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Abstract

We derive optimal tax formulas for network goods. The solution trades-off contemporaneous revenue
collection against the discounted future flows of reduced network growth. We provide conditions
under which the optimal tax sequence is time-invariant, and show that the rates should in general
change over time. A quantitative model with consumer heterogeneity highlights patterns in these
optimal sequences, and underscores the equity trade-offs.
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1 Introduction

Network goods are goods or services for which the value to each user increases with the total
number of users. Each new user therefore generates network externalities for other users. Examples
include the telephone, the fax machine, social media platforms like Twitter, autonomous vehicles,
digital currencies like Bitcoin, and buyer-seller marketplaces like eBay and Airbnb. As of 2023,
seven of the ten largest U.S. companies by market capitalization sell products that yield substantial
network externalities.1

This paper studies the optimal taxation of such network goods. We incorporate principles from
dynamic pricing models in the industrial organization literature (e.g. Katz and Shapiro, 1985) into
the public finance literature on taxation with externalities. The distinguishing feature of networks
when considering taxation is that the network externality directly affects the marginal utility of
the network good. Therefore, any changes to tax rates not only affect revenue collection today,
but by affecting the number of users, also affects the optimal Pigouvian correction in subsequent
periods. We model a government levying a consumption tax to meet a revenue requirement,
aware that higher tax rates discourage new users and therefore decrease network externalities.
This government must thus trade-off the efficient revenue raising-rate with a dynamic Pigouvian
externality correction.

In this paper, we establish foundational results on externality-producing network goods. We do
so through three lenses, starting with a static framework and subsequently introducing dynamic
aspects to illustrate how network and atmospheric externalities intersect. For the static lens, we
formulate a model in the tradition of Sandmo (1975), and demonstrate that the formula for the
optimal tax rate on network goods takes an additive, separable form — even when the good
yields atmospheric externalities. In a static setting, embedding the network size (i.e., the total
quantity of the network good) into the demand function for that good adjusts the optimal tax
formula in an intuitive way: any positive network externality tends to cancel out any negative
atmospheric externality, and the optimal tax rate can be positive or negative depending on the
relative magnitudes of these effects. This result generalizes Kopczuk (2003) and extends it to the
case where the size of the network externality affects demand.

The second lens through which we model the problem is that of a two-period theoretical model.
Here, we incorporate insights from seminal work from the industrial organization (IO) dynamic
pricing and network literature (e.g. Shapiro, 1983; Gul, Sonnenschein and Wilson, 1986; Jackson,
2010; Galeotti and Vega-Redondo, 2011; Fainmesser and Galeotti, 2016) and treat the size of a
network as a stock variable (e.g., the number of people who subscribe to a cell phone plan). The
treatment of the externality as a stock variable distinguishes this second lens from the static model
outlined above. The intuition from the IO literature suggests that cultivating network growth
can reduce the sensitivity of consumers to subsequent tax increases. The implications of dynamic
pricing strategies when the price-setter is a profit-maximizing firm are well understood. However,

1Apple, Microsoft, Alphabet (Google), Amazon, Tesla, Meta (Facebook), and Visa. An argument could be made for
the inclusion of Nvidia in this list, making it eight from ten.
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this concept is much more novel from the perspective of a social surplus-maximizing, revenue-
constrained government. By modeling the number of owners (and hence the network externality)
as a stock variable, we examine the conditions under which optimal tax rates for network goods
may vary over time. In the model the government commits at the beginning to a sequence of tax
rates, and consumers optimize given this information (e.g., prices in the final period will affect
consumption in the first period). We use the implicit function theorem to derive closed-form
solutions for the optimal tax rates and derive necessary conditions for the optimal tax rates to vary
over time. We find that generally, the government should set a schedule of different tax rates over
time for network goods. We derive sufficient conditions for an infant industry-style strategy to be
optimal, i.e. where the government subsidizes the network good in early periods to facilitate higher
taxes in later periods.

These sufficient conditions, and the bridging of the public finance and IO literatures on dynamic
pricing form our second contribution. Because deadweight losses increase exponentially in taxes,
conventional wisdom dating as far back as Ramsey (1927) holds that mixtures of high and low
tax rates are less efficient than stable moderate rates. However, we show that when network
externalities are present, initial subsidization can increase both total consumer surplus and collected
revenues relative to a time-invariant baseline. Our result that the optimal tax schedule is time-
varying is therefore quite unusual in commodity taxation.

While the derived conditions above show that time-varying tax schedules can increase overall
surplus, they do not indicate when time-varying tax schedules should be implemented. A common
feature of many new network goods is an externality on non-users. These “atmospheric” externalities
could be of the same or opposite sign as the network externalities, and unlike in a static setting, the
welfare effects of each externality are not additively separable. In other words, these potentially
contrasting welfare effects on users and non-users raise the issue of whether a dynamic taxation
strategy that improves revenue-generation is Pareto-improving.

The third lens through which we view the problem is a full quantitative model of the environment
that allows more detailed examination of the welfare effects and efficiency of time-varying taxation
on externality-producing network goods. Our model permits analysis of the intersecting externalities
when some fraction of society does not use the network good, multiple time periods, and different
market structures. We simulate a purchasing decision for a durable network good for n = 10, 000
individuals over six periods. There is a one-time purchase price and a per-period consumption
tax which can be negative (i.e., a subsidy). The government chooses a sequence of taxes from a
set of possible sequences that satisfy an exogenous revenue requirement. The consumers in the
quantitative model forecast the benefits of holding the good in future periods based on information
available at the time of purchase. At any point, consumers are free to discard the good, narrowing
the government’s time inconsistency possibilities.2 Mechanically, the government conducts a

2Time-inconsistency is a particular problem in the capital taxation literature, where governments retain the option of
a once-off 100% tax rate. In the sales tax settings, if consumers are locked into contracts or are otherwise constrained
in their choices, the government may have a similar incentive to abruptly increase sales tax rates. Incorporating free
disposal is a realistic way to add discipline to the model.
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grid search over a discrete sequence of tax rates to maximize total surplus subject to the budget
requirement.3

The results from the quantitative model fill in specifics that the two-period theoretical model
cannot provide at such a level of generality and yield several implications for the optimal taxation
of network goods. First, the stronger the positive network externalities, the greater the gains from
subsidizing the good early and raising taxes later. This result holds even though consumers in
the model have a Constant Elasticity of Substitution (CES) utility function.4 Second, when there
are positive network externalities but negative atmospheric externalities, subsidizing the good
in early periods to increase adoption can increase overall surplus. However, for the policy to be
Pareto-improving, there must also be higher taxes and compensatory transfers to non-users in later
periods. Of equal or greater importance, we also emphasize that there are parts of the parameter
space where time-varying taxation may not be useful even when the good yields network effects
(e.g. if taxes are not pivotal), and can even make the public worse off. Third, we show that if
negative atmospheric externalities are sufficiently strong, the optimal response is to heavily tax
from the initial period onward, despite the potential long-run revenue gains to the government
from taxing an established network good. Finally we show, with some caveats, that time-varying
taxation of network goods can be Pareto-improving when the industry structure is either perfectly
competitive, or when the firm can set prices as they would in a monopolistic, infant-industry
setting.

Our results build on several strands of the optimal tax literature. Sandmo (1975) found the
optimal tax on an externality-generating good was an additive and separable weighted average
of Pigouvian taxation and a form of the Ramsey rule for commodity taxation. This feature is
important as it permits a taxation strategy that directly “targets” the externality-generating good
under relatively general conditions (e.g. Kopczuk, 2003; Micheletto, 2008). We show the optimal
tax rate of a dual atmospheric-consumption externality good has two components in common
with Sandmo, and one new component. The common components are the Ramsey- and Pigou-like
factors; and the new component captures the effects of the network externality on demand. Indeed
our closed form expression of the optimal tax rate as a linear and separable combination of external
effects can be viewed a generalization of Sandmo (1975). From a dynamic perspective, this paper
fits into recent work in public finance that brings critical elements from other literatures to optimal
taxation. These elements include: behavioral factors (e.g. Goldin, 2015; Farhi and Gabaix, 2020;
Lockwood, 2020), dynamic settings (e.g. Barrage, 2020; Akcigit, Hanley and Stantcheva, 2022), and
“modern” realities like robots and superstars (Guerreiro, Rebelo and Teles, 2022; Thuemmel, 2022;
Scheuer and Werning, 2017). This paper also brings intuition from the IO literature on dynamic
pricing: building network growth can reduce the sensitivity of consumers to subsequent price tax
increases, but is ultimately is closer to the public finance literature like Aronsson and Johansson-

3The grid search approach has the added benefit of ensuring we locate discrete-grid approximations of global maxima.
4A key feature of network good demand is that as the number of other consumers increases, demand becomes less

elastic; we show that there are welfare and revenue gains from setting tax rates relatively low in early periods even with
a constant elasticity of substitution.
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Stenman (2018) and Eckerstorfer and Wendner (2013). The stock-like characteristics of a network
also relates this paper to the large literature on optimal capital taxation (e.g. Golosov, Kocherlakota
and Tsyvinski, 2003; Saez and Stantcheva, 2018). The emergence of network goods as a prominent
phenomenon provides overlap to each of these areas.

From a public finance perspective, perhaps the most important conclusion of this paper is that
the presence of network externalities implies a change in the optimal tax formula. A conventional
wisdom among public finance economists holds that mixtures of high and low commodity tax rates
are less efficient than stable moderate rates. However, we derive a sufficient condition for initial
subsidization of networks to both increase total consumer surplus and collected revenues relative
to a time-invariant baseline.

We believe this paper has obvious and immediate policy relevance. In the United States, sales
taxes raise over $500bn of revenue every year,5 and more than e1,000bn is raised through the VAT
in Europe.6 Network goods constitute an increasing share of consumer expenditure. In a policy
context, this paper asks if goods like stays on Airbnb should be taxed identically to stays in hotels
and, if not, what are the differences. As an intermediary in a two-sided market, Airbnb generates
network externalities. A public finance lens suggests goods that generate externalities should not
be taxed identically to goods that do not. This paper formalises that notion.

2 Background: Examples and Context within Public Finance

This paper sits at the intersection of multiple subsets of the economics literature. It is useful
therefore to clarify our contribution in context of prior work, particularly in public finance.

In this paper we examine the implications of atmospheric and network externalities for efficient
taxation of commodities. Rather than restrict our analysis to finding Pigouvian solutions that
encourage ’optimal’ adoption rates, we focus on how a government may efficiently raise revenue
from these goods. Because commodity taxation is a crucial source of revenue for many levels
of government and because network-related goods in our economy are increasingly prevalent,
efficiently raising revenue from network goods will become increasingly policy relevant in the
coming decades.7,8

Indeed, goods that yield both consumption and atmospheric externalities are already common.
For example, car exhausts have negative health effects (Knittel, Miller and Sanders, 2016; Currie
and Walker, 2011), and higher levels of pollution may affect the willingness to be a pedestrian
(Neidell, 2009). Cell phones are network goods by nature, but also have atmospheric effects: cell
phones’ ubiquity may affect you even if you do not own a phone.9 The total number of cell phone
users is thus a dual atmospheric-consumption externality, and the question of this paper is how

5U.S. Census Bureau, “2022 Quarterly Summary of State & Local Tax Revenue Tables”, Table 1 for Quarter 4,
https://www.census.gov/data/tables/2022/econ/qtax/historical.Q4.html#list-tab-1312412369.

6European Commission (2022) “VAT Gap in the EU”, https://data.europa.eu/doi/10.2778/01447.
7It is reasonable to expect further growth in sectors such as autonomous (networked) vehicles.
8A simplifying assumption of a zero revenue requirement will tend to reduce the problem to a Pigouvian setup.
9Through increased use of video recording, or in an emergency where your phone is stolen, for example.
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this duality affects the optimal tax rate for such goods. Even goods that have a nominal price of
zero such as Twitter may have negative atmospheric effects (e.g. polarized political discourse, see
Allcott, Braghieri, Eichmeyer and Gentzkow, 2020), but positive consumption externalities if utility
is increasing in the number of users on the platform.

The tax treatment of these externalities resists a simple answer. Consider goods such as Airbnb.
The cross-side externalities are obvious because a greater number and variety of available properties
increases the appeal of potential Airbnb renters. A larger number of Airbnb consumers likely
also yields benefits to the marginal consumer by generating property reviews and thus alleviating
an asymmetric information problem. However, Airbnb also yields atmospheric externalities as
visiting vacationers may be less than considerate of permanent residents’ needs for peace and quiet.
Because taxation of Airbnb affects its appeal to both renters and owners, taxation of Airbnb in a
given period can affect the size of the market (and therefore demand for Airbnb) in subsequent
periods. The presence of these network and atmospheric externalities imply that the tax treatment
of Airbnb should differ from that of traditional hotels.10 Similar arguments can be made network
platforms such as Uber and Alibaba.

As an alternative example, consider Bitcoin. The production (mining) of Bitcoin generates
pollution, and the currency is used as a medium of exchange in black market activity. Bitcoin,
however, has positive network externalities as demand is increasing in the number of other users.
Should we tax transactions conducted with Bitcoin differently than with traditional currencies?

An extensive IO literature has studied pricing and network effects, e.g. Shapiro (1983) and
Candogan, Bimpikis and Ozdaglar (2012). Threads from this literature have been applied to other
fields, e.g. health economics and the dynamic pricing of pharmaceuticals (Bhattacharya and Vogt,
2004). We investigate the effects of network externalities in an efficient commodity taxation/public
finance context. Essentially, we ask “if dynamic network pricing is a well-known strategy for profit
maximization, does that translate to a viable strategy for a budget constrained government seeking
to raise revenues from commodity taxation?”

Per the introduction, we address this question through three lenses, the first of which is a
general static optimal tax model in the spirit of Sandmo (1975). It is perhaps unsurprising that we
find these goods should be taxed differently to goods with a simple external effect. The setup of
the model is quite general, and we derive a closed form expression for the optimal tax rate as a
linear and separable combination of atmospheric and network effects, a generalization of Kopczuk
(2003). For example, for goods that yield negative atmospheric externalities, the optimal tax rate
increases if the good also yields a negative network externality. When atmospheric and network
externalities are of opposing directions, the sign of the optimal tax rate may be counterintuitive.
Positive network effects reduce the optimal tax rate on a good, mitigating Pigouvian taxation of
negative atmospheric externalities. When those consumption externalities are strong enough, we
show that optimal tax policy may be a subsidy, even when the good generates negative atmospheric

10Acknowledging that zoning laws and hotel taxes are partially attributable to the atmospheric externalities from
hotels.
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externalities such as pollution or black market activity.
Second, recognizing the dynamic nature of network effects and the dynamic pricing literature,

we extend our analysis to a two-period model. Focusing on the intuition of the inter-temporal
problem, we impose a CES utility structure and make demand in the second period an increasing
function of quantity consumed in the first period. In addition to the key takeaways from the
introduction, we show time-varying tax sequences can be welfare-improving whether the government
does or does not face an exogenous revenue constraint. That is, dynamic setting of rates can improve
welfare over a zero tax default. This stands in contrast to a strand of the public finance literature
de-emphasizing commodity taxation as a means for efficiently raising revenue. These results do
not contradict this literature,11 but highlight the potential gains from commodity taxation in this
specific context.

Recognizing these potential limitations of the two-period model, our third framework is a more
complete quantitative model of consumer choice, externalities, and tax rates. We again model
representative consumers using a CES utility function, but this time allow utility to be stochastic.
To better explore the dynamic implications of network externalities for efficient taxation, we extend
the time horizon to six periods rather than two. We treat the network good as durable (matching
many real world examples like cell phones) and as having an up-front cost. The consumers in
our model forecast the benefits of holding the good in future periods, and exercise a free disposal
option if taxes go too high. We model the surplus-maximizing sequence of tax rates that satisfy
exogenous revenue constraints. We further model the supply-side as either perfectly competitive
or monopolistic. The dynamic model yields several implications for efficient commodity taxation
when network externalities are present. First, the stronger the positive network externalities, the
greater the gains — while satisfying the revenue constraint — from subsidizing the good early and
raising taxes later. Even with a constant elasticity of substitution between the network good and the
numeraire good, there are welfare and revenue gains from setting tax rates relatively low in early
periods. Of course, stronger network externalities give the government greater latitude to raise
taxes in later periods without erstwhile consumers leaving the market. Second, the quantitative
model with heterogeneous consumers shows necessary conditions for Pareto-improving policy
changes. When a non-negligible fraction of the society does not use the good, they must be
compensated for any negative atmospheric externalities induced by the efficient tax system. Third,
we show that conditions can exist when the optimal strategy is to heavily tax the network good at
all periods despite the long-run revenue potential.

This paper thus contributes to the literature in several ways. We add to the literature on optimal
taxation by deriving the optimal tax rate for a commodity with dual atmospheric-consumption

11One of the most important results in public finance comes from Atkinson and Stiglitz (1976), which shows that
under certain conditions (e.g., optimal non-linear income taxation) commodity taxation is redundant. In the presence
of consumption externalities, income tax policy is unlikely to induce socially optimal consumption choices. We find
that if the government has a revenue threshold it must meet over several periods, that a commodity tax policy of initial
subsidization (relative to a time-invariant baseline) can be a revenue-neutral, welfare-improving strategy. As a practical
matter, it seems unlikely that many governments impose an optimal non-linear income tax. Nine U.S. states, for example,
have no income tax at all.
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externalities. The externalities we consider differ from positional externalities previously considered
in the public finance literature (e.g., Aronsson and Johansson-Stenman, 2010), and are closer in
nature to network externalities. Our contribution builds directly on the work of Micheletto (2008),
which generalizes Kopczuk (2003) on the principle of targeting. Micheletto finds the Sandmo
additive result is not true for consumption externalities in general, but that it does hold under
reasonable conditions. Similarly, we show that dual atmospheric-consumption externalities can
be interpreted as a generalization of Sandmo’s results. Our second contribution relates to the
optimal dynamic path of commodity taxes, and has substantial policy implications. We examine
whether optimal tax policy in relation to these goods depends on how established these goods are.
Simulation results indicate that intertemporal variation in tax rates can lead to considerable welfare
gains, particularly if the government can borrow. The numerical simulations are not intended to
suggest fully general first-best tax rates, but do illustrate the results under reasonable calibrations.
The specific first-best rates will depend on the institutional features (government budget constraint,
market structure, geographic size) of the market.

More generally, we view our work as a complement to the recent research extending canonical
optimal tax results. Perhaps the most fruitful source of this literature has been incorporating
behavioral agents into optimal tax frameworks, prominently Farhi and Gabaix (2020), Allcott,
Lockwood and Taubinsky (2019), Rees-Jones (2018), and Lockwood (2020). As a matter of theoretical
interest, this paper is a contribution to the literature on optimal taxation. We argue that this model
is applicable to a large class of goods. With technological progress, the relevance and prominence
of network goods in particular will almost certainly increase. Many will become part of the tax
base. For this reason, this paper is relevant to policy as well as to public economic theory.

The rest of the paper proceeds as follows: Section 3.1 lays out the baseline static model, and
derives the optimal tax rate when dual externalities are present. Section 3.2 derives the optimal tax
rate froms a two-period model, characterizes when these rates follow an infant-industry structure,
and gives an example of a numerical solution. Sections 4 and 5 clarify the restrictions imposed, the
methodology of, and results from the dynamic Monte Carlo simulations. Section 6 concludes.

3 Closed-form Theory

3.1 Static Model

We start by solving for the optimal tax rates in a static framework. This allows us to derive the
principal results of the model at a level of generality similar to Kopczuk (2003) and Micheletto
(2008). We model a utilitarian planner maximizing the sum of utilities for n identical consumers
subject to a government revenue requirement T. Each consumer chooses labor effort x0, the wages
of which act as a numeraire, and the complement of labor is leisure. This is a second-best world
where lump sum taxes are infeasible and leisure is untaxable. In addition to labor, there are m
taxable commodities in the economy. Consumers purchase goods based on tax-inclusive prices
Pi, i = 1, . . . , m. Commodity m generates an externality α, which for simplicity we will think of as
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total consumption of xm. The consumer’s problem is thus to maximize

L = u(1 − x0, x1, . . . , xm, α) + λ

(
x0 −

m

∑
i=1

Pixi

)
(1)

We denote ui as the derivative of the utility function with respect to xi, and therefore denote the
derivative of utility with respect to α as um+1. For a negative externality, such as if autonomous
vehicles decreased safety, um+1 < 0. Consumers do not consider their own effect on the externality,
and we assume that the usual conditions for an interior maximum hold.

We follow convention by permitting governments to adjust the price vector P to maximize
society’s indirect utility V(P):

V(P) = u [1 − x0(P), x1(P), . . . , xm (P, α(P)) , α(P)] (2)

Note that this formulation permits both that demand for xm be a function of α (the network
effect), and that α directly affects utility with α=0 a special case. The welfare effect of adjusting the
price of good k is:

∂V(P)
∂Pk

= −u0
∂x0

∂Pk
+

m

∑
i=1

ui
∂xi

∂Pk
+ um

(
∂α

∂Pk

∂xm

∂α

)
+ um+1

∂α

∂Pk
(3)

Using the fact (from the consumer budget constraint) that xk =
∂x0

∂Pk
− ∑m

i=1 Pi
∂xi

∂Pk
, and substituting

in the FOCs for the consumer problem, we conclude that:

∂V(P)
∂Pk

= −λxk + um

(
∂α

∂Pk

∂xm

∂α

)
+ um+1

∂α

∂Pk
(4)

In all sections of this paper, the government’s objective is to maximize utility (indirect or direct)
subject to some revenue requirement. Here, we define the government’s problem as the maximization
of V(P) subject to raising a budget of at least T. Define ti, the tax on good i, as the difference
between the final price and the producer price: ti = Pi − pi. Implicitly this is assuming perfectly
competitive production markets. We recognize this is a strong assumption, and one which we will
relax when we give firms price-setting power in Section 4 . However, we maintain the zero profits
assumption to avoid discussions of a profit tax in this section and to facilitate comparison with
canonical results.

Under these conditions, the government maximization problem can be summarized as

L = nV(P)− β

[
n

m

∑
i=1

(Pi − pi)xi − T

]
(5)
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Using (4), we can see that a necessary condition for the optimal commodity tax rate is:

∂L

∂Pk
= −λxk + um

(
∂α

∂Pk

∂xm

∂α

)
+ um+1

∂α

∂Pk
− β

[
m

∑
i=1

ti
∂xi

∂Pk
+ xk

]
= 0 (6)

This can be simplified. Noting that
∂α

∂Pk
= n

∂xm

∂Pk
,

m

∑
i=1

ti
∂xi

∂Pk
= −

(
λ + β

β

)
xk +

n
β

(
um+1 + um

∂xm

∂α

)
∂xm

∂Pk
(7)

Let the coefficient matrix on ti (the transpose of the Jacobian of the taxable goods’ demand functions)
be denoted J⋆. Further let J ≡ det(J⋆) and denote Jik as the cofactor of the element in row i, column
j of J. Then, applying Cramer’s Rule:

tk =

[
−
(

λ + β

β

)](
∑m

i=1 xi Jik

J

)
+

n
β

(
um+1 + um

∂xm

∂α

)(∑m
i=1

∂xm
∂Pi

Jik

J

)
(8)

As per Sandmo (1975), it can be shown that:

m

∑
i=1

∂xm

∂Pi
Jik =

0 for k ̸= m

J for k = m
(9)

Consequently,

tk = −
(

λ + β

β

)(
∑m

i=1 xi Jik

J

)
+

n
β

(
um+1 + um

∂xm

∂α

)
×1{k=m} (10)

tk

Pk
=

(
−1
Pk

)(
λ

β
+ 1
)(

∑m
i=1 xi Jik

J

)
+

n
β

λ

λ

1
Pk

(
um+1 + um

∂xm

∂α

)
×1{k=m} (11)

Defining θi as the tax rate on good i, i.e. θi ≡ ti/Pi and µ as the negative of the ratio of Lagrangian
multipliers, i.e. µ ≡ −λ/β,

θk =

(
−1
Pk

)
(1 − µ)

(
∑m

i=1 xi Jik

J

)
− nµ

(
1

λPm

)(
um+1 + um

∂xm

∂α

)
×1{k=m} (12)

Finally, substituting from the consumer FOC and rearranging, we have:

θk = (1 − µ)

[
−1
Pk

∑m
i=1 xi Jik

J

]
, k = 1, . . . , (m − 1) (13)

θm = (1 − µ)

[
−1
Pm

∑m
i=1 xi Jim

J

]
− µ

[
n
(

um+1

um

)]
− µ

[
n
(

∂xm

∂α

)]
(14)

This solves for the optimal tax rates. Equation (13) shows that the tax rate on the m − 1 typical
goods is a form of the Ramsey discouragement index which decreases in the sensitivity/elasticity
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of the consumers to price. The discouragement index is scaled by 1 − µ, where −µ is the ratio of
the Lagrangian multipliers.

Equation (14) defines the optimal rate for the mth good. It shows that the tax comprises three
additively separable components: the first, the Ramsey-like discouragement factor; the second, a
Pigouvian factor increasing in the magnitude of the direct atmospheric externality; and the third,
an adjustment for the network externality/how consumption responds to the externality.

The departure of Equations (13) and (14) with previous research is the third ‘consumption
response’ component. If consumption does not depend on the externality, e.g. when the demand
for widgets in unaffected by pollution in a lake, the consumption response component is zero and
the optimal tax rate collapses to that found by Sandmo (1975).

This can be shown more clearly by grouping the final terms in Equation (14) together:

θm = (1 − µ)

[
−1
Pm

∑m
i=1 xi Jim

J

]
+ µ

[
−n

(
um+1

um
+

∂xm

∂α

)]
(15)

With this formulation, we can interpret the result as a weighted average (with weight µ) of Ramsey
taxation and adjusted-externality taxation. There may be disutility caused by α, but the extent to
which α increases consumption of xm can mitigate that negative effect. Indeed, if ∂xm

∂α > ∂um+1
∂um

, then
the optimal policy is to subsidize the “dirty” (i.e. negative atmospheric externality-generating)
good.

This result shows that while the optimal taxation of network externalities is more complex than
the existing literature, it can be seen as a generalization that retains an additive and separable form.
Further, the optimal tax rule retains intuitive features, notably that the Pigouvian component is
adjusted to account for the effect of the network externality. Consider a network good that generates
a negative atmospheric externality like higher crime. Through its positive effects on demand, the
network good has a lower Pigouvian correction than suggested by its negative atmospheric effects.

This model is quite general, but a clear shortcoming is that many network externalities are
best considered as stock variables. If tax rates affect adoption rates, they will also alter the size of
the network externality in subsequent periods. In this setting, the government should consider
trading-off revenue not just with a contemporaneous increases in the network externality but all
future flows of the increased stock. The government’s decision thus becomes a dynamic problem.

Introducing dynamic considerations also means that optimal taxation of network goods is no
longer as simple as an additively-separable adjustment.The second contribution of this paper is a
model of optimal network taxation in a two-period setting.

3.2 Two Period Model

In this section we provide a theoretical framework for optimal taxation in a two period model
with a durable consumption good featuring network externalities. We provide a number of
conditions under which dynamic taxation is welfare improving. However, the presence of network
externalities themselves is not a sufficient condition for dynamic taxation to be welfare improving.
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The strength of these externalities, cross-period demand elasticities, and intertemporal substitution
also govern whether dynamic taxation is welfare improving.

Households Consider the optimization problem of a representative household which lives for two
periods. In each period the household receives and exogenous endowment of real goods labeled
y1 and y2 respectively. The household may then choose to purchase and consume the network
good (c1 and c2) or the outside option consumption good (z1 and z2), subject to budget constraints.
To keep things tractable, we focus attention on a CES formulation with time discounting β. The
network good is durable and taxed at per-unit net rates τ1 and τ2. We assume the households do
not internalize (yet do benefit from) the consumption externalities afforded by the network good.
The function f (c, X) thus aggregates total consumption from the network good and its externalities;
the latter of which is captured by X, which could be considered the aggregate consumption of the
network good across all households.

The household problem is thus,

max
z1,z2,c1,c2

[
θzρ

1 + (1 − θ) f (c1, X1)
ρ]1/ρ

+ β
[
θzρ

2 + (1 − θ) f (c2, X2)
ρ]1/ρ

subject to

y1 ≥ z1 + (1 + τ1) c1

y2 + c1 ≥ z2 + (1 + τ2) c2

The solution to the household problem are the following necessary first order conditions:

θu1−ρ
1 zρ−1

1 = λ1

θu1−ρ
2 zρ−1

2 = λ2

(1 − θ) u1−ρ
1 f (c1, X1)

ρ−1 ∂ f (c1, X1)

∂c1
= (1 + τ1) λ1 − βλ2

(1 − θ) u1−ρ
2 f (c2, X2)

ρ−1 ∂ f (c2, X2)

∂c2
= (1 + τ2) λ2

Government Consider now the problem of a government seeking to raise revenue R by levying
per-unit taxes on the network good. The government wishes to do this in such a way that maximizes
social welfare of the representative household subject to the revenue constraint. Furthermore, we
assume the government is aware of the externalities inherent in the network good, which leads it to
optimize using function g (c) instead of f (c, X). We thus follow a Ramsey primal approach with the
government choosing τ1 and τ2 subject to the revenue constraint and household implementability
constraints. Let µ be the Lagrange multiplier on the revenue constraint.
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The government’s problem is

max
τ1,τ2

[
θzρ

1 (τ1, τ2) + (1 − θ) g (c1 (τ1, τ2))
ρ]1/ρ

+ β
[
θzρ

2 (τ1, τ2) + (1 − θ) g (c2 (τ1, τ2))
ρ]1/ρ

subject to

R ≥ τ1c1 (τ1, τ2) + τ2c2 (τ1, τ2)

The solution consists of the following two necessary first order conditions:

0 = θu1−ρ
1 zρ−1

1
∂z1 (τ1, τ2)

∂τ1

+ (1 − θ) u1−ρ
1 g (c1 (τ1, τ2))

ρ−1 ∂g (c1 (τ1, τ2))

∂c1

∂c1 (τ1, τ2)

∂τ1

+ βθu1−ρ
2 zρ−1

2
∂z2 (τ1, τ2)

∂τ1

+ β (1 − θ) u1−ρ
2 g (c2 (τ1, τ2))

ρ−1 ∂g (c2 (τ1, τ2))

∂c2

∂c2 (τ1, τ2)

∂τ1

− µ

[
c1 (τ1, τ2) + τ1

∂c1 (τ1, τ2)

∂τ1
+ τ2

∂c2 (τ1, τ2)

∂τ1

]
(16)

and

0 = θu1−ρ
1 zρ−1

1
∂z1 (τ1, τ2)

∂τ2

+ (1 − θ) u1−ρ
1 g (c1 (τ1, τ2))

ρ−1 ∂g (c1 (τ1, τ2))

∂c1

∂c1 (τ1, τ2)

∂τ2

+ βθu1−ρ
2 zρ−1

2
∂z2 (τ1, τ2)

∂τ2

+ β (1 − θ) u1−ρ
2 g (c2 (τ1, τ2))

ρ−1 ∂g (c2 (τ1, τ2))

∂c2

∂c2 (τ1, τ2)

∂τ2

− µ

[
τ1

∂c1 (τ1, τ2)

∂τ2
+ c2 (τ1, τ2) + τ2

∂c2 (τ1, τ2)

∂τ2

]
(17)

Equilibrium We now solve for the equilibrium optimal tax rates. Begin with equation 16 and
combine with the household first order conditions (suppressing functional dependence on taxes for
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notational simplicity):

0 =
∂z1

∂τ1

+ H (c1, X1)
∂c1

∂τ1
[(1 + τ1)− Λ]

+ Λ
∂z2

∂τ1

+ ΛH (c2, X2)
∂c2

∂τ1
(1 + τ2)

− µ

[
c1 + τ1

∂c1

∂τ1
+ τ2

∂c2

∂τ1

]
(18)

Where Λ ≡ β λ2
λ1

is the stochastic discount factor. H (c1, X1) ≡
[

g(c1)
f (c1,X1)

]ρ−1 ( ∂g(c1)/∂c1
∂ f (c1,X1)/∂c1

)
captures

a notion of the degree to which the externalities provide a non-pecuniary benefit. Assume that
Xi = ci, i ∈ {1, 2} in equilibrium so that H (c1, X1) = H (c1) =

∂g(c1)/∂c1
∂ f (c1,X1)/∂c1

. For a network good
which provides positive externalities, H (c) > 1. It is useful to note that the first partial ∂H/∂c
depends on the relative semielasticities of the first partials.

Note that the market clearing conditions for goods are identical to the household budget
constraints. Using the Implicit Function Theorem, we have the following four conditions:

0 =
∂z1

∂τ1
+ c1 + (1 + τ1)

∂c1

∂τ1
(19)

0 =
∂z1

∂τ2
+ (1 + τ1)

∂c1

∂τ2
(20)

∂c1

∂τ1
=

∂z2

∂τ1
+ (1 + τ2)

∂c2

∂τ1
(21)

∂c1

∂τ2
=

∂z2

∂τ2
+ c2 + (1 + τ2)

∂c2

∂τ2
(22)

Furthermore, we can assume that the government revenue constraint must bind with equality
given the properties of marginal utility and free disposal. The Implicit Function Theorem thus
gives

0 = τ1
∂c1

∂τ1
+ c1 + τ2

∂c2

∂τ1
(23)

0 = τ1
∂c1

∂τ2
+ c2 + τ2

∂c2

∂τ2
(24)
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Combining equations 18, 19, 21, and 23 we get

0 = − ∂c2

∂τ1
− {Λ [H (c1, X1)− 1] + 1} ∂c1

∂τ1

+ H (c1, X1)
∂c1

∂τ1
(1 + τ1)

+ {Λ [H (c2, X2)− 1] + 1} ∂c2

∂τ1
(1 + τ2) (25)

Using 17, 20, 22, and 24 we get a similar equation:

0 = −Λ
∂c2

∂τ2
− ΛH (c1, X1)

∂c1

∂τ2

+ [H (c1, X1)− 1 + Λ]
∂c1

∂τ2
(1 + τ1)

+ ΛH (c2, X2)
∂c2

∂τ2
(1 + τ2) (26)

We can write these two equilibrium conditions in matrix form12:[
H1

∂c1
∂τ1

{Λ [H2 − 1] + 1} ∂c2
∂τ1

[H1 − 1 + Λ] ∂c1
∂τ2

ΛH2
∂c2
∂τ2

] [
1 + τ1

1 + τ2

]
=

[
∂c2
∂τ1

+ {Λ [H1 − 1] + 1} ∂c1
∂τ1

Λ ∂c2
∂τ2

+ ΛH1
∂c1
∂τ2

]

We solve for the optimal tax rates using Cramer’s Rule.

τ∗
1 = (Λ − 1)

Λ [H1 − 1] H2
∂c1
∂τ1

∂c2
∂τ2

− Λ [H2 − 1] ∂c2
∂τ1

∂c2
∂τ2

− [H1 − 1] [Λ [H2 − 1] + 1] ∂c2
∂τ1

∂c1
∂τ2

ΛH1H2
∂c1
∂τ1

∂c2
∂τ2

− [H1 − 1 + Λ] [Λ [H2 − 1] + 1] ∂c2
∂τ1

∂c1
∂τ2

(27)

τ∗
2 =

−ΛH1 [H2 − 1] ∂c1
∂τ1

∂c2
∂τ2

+ Λ [H1 − 1 + Λ] [H2 − 1] ∂c2
∂τ1

∂c1
∂τ2

− (Λ − 1)2 (H1 − 1) ∂c1
∂τ1

∂c1
∂τ2

ΛH1H2
∂c1
∂τ1

∂c2
∂τ2

− [H1 − 1 + Λ] [Λ [H2 − 1] + 1] ∂c2
∂τ1

∂c1
∂τ2

(28)

Along with the government revenue constraint R = τ∗
1 c1 (τ

∗
1 , τ∗

2 ) + τ∗
2 c2 (τ∗

1 , τ∗
2 ), this solves for

the optimal tax rates.
Is there an equilibrium in which (1 + τ∗

2 ) > (1 + τ∗
1 )? This occurs when

[
Λ2H1 (H2 − 1)− (H1 − 1) (1 − Λ)

] ∂c1

∂τ2

∂c2

∂τ1
− (1 − Λ)2 [H1 − 1]

∂c1

∂τ1

∂c1

∂τ2
>

[Λ (1 − Λ) H2 + ΛH1 (ΛH2 − 1)]
∂c1

∂τ1

∂c2

∂τ2
+ Λ (1 − Λ) [H2 − 1]

∂c2

∂τ1

∂c2

∂τ2

The following conjecture will limit the scope of our search.

Conjecture. It must be the case that ∂c1
∂τ2

≤ 0.
12To further conserve notation, let H1 ≡ H (c1) and likewise for H2.
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Proof. From equation 20 we have that

∂z1

∂τ2
= − (1 + τ1)

∂c1

∂τ2

∂z1
∂τ2

≥ 0 given both income and substitution effects operate in the same direction. Since 1 + τ1 > 0,
∂c1
∂τ2

≤ 0.

The following propositions describe a sufficient, yet not necessary, set of conditions under
which dynamic taxation is welfare improving. A more general set of conditions may be found in
the appendix.

Proposition 1. Dynamic taxation cannot be welfare improving if own-price elasticities are negative and
∂c1
∂τ2

= 0.

Proposition 2. Assume Λ < 1. Further, assume that own-price and cross-price elasticities of the network
good are negative. Then dynamic taxation is welfare improving if

∂c1

∂τ2
< −

Λ (1 − Λ) (H2 − 1) ∂c2
∂τ2

(1 − Λ) (H1 − 1) + Λ2H1 (H2 − 1)
∂c2

∂τ1
× ∂c1

∂τ2
>

1 − Λ
Λ (H1H2 − 1)− (H1 − 1)

∂c1

∂τ1
>

[(1 − Λ) (H1 − 1) + ΛH1 (H2 − 1)] ∂c1
∂τ2

− Λ (1 − Λ) (H2 − 1) ∂c2
∂τ2

(1 − Λ)2 (H1 − 1) ∂c1
∂τ2

+ Λ (H2 − H1 + Λ (H1 − 1) H2)
∂c2
∂τ2

and 
H2 ≥ 1 + (Λ−1)2

Λ orH1 < 1−Λ
1−Λ−Λ2(H2−1) and

H2 < 1 + 1
Λ2 − 1

Λ

The condition cannot be satisfied if Λ > 1.

Proposition 2 states that dynamic taxation can be welfare improving if the public valuation of
the good in the second period is large compared to the private valuation. In terms of our model,
this is true if H2 is large. Dynamic taxation could also be welfare improving for moderate public
valuation excess in both periods. However, this condition is heavily limited by the stochastic
discount factor Λ, which is in turn dependent on the own- and cross-period price elasticities of
demand for the network good. Furthermore, these elasticities depend on the relative size of the
public valuations H1 and H2. In either case it is clear that the relative magnitude of network effects
plays a critical role in determining whether constant or dynamic taxation is optimal.

Although equations can be derived to solve for these elasticities (see Appendix A), the resulting
system is highly nonlinear. Therefore we turn to a numerical solution for the model equilibrium.
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Numerical Example To visualize the optimality of dynamic taxation in this two period model,
we make a set of modeling assumptions and numerically solve the equilibrium characterization. In
particular, assume that the externalities take the following form:

f (c, X) = γc + (1/2)αX2

g (c) = γc + (1/2)αc2

α ∈ (0, 1)

It is clear then that H (c) = 1 + α
γ c, which is increasing in the amount of network good

consumption. We choose this functional form to model the increasing returns to network density
for consumers. Consider a situation with modest externality effects (α = 0.5), exogenous income
per period is 4 dollars, and the government needs to raise one percent of this (0.04 dollars) to meet
the revenue requirement. Setting reasonable values for the other parameters of the environment
(i.e. β = 0.99, θ = 0.8, ρ = 0.9, γ = 5), then the welfare-maximizing tax sequence that satisfies the
revenue requirement is a subsidy of 17.7 percent in the first period, followed by a tax of 204 percent
in the second period. While the exact tax rates here are merely examples, and obviously dependent
on parameterization, the pattern is illustrative. We see the optimal strategy is a modest initial
subsidy followed by a significant subsequent tax. Further details regarding the numerical solution
method may be found in the appendix.

4 Multi-period Quantitative Model

The previous section shows that intertemporal variation in tax rates can increase both consumer
surplus and government revenue when network externalities are present.

However, the derivation of optimal time paths of taxation at is mathematically infeasible at
the level of generality in the tradition of Sandmo (1975), Kopczuk (2003), Micheletto (2008),
and Aronsson and Johansson-Stenman (2018).13 In this section, we therefore employ Monte
Carlo simulations to further explore how the presence and strength of network and atmospheric
externalities affect how intertemporal variation in tax rates can affect consumer surplus and
government revenue. We compare the consumer surplus and government revenues to those
of a benchmark case of a constant tax rate. The goal is to identify the sequences of taxes that
maximize consumer surplus while remaining at least revenue neutral over the considered period.
Alternatively, we empirically show that under the assumptions of the theoretical models (and
conditional on certain parameter values) static tax sequences are not Pareto optimal when taxing
network goods.

13There have been some attempts to derive closed-form solutions to related problems. For example, Greaker and
Midttømme (2016) models optimal tax policy with two competing types of good, of which consumers must possess one.
Their model is a (repeated) three-period game, and governments do not have an exogenous revenue constraint, so it is
not clear the extent to which their findings would transfer to our setting.
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4.1 Consumer utility and government objectives

To conduct these simulations, we impose some specific features for tractability (e.g., functional form
of utility) and some adjustments for simplicity. We treat income as exogenous as we do not model
the choice of labor supply. Doing so would greatly complicate the model, and evidence suggests
labor supply is relatively unresponsive to taxes on specific goods (see e.g. Madden, 1995).14 We
also make the consumer’s choice binary rather than continuous. While exploring the effects of
commodity taxation on consumption behavior at the intensive margin may be of some interest,
modeling both margins for individual consumers, would entail considerable complications without
affecting the fundamental economic insights on how network externalities affect optimal taxation.

Acknowledging those adjustments, we preserve the important foundational assumptions of the
static model in Sections 3.1 and 3.2. Specifically, we consider consumers’ decision to allocate their
resources between one good that yields network externalities, and one private numeraire good.
Consumers are rational and use all information available at time t in their purchasing decisions,
and do not consider the effects of their own actions on either externality.

Following Goyal (2012) and Jackson and Watts (2002), consumers’ expectation of state variables
(such as the size of the network) in time t + 1 is their contemporaneous value, i.e. E [xt+1] = xt.
This is a standard assumption in the economics of networks, closely resembles our two-period
model, and is reasonable as the distance between periods decrease. Mechanically, the government
conducts a grid search over sequences of tax rates to maximize total surplus subject to satisfying a
budget requirement.

We simulate purchasing decisions for a durable good for n = 10, 000 individuals over six
periods.15 When an individual purchases the good, there is a one-time purchase price of amount
p. However, for each period in which the individual owns the good, the individual pays a tax of
amount τt. Consistent with Section 3.2, we select a CES functional form for the individuals’ utility
function. The individual’s utility from purchasing the good can be expressed as:

Uit1 = ((γ + α · st)
r + (y − p − τt + δ · st)

r)1/r + ϵit1

The first term describes the utility from owning the externality-producing good, where γ is the
private flow utility from owning the good (i.e., the utility from owning the good even if no one else
does), st is the share of the population who owns the good, α is the parameter that captures how
much the purchase decisions of j ∈ −i affect person i’s utility of consuming the good. If α = 0, this
is a regular private good. The second term captures the utility of consuming the numeraire good
(which by default is income net of expenditures on the externality-inducing good as we are not
modeling savings). To the extent that the durable good of interest yields atmospheric externalities,

14One avenue for future research is how mixed income-commodity taxation would respond if the network good is
complementary/substitutable for labor.

15The number of periods chosen is somewhat ad hoc but is not pivotal for our results. If we evaluate K possible tax
rates for each of T periods, we must calculate welfare for KT sequences of taxes. Therefore, increasing the number of
periods increases computation time by a factor of K.
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those effects are parameterized by δ. Substitution preferences are measured by r, income by y,
purchase price of the good by p, and the tax rate by τ. Finally, ϵit1 is an idiosyncratic preference
shock.

If the individual has purchased the good in a previous period, their flow utility is the same as
the above, except that they do not pay the purchase price p again. They do, however, pay the usage
taxes for every period they own the good. If the individual does not purchase the good, their utility
can be expressed as:

Uit0 = ((y + δ · st)
r)1/r + ϵit0 = y + δ · st + ϵit0

which is derived from the expression above where the individual gets none of the utility in
the first subset of parentheses, but also pays neither the tax nor the purchase price in the second.
Due to the CES form of the utility function, the expression collapses to be linear in income and the
atmospheric externality. As consumers use the time-t information set in their decision, the current
utility from purchasing the good becomes a sufficient statistic for the present discounted flow of
utility.16 While we explore adoption as a permanent state in some specifications, consumers in our
model generally have the option of free disposal and in this sense our results offer a lower-bound
as the potential gains from time-varying taxes.

Mechanically, the simulation proceeds as follows: in the first period, no one has the good,
implying st = 0. For each individual, we assume the idiosyncratic preference shocks are i.i.d. Type
1 Extreme Value, meaning that individuals purchase the good with probability:

p(Purchase) =
eUit1

eUit0 + eUit1

To simulate purchase decisions, we take a pseudo-random draw, ηit, from the U[0, 1] distribution.
If ηit > p(purchase), the individual purchases the good. At the start of the each successive period,
individuals observe the share of the population who currently own the good as a result of choices
in previous periods, and that information affects contemporaneous purchase probabilities.

In these simulations, the revenue requirement of the government serves as a constraint. We
assume a revenue requirement w̃ is necessary to finance government activities or provide a public
good and that the sum of taxes collected in considered periods must exceed that threshold, (Σtτt >

w̃). We do not model the provision of the public good (i.e., the expenditure decision). Rather, the
government’s objective is to satisfy the revenue constraint with minimal distortions. We simulate
this 10,000 agent, six period model for each possible sequence of taxes, conditional on a vector of
parameters θ:

τt ∈ {0, 0.1, 0.2, . . . , 0.9} , ∀t ∈ {1, . . . , 6}

We compare tax revenues and total consumer utility for the KT = 1, 000, 000 considered

16Valuing future flows would be an affine transformation of utility and could change the specific parameter values for
which dynamic taxation improves efficiency, but not the overall pattern of results.
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sequences of tax rates for a given vector of parameters, θ, using a grid search to find a discrete
approximation to the optimal tax sequence:

max
τ1,...,τ6

∑
t

∑
i

(
Uit|θ, ∑

t
τt > w̃

)
over a finite, bounded set of discrete values. As the objective is to explore the conditions under

which potential gains from dynamic taxation are greater or lesser, solving for a precise maximum
over a continuous set with infinite values adds minimal insight.

We simulate the model under two different assumptions about disposal costs that represent
feasible endpoints of the continuum when the government increases tax rates. The first assumes
that a purchase is an absorbing state; once an individual owns the good, they own the good for
the remainder of the simulated periods. This assumption is appropriate for cases where goods
come with contracts (e.g., mobile phones) or where disposal of the good would be prohibitively
costly. However, this enables the government to ‘bait and switch’ consumers in a sense with low
tax rates in early periods and high tax rates in later periods. We also simulate the model under
an alternative condition that represents the other end of the disposal cost continuum — where in
each period consumers may choose to discard the good at no cost.17 The probability of disposal
increases if taxes are increased.18 Under either set of assumptions about permanence or disposal
cost, because consumers enjoy flow utilities from the good without having to ‘re-purchase’ the
good each period, dynamic taxation may be welfare improving without consumption/network
externalities. We therefore simulate a comparison case for each set of parameters (r, p, γ, y) where
α = 0 to establish a baseline. Any gains from dynamic taxation in the presence of consumption
externalities, relative to this baseline, can be directly attributed to the dynamic effects of tax rates
and consumption externalities.

4.2 Quantifying Gains from Intertemporal Variation in Taxes

Tables 1 through 2 contain the results from conducting simulations with several sets of parameters,
to quantify potential welfare gains from dynamic taxation under different sets of parameters and
different strengths of the atmospheric and consumption externalities.

We choose two static tax rates, (τ̃1 = 0.3; τ̃2 = 0.5), as baselines for the purpose of comparison.
These rates are admittedly ad hoc, but were chosen because they are in the middle of the considered
range of values, allowing us to explore the effects of lower taxes in earlier periods and higher taxes
in later periods. For each sequence of taxes, we consider the sum of collected taxes and consumer
surplus over all six time periods. The collected revenue becomes the benchmark exogenous revenue

17The true other end of the continuum is that customers could costlessly resell the good on the secondary market at the
full price paid. However, market price would be an endogenous state variable determined by the number of individuals
who had purchased the good in previous periods and the disposal incentives induced by changes in taxes. Allowing
consumers to simply dispose of the good at a price of zero is a cleaner option that still permits insight on how disposal
costs factor into the gains from intertemporal variation in taxes.

18We use the mean utility from each good to produce logit probabilities for keeping the good, similar to the way we
introduced randomness in the purchase decision.
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requirement in the dynamic case. We then evaluate consumer surplus for all tax sequences that
collect tax revenues greater than or equal to the amount generated by static taxation. Among the tax
sequences considered in our discrete grid search, we focus our attention on the tax sequence τ⋆ that
yields maximum consumer utility, conditional on meeting or exceeding the revenue requirement.

We use two measures of change in welfare. First, we use percentage change in consumer surplus
from the baseline (τt = τ̃, ∀t ∈ 1, . . . , 6):

%∆CS =
(CS|τ⋆, θ)− (CS|τ̃, θ)

(CS|τ̃, θ)

However, dynamic taxation may lead to welfare gains in the absence of any externalities due to
the durable nature of the good. Therefore, this measure is likely to understate gains from dynamic
taxation that are specifically attributable to consumption externalities. When consumption/network
externalities are introduced, the parameter vector changes from θ to θ′. If consumption externalities
are positive (e.g., setting α = 1 rather than α = 0), then (CS|τ̃, θ′) > (CS|τ̃, θ). Positive network
externalities will therefore increase not just the numerator, but the utility for each and every tax
sequence considered. Because the denominator is increasing, this leads to understatement of the
importance of dynamic taxation when interpreting of these results.

As an alternative way of evaluating the magnitude of the gains from dynamic taxation, we
map the range of consumer surpluses generated by the grid of tax sequences into the [0, 1] interval
conditional on the specific values for α, p, γ, y, and r. We then evaluate how dynamic taxation
affects consumer surplus over that range, relative to the baseline case. Intuitively, this measure can
be thought of as “insofar as taxes affect consumer surplus, how much better off can time varying
taxation make consumers when network externalities are present?” We express this measure as:

Normalized Gains =
(CS|τ⋆, α, p, γ, y, r)− (CS|τ̃, α, p, γ, y, r)

max
τ

(CS|α, p, γ, y, r)− min
τ

(CS|α, p, γ, y, r)

One limitation of our analysis is the discreteness of state space. The 0.1 increments of the tax
space is quite stark. Consider a situation where the continuous-space optimal tax rate increases
from 0.26 to 0.34. In our discrete space, this will round to a constant tax rate of {0.3, 0.3}, but an
almost equivalent continuous-space optimum of 0.24 to 0.35 will round to {0.2, 0.4} in our setting.
While random shocks should even out with 10, 000 consumers, the interaction of shocks with
discrete space can lead to imprecision. We thus encourage readers to focus interpretation on broad
trends rather than details of any particular sequence.

5 Results from multi-period model

Results from these simulations provide insight on where dynamic taxation can increase consumer
utility, but also where these schemes can do unintended harm. The potential for dynamic taxation
to increase consumer utility while remaining at least revenue neutral is chiefly determined by the
strength of the network effect and the extent to which taxes are pivotal in purchase decisions.
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While many of the results explore the extent to which intertemporal variation in tax rates
can increase both consumer surplus and government revenues, there will obviously be parts of
the parameter space where intertemporal variation in taxes is not effective. This is an important
caveat, as the presence of network externalities does not necessarily imply that a dynamic taxation
scheme should be implemented. When atmospheric and network externalities have opposing signs,
some caution is recommended in implementing dynamic taxation. However, this section shows
that when certain conditions are met, dynamic taxation can Pareto-dominate a static tax scheme
baseline.

Panel A of Table 1 presents results from a set of parameters for which taxes are not that pivotal.
This vector of parameters creates a setting where intertemporal taxation plausibly could affect
consumer surplus, but has little empirical impact: substitution between the good of interest
and ‘other’ consumption is slightly inelastic (r = 0.8), the purchase price slightly exceeds the
private utility alone (p = 0.9, γ = 0.6), and income is large enough to keep all arguments in each
component of the utility function greater than one. Because the purchase price is greater than the
private valuation of the good, there is potential for network effects (and adoption rates induced by
tax policy) to matter.

There are several takeaways from Panel A. First, when disposal costs are prohibitive (or the
purchase decision is binding/permanent) dynamic taxation improves welfare with or without
network externalities. This is quite intuitive: prohibitive disposal costs make consumers less
responsive to taxes and thus make those taxes less distortionary. The Normalized gains in consumer
surplus are substantially lower when consumers have free disposal. As expected, the ability to
discard the good constrains the efficacy of suddenly raising taxes on consumers. Consequently it is
important to allow consumers to discard the good to discipline the results. Panel A makes it clear
that the optimal tax sequence exhibits less dramatic acceleration of tax rates when disposal of the
good is costless.

Focusing on those cases where consumers may discard the good, the gains of dynamic taxation
increase when network externalities are present (α > 0). In the τ̃t = 0.3 case, the gains to consumers
increase from 1.3% to 5.0% of the Normalized space (while satisfying the government revenue
constraint). We see similar but quantitatively larger effects when τ̃t = 0.5, with Normalized
consumer gains increasing from 1.3% to 7.2%.

This latter point reflects a general tendency. Note that when τ̃ = 0.5, dynamic taxation has more
potential to improve welfare than when τ̃ = 0.3. This is driven by some intuitive properties. First,
when τ̃ = 0.5, there is more space to cut taxes in the [0.0, 0.9] interval in earlier periods. Second,
one reason that intertemporal variation in taxes did not have as large an effect when τ̃ = 0.3 was
that taxes of that magnitude were simply not that pivotal: a large share of the agents were buying
the good anyway. When τ̃ = 0.5, conditional on the other parameters in the model, taxes have a
greater effect at the baseline. More broadly, the greater the revenue requirement and the higher the
tax rate, the more opportunity there is to pursue optimal taxation through dynamics when network
externalities are present.
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Panel B shows results from a simulation with almost identical parameters as Panel A, but where
purchase prices have increase from 0.9 to 1.5. Under the conditions in Panel A, a large share of
consumers were willing to buy the good irrespective of taxes. With a purchase price of 1.5, taxes
are more pivotal. From an initial purchase price of 1.5, a time invariant tax of τ̃ = 0.3 is enough
to inhibit network formation. Therefore when there is a larger gap between prices and private
valuations, dynamic subsidy/taxation has greater potential to increase consumer surplus.

With τ̃ = 0.3 and individuals are permitted to dispose of the good, the gains from dynamic
taxation are equal to 3.3 percent of the baseline case when α = 1, or 12.9 percent of the support of
CS gains attributable to taxation. When τ̃ = 0.5, time varying tax rates have the potential for even
larger gains in consumer surplus. Even with free disposal, a time-varying sequence of taxes can
increase consumer surplus by 5.2 percent over the baseline, or 18.6 percent of the considered range
of tax-related variation in consumer surplus.

Finally, note that most of the identified τ⋆ sequences in Panels A and B are only maxima because
they are constrained by the grid search over the [0, 1] interval by deciles. The optimal tax sequences
generally begin at the lower-bound, increase in periods 2–5 and reach the the upper-bound in the
last period.

Because the optimal sequences in Panels A and B are bound by corner solutions, we relax the
range of taxes in Panel C to span [−0.5, 0.4] in the first three periods and [0.3, 1.2] in the last three
periods.19 The bottom-left panel of Table 1 shows the optimal policy does induce government debt,
and that debt persists until the fourth period. Initial adoption is very high, with about twice as
many users consuming the good in the first period compared to the time-invariant baseline. Indeed,
the optimal tax schedule induces more users than the time-invariant schedule through the fifth
period. Only in the final period, when taxes are very high, does the number of users drop below the
baseline. By this late stage, the increased number of users (and the utility boost the large network
externality generates) has considerably increased welfare. The high tax rates in the final periods
ensure cumulative revenue in the optimal schedule surpasses the baseline in the final period.

Comparing Panel C’s results when α = 1 to the last row of Panel B, we see τ⋆ is still a smooth
escalation from maximum subsidy in the first period to the maximum tax rate in the last period.
We see an even greater gain in consumer surplus compared to the baseline case. When the set of
tax values is expanded to include subsidies in the early periods, dynamic taxation can increase
consumer surplus by 5.1 percent of the baseline, approximately 1.5 times larger than when the tax
sequences are constrained to [0.0,0.9]. In the presence of consumption externalities, expanding
the set of potential tax values to include subsidies further increases potential gains in consumer
surplus, compared to the case where tax rates are bounded below by zero.

Figure 1 provides a graphical summary to supplement the findings in Table 1’s Panel C. Figure
1 includes two charts, depicting behaviour in the default time-invariant case (solid line, a policy of

19This of course assumes governments have the ability to borrow, and at zero interest rates. Discount rates and
interest rates would not substantively affect our results. Consumers would benefit even more from low initial tax rates,
and governments would need to increase rates by more on the back-end to pay the interest. As long as consumption
externalities have the requisite strength, the qualitative implications are unchanged.
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Figure 1: Graphical contrast of consumption and cumulative tax revenue under baseline and
optimal tax schemes
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Figures show paths of the number of users cumulative tax revenue for the time-invariant case (solid line) and optimal
policy case (dashed line). We see initial subsidization of the network good encourages early adoption, and this facilitates
recouping foregone tax revenues in the final period. Panels depict outcomes for α = 1 and where consumers have the
option of free disposal. Similar patterns emerge with higher levels of α and/or a more binding revenue requirement.
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a constant tax rate of 0.3) and in the optimal tax sequence (dashed line). The charts depict outcomes
for α = 1 where consumers have the option of free disposal. The left panel of Figure 1 shows the
patterns of adoption under the two tax schemes. The optimal sequence encourages early adoption,
increasing the number of users of the good. We see substantially higher usage in the first five
periods, suggesting higher welfare. As well as creating consumer surplus through the network
externality’s positive effects on utility, this expands the tax base for the relatively high rates that
follow. However the strategy is not unambiguously better, as number of users is lower in the
last period when taxes are particularly high. The right panel of Figure 1 plots the cumulative tax
revenue over the six periods. The solid line shows a relatively consistent (and certainly monotonic)
increase in cumulative revenues over the entire period. In contrast, the initial subsidization from
the optimal tax system means the government runs a deficit for the first two periods. However,
the escalation of tax rates from the third period on means cumulative revenue quickly catches up
and by the final period marginally surpasses those raised in the time-invariant case. The higher
tax rates means the number of users tails off in the final periods, but not so much as to result in
lower overall welfare. Using the mechanism of reduced sensitivity to price increases, the planner
maximizes total welfare by increasing tax rates in later periods.

The level of differentiation of the good in question can also affect the potential for intertemporal
variation in taxes to increase consumer surplus under network externalities. While we do not
explicitly model product differentiation, the CES utility function allows us to adjust the extent to
which the composite numeraire good is a substitute for the externality generating good. These
results are available in Appendix C.

5.1 Dynamic Taxation under Atmospheric and Network Externalities

While the prior section implicitly treats the intertemporal development of the network as the
relevant externality, we now analyze a scenario that also includes atmospheric externalities.

In the absence of atmospheric externalities, we have seen that intertemporal variation in tax
rates can improve overall consumer surplus while increasing government revenues. When both
atmospheric and network externalities are of the same sign, the revenue-neutral gains to consumer
surplus from subsidizing/taxing the good in earlier periods increase in magnitude. However,
when the signs of the atmospheric and network externalities are opposing, the welfare implications
for dynamic taxation are a bit more nuanced.

Table 2 presents results with explicit incorporation of negative atmospheric externalities
concurrent with positive network externalities. In particular, Table 2 contains results from a
set of simulations where taxes are pivotal, the good is discardable, the parameter on the network
externalities is weakly positive (α ≥ 0), and the parameter on the atmospheric externalities are
weakly negative (δ ≤ 0).

When the good does not produce atmospheric externalities, the implications of time varying
taxation are the same as Table 1 Panel B: a weakly monotonically increasing sequence of taxes
that increases from the lowest value to the highest value improves consumer surplus by 4–8%
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Table 2: Simulation results incorporating explicitly dual atmospheric-consumption externalities

Panel A: (p = 1.5; γ = 0.6; r = 0.8; y = 4)
τ̃t = 0.3∀t τ̃t = 0.5∀t

α δ τ⋆ %∆CS Normalized τ⋆ %∆CS Normalized

0.0 0.0 0.0; 0.1; 0.2; 0.3; 0.4; 0.8 0.46 0.042 0.4, 0.2, 0.4, 0.5, 0.6, 0.9 0.39 0.031
0.5 0.0 0.0; 0.0; 0.1; 0.2; 0.5; 0.9 1.80 0.096 0.0, 0.2, 0.2, 0.7, 0.7, 0.9 1.99 0.101
1.0 0.0 0.0; 0.0; 0.0; 0.0; 0.7; 0.9 3.41 0.130 0.0, 0.0, 0.3, 0.5, 0.7, 0.9 5.15 0.184
1.5 0.0 0.0; 0.0; 0.0; 0.0; 0.6; 0.9 3.94 0.128 0.0, 0.0, 0.0, 0.6, 0.8, 0.9 7.56 0.227
2.0 0.0 0.0; 0.0; 0.0; 0.2; 0.4; 0.9 3.87 0.122 0.0, 0.0, 0.1, 0.6, 0.7, 0.9 7.87 0.237

0.0 -1.0 0.9; 0.9; 0.8; 0.4; 0.0; 0.0 0.64 0.103 0.9, 0.9, 0.9, 0.9, 0.5, 0.1 0.54 0.085
0.5 -1.0 0.3; 0.1; 0.1; 0.2; 0.3; 0.8 0.30 0.023 0.6, 0.2, 0.2, 0.5, 0.6, 0.9 0.29 0.022
1.0 -1.0 0.0; 0.0; 0.2; 0.2; 0.4; 0.7 1.92 0.091 0.0, 0.1, 0.2, 0.5, 0.8, 0.9 2.58 0.116
1.5 -1.0 0.0; 0.0; 0.0; 0.2; 0.4; 0.9 2.95 0.107 0.0, 0.0, 0.0, 0.6, 0.9, 0.9 5.01 0.169
2.0 -1.0 0.0; 0.0; 0.0; 0.3; 0.3; 0.9 3.10 0.102 0.0, 0.0, 0.0, 0.6, 0.9, 0.9 5.92 0.182

0.0 -1.5 0.9; 0.9; 0.9; 0.4; 0.0; 0.0 2.04 0.408 0.9, 0.9, 0.9, 0.9, 0.8, 0.0 1.90 0.377
0.5 -1.5 0.9; 0.9; 0.5; 0.1; 0.1; 0.3 0.67 0.062 0.9, 0.9, 0.9, 0.8, 0.6, 0.2 0.57 0.053
1.0 -1.5 0.0; 0.0; 0.0; 0.2; 0.5; 0.9 0.86 0.046 0.0, 0.3, 0.3, 0.4, 0.6, 0.9 1.03 0.052
1.5 -1.5 0.0; 0.0; 0.0; 0.2; 0.5; 0.8 2.18 0.086 0.0, 0.0, 0.0, 0.6, 0.9, 0.9 3.68 0.136
2.0 -1.5 0.0; 0.0; 0.0; 0.2; 0.4; 0.9 2.32 0.079 0.0, 0.0, 0.1, 0.5, 0.9, 0.9 4.47 0.143

0.0 -2.0 0.9; 0.9; 0.9; 0.9; 0.0; 0.0 3.58 0.684 0.9, 0.9, 0.9, 0.9, 0.9, 0.0 3.23 0.618
0.5 -2.0 0.9; 0.9; 0.9; 0.6; 0.0; 0.0 2.36 0.280 0.9, 0.9, 0.9, 0.9, 0.7, 0.1 2.21 0.258
1.0 -2.0 0.7; 0.2; 0.2; 0.2; 0.1; 0.7 0.20 0.013 0.9, 0.2, 0.4, 0.3, 0.6, 0.8 0.25 0.016
1.5 -2.0 0.0; 0.0; 0.0; 0.2; 0.5; 0.8 1.36 0.064 0.0, 0.1, 0.1, 0.5, 0.8, 0.9 2.06 0.092
2.0 -2.0 0.0; 0.0; 0.0; 0.1; 0.5; 0.9 1.87 0.099 0.0, 0.1, 0.1, 0.7, 0.7, 0.8 3.34 0.167

Notes: Each row within presents the welfare-maximizing tax sequence τ⋆ for given parameter values of unit price p,
flow utility γ, elasticity of substitution r, income y, and purely atmospheric externality δ. The α parameter represents the
intensity of the consumption externality. All simulations are run with n = 10, 000 consumers. Please refer to the text for

how we normalize the gains in consumer surplus.

(depending on the baseline) relative to a static sequence.
When δ = −1.0, however, the case for time varying taxation improving consumer surplus is

murkier. The case where α = 0 and δ = −1.0 is analogous to a classic polluting good. Taxing the
good at the highest rates in earlier periods reduces the number of consumers adopting the good,
thereby improving total consumer surplus. When α = 0.5 — when there are some positive network
externalities — the potential gains from time varying tax rates are simultaneously convoluted
and negligible. Finally, in the cases where α = 1.5 and higher, the welfare gains from network
externalities finally outweigh the negative atmospheric externalities in a substantive way. The tax
strategy that yields the largest gains in consumer surplus is therefore to not tax in earlier periods,
increase adoption rates, and tax more heavily once the network externalities are entrenched.

The last two sections of Table 2 contain results from scenarios with even larger negative
atmospheric externalities (δ = −1.5 and δ = −2.0). Here, we see that when network externalities
are relatively small, there are gains to consumer surplus from taxing the good heavily and early,
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compared to a static tax rate. When there are strong positive network externalities α ≥ 1.5, taxing at
lower rates in earlier periods improves consumer surplus while remaining at least revenue neutral.
However, there are also parts of the parameter space (e.g. 0 < α < 1) where the potential welfare
gains from dynamic taxation are minimal and the optimal strategy is unclear. Thus for goods with
economically significant atmospheric and consumption externalities of opposite signs, there is
certainly the potential for poorly considered dynamic taxation to do more harm than good.

While we view these results as broadly applicable from a qualitative perspective, we recommend
caution when interpreting the numeric specifics of these findings. All results from quantitative
models are conditional on assumptions about functional form and other parameters. In cases like
this where there are clear trade-offs, it is tempting to solve for an ’exchange rate’ between α and δ.
If we consider a good that produces atmospheric and consumption externalities of opposite signs,
what is the threshold ratio value of |α|

|δ| that gives clear guidance on when to subsidize the good
early on versus tax it out of existence? There are multiple correct answers for that value, all of
which depend on the context-specific assumptions about consumer utility.

5.2 Heterogeneous Agents and Pareto Optimality

In our quantitative model, we assume that agents are homogeneous except for taste shocks.
However, extensions for heterogeneous agents are relatively straight forward. For example, suppose
the good generates only a positive network externality, but that some share of the population sN is
never going to buy the good. If interpret this as due to differences in preferences, and some fraction
of society just do not enjoy the network good, the potential gains in utility from dynamic taxation
∆CSR are simply:

∆CSR = ∆CSU · (1 − sN)

where ∆CSU is the potential gains in consumer utility if everyone was a prospective adopter
and sN is the share that will never buy the good. As long as no one is made worse off by the network
good, dynamic taxation schemes are at least weakly Pareto improving. To the extent that the
efficiently generated revenue from the network good can crowd-out inefficient commodity taxes
(which are a common empirical reality) these schemes may be strictly Pareto improving.

However, there should be concerns about potential regressiveness of dynamic taxation when
some consumers are constrained (by income or other accessibility concerns) from purchasing the
good, and the good in has the properties like those in Table 2. In other words, if the good generates
positive network externalities, the temptation to encourage adoption through dynamic taxation
may exist. However, if the good produces negative atmospheric externalities, and (without loss of
generality) low income consumers cannot afford to join the network, a tax scheme that encourages
adoption will make those who cannot reap the benefits of network effects worse off.

Let us consider what conditions would need to be true to sufficiently compensate the non-users.
Consider a population of measure 1, with population share s who own the externality-generating
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good and (1 − s) who do not own the good. Denoting the parameter on the network externality
α∗ and the atmospheric externality δ∗, the total amount of disutility attributable to negative
atmospheric externalities experienced by non-users is equal to:

(1 − s) (U(·|δ = δ∗)− U(·|δ = 0))

or the share of the population that are non-users times the per-individual disutility from the
negative externality. In the CES functional form above, the per-person disutility from the negative
externality, (U · |δ = δ∗) − U(·|δ = 0)) = s · δ∗. The total disutility imposed by the negative
atmospheric externality on the population of non-users is therefore (1 − s) · s · δ∗.

From the positive network externality, the general form for the total amount of utility attributable
to the positive network externality experienced by users is equal to:

s · (U(·|α = α∗)− U(·|α = 0))

In the CES utility function considered here, (U(·|α = α∗)− U(·|α = 0)) ≥ s · α∗. For the next
step, we briefly treat that weak inequality as an equality, and claim that the total utility experienced
by users of the network good to network externalities is equal to s · s · α.

Putting these two expressions together under the specification in this paper, the total utility
generated from the network externality for users is greater than the disutility from the atmospheric
externality imposed on non-users if:

s · α > (1 − s) · δ or
α

δ
>

(1 − s)
s

If this is true, the total surplus accrued by users from the network is sufficient to where each
non-user can be effectively held harmless from the negative atmospheric externality with a transfer
at least equal to sδ pooled from the users of the externality generating good. Because in our
specification, (U(·|α = α∗)− U(·|α = 0)) ≥ s · α∗, this condition is excessively strict. Interpreting
the above inequality, assume there are a large share of users, s ≈ 0.8. In this case, there are
approximately four users for every non-user. Even if the parameter on the atmospheric externality
is larger than the parameter on the network externality, if the government can arrange transfers
from users to non-users, the transfers per-user will not be large enough to negate the network
externalities enjoyed by users. However, we emphasize that this is a necessary condition for the
existence of transfers that can off set any regressive effects of dynamic taxation, but by no means a
sufficient condition for transfers to be feasible.

5.3 Dynamic Taxation and Network Externalities with a Monopolist Firm

In this paper, we have so far assumed that the industry of the network good is perfectly competitive,
because it allows us to focus on the government’s optimization problem. In reality, however, firms
in emerging markets (with or without network externalities) have considerable market power, and
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will set prices to maximize profits.
In this section we run an additional set of simulations to verify that dynamic taxation can

improve the efficiency of tax collection when the firm is a monopolist and the good yields network
externalities. We use a similar framework as in previous simulations: 10,000 representative agents
with an income endowment of 4, choose whether or not to buy a durable good. At the time
consumers make their decision on whether to purchase the good, they have the same utility
function, preference shocks, and information set as before (share of the population owning the
good, current prices and tax rates). As in previous examples, the purchase price is incurred by the
consumer once, but any ownership taxes are levied each period in which the customer owns the
good. In each period, the consumer has the ability to discard the good at no cost.

While in previous simulations we searched over a grid of sequences of tax rates for the highest
value of total consumer utility, now we are searching over a grid of sequences of prices looking
for the sequence that maximizes profit. In these simulations, the government is the first to act in
preannouncing a sequence of tax rates. We consider two cases:

τt = 0 ∀t ∈ {1, . . . , 6}
τt = {−0.5,−0.5, 0, 0, 0.5, 0.5}

(29)

In words, the two cases are: (i) zero taxes for six periods; and (ii) initial subsidization (τ = −0.5)
for two periods, two periods of zero taxes, and two periods of strictly positive taxes (τ = 0.5).
Once the government specifies these tax rates, the monopolist then searches over an array of price
sequences, pt ∈ [1.0, 3.0] ∀t ∈ {1, . . . , 6}, for the sequence that maximizes profit. Panel A of Table 3
shows results from these simulations, comparing the total consumer utility, profit, and government
revenue collected under the two tax sequences for values of α ∈ {0, 1, 2}.

The qualitative implications for dynamic taxation for efficient revenue generation are similar
to those under perfect competition. When the good does not yield network externalities, the time
varying tax sequence is less than revenue neutral. However, when α = 1, a sequence of taxes where
the good is subsidized in the first two periods and taxed in the last two periods by an equal rate
raises strictly positive revenue and increases producer surplus without sacrificing consumer utility.
In short, when the firm has market power and network effects are strong enough, dynamic taxation
can efficiently generate revenue while increasing total surplus. If we consider the ’effective rate’
as the amount of revenue collected divided by the revenue from the sales of the durable good,
dynamic taxation enables the government to have a 7.9% tax rate under these conditions.

When α = 2, the network effects are sufficiently strong so that the ad hoc dynamic taxation
increases consumer utility by almost 3% compared to a tax rate of zero in all periods. Profits also
increase by 2.5% and the government raises revenue with an effective rate of 16%. Note also that in
the sequences of profit maximizing prices, the firm with market power increases (decreases) its
prices by $0.20 in periods when the $0.50 subsidy (tax) is in place.

Panel B reports results from simulations similar to Panel A, but comparing outcomes from
profit maximizing behavior under a static tax rate of τ̃ = 0.3 to a time-varying sequence τ =
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Table 3: Simulation results for dynamic taxation when the firm is a monopolist

Panel A: (γ = 0.2; r = 0.8; y = 4) τ̃ = 0.0
α tax scheme price sequence utility profit tax revenue effective rate

0 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0} {1.8, 1.8, 1.8, 1.6, 1.6, 1.4} 231968.4 16504.6 0.0 0.0
0 {−0.5,−0.5, 0.0, 0.0, 0.5, 0.5} {2.0, 1.8, 1.8, 1.8, 1.4, 1.2} 232000.9 17024.2 -415.5 -2.44%

1 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0} {1.8, 1.8, 2.0, 2.0, 1.8, 1.6} 247329.4 16504.6 0.0 0.0
1 {−0.5,−0.5, 0.0, 0.0, 0.5, 0.5} {2.0, 2.2, 2.0, 1.8, 1.6, 1.4} 247490.6 20570.0 1629.0 7.92%

2 {0.0, 0.0, 0.0, 0.0, 0.0, 0.0} {1.8, 2.2, 2.4, 2.4, 2.2, 2.0} 270931.5 23573.4 0.0 0.0
2 {−0.5,−0.5, 0.0, 0.0, 0.5, 0.5} {2.0, 2.4, 2.4, 2.4, 2.0, 1.8} 278454.5 24177.4 3855.5 15.94%

Panel B: (γ = 0.2; r = 0.8; y = 4) τ̃ = 0.3
α tax scheme price sequence utility profit tax revenue effective rate

0 {0.3, 0.3, 0.3, 0.3, 0.3, 0.3} {1.8, 1.6, 1.6, 1.6, 1.4, 1.2} 228230.1 13789.0 4717.5 34.21%
0 {−0.2,−0.2, 0.3, 0.3, 0.8, 0.8} {1.8, 1.8, 1.6, 1.4, 1.4, 1.2} 228345.6 14350.4 4201.1 29.27%

1 {0.3, 0.3, 0.3, 0.3, 0.3, 0.3} {1.6, 1.6, 1.6, 1.6, 1.6, 1.4} 238474.4 17114.8 6923.1 40.45%
1 {−0.2,−0.2, 0.3, 0.3, 0.8, 0.8} {1.8, 1.8, 1.6, 1.6, 1.4, 1.4} 238639.7 17753.6 8044.7 45.31%

2 {0.3, 0.3, 0.3, 0.3, 0.3, 0.3} {1.4, 1.8, 2.0, 2.0, 2.0, 1.8} 262919.3 20813.6 9012.9 43.30%
2 {−0.2,−0.2, 0.3, 0.3, 0.8, 0.8} {1.8, 2.0, 2.0, 2.0, 1.6, 1.6} 265508.5 21252.2 13202.1 62.12%

{−0.2,−0.2, 0.3, 0.3, 0.8, 0.8}. This sequence represents an ad hoc reduction in taxes by 0.5 in the
first two periods, but raises taxes by 0.5 in the last two periods. Similar to results in Panel A, when
there are no network effects, intertemporal variation in taxes reduces collected revenue. When
there are moderate network effects (α = 1), the sequence of taxes with the initial subsidy and raised
rates in later periods leads to greater revenue collections and slight increases in total consumer
utility and profit. Finally, when network effects are sufficiently strong (α = 2), dynamic taxation
is Pareto improving. All parties (consumers, firms, and government) better off under the initial
subsidy and subsequent elevated rates compared to a time-invariant sequence of tax rates.

6 Conclusion

This paper studies how a planner would choose that tax rate for goods with dual atmospheric-
network externalities. Beyond theoretical interest, it is likely that such products will be a large
source of government revenue in coming decades.20

We develop a model of optimal taxation where the demand for an externality-generating good is
affected by its own consumption. This setting is applicable quite broadly: to modern network goods
like phones, social networks and operating systems, but also to a variety of other important non-
traditional network products like exhaust-emitting automobiles and fashionable clothing. Indeed
any component of the utility function which is affected the society’s total level of consumption can

20For example, France began collecting a 3% digital services tax in December 2020.
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be investigated with this model.
The solution to the model generalizes previous results from the literature, including those of

Pigou (1920), Ramsey (1927), and Sandmo (1975). The tax rate comprises three additively separable
factors related to substitution elasticities, the magnitude of the direct externality, and the effect
of the externality on consumption behavior. Negative atmospheric externalities should be taxed,
and we show that the optimal tax rate is higher if the externality lowers utility from private
consumption. Equivalently, the optimal tax rate is lower if the externality increases the utility from
private consumption. If the network effects are strong enough, the optimal policy may even be to
subsidize goods that generate negative atmospheric externalities.

Anticipating growth in the number of dual atmospheric-consumption goods in the economy,
we investigate if the government should tax early-stage goods differently to well-established ones.
Alternatively stated, we ask if the optimal taxation of these goods is static through time. We find
that it is not. In both a two-period theoretical model and a six-period quantitative model, simulating
consumer choices for a spectrum of potential tax rates and finding the sequence that maximizes
total surplus, we show that it can be optimal to subsidize these goods in early periods. This finding
holds even when the goods come with free disposal. Incentivizing early adoption makes consumer
less sensitive to subsequent tax increases, lowering excess burden in the long-run. Relative to a
static baseline, initial subsidization can be revenue-neutral and welfare-enhancing.

We end on three points. Firstly, while our simulations have shown cases where time-varying
taxes in general and initial subsidization in particular can delivery substantial gains, we also
demonstrate several parameter values where this is not true. Secondly, the real-world pattern of
internet goods only becoming part of the tax base after their widespread use can be interpreted
as an approximation to the infant industry argument. Thirdly, we note a potential application of
our work to the public policy of pandemics. One does not typically consider indoor dining to have
network properties. When the spread of disease is a significant feature of the world, activities like
indoor dining gain characteristics of a network bad. Future work could analyze optimal taxation
under these conditions.
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A Appendix: Numerical Solution to Two-Period Model

Finishing Equilibrium Characterization To fully solve the model we will need to use the Implicit
Function Theorem on the implentability constraints. For ease of notation, define Eyx as the elasticity
of x with respect to y. For example, Eτ1 z1 ≡ ∂z1/∂τ1

z1
. Begin with

(1 + τ1) =
1 − θ

θ

(
z1

f (c1, X1)

)1−ρ ∂ f (c1, X1)

∂c1
+ β

(
u2

u1

)1−ρ ( z2

z1

)ρ−1

With respect to τ1 we have

1 = (1 − ρ)
1 − θ

θ

(
z1

f (c1, X1)

)1−ρ ∂ f (c1, X1)

∂c1

[
Eτ1 z1 − Eτ1 f (c1, X1) +

1
1 − ρ

Eτ1

∂ f (c1, X1)

∂c1

]

+ β (1 − ρ)

(
u2

u1

)1−ρ ( z2

z1

)ρ−1

∂u2/∂τ1

u2
− ∂u1/∂τ1

u1
+

∂z2/∂τ1

z2
− ∂z1/∂τ1

z1︸ ︷︷ ︸
A

 (30)

In order to simplify A, we derive the following:

∂u2

∂τ1
=

∂

∂τ1

[
θzρ

2 + (1 − θ) f (c2, X2)
ρ]1/ρ

= u1−ρ
2

[
θzρ

2Eτ1 z2 + (1 − θ) f (c2, X2)
ρ Eτ1 f (c2, X2)

]
so that

∂u2/∂τ1

u2
=

θzρ
2

θzρ
2 + (1 − θ) f (c2, X2)

ρ Eτ1 z2 +
(1 − θ) f (c2, X2)

ρ

θzρ
2 + (1 − θ) f (c2, X2)

ρ Eτ1 f (c2, X2)

Similarly

∂u1/∂τ1

u1
=

θzρ
1

θzρ
1 + (1 − θ) f (c1, X1)

ρ Eτ1 z1 +
(1 − θ) f (c1, X1)

ρ

θzρ
1 + (1 − θ) f (c1, X1)

ρ Eτ1 f (c1, X1)

Therefore A can be simplified into

A =
(1 − θ) f (c2, X2)

ρ

θzρ
2 + (1 − θ) f (c2, X2)

ρ [Eτ1 f (c2, X2)− Eτ1 z2]−
(1 − θ) f (c1, X1)

ρ

θzρ
1 + (1 − θ) f (c1, X1)

ρ [Eτ1 f (c1, X1)− Eτ1 z1]

Plugging this back into 30 and using β
(

u2
u1

)1−ρ ( z2
z1

)ρ−1
= 1 + τ1 − 1−θ

θ

(
z1

f (c1,X1)

)1−ρ ∂ f (c1,X1)
∂c1
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we get

1 − (1 − ρ) (1 + τ1)Φ2,τ1 = (1 − ρ)
1 − θ

θ

(
z1

f (c1, X1)

)1−ρ ∂ f (c1, X1)

∂c1
[Φ1,τ1 − Φ2,τ1 ] (31)

Φ1,τ1 ≡ Eτ1 z1 − Eτ1 f (c1, X1) +
1

1 − ρ
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ρ
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We have a similar result with respect to τ2:
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θ
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z1
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We now turn to the second implentability constraint:
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̸= 0. Then we have
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Note that

Eτ2

∂ f (c2, X2)

∂c2
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= (1 − ρ) [Eτ1 f (c2, X2)− Eτ1 z2]
∂c2/∂τ2

∂c2/∂τ1

Thus
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Equilibrium Characterization Given functional forms and parameters, equilibrium consists
of endogenous variables

{
c1, z1, c2, z2, τ1, τ2, ∂c1

∂τ1
, ∂c2

∂τ1
, ∂z1

∂τ1
, ∂z2

∂τ1
, ∂c1

∂τ2
, ∂c2

∂τ2
, ∂z1

∂τ2
, ∂z2

∂τ2

}
which can be solved

using

1. IFT on implementability constraints (x4)

2. Household budget constraints + IFT (x6)

3. Revenue constraint + IFT (x3)

4. Government Eulers (x2)

However in practice the system may be numerically solved searching over
{

τ1, τ2, ∂c1
∂τ1

, ∂c2
∂τ1

, ∂c1
∂τ2

}
. All

others can be analytically written as functions of these five inputs. Note that equation 26 can be
used to analytically solve for ∂c2

∂τ2
. We assume that τ1 ≥ −1, τ2 > −1, and that each of the three

partials are less than zero. Equations used to solve this system are 25, 31, 32, 33, and 34. We use a
derivative-free numerical optimization routine to minimize the sum of squared errors in the five
equations subject to the nonlinear constraints given in Proposition 2.
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B Appendix: Two Period Model Additional Propositions

Proposition 3. Assume Λ < 1, ∂c1
∂τ2

< 0, and ∂c2
∂τ1

> 0. Further, assume that own-price elasticities of the
network good are negative. Then dynamic taxation is welfare improving if

∂c2

∂τ1
× ∂c1

∂τ2
<

1 − Λ
Λ (H1H2 − 1)− (H1 − 1)

∂c1

∂τ1
>

[(1 − Λ) (H1 − 1) + ΛH1 (H2 − 1)] ∂c1
∂τ2

− Λ (1 − Λ) (H2 − 1) ∂c2
∂τ2

(1 − Λ)2 (H1 − 1) ∂c1
∂τ2

+ Λ (H2 − H1 + Λ (H1 − 1) H2)
∂c2
∂τ2

∂c1

∂τ1
< −

(1 − Λ)
[
(1 − Λ) (H1 − 1) ∂c1

∂τ2
+ Λ (H2 − 1) ∂c2

∂τ2

]
∂c2
∂τ1

(1 − Λ)2 (H1 − 1) ∂c1
∂τ2

+ Λ (H2 − H1 + Λ (H1 − 1) H2)
∂c2
∂τ2

H2 <
1
Λ

and 


H1 > (1−Λ)H2

1−ΛH2
and

∂c1
∂τ2

< −
Λ[Λ(H1−1)H2+H2−H1]

∂c2
∂τ2

(1−Λ)2(H1−1)
and

or

(1−Λ)H2
1−ΛH2

≥ H1 > 1−Λ
1−ΛH2

If Λ > 1, the condition is satisfied if

∂c2

∂τ1
× ∂c1

∂τ2
<

1 − Λ
Λ (H1H2 − 1)− (H1 − 1)

∂c1

∂τ1
>

[(1 − Λ) (H1 − 1) + ΛH1 (H2 − 1)] ∂c1
∂τ2

− Λ (1 − Λ) (H2 − 1) ∂c2
∂τ2

(1 − Λ)2 (H1 − 1) ∂c1
∂τ2

+ Λ (H2 − H1 + Λ (H1 − 1) H2)
∂c2
∂τ2

∂c1

∂τ2
<

Λ (H2 − 1) ∂c2
∂τ2

(Λ − 1) (H1 − 1)

C Additional Simulations

Panel A in Table 4 presents results from a simulation with the same parameters as 1 Panel B, but
setting r = 1. This implies the externality generating good and the numeraire are perfect substitutes.
Although we specify the disposal costs as prohibitive (the purchase is permanent) the gains from
dynamic taxation are relatively small (1.15 percent), even when the network externalities are very
strong (α = 2.0)

Panel B depicts a scenario where the numerarire good is a far less perfect substitute for the
externality generating good (r = 0.5) but also imposes that the externality generating good yields
utility only through the network (private flow utility γ = 0). In this case, when α = 0.0, consumer
surplus is increased by sequences that discourage consumers from buying the good, as the good
is essentially worthless. High tax rates in this scenario helps prevent agents from succumbing to
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preference shocks and purchasing a good that generates no utility. However, when α = 1, dynamic
taxation strongly improves welfare over the baseline cases of τ̃ = 0.3 and τ̃ = 0.5. These gains from
dynamic taxation can be attributed purely to the presence of those network effects.

The simulation results in Panel C in Table 4 depict a case where dynamic taxation increases
consumer surplus while remaining at least revenue neutral compared to the benchmark case. In this
case, the network externality is not responsible for added value. Rather any/all gains are derived
from incentivizing individuals to purchase the durable good (for which demand is inelastic) early
on.

These simulations show that time-varying tax schedules improve welfare when taxes are pivotal
and when there are positive network externalities. When the structure of the problem is such that
dynamic taxation schedules improve welfare for private goods, those improvements are increasing
in the strength of the network externality. Some parameterizations, particularly those where the
distribution of purchase probabilities is nearly degenerate, leave little room for consumption
externalities to yield gains through dynamic taxation. In many cases, consumption externalities can
create room for dynamic taxation if the α parameter is large enough. Whether those large values
are reasonable depends on the particular good or market being considered.
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