and that leverage can be high during some periods. For example, at the
beginning of 1991 when a = 2, the investor borrows over 200% of their initial wealth to invest.
This strategy can be risky when transaction costs are involved.

When there are no transaction costs, the investor can adjust their portfolio freely and it is
optimal to only hold risky assets, without holding the risk-free asset. The exception to this is a
bear market, namely during the Dotcom Bubble, the 2008 Financial Crisis, the US-China Trade
War or the recent COVID-19 Crash. When transaction costs are imposed, instead of pursuing
market timing aggressively, it is better to gradually change positions to lower transaction costs.
This does not necessarily advocate a buy-and-hold strategy because the relative weights for each
individual risky asset can still change even when the net risky holding is stable. Nevertheless, it
does provide some insight into the case which the EW portfolio performs well when c ̸= 0 and
a = 4, 6.

Similar to the scenario in Panel A, Panel B of Table 6 shows the MGARCH-IHMM model
outperforms all benchmarks regardless of risk aversion level with additional no-leverage-trading
restrictions. The annualized fee that the investor is willing to pay varies between 0.23% and 1.88%
with no transaction costs and between 0.13% and 2.72% when transaction costs are included.
The other Bayesian semiparametric model MGARCH-DPM, along with the nonparametric model
IHMM and the EW, are the second-best performers.

The right-hand side of Figure 4 shows the impact of the additional constraint of no leverage-
trading on the risky weights. Risky positions are reduced substantially, but the investor is very
often close to being fully invested in risky assets with a risky weight just under one.

The Sharpe ratios of the different investment strategies for the CRRA investor are found in
Table 7. These results confirm the dominance of the nonparametric/semiparametric models found
in Table 6. When the performance of these models diminishes with higher transaction costs, the
EW portfolio becomes an attractive second best choice. Although not directly comparable due to
the different utility functions, in many cases the CRRA investor obtains a larger Sharpe ratio (14
out of 18) using the MGARCH-IHMM than the quadratic utility investor using the same model.

Dynamic density modelling using the nonparametric/semiparametric specifications in this pa-
per does matter to portfolio choice. The nonparametric and semiparametric models, to the extent
that they improve not only the predictive covariance but also the predictive mean, lead to better
portfolio outcomes for a quadratic utility investor. For the CRRA investor who will be sensitive to
the whole distribution of wealth and not just the mean and variance, all of the nonparametric and
semiparametric models tend to provide a stronger result than parametric alternatives. A robust
and useful second best model is the EW portfolio. It never achieves the top outcomes of the most
sophisticated MGARCH-IHMM specification but it is competitive in all cases.

7 Conclusions
This paper investigates the economic importance of nonparametrically/semiparametrically mod-
elling the shape and the change of the unknown distribution of returns in portfolio allocation
problems from a Bayesian perspective. Besides parametric multivariate GARCH (MGARCH)
benchmark models for returns, we consider an MGARCH with innovations following a Dirichlet
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process mixture and an infinite hidden Markov model (IHMM). We introduce a new Bayesian
semiparametric model that combines the MGARCH component with the IHMM for innovations.
This new model nonparametrically approximates both the shape and evolution through time of
the unknown distribution of returns beyond that captured by the MGARCH part.

The MGARCH-IHMM shows a clear advantage against the benchmark MGARCH-DPM, IHMM,
MGARCH-N and MGARCH-A models in terms of density forecasts as well as point forecasts for
realized covariance. The MGARCH-IHMM captures distributional features such as changing con-
ditional skewness and kurtosis.

Empirical results from a utility-based portfolio optimization show that a risk-averse investor,
whose utility function is quadratic or CRRA, is always willing to pay a positive fee that is econom-
ically significant for switching from the parametric benchmark models, including equally weighted
portfolios, to the more sophisticated Bayesian nonparametric and semiparametric models. The
new MGARCH-IHMM is the best performing model among them based on performance fees and
Sharpe ratios This result is robust to different risk-aversion levels and transaction costs.

We conclude that Bayesian nonparametric/semiparametric models can lead to improved sta-
tistical forecast accuracy and economic gains for an investor. Portfolio choice is improved by
modelling beyond the conditional second moments.
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Table 1: Descriptive Statistics of the Industry Portfolio Returns

Panel A: Univariate statistics
Industry Mean Median StDev Skewness Ex.Kurtosis Min Max
Consumer 0.8818 1.2324 5.2714 -0.5883 6.7366 -33.6592 36.2349
Manufacture 0.7977 1.2669 5.5026 -0.4705 7.4474 -36.9037 36.1374
High Tech 0.8373 1.2472 5.5998 -0.6536 3.9009 -31.1702 29.1475
Health 0.9314 1.0989 5.5460 -0.6361 7.4813 -41.6728 31.5759
Other 0.7118 1.2768 6.3401 -0.2871 8.1140 -35.7104 46.2160

Panel B: Correlations
Consumer Manufacture High Tech Health Other

Consumer 1.0000 0.8749 0.8175 0.7828 0.8832
Manufacture 0.8749 1.0000 0.8101 0.7448 0.8935
High Tech 0.8175 0.8101 1.0000 0.7098 0.8031
Health 0.7828 0.7448 0.7098 1.0000 0.7416
Other 0.8832 0.8935 0.8031 0.7416 1.0000
1. Source: Kenneth French’s Data Library.
2. Fama-French 5 industry portfolios, log-returns in percentage.
3. From July 1926 to December 2020, 1,134 observations.
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Table 2: Posterior Estimates

MGARCH-IHMM:
Γ|β0 ∼ GEM (β0) , Πj |α0,Γ ∼ DP (α0,Γ)

st|st−1,Π ∼ catagorical(Πst−1
)

rt|Θ,Ht,Π, st ∼ N
(

µst ,H
1/2
t ΣstH

1/2
t

′
)

Ht = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)
′

+ ββ′ ⊙Ht−1

MGARCH-DPM:
Γ|β0 ∼ GEM (β0) , st|Γ ∼ catagorical(Γ)

rt|Θ,Ht,Π, st ∼ N
(

µst ,H
1/2
t ΣstH

1/2
t

′
)

Ht = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)
′

+ ββ′ ⊙Ht−1

IHMM:
Γ|β0 ∼ GEM (β0) , Πj |α0,Γ ∼ DP (α0,Γ)

st|st−1,Π ∼ catagorical(Πst−1
)

rt|st,Θ,Ft−1 ∼ N
(

µst ,Σst

)

MGARCH-N:
rt = µ+H

1/2
t zt

Ht = CC ′ +αα′ ⊙ (rt−1 − µ) (rt−1 − µ)
′

+ ββ′ ⊙Ht−1

MGARCH-A:
rt = µ+H

1/2
t zt

Ht = CC ′ +αα′ ⊙ (rt−1 − η) (rt−1 − η)
′

+ ββ′ ⊙Ht−1

MGARCH-IHMM MGARCH-DPM IHMM MGARCH-N MGARCH-A

Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI Mean 0.95 DI

µ1 0.7586 (0.5143,1.0043) 0.7944 (0.5488,1.0373)
µ2 0.7141 (0.4703,0.9591) 0.7443 (0.5034,0.9872)
µ3 0.7869 (0.5403,1.0327) 0.7851 (0.5359,1.0305)
µ4 0.8317 (0.5620,1.0937) 0.8368 (0.5651,1.1050)
µ5 0.5930 (0.3095,0.8787) 0.6652 (0.3803,0.9486)

α1 0.2404 (0.2278, 0.2525) 0.2513 (0.2426,0.2604) 0.2644 (0.2541,0.2732) 0.2575 (0.2466,0.2678)
α2 0.2554 (0.2373, 0.2691) 0.2621 (0.2521,0.2723) 0.2738 (0.2624,0.2882) 0.2820 (0.2681,0.2944)
α3 0.2589 (0.2443, 0.2696) 0.2891 (0.2798,0.3000) 0.3013 (0.2787,0.3208) 0.3014 (0.2894,0.3168)
α4 0.2524 (0.2328, 0.2747) 0.2743 (0.2510,0.3069) 0.2807 (0.2594,0.2999) 0.2643 (0.2491,0.2869)
α5 0.2556 (0.2425, 0.2698) 0.2618 (0.2484,0.2749) 0.2896 (0.2730,0.3049) 0.2897 (0.2768,0.3040)

β1 0.9477 (0.9385, 0.9556) 0.9422 (0.9327,0.9514) 0.9452 (0.9391,0.9510) 0.9471 (0.9404,0.9527)
β2 0.9485 (0.9402, 0.9573) 0.9446 (0.9364,0.9516) 0.9455 (0.9384,0.9517) 0.9419 (0.9344,0.9489)
β3 0.9425 (0.9334, 0.9512) 0.9328 (0.9224,0.9411) 0.9328 (0.9222,0.9443) 0.9319 (0.9229,0.9395)
β4 0.9361 (0.9188, 0.9490) 0.9249 (0.9049,0.9428) 0.9336 (0.9208,0.9450) 0.9390 (0.9276,0.9483)
β5 0.9470 (0.9396, 0.9534) 0.9426 (0.9337,0.9503) 0.9359 (0.9266,0.9454) 0.9348 (0.9253,0.9426)

η1 2.1068 (1.5072, 2.6198) 2.3519 (1.6730,2.8626) 1.3033 (0.6774,1.7108)
η2 1.7347 (1.2468, 2.2381) 1.9518 (1.2454,2.5057) 1.0098 (0.4078,1.3683)
η3 1.3616 (0.8971, 1.9095) 1.5638 (0.9139,2.1334) 0.6037 (0.0804,1.0255)
η4 1.8997 (1.2746, 2.5574) 1.9541 (1.2088,2.5770) 0.9182 (0.2964,1.4279)
η5 2.3398 (1.6549, 3.0103) 2.6564 (1.7991,3.3445) 1.5565 (0.9303,2.0199)

α0 1.6190 (0.9509, 2.5345) 0.9919 (0.5945, 1.4988)
β0 0.9140 (0.3807, 1.6428) 0.3872 (0.1115,0.8235) 0.7723 (0.3303, 1.4078)
K 9.7826 (6.0000,13.0000) 4.8338 (3.0000,8.0000) 7.8118 (7.0000,10.0000)
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Table 3: Out-of-Sample Forecasts

Model log PL log BF RMSFE
Pred Mean Pred Cov

MGARCH-IHMM -4478.602 — 4.1480 93.537
MGARCH-DPM -4492.075 13.4731 4.1487 99.603
IHMM -4550.889 72.2869 4.1340 144.611
MGARCH-A -4521.526 42.9239 4.1493 100.984
MGARCH-N -4523.410 44.8084 4.1508 101.391
1. Data starts in July 1926, the out-of-sample period is from January 1991 to

December 2020.
2. Log BF is the MGARCH-IHMM against the model in the first column.
3. RMSFE is the mean of the L2 norm of the vector forecast error for the pre-

dictive mean of rt, while it is the mean of the spectral norm of the matrix
difference between the predictive covariance and the monthly realized covari-
ance.

Table 4: Annualized Fees a Quadratic Investor Is Willing to Pay
U(W ) = W −

a

2(1 + a)
W 2,

Wt = 1 +w′

tRt + (1−w′

tι)− C(wt,wt−1),

C(wt,wt−1) = c

N
∑

i=1

|wi,t − wi,t−1|+ c

∣

∣

∣

∣

∣

N
∑

i=1

wi,t −

N
∑

i=1

wi,t−1

∣

∣

∣

∣

∣

.

a a = 2 a = 4 a = 6

c 0% 1% 2% 0% 1% 2% 0% 1% 2%

Panel A: No Short-Selling
MGARCH-DPM 1.12% 6.30% 7.00% 0.75% 2.87% 4.00% 0.67% 1.61% 1.98%
IHMM 0.04% 4.15% 7.02% 1.48% 3.16% 3.25% 0.33% 1.52% 1.63%
MGARCH-A 3.24% 3.67% 3.72% 1.66% 1.71% 1.96% 1.39% 1.45% 1.52%
MGARCH-N 3.29% 3.74% 3.98% 1.52% 1.70% 1.97% 1.31% 1.37% 1.41%
EW+RF 4.32% 4.66% 3.53% 2.40% 2.21% 2.00% 1.67% 1.63% 1.46%
EW 6.39% 3.88% 2.76% 1.44% -0.13% -0.34% 0.77% -0.19% -0.37%

Panel B: No Short-Selling and No Leverage-Trading
MGARCH-DPM -0.12% 2.93% 3.69% 0.41% 2.29% 2.53% 0.61% 1.35% 1.73%
IHMM 0.62% 4.15% 4.37% 0.17% 2.17% 2.29% 0.21% 1.08% 1.22%
MGARCH-A 0.39% 0.50% 0.85% 1.19% 1.42% 1.53% 1.07% 1.10% 1.32%
MGARCH-N 0.27% 0.49% 0.58% 0.93% 1.22% 1.90% 0.93% 1.00% 1.46%
EW+RF 0.31% 1.29% 1.22% 1.58% 2.06% 1.86% 1.55% 1.32% 1.26%
EW 0.67% 0.53% 0.47% 0.63% -0.26% -0.47% 0.66% -0.49% -0.57%
1. No Short-Selling indicates a constraint of wi,t ≥ 0 for all i = 1, . . . , N is imposed in the optimization problem;

and No Leverage-Trading indicates that a constraint of
∑N

i=1
wi,t ≤ 1 is imposed in the optimization

problem.
2. IHMM means an investor switches from IHMM to MGARCH-IHMM.
3. A positive fee means the MGARCH-IHMM is better, and a negative fee means the corresponding model in

column one is better.
4. EW+RF indicates optimizing a two-asset allocation problem which consists of a risky, equally-weighted

portfolio and a risk-free asset. EW indicates a buy-and-hold strategy of an equally-weighted portfolio that
consists of the Fama-French 5 industry portfolios and a risk-free asset (each component has a weight of 1/6).
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Table 5: Ex-Post Sharpe Ratios of a Quadratic Investor’s Optimal Portfolio
U(W ) = W −

a

2(1 + a)
W 2,

Wt = 1 +w′

tRt + (1−w′

tι)− C(wt,wt−1),

C(wt,wt−1) = c

N
∑

i=1

|wi,t − wi,t−1|+ c

∣

∣

∣

∣

∣

N
∑

i=1

wi,t −

N
∑

i=1

wi,t−1

∣

∣

∣

∣

∣

.

a a = 2 a = 4 a = 6

c 0% 1% 2% 0% 1% 2% 0% 1% 2%

Panel A: No Short-Selling
MGARCH-IHMM 0.2416 0.2365 0.2149 0.2233 0.1904 0.1954 0.2040 0.1769 0.1889
MGARCH-DPM 0.2271 0.1539 0.1189 0.2046 0.1045 0.0613 0.1777 0.0803 0.0602
IHMM 0.2347 0.1547 0.0859 0.1926 0.0457 0.0380 0.1890 0.0503 0.0479
MGARCH-A 0.2006 0.1875 0.1772 0.1766 0.1342 0.1185 0.1410 0.0588 0.0492
MGARCH-N 0.2009 0.1906 0.1725 0.1797 0.1328 0.1185 0.1429 0.0651 0.0540
EWTF 0.1904 0.1786 0.1786 0.1489 0.1080 0.1080 0.1075 0.0363 0.0363
EW 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880

Panel B: No Short-Selling and No Leverage-Trading
MGARCH-IHMM 0.2005 0.2007 0.2032 0.2088 0.1911 0.1968 0.1971 0.1551 0.1811
MGARCH-DPM 0.2001 0.1617 0.1430 0.1967 0.1184 0.1139 0.1759 0.0868 0.0488
IHMM 0.1781 0.0933 0.0919 0.1989 0.1066 0.0835 0.1874 0.0581 0.0498
MGARCH-A 0.1876 0.1855 0.1863 0.1715 0.1406 0.1299 0.1473 0.0646 0.0492
MGARCH-N 0.1881 0.1952 0.2002 0.1770 0.1481 0.1150 0.1524 0.0725 0.0074
EWTF 0.1832 0.1786 0.1786 0.1489 0.1080 0.1080 0.1075 0.0363 0.0363
EW 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880
1. No Short-Selling indicates a constraint of wi,t ≥ 0 for all i = 1, . . . , N is imposed in the optimization problem;

and No Leverage-Trading indicates that a constraint of
∑N

i=1
wi,t ≤ 1 is imposed in the optimization problem.

2. The number indicates the ex-post Sharpe ratio as the result of the realized return from the optimized weights for
a model. Bold entries are the largest Sharpe ratio in a column.

3. EW+RF indicates optimizing a two-asset allocation problem which consists of a risky, equally-weighted portfolio
and a risk-free asset. EW indicates a buy-and-hold strategy of an equally-weighted portfolio that consists of the
Fama-French 5 industry portfolios and a risk-free asset (each component has a weight of 1/6).

22



Table 6: Annualized Fees a CRRA Investor Is Willing to Pay

U(W ) =
W 1−a

1− a
,

Wt = 1 +w′

tRt + (1−w′

tι)− C(wt,wt−1),

C(wt,wt−1) = c

N
∑

i=1

|wi,t − wi,t−1|+ c

∣

∣

∣

∣

∣

N
∑

i=1

wi,t −

N
∑

i=1

wi,t−1

∣

∣

∣

∣

∣

.

a a = 2 a = 4 a = 6

c 0% 1% 2% 0% 1% 2% 0% 1% 2%

Panel A: No Short-Selling
MGARCH-DPM 0.81% 1.74% 2.20% 0.78% 1.30% 1.60% 0.65% 1.12% 1.31%
IHMM 0.35% 0.75% 1.20% 0.13% 0.97% 1.58% 0.25% 1.22% 1.35%
MGARCH-A 2.74% 2.31% 3.55% 1.85% 2.13% 2.57% 1.36% 1.84% 1.99%
MGARCH-N 1.93% 1.65% 2.67% 1.26% 2.34% 2.57% 0.98% 1.81% 2.08%
EW+RF 4.09% 3.33% 3.75% 2.24% 2.76% 2.98% 1.62% 2.10% 2.28%
EW 5.97% 2.64% 3.06% 1.34% 0.53% 0.74% 0.83% 0.40% 0.59%

Panel B: No Short-Selling and No Leverage-Trading
MGARCH-DPM 0.31% 0.13% 0.65% 0.86% 0.84% 1.16% 0.85% 0.90% 1.22%
IHMM 1.16% 0.40% 0.93% 1.07% 0.55% 0.60% 0.71% 0.68% 0.77%
MGARCH-A 0.37% 0.42% 1.15% 1.35% 1.88% 2.04% 1.03% 1.45% 1.68%
MGARCH-N 0.23% 0.41% 1.47% 1.52% 2.07% 2.10% 1.22% 1.60% 1.92%
EW+RF 0.34% 1.40% 1.56% 1.88% 2.61% 2.72% 1.72% 1.86% 2.13%
EW 0.73% 0.72% 0.88% 0.98% 0.39% 0.49% 0.92% 0.17% 0.43%
1. No Short-Selling indicates a constraint of wi,t ≥ 0 for all i = 1, . . . , N is imposed in the optimization problem;

and No Leverage-Trading indicates that a constraint of
∑N

i=1
wi,t ≤ 1 is imposed in the optimization

problem.
2. IHMM means an investor switches from IHMM to MGARCH-IHMM.
3. A positive fee means the MGARCH-IHMM is better, and a negative fee means the corresponding model in

column one is better.
4. EW+RF indicates optimizing a two-asset allocation problem which consists of a risky, equally-weighted

portfolio and a risk-free asset. EW indicates a buy-and-hold strategy of an equally-weighted portfolio that
consists of the Fama-French 5 industry portfolios and a risk-free asset (each component has a weight of 1/6).
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Table 7: Ex-Post Sharpe Ratios of a CRRA Investor’s Optimal Portfolio

U(W ) =
W 1−a

1− a
,

Wt = 1 +w′

tRt + (1−w′

tι)− C(wt,wt−1),

C(wt,wt−1) = c

N
∑

i=1

|wi,t − wi,t−1|+ c

∣

∣

∣

∣

∣

N
∑

i=1

wi,t −

N
∑

i=1

wi,t−1

∣

∣

∣

∣

∣

.

a a = 2 a = 4 a = 6

c 0% 1% 2% 0% 1% 2 0% 1% 2%

Panel A: No Short-Selling
MGARCH-IHMM 0.2385 0.2151 0.2284 0.2214 0.2089 0.2174 0.2050 0.1886 0.1996
MGARCH-DPM 0.2317 0.2063 0.2055 0.2040 0.1712 0.1710 0.1815 0.1307 0.1310
IHMM 0.2299 0.2221 0.2226 0.2133 0.1864 0.1659 0.1924 0.1404 0.1254
MGARCH-A 0.2033 0.1908 0.1803 0.1713 0.1420 0.1341 0.1452 0.0735 0.0793
MGARCH-N 0.2120 0.1982 0.1945 0.1841 0.1336 0.1333 0.1573 0.0766 0.0713
EWTF 0.1903 0.1796 0.1796 0.1500 0.1124 0.1124 0.1100 0.0455 0.0454
EW 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880

Panel B: No Short-Selling and No Leverage-Trading
MGARCH-IHMM 0.2014 0.2041 0.1965 0.2164 0.2004 0.2021 0.2042 0.1824 0.1949
MGARCH-DPM 0.1917 0.1957 0.1929 0.1943 0.1780 0.1764 0.1778 0.1296 0.1272
IHMM 0.1685 0.1961 0.1908 0.1843 0.1915 0.1944 0.1806 0.1435 0.1531
MGARCH-A 0.1886 0.1957 0.1924 0.1777 0.1473 0.1469 0.1576 0.0854 0.0928
MGARCH-N 0.1885 0.1916 0.1871 0.1719 0.1405 0.1441 0.1527 0.0771 0.0725
EWTF 0.1839 0.1796 0.1796 0.1500 0.1124 0.1124 0.1100 0.0455 0.0454
EW 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880 0.1880
1. No Short-Selling indicates a constraint of wi,t ≥ 0 for all i = 1, . . . , N is imposed in the optimization problem;

and No Margin-Trading indicates that a constraint of
∑N

i=1
wi,t ≤ 1 is imposed in the optimization problem.

2. The number indicates the ex-post Sharpe ratio as the result of the realized return from the optimized weights for
a model. Bold entries are the largest Sharpe ratio in a column.

3. EW+RF indicates optimizing a two-asset allocation problem which consists of a risky, equally-weighted portfolio
and a risk-free asset. EW indicates a buy-and-hold strategy of an equally-weighted portfolio that consists of the
Fama-French 5 industry portfolios and a risk-free asset (each component has a weight of 1/6).
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MGARCH-IHMM, MGARCH-DPM: Covt = H
1/2
t ΣstH

1/2
t

′

,

IHMM: Covt = Σst , MGARCH-N, MGARCH-A: Covt = Ht

Figure 1: (Log Determinants of) the Posterior Means of the Time-Varying Parameters over Time
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Figure 2: Heat Map of States Estimated by the MGARCH-IHMM
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Figure 3: Mardia Skewness and Kurtosis
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A: No Short-Selling
B: No Short-Selling and No Leverage-Trading

Figure 4: Risky Positions in the Portfolio Optimized with MGARCH-IHMM over Time
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Appendix A Proof of Covariance Targeting of CC ′

In a reduced form of the MGARCH-IHMM, where Σt = I for all t, referring to equation (5e), the
unconditional expectation of H t is

E (H t) = CC ′ +αα′ ⊙ E
[

(rt−1 − η) (rt−1 − η)′
]

+ ββ′ ⊙ E (H t−1)

= CC ′ +αα′ ⊙ E
[

(rt−1 − µ̄+ µ̄− η) (rt−1 − µ̄+ µ̄− η)′
]

+ ββ′ ⊙ E (H t−1)

= CC ′ +αα′ ⊙ H̄ +αα′ ⊙ (µ̄− η) (µ̄− η)′ + ββ′ ⊙ E (H t−1) .

Further assuming E (H t) = H̄ for all t = 1, . . . , T , we have

CC ′ = H̄ ⊙ [1−αα′ − ββ′]−αα′ ⊙ (µ̄− η) (µ̄− η)′ ,

where 1 is an N ×N matrix with all the elements being 1.

Appendix B Posterior Sampling Details
Recall that Γ = (γ1, . . . , γK , γR)

′ and Πj = (πj1, . . . , πjK , πjR), where γR =
∑

∞

k=K+1 γk =

1−
∑K

k=1 γk and πjR =
∑

∞

k=K+1 πjk = 1−
∑K

k=1 πjk. The sampling steps are:

1. Sample u1:T |Γ,Π. The auxiliary slice variable U = {ut}
T
t=1 is drawn by u1 ∼ U (0, γs1) and

ut ∼ U
(

0, πst−1st

)

.

2. Update K. Similar to the DPM model, if K does not meet the condition

min {ut}
T
t=1 > max {πjR}

K
j=1 (14)

then K needs to be increased by 1 (K ′ = K+1) and all of the corresponding parameters need
to be drawn from the base measure. In addition, since a new “major” state is introduced, Γ
and Π also need to be updated accordingly:

(a) ΘK′ ∼ H;
(b) Draw v ∼ Beta (1, β0), then update Γ = (γ1, . . . , γK , γK′ , γR)

′, where γK′ = vγR and
γR = (1− v) γR;

(c) Draw vj ∼ Beta (α0γK′ , α0γR), update Πj = (πj1, . . . , πjK , πjK′ , πjR) for j = 1, . . . , K,
where πjK′ = vπjR and πjR = (1− v) πjR;

(d) Draw the K ′th row of Π, ΠK′ , by ΠK′ ∼ Dir (α0γ1, . . . , α0γK , α0γK′ , α0γR).

Repeat the above steps until inequality (14) holds.

3. The forward filter for s1:T |r1:T , u1:T ,Γ,Π,Θ,H1:T . Iterating the following steps forward from
1 to T :

(a) The prediction step for the initial state s1 is as follows:

p(s1 = k|u1,Γ) ∝ 1 (u1 < γk) , k = 1, . . . , K (15)

for the following states s2:T :

p(st = k|r1:t−1, u1:t,Π,Θ,H1:t−1) ∝
K
∑

j=1

1 (ut < πjk) p (st−1 = j|r1:t−1, u1:t−1,Π,Θ,H1:t−1)

(16)
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(b) The update step for s1:T :

p (st = k|r1:t, u1:t,Π,Θ,H1:t) ∝ p (rt|rt−1,Θk,H t) p (st = k|r1:t−1, u1:t,Π,Θ,H1:t−1)
(17)

4. The backward sampler for s1:T |r1:T , u1:T ,Π,Θ,H1:T . Sample the states s1:T using the pre-
viously filtered values backward from T to 1:

(a) for the terminal state sT directly from p (sT |r1:T , u1:T ,Π,Θ,H1:T )

(b) for the rest states,

p (st = k|st+1 = j, r1:t, u1:t+1,Π,Θ,H1:t) ∝ 1 (ut+1 < πkj) p (st = k|r1:t, u1:t,Π,Θ,H1:t)
(18)

5. Sample c1:K |s1:T ,Γ, α0. c1:K is essential for sampling Γ, and it counts balls of different colours
in the “oracle” urn. Fox et al. (2011) propose simulating ck from the hierarchical Pòlya urn
scheme instead of sampling it.

(a) Count the number of each transition type, njk, for the number of times switching from
state j to state k.

(b) Simulate an auxiliary trail variable xi ∼ Bernoulli
(

α0γk
i−1+α0γk

)

, for i = 1, . . . , njk. If the
trial is successful, an “oracle” urn step is involved at the ith step towards njk, and we
increase the corresponding “oracle” counts, ojk, by one.

(c) ck =
∑K

j=1 ojk.

6. Sample β0. Following Fox et al. (2011); Maheu and Yang (2016), assume a Gamma prior
β0 ∼ Gamma (a1, b1), and let c =

∑K
j=1 cj,

(a) ν ∼ Bernoulli
(

c
c+β0

)

(b) λ ∼ Beta (β0 + 1, c)

(c) β0 ∼ Gamma (a1 +K − ν, b1 − log λ)

7. Sample α0. Following Fox et al. (2011), assume a Gamma prior α0 ∼ Gamma (a2, b2), and
let nj =

∑K
k=1 njk,

(a) νj ∼ Bernoulli
(

nj

nj+α0

)

(b) λj ∼ Beta (α0 + 1, nj)

(c) α0 ∼ Gamma
(

a2 + c−
∑K

j=1 νj, b2 −
∑K

j=1 log (λj)
)

8. Sample Γ|c1:K , β0. Given the “oracle” urn counts c1:K and the property of the Dirichlet
process, the conjugate posterior is

Γ|c1:K , β0 ∼ Dir (c1, . . . , cK , β0) (19)

9. Sample Π|n1:K,1:K ,Γ, α0. Similarly, the conjugate posterior of Πj is

Πj|nj,1:K ,Γ, α ∼ Dir (α0γ1 + nj1, . . . , α0γK + njK , α0γR) (20)
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10. Sample Θ|r1:T , s1:T ,H1:T . Assume conjugate priors µ ∼ N (b0,B0) and Σ ∼ IW (Σ0, ν +N).
Define Y k ≡

{

H
−1/2
t rt|st = k

}T

t=2
and Xk ≡

{

H
−1/2
t |st = k

}T

t=2
. The linear model is now

Y k = Xkµk + ϵk, ϵk ∼ N (0,Σk) (21)

The posteriors are

p (µk|Y k,Σk,H1:T ) ∼
∏

t:st=k

p (Y t|µk,Σk,H t) p (µk) (22)

∼ N (Mµ,V µ) (23)

where

Mµ = V µ

(

∑

t:st=k

H
−1/2
t

′

Σ
−1
k H

−1/2
t rt +B−1

0 b0

)

(24)

V µ =

(

∑

t:st=k

H
−1/2
t

′

Σ
−1
k H

−1/2
t +B−1

0

)−1

(25)

and

p (Σk|Y k,µk,H1:T ) ∝
∏

t:st=k

p (rt|µk,Σk,H t) p (Σk) (26)

∼ IW
(

Σ̄, ν̄ +N
)

(27)

where

ν̄ = Tk + ν =
T
∑

t=1

1 (st = k) + ν (28)

Σ̄ =
∑

t:st=k

H
−1/2
t (rt − µk) (rt − µk)

′
H

−1/2
t

′

+Σ0 (29)

11. Sample hierarchical priors.

(a) Sample b0|µ1:K ,B0,h0,H0 ∼ N (µb,Σb), where

µb = Σb

(

B−1
0

K
∑

k=1

µk +H−1
0 h0

)

(30)

Σb =
(

KB−1
0 +H−1

0

)−1 (31)

(b) Sample B0|µ1:K , b0, a0,A0 ∼ IW (ΩB, ωb), where

ωb = K + a0 (32)

ΩB =
K
∑

k=1

(µk − b0) (µk − b0)
′ +A0 (33)
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(c) Sample ν|σ2
1:K , s0, g0. There is no easily applicable conjugate prior for ν so a Metropolis-

Hastings step needs to be applied. Implement a Gamma proposal following Maheu and
Yang (2016):

ν ′|ν ∼ Gamma
(

τ,
τ

ν

)

(34)

and the acceptance rate is

min

{

1,
p (ν ′|Σ1:K , s0, g0) /q (ν

′|ν)

p (ν|Σ1:K , s0, g0) /q (ν|ν ′)

}

(35)

(d) Sample Σ0|Σ1:K , v0,C0, d0 ∼ W (Cs, ds), where

Cs =

(

K
∑

k=1

Σ
−1
k +C−1

0

)−1

(36)

ds = K (ν +N) + d0 (37)

12. Sample the GARCH parameters θH = {α,β,η} |r1:T , s1:T ,Θ. With normal prior θH ∼
N (0, I), the posterior is

p (θH |r1:T , s1:T ,Θ) ∼
T
∏

t=1

p (rt|Θ,H t) p (θH) (38)

Apply a random-walk Metropolis-Hastings algorithm to sample α and β. C is jointly tar-
geted.

Appendix C Out-of-Sample Forecast Algorithms
The predictive likelihood for an out-of-sample period t+1 can be computed in the following steps:

1. Estimate the model for r1:t and collect M posterior samples for
{

Θ
(i),θ

(i)
H ,Π(i), s

(i)
1:t, K

(i)
}M

i=1
as described in Section 3.4 and Appendix B.

2. Simulate the state indicator from equation (5b):

s
(i)
t+1|s

(i)
t ,Π(i) ∼ catagorical(Π

(i)

s
(i)
t

).

3. If s(i)t+1 ≤ K(i), then the posterior of Θ(i)

s
(i)
t+1

is already drawn. Otherwise state s
(i)
t+1 is inactive

and without any assigned observation, so the posterior of Θ(i)

s
(i)
t+1

is essentially the prior. Draw

Θ
(i)

s
(i)
t+1

from the base measure µ
(i)

s
(i)
t+1

∼ N(b
(i)
0 ,B

(i)
0 ) and Σ

(i)

s
(i)
t+1

∼ IW (Σ
(i)
0 , ν(i) +N).

4. Propagate H
(i)
t+1 from equation (5e):

H
(i)
t+1 = C(i)C(i)′ +α(i)α(i)′ ⊙

(

rt − η(i)
) (

rt − η(i)
)′

+ β(i)β(i)′ ⊙H
(i)
t .
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5. Evaluate the predictive likelihood for the realized return rt+1 conditional on every MCMC
sample (i)

p(rt+1|r1:t,Θ
(i)

s
(i)
t+1

,θ
(i)
H ) = N

(

rt+1

∣

∣

∣

∣

µ
(i)

s
(i)
t+1

,H
(i)1/2
t+1 Σ

(i)

s
(i)
t+1

H
(i)1/2
t+1

′

)

,

where N(x|µ,Σ) is a multivariate normal density with mean µ and covariance Σ evaluated
at x.

6. Average out the conditional predictive likelihoods with respect to the MCMC draws

p(rt+1|r1:t) ≈
1

M

M
∑

i=1

p(rt+1|r1:t,Θ
(i)

s
(i)
t

,θ
(i)
H ).

To simulate from the predictive distribution, replace the above Step 5 with the following step:

• Generate predictive draw r
(i)
t+1 from r

(i)
t+1 ∼ N

(

µ
(i)

s
(i)
t+1

,H
(i)1/2
t+1 Σ

(i)

s
(i)
t+1

H
(i)1/2
t+1

′

)

for every MCMC

sample (i).
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