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agents’ degree of risk aversion in the sense of Pratt (1964) do not imply a suggested 

“stochastically more risk averse” relation within such models. A new heteroscedastic model 

called “contextual utility” remedies this, and estimates in one data set suggest it explains (and 

especially predicts) as well or better than other stochastic models. 
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 There is no doubt of the importance of two papers in the development of expected utility or 

EU theory. Pratt (1964) gave us an EU-based understanding of “agent a is more risk averse than 

agent b:” Write this as ba
mra
�  and call this relation “MRA in Pratt’s sense.” Pratt also gave us 

risk aversion measures and parametric utility functions for money outcomes that represent these 

measures of risk aversion in their parameters. Rothschild and Stiglitz (1970) then considered 

possible definitions of the relation “lottery T is riskier than lottery S” and proved that several 

definitions are equivalent under EU. Call },{ TS  an MPS pair when T is a mean preserving 

spread of S (defined subsequently). Rothschild and Stiglitz showed that any EU agent with a 

strictly concave utility of money prefers S to T when choosing from any MPS pair },{ TS . 

 An accumulated experimental literature suggests various problems with EU, and this has 

spawned alternative structural theories such as prospect theory (Kahneman and Tversky 1979), 

rank-dependent utility or RDU (Quiggin 1982; Chew 1983) and cumulative prospect theory or 

CPT (Tversky and Kahneman 1992). However, the experimental literature also established a fact 

that is not directly addressed by these theories: Choice under risk appears to be highly stochastic. 

Beginning with Mosteller and Nogee (1951), experiments with repeated trials of pairs reveal 

substantial choice switching by the same subject between trials. In some cases, the trials span 

days (e.g. Tversky 1969; Hey and Orme 1994; Hey 2001) and one might worry that decision-

relevant conditions may have changed between trials. Yet substantial switching occurs even 

between trials separated by bare minutes, with no intervening change in wealth, background risk, 

or any other obviously decision-relevant variable (Camerer 1989; Starmer and Sugden 1989; 

Ballinger and Wilcox 1997; Loomes and Sugden 1998). 

 How do we generalize the relation “more risk-averse” to stochastic choice under risk? 

Suppose nP  is the probability that agent n chooses S from MPS pair },{ TS , and suppose we 



 2 

regard these probabilities as the theoretical primitive. What might it mean for agent a to be 

stochastically more risk-averse than agent b? Consider this proposal: 

Stochastically More Risk-Averse (SMRA). Agent a is stochastically more risk averse than 

agent b, written ba
smra
� , iff  ba PP >  for every MPS pair },{ TS .

1
 

That is, the stochastically more risk averse agent is more likely to choose the relatively safe 

lottery in every MPS pair. If sample proportions of relatively safe choices from MPS pairs vary 

significantly across subjects in an experiment, and we call this heterogeneous risk aversion, then 

we probably have something like SMRA in mind.  

 Today we are witnessing rapid growth of a “new structural econometrics” of discrete choice 

under risk, usually based on discrete choices from lottery pairs. In practice, a parametric 

functional form from Pratt (1964) or a generalization of them (Saha 1993) is used to specify an 

EU, RDU or CPT value difference between lotteries in a pair—what I will call a V-difference. 

These V-differences are then embedded within a c.d.f. to specify choice probabilities for 

maximum likelihood or other M-estimation. Call this approach a V-difference latent variable 

model. I argue that there is a deep problem with this approach: Parameters in such models that 

are meant to represent degrees of risk aversion in Pratt’s sense cannot represent degrees of 

stochastic risk aversion across all agents and all decision contexts in the SMRA sense. 

 For example, suppose we use a V-difference latent variable model to estimate coefficients of 

relative risk aversion ρ  for Anne and Bob, getting estimates BobAnne ρρ ˆˆ > . We would like to say 

that Anne
mra
� Bob in Pratt’s sense. However, sections 3 and 4 below will show that the V-

                                                 
1
 To my knowledge, Hilton (1989) first suggested definitions of “more risk-averse” for stochastic choice. Let 

)(TEV  be the expected value of lottery T and consider pairs of the form }),({ TTEV . Hilton defined “agent a is 

more risk-averse in selection than agent b” as ba
PP >  for all pairs }),({ TTEV . SMRA simply generalizes Hilton’s 

definition from a specific kind of MPS pair (a choice between a lottery and its expected value) to any MPS pair. 
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difference latent variable model and BobAnne ρρ >  cannot imply that Anne
smra
� Bob in the sense 

defined above. This occurs because the utility or value of money )(zu  in theories such as EU, 

RDU and CPT is only unique up to an affine transformation and, therefore, it is not a theorem 

that MRA in Pratt’s sense implies a greater V-difference between lotteries in all MPS pairs.  

 However, MRA in Pratt’s sense does imply orderings of ratios of differences of utilities. 

Psychologically, when we say Anne
mra
� Bob in Pratt’s sense, on some interval of outcomes 

],[ 31 zz , we mean that Anne perceives the ratio )]()(/[)]()([ 1312 zuzuzuzu −−  as larger than Bob 

does for all ),( 312 zzz ∈ . Economically, this is an implication of Pratt’s main theorem. Therefore, 

both economics and psychology suggest that if we wish MRA in Pratt’s sense to imply SMRA in 

a latent variable model, the latent variable will of necessity involve ratios of utility differences 

rather than utility differences. Put differently, for MRA in Pratt’s sense to imply SMRA, our 

stochastic model may need to assume that agents perceive EU, RDU or CPT V-differences 

relative to some salient utility difference. In section 5, I suggest a contextual utility stochastic 

choice model: It assumes that this salient utility difference is the difference between the utilities 

of the maximum and minimum possible outcomes in a lottery pair. This model will allow SMRA 

to be an implication of MRA in Pratt’s sense, in suitably defined ways. More generally, it seems 

that when we move from deterministic to stochastic choice under risk, context and risk aversion 

are inextricably entwined with one another. Put differently: If choice under risk is stochastic, a 

globally coherent notion of greater risk aversion necessarily implies that context matters. 

 As a relational preference concept, MRA is ubiquitous in professional economic discourse. 

Figure 1 illustrates this for the years 1977 to 2001, comparing counts of articles with either of the 

phrases “more risk-averse” or “greater risk aversion” in their text to counts of articles with either 
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of the phrases “more substitutable” or “greater elasticity of substitution” in their text.
2
 The latter 

is clearly a central relational concept of economics. The comparative levels of the two trend lines 

are somewhat arbitrary, since searches for different text strings would affect the levels. 

Moreover, instances of the substitutability phrases include articles about technologies as well as 

preferences. The comparative trends are more meaningful. MRA gained on “more substitutable” 

as a relational concept over the quarter century from 1977 to 2001. Figure 1 also shows that 

although citations
3
 to Pratt (1964) peaked in the early 1980s, they have continued at a fairly 

constant rate of about thirty-five to forty a year over the last two decades and show no sign of 

decrease. Probably, very few economics articles show such steady and long-lived influence. 

 Given the ubiquity of MRA in economic discourse, it would be nice if model parameters 

meant to represent MRA in Pratt’s sense had a theoretically appealing observable meaning such 

as SMRA. Contextual utility delivers such meaning: Common alternative models do not. Section 

6 shows that contextual utility may be empirically better too: Both EU and RDU models 

estimated with the contextual utility stochastic model explain (and especially predict) risky 

choices better than V-difference latent variable models and the random preference stochastic 

model in the well-known Hey and Orme (1994) data set.  

 

1. Preliminaries 

 Let the vector ),,( 321 ccc zzzc =  be three money outcomes with ccc zzz 321 << , called an 

outcome context or simply a context. Let mS  be a discrete probability distribution ),,( 321 mmm sss  

                                                 
2
 Some journals withhold JSTOR availability for recent years: 2001 is the most recent widely available year. Some 

important journals either do not have JSTOR availability, or did not exist, back to 1977 (e.g. the Journal of Labor 

Economics and the Journal of Economic Perspectives, respectively) and so are not included. Three important 

business journals (the Journal of Business, Journal of Finance and Management Science) are included as well. 
3
 The citation counts are from 1977 to 2006 in all fields (not just economics) in the ISI Science and Social Science 

Citation indices. The temporal pattern of citations in economics publications alone is essentially similar. 
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on a vector ),,( 321 zzz ; then a three-outcome lottery mcS  on context c is the distribution mS  on 

the outcome vector ),,( 321 ccc zzz . Sometimes lotteries are viewed as cumulative distribution 

functions � ≤
≡

zzi mimc
ic

szS
|

.)(  A pair mc is two distinct lotteries },{ mcmc TS  on context c, and a 

basic pair is one where neither lottery first-order stochastically dominates the other. In basic 

pairs, we may choose lottery names so that  3232 mmmm ttss +>+  and 33 mm ts < , and say that mcS  

is safer than mcT in the sense that mcS  has more chance of the center outcome cz2 , and less 

chance of the extreme outcomes cz1  and cz3 , than does mcT . If the expected values )( mcSE  and 

)( mcTE  are equal, the pair is a mean-preserving spread or MPS pair. Let mpsΩ be the set of all 

MPS pairs: Risk-averse EU agents prefer mcS to mcT ∀ mc ∈ mpsΩ  (Rothschild and Stiglitz 1970). 

 To connect deterministic theory to probabilistic primitives, let the structure of choice under 

risk be defined as a function V of lotteries and a vector of structural parameters nβ  such that  

5.00)|()|( ≥⇔≥− n

mc

n

mc

n

mc PTVSV ββ ,
4
             (1.1) 

where n

mcP is the probability that agent n chooses mcS  from pair mc. Call )|()|( n

mc

n

mc TVSV ββ −  

the V-difference in pair mc: When this is nonnegative, it represents the deterministic primitive “n 

weakly prefers mcS  to mcT .” In turn, (1.1) equates this with the probabilistic primitive “n is not 

more likely to choose mcT  from mc,” a common approach since Edwards (1954).
5
  

 For example, expected utility (EU) with the constant relative risk aversion (CRRA) utility of 

money 
n

zzu
nn ρρ −−−= 11)1()(  is the structure 

n

ici mi

nn

mc zsSV
ρρρ −

=

− �−= 13

1

1)1()|( ,  so that 

5.00)()1(
3

1

11 ≥⇔≥−− � =

−− n

mci icmimi

n
Pzts

nρρ ,             (1.2) 

                                                 
4
 This restricts attention to transitive structures; this would be an unsatisfactory equation for a nontransitive theory. 

5
 There are stochastic choice models under which this innocent-sounding equation is incorrect, such as Machina 

(1985). Though as yet scant, existing evidence is not promising for these alternatives (Hey and Carbone 1995). 
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where nn ρβ =  is the sole structural parameter, called agent n’s coefficient of relative risk 

aversion. Call this the CRRA EU structure. The rank-dependent utility (or RDU) structure 

(Quiggin 1982; Chew 1983) replaces the probabilities mis  in EU with weights miws . These 

weights are ( ) ( )�� >≥
−=

iz mziz mzmi swswws , where a continuous and strictly increasing 

weighting function w(q) takes the unit interval onto itself. Writers suggest several parametric 

forms for the weighting function; here, I use Prelec’s (1998) one-parameter form, which is 

))]ln([exp()|(
n

qqw
n γγ −−=  ∀ q ∈ (0,1), w(0)=0 and w(1)=1. Then a CRRA RDU structure is 

n

ici

n

mi

nnn

mc zwsSV
ργργρ −

=

− �−= 13

1

1 )()1(),|( , so that 

5.00)]()([)1(
3

1

11 ≥Ρ⇔≥−− � =

−− n

mci ic

n

mi

n

mi

n n

zwtws
ργγρ .         (1.3) 

 Structures with weighting functions attribute risk attitudes to both utility function and 

weighting function shape (Quiggin 1982; Tversky and Kahneman 1992). This is why I have (so 

far) written “MRA in Pratt’s sense:” My issue is the partial contribution of utility function shape 

to risk attitude, holding weighting functions constant. Henceforth, when I write ba
mra
�  and 

ba
smra
� , or refer to the MRA or SMRA relation, I am always considering agents with identical 

weighting functions. The constant reminder “in Pratt’s sense” will now cease. However, a certain 

fact about RDU weights in basic pairs will be used in section 5 to derive properties of the 

contextual utility model. Since )(qw  is strictly increasing, and since 3232 mmmm ttss +>+  and 

33 mm ts <  in basic pairs, )()( 3232 mmmm ttwssw +>+  and )()( 33 mm twsw < . So in all basic pairs,    

0)]()([)()( 33233222 >−+−−+≡− mmmmmmmm twttwswsswwtws .        (1.4)
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2. V-difference latent variable models: Strong and strict utility 

 To estimate any vector nβ  in (1.1), we need a stochastic model to complete the relationship 

between V-difference and choice probability. Latent variable models are one way to do this. Let 

1=n

mcy  if agent n chooses mcS  from pair mc ( 0=n

mcy  otherwise). In general, such models 

assume that there is an underlying but unobserved continuous random latent variable *n

mcy  such 

that 01 * ≥⇔= n

mc

n

mc yy ; then we have )0Pr( * ≥= n

mc

n

mc yP . Here, the latent variable is  

λεββ /)|()|(* −−= n

mc

n

mc

n

mc TVSVy ,               (2.1) 

where ε  is a mean zero random variable with some standard variance and c.d.f. )(xH  such that 

5.0)0( =H  and )(1)( xHxH −−= , usually assumed to be the standard normal or logistic c.d.f. 

The resulting latent variable model of n

mcP  is then  

( ))]|()|([ n

mc

n

mc

n

mc TVSVHP ββλ −= .              (2.2) 

 In decision theory, (2.2) is a strong utility model (Debreu 1958; Block and Marschak 1960; 

Luce and Suppes 1965). Letting L be the set of all lotteries, choice probabilities follow strong 

utility if there is a function nµ :L→� and an increasing function nϕ :� →[0,1], with 5.0)0( =nϕ  

and )(1)( xx nn −−= ϕϕ , such that ( ))()( mc

n

mc

nnn

mc TSP µµϕ −= . Clearly, (2.2) is a strong utility 

model where )()( xHxn λϕ =  and )|()( n

mcmc

n
SVS βµ = . In (2.1), λε /  may be regarded as 

computational, perceptual or evaluative noise in the decision maker’s apprehension of the V-

difference )|()|( n

mc

n

mc TVSV ββ − , with 1−λ  proportional to the standard deviation of this noise. 

Microeconometric doctrine usually views λε /  as a perturbation to V-difference observed by 

agents but not observed by the econometrician. In either case, as λ  approaches infinity, choice 

probabilities converge on either zero or one, depending on the sign of the V-difference; put 
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differently, the observed choice becomes increasingly likely to express the underlying preference 

direction of the structure. We can call 1−λ  the noise parameter or call λ  the precision parameter. 

 Strict utility (Luce and Suppes 1965) is more restrictive. Again there is a scale nµ  defined on 

lotteries, but it must be strictly positive and choice probabilities must take the form  

)]()(/[)( mc

n

mc

n

mc

nn

mc TSSP µµµ += .               (2.3) 

As Luce and Suppes point out (p. 335), every strict utility model is algebraically identical to  

( ))](ln[)](ln[ mc

n

mc

nn

mc TSP µµ −Λ= , where 1)1()( −−+=Λ xex  is the logistic c.d.f.   (2.4) 

If V is positive-valued, we could for instance choose λβµ )|()( n

mcmc

n
SVS ≡  and rewrite (2.4) as  

( )( ))]|(ln[)]|(ln[ n

mc

n

mc

n

mc TVSVP ββλ −Λ=              (2.5) 

This resembles (2.2) except that a difference of logarithms of V, or logarithmic V-difference,  

replaces the V-difference. Model (2.5) was employed by Holt and Laury (2002). Another very 

common strict utility form, used both for quantal response equilibrium (McKelvey and Palfrey 

1995) and the experience-weighted attraction learning model (Camerer and Ho 1999), sets 

)]|(exp[)( n

mcmc

n
SVS βλµ ≡ . Substituting this into (2.4) gives 

( ))]|()|([ n

mc

n

mc

n

mc TVSVP ββλ −Λ= ,              (2.6) 

which is identical to the strong utility model (2.2) with the logistic c.d.f. as the choice of H. My 

strong utility estimations will in fact be (2.2) with the logistic c.d.f., and hence also equivalent to 

this very common strict utility form. What I will call my strict utility estimations instead use the 

logarithmic V-difference form and logistic c.d.f., as in (2.5) and Holt and Laury. 

 Homoscedasticity with respect to pairs mc (constant λ across pairs and contexts) is the 

essence of strong and strict utility models: Without it, they do not imply strong stochastic 

transitivity or SST, their definitive property (Block and Marschak 1960; Luce and Suppes 1965). 
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However, homoscedasticity with respect to agents n is not, and various transformations τ  of V-

difference may be interpreted as agent heteroscedasticity determined by risk parameters. For 

example, call the textbook CRRA utility function ρρρ −−−= 11)1()|( zzub  the basic 

transformation, and call ρρ −= 1)|( zzu p  the power transformation. When we write the V-

difference in a strong utility model using the basic transformation, this is algebraically identical 

to writing the V-difference with the power transformation and additionally assuming agent-

specific precision parameters nλ  that are proportional to |)1(| nρ− . Section 4 will take up agent 

heteroscedasticity in a more theoretically grounded manner. 

 In experiments with K ≥ 4 distinct outcomes Kzzz <<< ...21  (and several distinct three-

outcome contexts), call )/()()|( 1

1

11

1

1 ρρρρρ −−−− −−= zzzzzu Kur  the unit range transformation 

(making the utility range across all outcomes equal to unity for all ρ) and call =)|( ρzumu  

)/()( 1

1

1

2

1

1

1 ρρρρ −−−− −− zzzz  the minimum unit transformation (making the utility difference 

between the two smallest outcomes equal to unity for all ρ). With minor terminological abuse, I 

will say that the logarithmic V-difference latent variable in (2.5) is written using the logarithmic 

transformation. Let )(ρτ mcV∆  be the CRRA EU V-difference (or logarithmic V-difference) in 

pair mc, as written with any of these five transformations τ . With any constant λ, )(ρτ mcV∆  

would need to be monotone increasing in ρ  for strong or strict utility models to imply SMRA. 

 

3. Critique of strong and strict utility 

 Pratt’s (1964) original EU definition of ba
mra
�  was extended by Chew, Karni and Safra 

(1987, p. 374) for RDU. I quote them here at length, with notation modified suitably to fit mine:  
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 To compare the attitudes toward risk of two preference relations 
b
�  and  

a
�  on DJ [a set 

of probability distributions on an interval J ⊂ �], we define Tmc ∈ DJ to differ from Smc ∈ DJ 

by a simple compensated spread from the viewpoint of 
b
� , if and only if Tmc ~

b
 Smc and ∃ z

0
 

∈ J such that Tmc(z) ≥ Smc(z) for all z < z
0
 and Tmc(z) ≤ Smc(z) for all z ≥ z

0
. 

 DEFINITION 5: A preference relation 
a
�  ∈ �  [the set of preference relations 

representable by Gateaux-differentiable RDU functionals V] is said to be more risk averse 

than 
b
�  ∈ �  if Smc 

a
�  Tmc for every Tmc, Smc ∈ DJ  such that Tmc differs from Smc by a 

simple compensated spread from the point of view of 
b
� …. 

 THEOREM 1. The following conditions on a pair of Gateaux differentiable [RDU] 

preference functionals 
b

V  and 
a

V  on DJ with respective utility functions 
b

u and 
a

u  and 

[weighting] functions 
b

w  and 
a

w  are equivalent:… 

 (ii)  a
w and 

a
u  are concave transformations of 

b
w  and 

b
u , respectively. 

 (iii) If Tmc differs from Smc by a simple compensated spread from the point of view of 
b
�  

[implying that )( mc

b
TV  = )( mc

b
SV ] then )( mc

a
TV ≤ )( mc

a
SV  [all italics in original]. 

 

 Consider what this means for a CRRA EU V-difference. In this case both of the weighting 

functions w
a
 and w

b
 are identity functions; and in every MPS pair, mcT will be a simple 

compensated spread of mcS  from the viewpoint of a risk-neutral decision maker, that is an agent 

b with bρ = 0, so that )( mc

b
TV  = )( mc

b
SV . Equivalently, we may write )0(mcVτ∆ = 0 in any MPS 

pair. The results (ii) and (iii) of Theorem 1 then let us conclude that )( mc

a
TV ≤ )( mc

a
SV  for any 

more risk-averse agent a, in this case any agent a with 0>aρ . Equivalently, we may write 

)( a

mcV ρτ∆  ≥ 0 ∀ 0>aρ in any MPS pair. However, nothing in the theorem implies that 

ρρτ ∂∆∂ /)(mcV  > 0 ∀ 0>ρ : Nothing suggests that any V-difference, written using any 

transformation, is monotone increasing in any parameter meant to represent MRA. 
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 The theorem only says that indifference becomes weak preference when we substitute any 

“more risk averse” utility function (or probability weighting function) for the less risk averse one 

that generated indifference: It says nothing about monotone increasing V-difference with greater 

risk aversion. But the latter is exactly what is required for baba
smramra
�� �  in strong and strict 

utility models when λ is constant across agents. In particular, strong utility specifies no necessary 

relationship between ρ  and λ, so CRRA EU strong utility and MRA do not imply SMRA. 

 Moreover, it seems that MRA cannot imply SMRA in any strong or strict utility model that 

assumes constant λ across agents. Graphs illustrate this using MPS pairs from Hey’s (2001) four-

outcome design (these are common, e.g. Hey and Orme 1994 and Harrison and Rutström 2005). 

The design employs the four outcomes 0, 50, 100 and 150 U.K. pounds and these generate four 

distinct three-outcome contexts: All pairs are on one of these contexts. Index contexts by their 

omitted outcome, e.g. context c = −0 is (50,100,150), while context c = −150 is (0,50,100).  

 Figure 2 shows how )(150,1 ρλ ττ −∆ V  behaves for the five transformations τ  defined 

previously,
6
 computed for the MPS pair 1 on context c = −150, given by ( )8/1,8/7,0150,1 =−S  and 

( )8/4,8/1,8/3150,1 =−T  taken from Hey (2001), as ρ  varies over the interval [0,0.99]. To sketch 

Figure 2, a constant value of λτ has been chosen for each transformation to make )(150,1 ρλ ττ −∆ V  

reach a common maximum of 10 for ρ ∈ [0,0.99], for easy visual comparisons; the important 

point is that λτ  is held constant to draw each graph of )(150,1 ρλ ττ −∆ V , for each transformation τ. 

If )(150,1 ρλ ττ −∆ V  is nonmonotone on [0,0.99], then MRA cannot imply SMRA under 

transformation τ  given constant λ across agents.  

                                                 
6
 Here, the CRRA unit range transformation is )0150/()0()|( 1111 ρρρρρ −−−− −−= zzuur  = ρ−1)150/(z , while the 

minimum unit transformation is )050/()0()|( 1111 ρρρρρ −−−− −−= zzumu  = ρ−1)50/(z . 
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 Figure 2 shows that the basic, power and log transformations are not monotonically 

increasing in ρ, though the nonmonotonicity for the basic transformation is mild for this 

particular pair. The implication is that in a strong utility CRRA EU model with λ constant across 

agents, MRA defined in terms of ρ cannot imply SMRA using either the basic, power or log 

transformations, for MPS pair 1 on context c = −150. However, the unit range and minimum unit 

transformations can do this, at least for this MPS pair on this context. 

 Unfortunately, this property of the unit range and minimum unit transformations disappears 

as soon as we consider a context that does not share the minimum outcome 01 =z  used to define 

those transformations. Consider now MPS pair 1 on context c = −0, that is (50,100,150), given 

by ( )8/1,8/7,00,1 =−S  and ( )8/4,8/1,8/30,1 =−T , also taken from Hey (2001). Figure 3 shows that 

for this MPS pair, )(0,1 ρλ ττ −∆ V  is severely nonmonotonic for all five transformations. MRA 

defined in terms of ρ  cannot imply SMRA with any of these five transformations, given constant 

λ across agents, across all contexts constructed from a four-outcome vector. If we want to 

explain agent heterogeneity of safe choices from MPS pairs by means of a strong or strict utility 

model solely in terms of a risk parameter like ρ, and we use any of the five transformations 

discussed above, we cannot succeed if we assume that precision λ is constant across agents. It 

seems that baba
smramra
�� �/  in strong and strict utility models with λ constant across agents.  

 The fact that the minimum unit and unit range transformations make MRA and SMRA 

congruent on a context that shares the minimum outcome used to define them  (see Figure 2) 

suggests one escape from these difficulties: Why not use a context-dependent transformation? 

This approach abandons homoscedasticity with respect to pairs mc; hence it is not a strong or 

strict utility model. This is in fact the approach taken by the contextual utility model in section 5, 
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and it can be given both good psychological motivation and firm grounding in terms of Pratt’s 

(1964) main theorem. First, however, it is worth considering more carefully whether a well-

chosen form of agent heteroscedasticity might be adequate. We will see that it is not. 

 

4. Construction and critique of an agent heteroscedasticity approach  

 Figure 4 shows two concave CRRA utility functions, for two agents a and b: A square-root 

( bρ  = 0.5) CRRA utility function, and a “near-log” ( aρ  = 0.99) CRRA utility function; clearly 

ba
mra
� . Consider the MPS pair  )0,1,0(0,2 =−S  and )2/1,0,2/1(0,2 =−T —a sure 100 versus even 

chances of either 50 or 150. For ba
mra
�  to imply ba

smra
�  under strong utility, the V-difference in 

this pair with bρ  = 0.99 must exceed that with aρ  = 0.50: Otherwise the more risk-averse utility 

function will not imply a higher probability of choosing the safer 0,2 −S . A special transformation 

that equates first derivatives of utility functions at the intermediate outcome 100 allows Figure 4 

to be drawn that way, nesting the V-difference with bρ  = 0.5 inside the V-difference with aρ  = 

0.99.
7
 The local absolute risk aversion measure )(/)( zuzu ′′′−  may be thought of as measuring 

concavity relative to slope at z: With slopes equated at z = 100, Figure 4 does this visually. 

 Reflection on Figure 4 suggests that for baba
smramra
�� �  on some collection of contexts, we 

might succeed with a transformation of u(z) that equalizes first derivatives )(zu′  of all utility 

functions at some z�  sufficiently greater than }{max 11 c
c

zz ≡ , the maximum of the minimum 

outcomes found in any of several contexts c for which we have choice data. Without this, utility 

functions become arbitrarily flat over one or more contexts as the coefficient of relative risk 

                                                 
7
 In Figure 4, a “level” is also chosen for each utility function such that u(100) = 100 for both utility functions. This 

choice is irrelevant to any strong utility V-difference (it differences out) but it allows for easy visual comparison. 

The matching of first derivatives at  z = 100 is the important move. Similar remarks apply to Figure 6. 
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aversion get large. This in turn implies that all V-differences between lotteries on such contexts 

approach zero as coefficients of relative risk aversion get large and, hence, that all strong or strict 

utility choice probabilities approach 0.5 for sufficiently great relative risk aversion on such 

contexts. The first derivative of the CRRA basic transformation is ρ−=′ zzub )( : Multiplying the 

basic transformation by ρz� , or (what is the same thing) αρ
e  where )ln(z�=α  for some 1zz >� , 

we give all CRRA utility functions a common unit slope at α
ez =� . Therefore, call =)|( ρzusc  

)1/(1 ρραρ −−ze  an SMRA-compatible CRRA transformation. Figure 4 is drawn using this 

transformation, with 61.4)100ln( ==α  giving all CRRA functions a unit slope at z = 100.  

 If we write the CRRA EU V-difference using the SMRA-compatible transformation, the term 

αρ
e   factors out of the V-difference. We then have the strong utility model 

( ))( n

mcb

n

mc VeHP
n

ρλ αρ ∆= .                  (4.1) 

Suppose, then, that we estimate a CRRA EU strong utility model one subject at a time, using the 

basic transformation: This would be the model )]([ n

mcb

nn

mc VHP ρλ ∆= . Let nλ̂  and nρ̂  be our 

estimates for each subject n. If (4.1) is correct, nn αρλλ +≡ )ln()ln( , and we should therefore 

expect a linear relationship between )ˆln( nλ  and nρ̂ . If this linear relationship has a slope α 

significantly greater than )ln(z� , then baba
smramra
�� �  in the population from which subjects are 

drawn on all contexts found in the experiment that generated the data. 

 Hey’s (2001) remarkable data set contains 500 lottery choices per subject, for fifty-three 

subjects. This allows one to estimate model parameters separately for each subject n with relative 

precision. The specification of choice probabilities actually used for this individual subject 

estimation adds a few small features for certain peripheral reasons. It is  
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( ){ } )2/1(2/)()1()1( n

mc

nn

mcb

nn

mc

n

mc VHP ωδωρλωδ −++∆−−= .        (4.2) 

As is the case with several existing experimental data sets, Hey’s experiment contains a small 

number of pairs mc in which Smc first-order stochastically dominates Rmc. Letting Ωfosd be the set 

of all such FOSD pairs, let δmc = 1 ∀ m ∈ Ωfosd (δm = 0 otherwise). It is well-known that strong 

and strict utility do a poor job of predicting the rareness of violations of FOSD (Loomes and 

Sugden 1998). Equation (4.2) takes account of this, yielding 2/1 nn

mcP ω−=  ∀ mc ∈ Ωfosd.  

 The new parameter nω  is a tremble probability. Some randomness of observed choice has 

been thought to arise from attention lapses or simple responding mistakes that are independent of 

pairs mc, and adding a tremble probability as above takes account of this. It also provides a 

convenient way to model the low probability of FOSD violations. Moffatt and Peters (2001) find 

significant evidence of positive tremble probabilities even in data from experiments where there 

are no FOSD pairs, such as Hey and Orme (1994). The specification (4.2) follows Moffatt and 

Peters in assuming that “tremble events” occur with probability nω  independent of pairs mc and, 

in the event of a tremble, that choices of Smc or Tmc from pair mc are equiprobable. 

 Figure 5 plots maximum likelihood estimates )ˆln( nλ  and nρ̂  from equation (4.2) for each of 

Hey’s (2001) fifty-three subjects, along with a robust regression line between them. It does 

appear to be a remarkably linear relationship, as suggested by the heteroscedastic form 

nn αρλλ +≡ )ln()ln( . The robust regression coefficient is α̂ = 4.24, with a 90% confidence 

interval [4.11,4.38].
8
 There are sixteen MPS pairs in Hey’s experimental design: Computational 

methods easily find the minimum value }{max 11 c
c

zzz ≡>� = 50 for those MPS pairs, such that 

                                                 
8
 The robust regression technique used is due to Yohai (1987), and deals with outliers in both the dependent and 

independent variable. This is appropriate here, since both are estimates.  
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any )ln(z�>α allows MRA to imply SMRA for those MPS pairs.
9
 This minimum value is about 

z� = 59.7, so we need )7.59ln(>α = 4.09 for baba
smramra
�� � . As can be seen, the point estimate 

α̂ =4.24 does indeed allow it, and the 90% confidence interval for α̂ just allows one to reject (at 

5%) the directional null α ≤ 4.09 in favor of the alternative that baba
smramra
�� �  amongst Hey’s 

subjects for all MPS pairs in all of the experiment’s contexts. Results are essentially similar if, 

instead, CRRA RDU is estimated using Prelec’s (1998) one-parameter weighting function.  

 There is, however, an obvious difficulty with this agent heteroscedasticity solution. Suppose 

we invited Hey’s fifty-three subjects back for another experimental session in which they made 

choices from lottery pairs on a new fifth context c
*
 = (100,150,200). If we believe the 

relationship shown in Figure 5 is a fixed one for these subjects, independent of any outcome 

context they might face, then baba
smramra
�� �/  on the new context c

*
. The estimated upper 

confidence limit on α̂ , 4.38, implies a value of z� = 79.8 < 100 = *1cz  (since )8.7938.4 =e . 

Therefore, )(*

38.4 ρλ ρ
mcbVe ∆  will converge to zero for sufficiently large ρ and so cannot be 

monotonically increasing in ρ  on the new context c
*
. 

 Figures 6 and 7 illustrate the difficulty. Figure 6 shows six CRRA utility functions (for ρ = 

0.25, 0.5, 1, 2, 4 and 8), all drawn using the SMRA-compatible transformation and α = 4.24, the 

point estimate from the robust regression shown in Figure 5, so that all slopes are unity at 

41.6924.4 =e . While the relative curvature of these utility functions is substantial across the 

outcome range [0,150] of Hey’s experiment, this is not true on the new context (100,150,200). 

There, increasing ρ  eventually results in arbitrarily flat utility functions with arbitrarily small 

                                                 
9
 Starting at )50ln()ln( 1 == zα , α  is incremented in small steps until )( n

mcbVe
n

ραρ ∆ is monotonically increasing in 

ρ (also checked by computational methods at each value of α) for all MPS pairs mc in Hey’s design. 
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differences )100()200( uu − , and this eventually implies arbitrarily small V-differences on the 

new context for sufficiently large ρ. Figure 7 graphs )(*,1 ραρ
cbVe ∆ , the CRRA EU V-difference 

in the MPS pair ( )8/1,8/7,0*
,1

=
c

S  and ( )8/4,8/1,8/3*
,1

=
c

T , at the lower and upper confidence 

limits of α from the robust regression, as well as at α = 4.61 = ln(100) and α = 4.79 = ln(120). 

As can be seen, this function is not monotone increasing in ρ  until we choose α  sufficiently 

greater than the natural logarithm of the minimum outcome on the new context c
*
. 

 This problem is entirely general. Estimate or choose any finite value of α  you wish: A new 

context c
*
 with α

ez c >*1  always exists such that baba
smramra
�� �/  on that new context, given that 

value of α. Although a suitably chosen α  makes the transformation )1/()|( 1 ρρ ραρ −= −
zezusc  

“SMRA compatible” on a given collection of contexts, it cannot be SMRA-compatible on all 

contexts with arbitrarily large values of cz1 . Of course, one could make α  context-dependent, 

but this means abandoning strong and strict utility, since there will then be heteroscedasticity 

with respect to contexts. If this is what we must do in order to make baba
smramra
�� � , it is better 

to approach it in a more basic theoretical way. This is what the contextual utility model does.  

 

5. Contextual utility 

 Psychological motivation for contextual heteroscedasticity has its origin in signal detection 

and stimulus discrimination experiments. In this literature, stimulus categorization errors are 

known to increase with the subjective range taken by the stimulus or signal. For instance, Pollack 

(1953) and Hartman (1954) presented subjects with tones equally spaced over a range of tones. 

The range of tones used varies across subjects, but all subjects encounter specific target tones. 

Confusion of target tones is more common when the overall range of tones encountered is wider.  
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 Such observations gave rise to models of stimulus categorization and discrimination error 

predicting that classification error variance increases with the subjective range of the stimulus 

(Parducci 1965, 1974; Holland 1968; Gravetter and Lockhead 1973). In fact, a rough 

proportionality between subjective stimulus range and the standard deviation of latent error 

seemed descriptive of much data from categorization experiments, though some of the formal 

models allowed for some deviation from this (e.g. Holland 1968 and Gravetter and Lockhead 

1973). In categorization experiments, where stimuli are presented one at a time and subjects’ task 

is to assign the stimulus to a category, the subjective range of the stimulus was usually taken to 

be determined (after a period of adaptation) by the whole range of stimuli presented over the 

course of the experiment—what one might call the “global context” of the stimulus. 

   The contextual utility model borrows the idea that the standard deviation of evaluative noise 

is proportional to the subjective range of stimuli from this literature on the perception of stimuli. 

However, being a model of choice from lottery pairs rather than a model of categorization of 

singly presented stimuli, it assumes that choice pairs create their own “local context” or 

idiosyncratic subjective stimulus range, in the form of the range of outcome utilities found in the 

pair. We may think of agents as perceiving lottery value on context c relative to the range of 

possible lottery values on context c. Letting )|( nzV β  be agent n’s value of a degenerate lottery 

that pays z with certainty, the subjective stimulus range for agent n on any context c is assumed 

proportional to )|()|( 13

n

c

n

c zVzV ββ − . Assume that evaluative noise is proportional to this 

subjective stimulus range. For non-FOSD pairs on a three-outcome context, and ignoring any 

tremble for clarity, contextual utility choice probabilities are: 

��
�

�
��
�

�

−

−
=

)|()|(

)|()|(

13

n

c

n

c

n

mc

n

mcn

mc
zVzV

TVSV
HP

ββ

ββ
λ .              (5.1) 
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Under RDU, this may be rewritten as 

��
�

�
��
�

�

−

−+−+−
=

)()(

)()()()()()(

13

333222111

c

n

c

n

c

n

mmc

n

mmc

n

mmn

mc
zuzu

zuwtwszuwtwszuwtws
HP λ .   (5.2) 

Since )()()( 332211 mmmmmm wtwswtwswtws −−−−≡− , (5.2) may be rewritten as  

( ))]()()[( 33222 mmc

n

cmm

n

mc wtwszwtwsHP −+−= υλ ,           (5.3) 

where )]()(/[)]()([)( 131 c

n

c

n

c

nnn

c zuzuzuzuz −−≡υ  can be recognized as a context-specific unit 

range transformation of agent n’s utility function. We may therefore view contextual utility as 

employing a “contextual unit range transformation” of the utility function. 

 Suppose that pair mc in model (5.3) is an MPS pair. Pratt’s (1964, p. 128) Theorem 1 quickly 

shows that contextual utility guarantees that baba
smramra
�� �  (holding weighting functions and λ 

constant across agents) on all three-outcome contexts, as hinted by Figure 2. Here I quote the 

relevant parts of Pratt’s theorem, with notation modified to fit mine (all italics in original): 

 Theorem 1: Let )(zr n [equal to )(/)( zuzu ′′′− for utility function u
n
] be the local risk 

aversion…corresponding to the utility function u
n
, n = a,b. Then the following conditions 

are equivalent, in either the strong form (indicated in brackets), or the weak form (with the 

bracketed material omitted). 

(a)   )()( zrzr ba ≥  for all z [and > for at least one z in every interval]… 

(e)  
)()(

)()(
][

)()(

)()(

12

23

12

23

c

b

c

b

c

b

c

b

c

a

c

a

c

a

c

a

zuzu

zuzu

zuzu

zuzu

−

−
<≤

−

−
 for all ccc zzz 321 ,,  with ccc zzz 321 << . 

 

Adding unity to both sides of (e) in the form )]()(/[)]()([ 1212 c

n

c

n

c

n

c

n
zuzuzuzu −− , and then 

taking reciprocals of both sides, we get the following equivalence from the theorem: 

),(
)()(

)()(

)()(

)()(
],[)()( 312

13

12

13

12
31 ccc

c

b

c

b

c

b

c

b

c

a

c

a

c

a

c

a

cc

ba
zzz

zuzu

zuzu

zuzu

zuzu
zzzzrzr ∈∀

−

−
>

−

−
⇔∈∀> .   (5.4) 
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Since )( 2c

n

c zυ = )]()(/[)]()([ 1312 c

n

c

n

c

n

c

n
zuzuzuzu −− , equation (5.4) shows that  

],[)()( 31 cc

ba
zzzzrzr ∈∀>  ⇔ ),()()( 31222 cccc

b

cc

a

c zzzzz ∈∀> υυ .       (5.5) 

Equation (5.3) shows that the RDU V-difference between Smc and Tmc under the contextual unit 

range transformation is )()()( 33222 mmc

n

cmm wtwszwtws −+− υ , which is obviously increasing in 

)( 2c

n

c zυ  for all MPS pairs since )( 22 mm wtws −  > 0 in these pairs, as shown in (1.4). Therefore, by 

equation (5.5), it is increasing in local risk aversion )(zr n  as well. As a result, the contextual 

utility model easily implies what strong and strict utility cannot: That baba
smramra
�� �  on all 

three-outcome contexts when λ and weighting functions are held constant across agents. 

 Some agents may be less precise than others: Precision λ may vary across agents. The 

following two propositions refine the result to allow this (proofs are obvious and so omitted):  

Proposition 1: Consider two EU agents such that 
ba λλ ≥ and 0)()( ≥> zrzr ba  for all z. 

Then in an EU contextual utility model, ba
smra
� . Put differently, ba

mra
�  and 

ba λλ ≥  �  

ba
smra
�  under an EU contextual utility model. 

The restriction to EU matters since RDU agents may prefer the riskier lottery in some MPS pairs: 

When they do, they have a negative V-difference in the pair. Larger value of λ will magnify that 

and possibly offset greater risk aversion in Pratt’s sense. For RDU, then, we confine attention to 

MPS pairs where the less risk-averse agent b (in Pratt’s sense) prefers the safe lottery: 

 Proposition 2: Consider two RDU agents such that 
ba λλ ≥ , 0)()( ≥> zrzr ba  for all z, and 

)()( qwqw ba ≡ . Then in an RDU contextual utility model, 
b

mc

a

mc PP >  for all MPS pairs in 

which 5.0≥b

mcP . 
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 Note that contextual utility does not imply that safe choices become certain as risk aversion 

(in Pratt’s sense) becomes infinite. This is easily seen by noting that 1)( 2 →c

n

c zυ  as ∞→)(zr n , 

in which case equation (5.3) with agent-dependent precision nλ  becomes 

n

mcP ( ))]()([ 3232 mm

n

mm

nn
ttwsswH −−+= λ .             (5.6) 

Since )()( 3232 mm

n

mm

n
ttwssw +−+  is obviously finite, contextual utility does not imply that 

1→n

mcP  as ∞→)(zr n  for all MPS pairs; it just implies that n

mcP  is increasing in )(zr n  for given 

nλ  and )(qwn . Of course, there will always exist a finite nλ  such that n

mcP approaches certainty to 

any specified degree as )(zr n  becomes large. 

  When combined with either a constant absolute risk aversion (CARA) utility function 

rzezu −−=)(  or a CRRA utility function, contextual utility implies some theoretically attractive 

invariance properties of choice probabilities. Call ),,( 321 kzkzkzkc ccc +++=+  and 

),,( 321 ccc kzkzkzkc =  additive and proportional shifts of context ),,( 321 ccc zzzc = , respectively. 

Since =+ )( kzu  =− +− )( kzr
e  rzrk

ee
−−−  for CARA, we have  
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13

1
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+ .        (5.7) 

Equation (5.3) then implies that n

mc

n

kcm PP ≡+, . Similarly, since =)(kzu  =−ρ1)(zk  ρρ −− 11
zk  for 

CRRA, we have  
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.          (5.8)  

Equation (5.3) then implies that n

mc

n

kcm PP ≡, . That is, contextual utility implies that choice 

probabilities in pairs are invariant to an additive (proportional) context shift given a CARA 

(CRRA) utility function. This property echoes what is well-known about structural CARA and 
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CRRA preferences, namely that their preference directions are invariant to additive and 

proportional context shifts, respectively.
10

 

 For sets of pairs on a single context, contextual utility will share all properties of strong 

utility models, such as SST (Luce and Suppes 1965) and simple scalability (Tversky and Russo 

1969), since contextual utility is observationally identical to a strong utility model with agent 

heteroscedasticity on a single context. However, because contextual utility is heteroscedastic 

across contexts, it will violate SST and simple scalability for sets of pairs on several distinct 

contexts: In general it only obeys moderate stochastic transitivity or MST (see Appendix A). 

This is a descriptive bonus: Contextual utility will explain well-known violations of simple 

scalability such as the Myers effect (Myers and Sadler 1960) in much the same way other 

heteroscedastic models such as decision field theory do (Busemeyer and Townsend 1993).
11

 

 Others have posited pair heteroscedasticity in discrete choice under risk. Both Hey (1995) 

and Buschena and Zilberman (2000) investigated several heteroscedastic forms for econometric 

reasons and/or theoretical reasons based on similarity relations.
12

 Though it is not Blavatskyy’s 

(2007) central innovation, part of his heteroscedastic form is precisely that posited by contextual 

utility and Blavatskyy’s reason for doing this is unadorned (but good) intuition. Busemeyer and 

Townsend’s (1993) decision field theory also produces a complex form of heteroscedasticity that 

varies with outcome utilities and probabilities. Its logic is stochastic sampling of outcome 

                                                 
10

 The logarithmic V-difference strict utility form (2.5) and random preference models share these two shift 

invariance properties with contextual utility, but strong utility does not. Contextual utility and strong utility EU 

models share a different property which might be called the “false common ratio effect” or FCRE, while random 

preference EU models do not have this property. See Loomes (2005, pp. 303-305) for a lucid discussion of the 

manner in which strong utility EU produces the FCRE (the reasoning is identical for contextual utility) and why 

random preference EU does not. See Wilcox (2007a) for an extensive comparison of properties of combinations of 

EU and RDU structures with various stochastic models. 
11

 Busemeyer and Townsend (1993) explain simple scalability, how the “Myers effect” violates it, and the logic 

behind decision field theory’s explanation of the Myers effect (contextual utility gives a very similar explanation). 
12

 A class of heteroscedastic models described by Carroll and De Soete (1991) handle certain kinds of similarity: See 

Wilcox (2007a) for an application of their “wandering vector model” to choice under risk. 
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utilities, partially guided by outcome probabilities: Put differently, the heteroscedasticity arises 

from computational reasons. Contextual utility’s relatively unique and distinguishing feature is 

that it arrives at contextual heteroscedasticity by interrogating the logic of the relationship 

between MRA and SMRA in latent variable models, rather than a computational logic (though 

contextual utility has some empirical psychological grounding as well). It is surprising and 

interesting that similar (though by no means identical) forms of pair heteroscedasticity can be the 

conclusion of such different theoretical approaches to the issue of stochastic choice under risk. 

 

6. An empirical comparison of contextual utility and some competitors 

 The question naturally arises: Which stochastic model, when combined with EU or RDU, 

actually explains and predicts binary choice under risk best? To answer this question, we need a 

suitable data set. Strong utility and contextual utility are simple reparameterizations of one 

another for any one context. Therefore, data from any experiment where no subject makes 

choices from pairs on several distinct contexts (e.g. Loomes and Sugden 1998) are not suitable. 

The experiment of Hey and Orme (1994), hereafter HO, is suitable since all subjects make 

choices from pairs on four distinct contexts.  

 The HO experiment has another desirable design feature that is unique among experiments 

with multiple contexts: The same pairs of probability distributions are used to construct the 

lottery pairs on all four of its contexts. Therefore, when models fail to explain choices across 

multiple contexts in the HO data, we cannot attribute this to other differences in lottery pairs 

across contexts: The failure must be due to the model’s generalizability across contexts.  

 The HO experiment builds lotteries from four equally spaced non-negative outcomes 

including zero, in increments of 10 UK pounds. Letting “1” represent 10 UK pounds, the 
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experiment uses the outcome vector (0,1,2,3). Exactly one-fourth of observed lottery choices in 

the HO data are choices from pairs on each of the four possible three-outcome contexts from this 

vector. In keeping with past notation, these four contexts are denoted by c ∈ {−0,−1,−2,−3}, 

where −0 = (1,2,3), −1 = (0,2,3), −2 = (0,1,3) and −3 = (0,1,2). 

 HO estimate a variety of structures combined with strong utility, and do this individually—

that is, they estimate each structure separately for each subject. Additionally, for all structures 

that specify a utility function on outcomes u(z), HO take a nonparametric approach to the utility 

function. Letting )(zuu nn

z ≡ , HO set n
u0  = 0 and λ = 1, and estimate nu1 , nu2  and n

u3  directly, 

allowing the utility function u(z) to take on arbitrary shapes across the outcome vector (0,1,2,3). 

(The form of strong utility models and the affine transformation properties of u(z) imply that just 

three of the five parameters λ, n
u0 , nu1 , nu2  and n

u3   are identified.) HO found that estimated 

utility functions overwhelmingly fall into two classes: Concave utility functions, and inflected 

utility functions that are concave over the context (0,1,2) but convex over the context (1,2,3). 

The latter class accounts for thirty to forty percent of subjects (depending on the structure 

estimated). Because of this, I follow HO in avoiding a simple parametric functional form such as 

CARA or CRRA that forces concavity or convexity across the entire outcome vector (0,1,2,3), 

instead adopting their nonparametric treatment of utility functions in strong, strict and contextual 

utility models. However, I will instead set n
u0  = 0 and nu1  = 1, and estimate λ, nu2  and n

u3 . 

 To account for heterogeneity of subject behavior, I part company with HO’s individual 

estimation and use a random parameters approach for estimation, as done by Loomes, Moffatt 

and Sugden (2002) and Moffatt (2005). Individual estimation does avoid distributional 

assumptions made by random parameters methods, and seems well-behaved at HO’s sample 

sizes when we confine attention to “in-sample” comparisons of model fit, as HO did. However, 
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Monte Carlo analysis shows that with finite samples of the HO size, comparisons of the out-of-

sample predictive performance of stochastic models can be extremely misleading with individual 

estimation and prediction (Wilcox 2007b). I want to address both the in-sample fit and out-of-

sample predictive performance of models, so this issue matters here. Proper accounting for 

heterogeneity is crucial when comparing structural models of discrete choice under risk (Wilcox 

2007a). With both of these issues in mind, I choose a random parameters estimation approach.
13

 

 The HO experiment allowed subjects to express indifference between lotteries. HO model 

this with an added “threshold of discrimination” parameter within a strong utility model. An 

alternative parameter-free approach, and the one I take here, treats indifference in a manner 

suggested by decision theory, where the indifference relation mc

n

mc TS ~  is defined as the 

intersection of two weak preference relations, i.e. “ mc

n

mcmc

n

mc STTS �� ∩ .” This suggests treating 

indifference responses as two responses in the likelihood function—one of Smc being chosen 

from mc, and another of Tmc being chosen from mc—but dividing that total log likelihood by two 

since it is really based on just one independent observation. Formally, the definite choice of Smc 

adds )ln( mcP  to the total log likelihood; the definite choice of Tmc adds )1ln( mcP−  to that total; 

and indifference adds 2/)]1ln()[ln( mcmc PP −+  to that total. See also Papke and Wooldridge 

(1996) and Andersen et al. (2007) for related justifications of this approach.
14

 

 The random preference model also appears in both contemporary experimental and 

theoretical work on stochastic discrete choice under risk (Loomes and Sugden 1995, 1998; 

Carbone 1997; Loomes, Moffatt and Sugden 2002; Gul and Pesendorfer 2006). Econometrically, 

                                                 
13

 This does cost some extra parameters—eight in all for EU specifications, and 11 in all for RDU specifications. 

This allows for salient covariation of risk and precision parameters in the sampled population. My own opinion is 

that guarding against aggregation biases is well worth this cost, especially in a large data set like HO with 12000 

observations. See Appendix C and Wilcox (2007a) for details of the specifications. 
14

 Note that indifference responses are rare overall in the HO data (about 2.7% of all responses) and that these are 

concentrated amongst a relatively small number of subjects. 
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the random preference model views stochastic choice as arising from randomness of structural 

parameters. We think of each agent n as having an urn filled with structural parameter vectors 

nβ . Following Carbone (1997) for instance, we may set n
u0  = 0 and nu1  = 1 and think of EU with 

random preferences as a situation where nβ = ),( 32

nn
uu , with 12 >nu  and nn

uu 23 > . Each agent n 

has an urn filled with such utility vectors ),( 32

nn
uu . At each trial of any pair mc, an agent draws 

one of these vectors from her urn (with replacement) and uses it to calculate both )|( n

mcSV β  

and )|( n

mcTV β  without error, choosing  Smc  iff  ).|()|( n

mc

n

mc TVSV ββ ≥  Let )|( n
xF αβ  be the 

joint c.d.f. of β  in agent n’s “random preference urn,” conditioned on some vector nα  of 

parameters determining the shape of the distribution βF . Then under random preferences, 

( ))|(|0)|()|(Pr nn

mc

n

mc

n

mc xFTVSVP αββ β≥−= .           (6.1) 

 Loomes, Moffatt and Sugden (2002) show how to specify a random preferences RDU model 

for pairs on a single context. However, specification of a random preference RDU model across 

multiple contexts is more difficult. Building both on Loomes, Moffatt and Sugden and certain 

insights of Carbone (1997), Appendix B shows how this may be done for the three contexts −0, 

−2 and −3, but also shows why further extending random preferences to cover the other context 

−1 is not a transparent exercise for the RDU structure. For this reason, I confine all of my 

estimations to choices in the HO data on the contexts −0, −2 and −3, where a random preference 

RDU model can clearly be compared to strong, strict and contextual utility RDU models.  

 Appendix C illustrates the random parameters specification and estimation in detail for the 

EU structure with strong utility; see Wilcox (2007a) for detailed exposition of all specifications 

and their estimation. I perform two different kinds of comparisons of model fit. The first kind 

(very common in this literature) are “in-sample fit comparisons.” Models are estimated on all 
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three of the HO contexts (−0, −2 and −3) and the resulting log likelihoods for each model across 

all three contexts are compared. 

 The second kind of comparison, which is rare in this literature, compares the “out-of-sample” 

fit of models—that is, their predictive performance.
15

 For these comparisons, models are 

estimated on just the two HO contexts −2 and −3, that is contexts (0,1,3) and (0,1,2), and these 

estimates are used to predict choice probabilities and calculate log likelihoods of observed 

choices on HO context −0, that is context (1,2,3). This is something more than a simple out-of-

sample prediction, which could simply be a prediction to new choice trials of the same pairs (and 

hence contexts) used for estimation: It is additionally an “out-of-context” prediction.
16

 

 This particular kind of out-of-sample fit comparison may be quite difficult in the HO data. 

Relatively safe choices are the norm in contexts −2 and −3 of the HO data: The mean proportion 

of safe choices made by HO subjects in these contexts is 0.764, and at the individual level this 

proportion exceeds ½ for seventy of the eighty subjects. But relatively risky choices are the norm 

in context −0 of the HO data: The mean proportion of safe choices there is just 0.379, and falls 

short of ½ for fifty-eight of the eighty subjects. Recall that we cannot attribute this to differences 

in the probability vectors that make up the lottery pairs in the different HO contexts, since the 

HO experiment holds this constant across contexts. This out-of-sample prediction task is going to 

be difficult: From largely safe choices in the “estimation contexts” −2 and −3, the models need to 

predict largely risky choices in the “prediction context” −0. 

                                                 
15

 The HO design presents the same 100 pairs (25 on each of its four contexts) to a fixed group of subjects on two 

separate days. This is a panel of subjects with variation in pairs, contexts and days. Any such panel could be divided 

up into a “sample” for estimation, and remaining “out-of-sample” observations for predictive evaluation, in different 

ways. For instance one might divide it up by its time dimension, estimating with one day’s choices, and then trying 

to predict choices made on the other day. Since my interest lies with the different way in which the stochastic 

models treat choices across contexts, I choose to divide the panel up across its context, rather than time, dimension.  
16

 This is exactly Busemeyer and Wang’s (2000) distinction between “cross-validation” and “generalization.” 
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 Table 1 displays both the in-sample and out-of-sample log likelihoods for the eight models. 

The top four rows are EU models, and the bottom four rows are RDU models; for each structure, 

the four rows show results for strong utility, strict utility, contextual utility and random 

preferences. The first column shows total in-sample log likelihoods, and the second column 

shows total out-of-sample log likelihoods. Contextual utility always produces the highest log 

likelihood, whether it is combined with EU or RDU, and whether we look at in-sample or out-of-

sample log likelihoods (though the log likelihood advantage of contextual utility is most 

pronounced in the out-of-sample comparisons). Buschena and Zilberman (2000) and Loomes, 

Moffatt and Sugden (2002) point out that the best-fitting stochastic model may depend on the 

structure estimated and offer empirical illustrations of this sensible econometric point. Yet in 

Table 1 contextual utility is the best stochastic model whether viewed from the perspective of 

EU or RDU, or from the perspective of in-sample or out-of-sample fit. 

 Decision theory has been relatively dominated by structural theory innovation over the last 

quarter century. Table 1 has something to say about this. Examine the in-sample fit column first. 

Holding stochastic models constant, the maximum log likelihood improvement of switching 

from EU to RDU is 142.02 (with strict utility), and the improvement is 106.64 for the best-fitting 

stochastic model (contextual utility). Holding structures constant instead, the maximum 

improvement in log likelihood associated with changing the stochastic model is 151.48 (with the 

EU structure, switching from strict to contextual utility), but this is atypical: Omitting strict 

utility models, which have an unusually poor in-sample fit, the maximum improvement is 51.28 

(with the EU structure, switching from strong to contextual utility) and otherwise no more than 

half that. Therefore, except for the especially poor strict utility fits, in-sample comparisons make 

choice of a stochastic model appear to be a sideshow relative to choice of a structure. 
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 This appearance is reversed when we look at out-of-sample predictive power. Looking now 

at the out-of-sample fit column, notice first that under strict utility, RDU actually fits worse than 

EU does. We should be getting the impression by now, however, that strict utility is an unusually 

poor performer, so let us henceforth omit it from consideration. Among the remaining three 

stochastic models, the maximum out-of-sample fit improvement associated with switching from 

EU to RDU is 21.19 (for contextual utility). Holding structures constant instead, the maximum 

out-of-sample fit difference between the stochastic models (again omitting strict utility) is 113.39 

(for RDU, switching from strong to contextual utility). In out-of-sample prediction, then, 

structures play Rosencrantz and Guildenstern to the stochastic model Hamlet. Decision research 

seems heavily preoccupied with  explanation. But these results suggest that those who have more 

interest in prediction may want to think more about stochastic models, as repeated urged by Hey 

(Hey and Orme 1994; Hey 2001; Hey 2005) and suggested by Ballinger and Wilcox (1997). 

 Table 2 reports a formal comparison of stochastic models, conditional on each structure. Let 

nD
~

 be the difference between the estimated log likelihoods (in-sample or out-of-sample) from a 

pair of models, for subject n. Vuong (1989) shows that asymptotically, a z-score based on the nD
~

 

follows a normal distribution under the null that two non-nested models are equally close to the 

truth (neither model needs to be the true model). The statistic is z = � =

N

n D

n
NsD

1
)~/(

~
, where Ds~  

is the sample standard deviation of the nD
~

 across subjects n (calculated without adjustment for a 

degree of freedom) and N is the number of subjects. Table 2 reports these z-statistics and p-

values against the null of equally good fit, with a one-tailed alternative that the directionally 

better fit is significantly better. While contextual utility is always directionally better than its 

competitors, no convincingly significant ordering of the stochastic models emerges from the in-

sample comparisons shown in the left half of Table 2, though strict utility is clearly significantly 
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worse than the other three stochastic models. Contextual utility shines, though, in the out-of-

sample fit comparisons in the right half of Table 2, regardless of whether the structure is EU or 

RDU, where it beats the other three stochastic models with strong significance. 

 

7. Conclusions 

 While most of the scholarly conversation about decision under risk concerns its structure, 

there is resurgent interest in the stochastic part of decision under risk. This has been driven both 

by theoretical questions and empirical findings. Theoretically, some or all of what passes for “an 

anomaly” relative to some structure (usually EU) can sometimes be attributed to stochastic 

models rather than the structure in question (Wilcox 2007a). This is an old point, stretching back 

at least to Becker, DeGroot and Marschak’s (1963a,1963b) observation that violations of 

betweenness are precluded by some stochastic versions of EU (random preferences) but 

predicted by other stochastic versions of EU (strong utility). But this general concern has been 

resurrected by many writers; Loomes (2005), Gul and Pesendorfer (2006) and Blavatskyy (2007) 

are just three relatively recent (but very different) examples. Empirically, we know from a (now 

quite large) body of experimental evidence on retest reliabilities that the stochastic part of 

decision under risk is surprisingly large. Additionally, a “new structural econometrics” has 

emerged over the last decade in which structures like EU, RDU and CPT are combined with 

some stochastic model for the purpose of estimating structural risk parameters. 

 I have interrogated the empirical meaning of structural parameters in econometric models of 

risky choice. I find that in strong and strict utility models, structural parameters meant to 

represent the degree of risk aversion in Pratt’s (1964) sense cannot order agents according to a 

theoretically attractive definition of the relation “stochastically more risk averse” across all 
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choice contexts. I conclude that strong and strict utility are deeply troubled for the econometrics 

of discrete choice under risk. Contextual utility eliminates this trouble without introducing extra 

parameters. In the Hey and Orme (1994) data set, its in-sample explanatory performance exceeds 

that of strong and strict utility models and the random preference model; and its out-of-sample 

predictive performance is significantly the best of this particular collection of stochastic models. 

 I regard stochastic choice as the oldest and most robust fact of choice under risk, and believe 

that serious interpretive errors can occur when the implications of stochastic choice models are 

ignored. I have shown that when choice is stochastic, a globally coherent notion of greater risk 

aversion necessarily implies the existence of certain context effects. Decision research views 

some contextual labilities of choice as failures of rationality. Surely some are, but not all are: 

Some may be the prosaic consequence of a sensible stochastic model that makes global sense of 

SMRA. For instance, the Myers effect (Myers and Sadler 1960) appears to be a reversal of 

preferences caused by a change in a standard of comparison. Busemeyer and Townsend (1993) 

explain why the Myers effect may be no more (or less) than contextual heteroscedasticity. 

 Contextual utility also has implications for “strength of incentives” in experiments and more 

generally any mechanism. If contextual utility is correct, the marginal utility difference between 

taking risky actions X and Y is only part of what governs the strength of perceived incentives: 

The other important part is the subjective range of available utilities. This implies that scaling up 

outcomes may be a relatively ineffective means of strengthening incentives. If we can instead 

redesign an experiment or mechanism to shrink the subjective range of available utilities, while 

holding marginal utility improvements constant in the neighborhood of a maximum, this may be 

a more effective way of strengthening subjective optimization incentives. 
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Appendix A: Stochastic Transitivity Properties of Contextual Utility 

 

Definitions: Let {C,D,E} be any triple of lotteries generating the pairs {C,D}, {D,E} and {C,E}:  

In a basic triple, all three pairs are basic pairs. A heteroscedastic V-difference latent variable 

model is ]/)([ STTSST VVFP σλ −= , where STP  is the probability that S is chosen from pair {S,T}, 

)|( βSVVS ≡  is the structural value V of any lottery S , and STσ  is a noise component specific to 

pair {S,T}. (Suppress structural parameters β  but assume they are fixed, so the discussion is 

about an individual agent.) Let SV  and SV  denote the value of degenerate lotteries that pay the 

minimum and maximum outcomes in lottery S with certainty, respectively. In basic triples, the 

intervals ],[ CC VV , ],[ DD VV  and ],[ EE VV  must overlap (if not, the outcome ranges of two 

lotteries in the triple would be disjoint and they would form an FOSD pair). From (5.1), STσ  is  

the utility range in pair {S,T}, that is ),min(),max( TSTS VVVV − , in the contextual utility model.  

 I make use of Halff’s Theorem (Halff 1976): Any heteroscedastic V-difference latent variable 

model in which pair-specific noise components STσ  obey the triangle inequality across triples of 

pairs will satisfy moderate stochastic transitivity (MST). 

 

Proposition: Contextual utility obeys MST, but not strong stochastic transitivity (SST), in all 

basic triples. (Remark: This only rules out triples with glaringly transparent FOSD pairs where 

all outcomes in one lottery exceed all outcomes in another lottery. See (4.2) for a treatment of 

FOSD pairs using trembles. 
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Proof: The utility range in a pair cannot be less than the utility range in either of its component 

lotteries, so CCCD VV −≥σ  and EEDE VV −≥σ : Sum to get EECCDECD VVVV −+−≥+σσ . Since 

{C,D,E} is a basic triple, ],[ CC VV  and ],[ EE VV  overlap. Therefore, the utility range in pair 

{C,E} cannot exceed the sum of the utility ranges of its component lotteries C and E: That is, 

.EECCCE VVVV −+−≤σ  Combining the last two inequalities, we have CEDECD σσσ ≥+ , which 

is the triangle inequality. By Halff’s Theorem, contextual utility obeys MST for all basic triples. 

 An example suffices to show that contextual utility can violate SST in basic triples. Consider 

an expected value maximizer. Assume that C, D and E have outcome ranges [0,200], [100,300] 

and [100,400], respectively, and expected values 162, 160 and 150, respectively. The latent 

variable in contextual utility is the ratio of a pair’s V-difference to the pair’s range of possible 

utilities. In this example, these ratios are 2/300 in pair {C,D}, 10/300 in pair {D,E}, and 12/400 

= 9/300 in pair {C,E}. All are positive, implying that all choice probabilities (of the first lottery 

in each pair) exceed 0.5. But the probability that C is chosen over E will be less than the 

probability that D is chosen over E, since the latent variable in the former pair (9/300) is less 

than the latent variable in the latter pair (10/300). This violates SST. 
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Appendix B: Random Preference RDU Across Multiple Contexts 

 

 Using insights of Carbone (1997), I generalize Loomes, Moffatt and Sugden’s (2002) 

technique for single contexts. Like Loomes, Moffatt and Sugden, assume that weighting function 

parameters are nonstochastic, that is, that the only structural parameters that vary in a subject’s 

“random preference urn” are her outcome utilities. Combining (1.3) and (6.1), we have  
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Notice that we can view random preferences as based on a context-dependent ratio of differences 

transformation of utility, namely n

cv , as is the case with contextual utility (though the ratio of 

differences is not the same in the two models). Random preference models will, therefore, also 

display context dependence. Unlike contextual utility, however, n

cv ∈�
+
 is a random variable, 

containing all choice-relevant stochastic information about the agent’s random utility function 

)(zun  for choices on context c. Let )|( n

cvc xG α  be the context-specific c.d.f. of n

cv , generated by 

the joint distribution )|( n

u xF α  of agent n’s random utility vector. Since 033 >− mm st  in basic 
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pairs, we have 0)|()|()( 333 >−= n

m

n

m

n

c swtwW γγγ  for basic pairs.
17

 Rewriting (B.2) to make 

the change of random variables suggested above explicit, we then have 
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 With equation (B.3) we have arrived where Loomes, Moffatt and Sugden (2002) left things. 

Choosing some c.d.f. on �
+
 for vcG , such as the Lognormal or Gamma distribution, construction 

of a likelihood function from (B.3) and choice data is straightforward for one context and this is  

the kind of experimental data Loomes, Moffatt and Sugden had. But when contexts vary in a data 

set, the method quickly becomes intractable except for special cases. I now work out one such 

special case. By choosing the utilities of the two lowest outcomes equal to zero and one, 

respectively, the random utility vector for the four outcomes (0,1,2,3) may be summarized by a 

random utility vector for just the two highest outcomes, that is the random vector ),( 32

nn
uu , where 

nu2  > 1 and n
u3 > nu2 . Let ng1 ≡ nu2 −1 ∈ �� and ng2  ≡ n

u3 − nu2 ∈ �� be two underlying random 

variables generating these random utilities as nu2  = 1+ ng1  and n
u3  = 1+ ng1 + ng2 . A little algebra 

shows that nn
gv 13 =− , nnn ggv 212 +=− , )1/( 121 +=−

nnn ggv , and nnn
ggv 120 /=− .  

 With the four n

cv  (for the four contexts) expressed this way, we want a joint distribution of 

ng1  and ng2  so that as many of these as possible have tractable parametric distributions. The best 

choice I am aware of still only works for three of these four expressions. That choice is two 

independent gamma variates, each with the gamma distribution’s c.d.f. G(x|φ,κ), with identical 

“scale parameter” nκ  but possibly different “shape” parameters n

1φ  and n

2φ . Under this choice, 

                                                 
17

 FOSD pair choice probabilities are modeled as tremble events, as in (4.1) and Loomes, Moffatt and Sugden. 
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      Gamma with c.d.f. ),|( 1 κφxG for pairs on context c = −3 ,  

n

cv  is distributed… Gamma with c.d.f. ),|( 21 κφφ +xG for pairs on context c = −2 ,  (B.4) 

      Beta-prime with c.d.f. ),|( 12 φφxB′  for pairs on context c = −0 . 

The “beta-prime” distribution on �� is also called a “beta distribution of the second kind” 

(Aitchison 1963).
18

 These assumptions imply a joint distribution of 12 −nu  and 13 −n
u  known as 

“McKay’s bivariate gamma distribution” and a correlation coefficient )/( 211

nnn φφφ +  between 

nu2  and n
u3  in subject n’s “random preference urn” (Hutchinson and Lai 1990). 

 An acquaintance with the literature on estimation of random utility models may make these 

assumptions seem very special and unnecessary. However, theories of choice under risk are 

special relative to the kinds of preferences that typically get treated in that literature. Consider 

the classic example of transportation choice well-known from Domencich and McFadden (1975). 

Certainly we expect the value of time and money to be correlated across the population of 

commuters. But for a single commuter making a choice between car and bus on a specific 

morning, we do not require a specific relationship between the disutility of commuting time and 

the marginal utility of income she happens to “draw” from her random utility urn on that 

particular morning. This gives us some latitude when we choose a distribution for the  

unobserved parts of her utilities of various commuting alternatives. 

 We have much less of this latitude when we think of random preferences over lottery pairs.  

The spirit of random preferences is that every preference ordering drawn from the urn obeys all 

properties of the preference structure (Loomes and Sugden 1995). We demand, for instance, that 

                                                 
18

 The ratio relationship here is a generalization of the well-known fact that the ratio of independent chi-square 

variates follows an F distribution. Chi-square variates are gamma variates with common scale parameter κ = 2. In 

fact, a beta-prime variate can be transformed into an F variate: If x is a beta-prime variate with parameters a and b, 

then bx/a is an F variate with degrees of freedom 2a and 2b. This is convenient because almost all statistics software 

packages contain thorough call routines for F variates, but not necessarily any call routines for beta-prime variates.   
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every vector of outcome utilities drawn from the urn respects monotonicity in z; this implies that 

the joint distribution of  nu2  and n
u3  must have the property that 123 ≥≥ nn

uu . Moreover, the 

assumptions we make about the n

cv  must be probabilistically consistent across pair contexts. 

Choosing a joint distribution of nu2  and n
u3  immediately implies exact commitments regarding 

the distribution of any and all functions of nu2  and n
u3 . The issue does not arise in a data set 

where subjects make choices from pairs on just one context, as in Loomes, Moffatt and Sugden 

(2002): In this simplest of cases, any distribution of n

cv  on ��, including the Lognormal choice 

they make, is a wholly legitimate hypothesis. But as soon as each subject makes choices from 

pairs on several different overlapping contexts, random preferences are much more exacting. 

Unless we can specify a joint distribution of ng1  and ng2  that implies it, we are not entitled (for 

instance) to assume that n

cv  follows Lognormal distributions in all of three overlapping contexts 

for a single subject.
19

 Put differently, our choice of a joint distribution for nv 2−  and n
v 3−  has 

inescapable implications for the distribution of n
v 0− . Carbone (1997) correctly saw this in her 

random preference treatment of the EU structure. Under these circumstances, a clever choice of 

the joint distribution of ng1  and ng2  is necessary. 

 The random preference model can be quite limiting in practical applications. For instance, 

notice that I have not specified a distribution of nv 1−  and hence have no method for applying 

equation (B.3) to pairs on the context (0,2,3). Fully a quarter of the data from experiments such 

as Hey and Orme (1994) are on that context. On the context −1 = (0,2,3), nv 1− = ng2 /(1+ ng1 ).  

As far as I am aware, the following is a true statement, though I may yet see it disproved.  

                                                 
19

 Although ratios of lognormal variates are lognormal, there is no similar simple parametric family for sums of 

lognormal variates. The independent gammas with common scale are the only workable choice I am aware of.  
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Conjecture: There is no nondegenerate joint distribution of ng1  and ng2  on (��)
2
 such that 

ng1 , nn gg 21 + , )1/( 12 +nn gg  and nn gg 12 /  all have tractable parametric distributions. 

This is why I limit myself here to the three-fourths of these data sets that are choices from pairs 

on the contexts (0,1,2), (0,1,3) and (1,2,3): These are the contexts that the “independent gamma 

model” of random preferences developed above can be applied to. There are no similar practical 

modeling constraints on RDU strict, strong or contextual utility models (a considerable practical 

point in their favor); these models are easily applied to choices on any context. Note, however, 

that Loomes, Moffat and Sugden’s (2002) technique could be sidestepped by (say) simulated 

maximum likelihood techniques. 
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Appendix C: Estimation—an EU and Strong Utility Illustration  

 

 Though the Hey and Orme (1994) experiment contains no FOSD pairs, Moffatt and Peters 

(2001) found evidence of nonzero tremble probabilities using it, so I include a tremble 

probability in all models. However, using Hey’s (2001) still larger data set, I find no evidence 

that tremble probabilities vary across subjects. Therefore, I assume that nω = ω  for all subjects 

n, so that likelihood functions are built from the probabilities 2/)1( ωω +−=Ρ n

mc

n

mc P . 

 Let (EU,Strong) denote an expected utility structure with the strong utility stochastic model 

in which ),,,( 32 ωλψ nnnn
uu=  is subject n’s true parameter vector governing her choices from 

pairs. Let )|( θψJ  denote the joint c.d.f. governing the distribution of  ),,,( 32 ωλψ uu=  in the 

sampled population, where θ  are parameters governing the shape and location of J . Let *θ  be 

the true value of  θ  in that population. We want an estimate θ̂  of *θ : This is random parameters 

estimation. We need a procedure for choosing a reasonable and tractable form for J  that appears 

to characterize main features of the joint distribution of ψ  in the sample. What follows illustrates 

this procedure for the (EU,Strong) specification: See Wilcox (2007a) for a more elaborated 

description of the procedure and exact details of all specifications estimated here. 

 Suppressing the subject index n, the (EU,Strong) specification is, at the individual level,  

( ) 2/])()()[()1( 333222111 ωλω +−+−+−Λ−=Ρ cmmcmmcmmmc utsutsuts ,      (C.1) 

where 1)]exp(1[)( −−+=Λ xx  is the Logistic c.d.f. (consistently employed as the function H(x) for 

the strong, strict and contextual utility models). Equation C.1 introduces the notation ).( icic zuu =  

In terms of the underlying utility parameters 2u and 3u  of a subject, ),,( 321 ccc uuu  is ),,1( 32 uu  for 
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pairs on context c = −0 = (1,2,3) , ),1,0( 3u  for pairs on context c = −2 = (0,1,3) ; and ),1,0( 2u  for 

pairs on context c = −3 = (0,1,2) . 

 Begin with individual estimation of a simplified version of (C.1), using sixty-eight of HO’s 

eighty subjects.
20

 This initial estimation gives an impression of the form of the joint distribution 

of ψ , and how )|( θψJ  may be chosen to represent it. At this initial step, ω  is not estimated, 

but is instead set equal to 0.04 in (C.1) for all subjects.
21

 (Estimation of ω  is undertaken later in 

the random parameters estimation.) The log likelihood function for subject n, in terms of mcΡ  in 

(C.1) with ω  = 0.04 , is  

),,( 32 λuuLL
n = � Ρ−−+Ρ

mc mc

n

mcmc

n

mc yy )1ln()1()ln( .          (C.2) 

 Maximizing this in 2u , 3u and λ yields initial estimates )04.0,
~

,~,~(~
32

nnnn
uu λψ =  for each 

subject n. Figure 8 graphs )1~ln( 2 −nu , )1~ln( 3 −n
u  and )

~
ln( nλ  against their first principal 

component, which accounts for about 69 percent of their collective variance.
22

 The figure also 

shows regression lines on the first principal component. The Pearson correlation between 

)1~ln( 2 −nu  and )1~ln( 3 −n
u  is fairly high (0.848), and since these are estimates containing some 

pure sampling error, it appears that an assumption of perfect correlation between them in the 

underlying population may be roughly correct. Therefore, I make this assumption about the joint 

distribution of ψ  in the population. While )
~

ln( nλ  appears to share some variance with )1~ln( 2 −nu  

                                                 
20

 There are twelve subjects in the HO data with few or no choices of the riskier lottery in any pair. They can 

ultimately be included in random parameters estimations, but at this initial stage of individual estimation it is either 

not useful (due to poor identification) or simply not possible to estimate models for these subjects. 
21

 Estimation of ω is a nuisance at the individual level. Trembles are rare enough that individual estimates of ω are 

typically zero for individuals. Even when estimates are nonzero, the addition of an extra parameter to estimate 

increases the noisiness of the remaining estimates and hides the pattern of variance and covariance of these 

parameters that we wish to see at this step. 
22

 Two hugely obvious outliers have been removed for both the principal components extraction and the graph. 
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and )1~ln( 3 −n
u  (Pearson correlations of −0.22 and −0.45, respectively), it obviously either has 

independent variance of its own or is estimated with relatively low precision. 

 These observations suggest that the joint distribution )|( θψJ  of ),,,( 32 ωλψ uu=  can be 

characterized as generated by two independent standard normal deviates xu and xλ, as follows: 

  )exp(1),( 222 uu xbaxu ++=θ , )exp(1),( 333 uu xbaxu ++=θ ,  

  )exp(),,( λλλλλ θλ xcxbaxx uu ++=  and ω  a constant,  

  where ),,,,,,,(),( 3322 ωωθ λλλ cbababa=  are parameters to be estimated.   (C.3) 

Then the (EU,Strong) model, conditional on xu, xλ and ),( ωθ , becomes 

  =Ρ ),,,( ωθλxxumc  

  ( ) 2/])()())[(,,()1( 333222111 ωθλω λ +−+−+−Λ− cmmcmmcmmu utsutsutsxx , where 

  11 =cu  if c = −0, 01 =cu  otherwise, cu2 = ),(2 θuxu  if c = −0, 12 =cu  otherwise, and 

  cu3 = ),(2 θuxu  if c = −3, cu3 = ),(3 θuxu  otherwise.         (C.4) 

This implies the following random parameters log likelihood function in ),( ωθ : 

=),( ωθLL ( )( )� 		∏ ΦΦΡ−Ρ −

n umc

y

umc

y

umc xdxdxxxx
n
mc

n
mc )()()],,,(1[),,,(ln

1

λλλ ωθωθ ,  (C.5)  

where Φ is the standard normal c.d.f. and ),,,( ωθλxxumcΡ  is as shown in (C.4).
23

 The regression 

lines in Figure 8 provide starting values for maximizing (C.5). That is, initial estimates of the a 

and b coefficients in θ  are the intercepts and slopes from the linear regressions of )1~ln( 2 −nu , 

)1~ln( 3 −n
u  and )

~
ln( nλ  on their first principal component; and the root mean squared error of the 

regression of )
~

ln( nλ  on the first principal component provides an initial estimate of cλ. 

                                                 
23

 Such integrations must be performed numerically in some manner for estimation. I use gauss-hermite quadratures, 

which are practical up to two or three integrals; for integrals of higher dimension, simulated maximum likelihood is 

usually more practical. Judd (1998) and Train (2003) are good sources for these methods. 
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 Table 3 shows the results of maximizing (C.5) in ),( ωθ . These estimates produce the log 

likelihood in the first column of the top row of Table 1. Note that wherever 32
ˆˆ bb ≠ , very large 

(or small) values of the underlying standard normal deviate ux  imply a violation of monotonicity 

(that is 32 uu > ). Rather than imposing 32 bb =  as a constraint on the estimations, I impose the 

weaker constraint 2649.4)/()( 2332 >−− bbaa , making the estimated population fraction of such 

violations no larger than 10
−5

. This constraint does not bind for the estimates shown in Table 3. 

Generally, it rarely binds, and is never close to significantly binding, for any of the strong, strict 

or contextual utility estimations done here. 

 Recall that the nonparametric treatment of utility avoids a fixed risk attitude across the 

outcome vector (0,1,2,3), as would be implied by a parametric form such as CARA or CRRA 

utility. The estimates shown in Table 3 imply a population in which about sixty-eight percent of 

subjects have a weakly concave utility function, with the remaining thirty-two percent have an 

inflected “concave then convex” utility function, closely resembling Hey and Orme’s (1994) 

individual estimation results. That is, the random parameters estimation used here produces 

utility function heterogeneity much like that suggested by individual estimation.  

 A very similar procedure was used to select and estimate random parameters 

characterizations of heterogeneity for all models. As with the detailed example of the 

(EU,Strong) specification, all specifications with utility parameters nu2  and n
u3  (strong, strict or 

contextual utility specifications) yield quite high Pearson correlations between )1~ln( 2 −nu  and 

)1~ln( 3 −n
u  across subjects, and heavy loadings of these on first principal components of estimated 

parameter vectors nψ~ . Therefore, the population distributions of ),,,,( 32 ωγλψ uu=  (strong, 

strict and contextual utility models, with 1≡γ for EU) are in all cases modeled as having a 
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perfect correlation between )1ln( 2 −nu  and )1ln( 3 −n
u , generated by an underlying standard 

normal deviate xu.  

 Similarly, individual estimations of random preference models where ),,,,( 21 ωγκφφψ =  

( 1≡γ for EU) yield high Pearson correlations between )
~

ln( 1

nφ  and )
~

ln( 2

nφ  across subjects, and 

heavy loadings of these on first principal components of estimated parameter vectors nψ~ . So 

joint distributions of ),,,,( 21 ωγκφφψ =  are assumed to have a perfect correlation between 

)ln( 1

nφ  and )ln( 2

nφ  in the population, generated by an underlying standard normal deviate xφ. 

 In all cases, all other model parameters are characterized as possibly partaking of some of the 

variance represented by a normally distributed first principle component xu (in strong, strict or 

contextual utility specifications) or xφ (in random preference specifications), but also having 

independent variance represented by an independent standard normal variate, as with the 

example of λ  in the (EU,Strong) specification as shown in (C.3). 

 For EU specifications, a likelihood function like (C.5) is maximized. RDU specifications add 

a third integration since these models allow for independent variance in γ  (the Prelec weighting 

function parameter) through the addition of a third standard normal variate xγ. Integrations are 

carried out by gauss-hermite quadrature. In all cases, starting values for these numerical 

maximizations are computed in the manner described for the (EU,Strong) model: Parameters in 

nψ~  are regressed on their first principle component, and the intercepts and slopes of these 

regressions are the starting values for the a and b coefficients in the models, while the root mean 

squared errors of these regressions are the starting values for the c coefficients found in the 

equations for λ, κ  and/or γ. 
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Table 1. Log likelihoods of random parameters characterizations of the models in the Hey and Orme sample 

 

  
Estimated on all three 

contexts 

Estimated on contexts 

(0,1,2) and (0,1,3) 

Structure Stochastic Model 

Log Likelihood  

on all three contexts  

(in-sample fit) 

Log likelihood  

on context (1,2,3) 

(out-of-sample fit) 

Strong Utility −5311.44 −2409.38 

Strict Utility −5448.50 −2373.12 

Contextual Utility −5297.08 −2302.55 
EU 

Random Preferences −5348.36 −2356.60 

Strong Utility −5207.81 −2394.75 

Strict Utility −5306.48 −2450.41 

Contextual Utility −5190.43 −2281.36 
RDU 

Random Preferences −5218.00 −2335.55 
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Table 2. Vuong (1989) non-nested tests between model pairs,  

by structure, stochastic model and in-sample versus out-of-sample fit.  

 

EU Structure 

Estimated on all three contexts, and comparing fit 

on all three contexts (in-sample fit comparison) 

Estimated on contexts (0,1,2) and (0,1,3), and 

comparing fit on context (1,2,3) (out-of-sample fit 

comparison) 

 Random 

Prefs. 

Strong 

Utility 

Strict 

Utility 

 Random 

Prefs. 

Strong 

Utility 

Strict 

Utility 

Contextual 

Utility 

z = 1.723 

p = 0.042 

z = 0.703 

p = 0.241 

z = 6.067 

p < 0.0001 

Contextual 

Utility 

z = 4.387 

p < 0.0001 

z = 3.044 

p = 0.0012 

z = 2.739 

p = 0.0031 

Random 

Prefs. 
 z = −1.574 

p = 0.058 

z = 5.419 

p < 0.0001 

Random 

Prefs. 
 z = 1.639 

p = 0.051 

z = 1.422 

p = 0.078 

Strong 

Utility 
  z = 5.961 

p < 0.0001 

Strong 

Utility 
  z = 0.028 

p = 0.49 

RDU Structure 

Estimated on all three contexts, and comparing fit 

on all three contexts (in-sample fit comparison) 

Estimated on contexts (0,1,2) and (0,1,3), and 

comparing fit on context (1,2,3) (out-of-sample fit 

comparison) 

 Random 

Prefs. 

Strong 

Utility 

Strict 

Utility 

 Random 

Prefs. 

Strong 

Utility 

Strict 

Utility 

Contextual 

Utility 

z = 0.981 

p = 0.163 

z = 0.877 

p = 0.190 

z = 4.352 

p < 0.0001 

Contextual 

Utility 

z = 3.879 

p < 0.0001 

z = 3.304 

p = 0.0005 

z = 5.978 

p < 0.0001 

Random 

Prefs. 
 z = −0.44 

p = 0.330 

z = 3.808 

p < 0.0001 

Random 

Prefs. 
 z = 1.652 

p = 0.049 

z = 3.831 

p < 0.0001 

Strong 

Utility 
  z = 5.973 

p < 0.0001 

Strong 

Utility 
  z = 3.918 

p < 0.0001 

 

Notes: Positive z means the row stochastic model fits better than the column stochastic model. 
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Table 3. Random parameters estimates of the (EU,Strong) model, using choice data from  

the contexts (0,1,2), (0,1,3) and (1,2,3) of the Hey and Orme (1994) sample. 

 

Structural and stochastic 

parameter models 

Distributional 

parameter 

Initial 

estimate 

Final 

estimate 

Asymptotic 

standard 

error 

Asymptotic 

t-statistic 

a2 −1.2 −1.28 0.0411 −31.0 
)exp(1 222 uxbau ++=  

b2 0.57 0.514 0.0311 16.5 

a3 −0.51 −0.653 0.0329 −16.9 
)exp(1 333 uxbau ++=  

b3 0.63 0.657 0.0316 20.8 

aλ 3.2 3.39 0.101 33.8 

bλ −0.49 −0.658 0.124 −5.32 )exp( λλλλλ xcxba u ++=  

cλ 0.66 0.584 0.0571 10.2 

ω  constant ω 0.04 0.0446 0.0105 4.26 

Log likelihood = −5311.44 

 

Notes: xu and xλ are independent standard normal variates. Standard errors are calculated using the “sandwich estimator” (Wooldridge 

2002) and treating all of each subject’s choices as a single “super-observation,” that is, using degrees of freedom equal to the number 

of subjects rather than the number of subjects times the number of choices made. 
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Figure 1. Articles with text references to risk aversion and substitutability relations, 1977-2001 

(JSTOR Economics journals and selected Business journals) and Citations of Pratt (1964), 1977-

2006 (Science and Social Science Citation Indices). 
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Figure 2. Behavior of five CRRA EU V-differences using various transformations, with 

homoscedastic precision: MPS pair 1 on context (0,50,100) from Hey (2001)
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Figure 3. Behavior of five CRRA EU V-differences using various transformations, with 

homoscedastic precision: MPS pair 1 on context (50,100,150) from Hey (2001)
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Figure 4. How agent heteroscedasticity might allow MRA to imply SMRA
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Figure 5. Relationship between risk aversion and precision in Hey (2001), CRRA EU estimation.
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Figure 6: SMRA-compatible CRRA Utility Functions, slope and height matched at z  = 69.41 = 

exp (4.24) (point estimate of αααα  = 4.24)  
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Figure 7: Behavior of CRRA EU V -Differences using SMRA-Compatible transformation: 

MPS pair 1 on the new context (100,150,200), at various values of αααα ....
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Figure 8. Shared variance of initial individual parameter estimates

using the (EU,Strong) specification
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