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ABSTRACT 

This article presents a new model of collateralization. We study the economic impact of 

collateralization on the plumbing of financial system. The model gives an integrated view of different 

collateral arrangements. We show that the effect of collateral on asset prices is significant. Our study 

shows that a poorly designed collateral agreement can actually increase credit risk. We find evidence that 

collateral posting regimes that are originally designed and utilized for contracts subject to bilateral credit 

risk (e.g., a swap) may not work properly for contracts subject to multilateral credit risk (e.g., a CDS) in 

the presence of default correlations. These findings contradict the prevailing beliefs in financial markets 

about collateralization. 

 

Key Words: collateralization, collateral posting, credit support annex, credit risk modeling, the 

plumbing of financial system, derivatives valuation subject to credit risk. 

 

JEL Classification: E44, G21, G12, G24, G32, G33, G18, G28 



 1 

 

 

 

 

 

Collateralization is an essential element in the so-called plumbing of the financial system that is the 

Achilles' heel of the global financial structure. It allows financial institutions to reduce economic capital 

and credit risk, free up lines of credit, and expand their range of counterparties. All contribute to the 

growth of financial markets. The benefits are broadly acknowledged and affect dealers and end users, as 

well as the financial system generally.  

The posting of collateral is regulated by the Credit Support Annex (CSA) that specifies a variety 

of terms including the threshold, the independent amount, and the minimum transfer amount, etc. The 

threshold is the unsecured credit exposure that a party is willing to bear. The minimum transfer amount is 

the smallest amount of collateral that can be transferred. The independent amount plays the same role as 

the initial margin in a collateral agreement and can be regarded as a negative threshold (over-

collateralization). That is the reason why people in the financial industry often refer to collateralized 

contracts (or instruments or products) as CSA contracts and non-collateralized contracts as non-CSA 

contracts.  

The use of collateral in the financial markets has increased sharply over the past decade, yet it has 

received surprisingly little attention in the finance literature. Collateral management is often carried out in 

an ad-hoc manner, without reference to an analytical framework. Very little academic research has been 

done to quantitatively assess the economic implications of collateralization. Such a quantitative analysis is 

the primary contribution of this paper. 

 Johannes and Sundaresan (2007) analyze collateralized interest rate swaps (IRS) and predict that 

observed swap rates should stand above the rates implied by the portfolio of forward contracts and below 

the rates obtained from equating a swap with a portfolio of future contracts. They make several 
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assumptions and simplifications: First, the default events of both counterparties are conditionally 

independent. Second, both counterparties have the same credit quality. Finally, swaps are fully 

collateralized.  

Ottonello, etc. (2022) study the design of macroprudential policies based on quantitative 

collateral-constraint models and find the desirability macroprudential policies critically depends on the 

specific form of collateral used in debt contracts.  Bianchi, etc. (2020) develop a quantitative model that 

focuses on collateral inefficiencies arising from prices that affect borrowing limits and individual agents 

not internalizing such price effects.  

Devereux, etc. (2019) analyze how predictions of collateral-constraint models 

very with different timing assumptions. Du, etc. (2023) investigate how market 

participants price and manage counterparty credit risk using confidential trade 

repository data on single-name CDS transactions. 

According to the International Swap Dealers Association (ISDA) Margin Survey (ISDA (2010)), 

the collateralized percentages for the credit derivatives (97%) and fixed income derivatives (84%) 

markets are substantially higher, whereas for the equity (68%), foreign exchange (63%), and commodities 

(62%) markets the levels are lower. These differences reflect the riskiness of the underlying trades. Some 

markets such as equity or foreign exchange are spot or very short-dated and thus present lower risk that is 

not practical or economic to secure with collateral. Other markets, such as commodities, use collateral 

selectively but may employ other forms of credit protection such as letters of credit instead. Since not all 

instruments need to be secured by collateral, a counterparty portfolio consisting of various transactions in 

different markets is most probably subject to partial-collateralization because some transactions are 

collateralized but others are not. 

Upon default and early termination, the values due under the ISDA Master Agreement are 

determined. These amounts are then netted and a single net payment is made. All of the collateral on hand 

would be available to satisfy this total amount, up to the full value of that collateral. In other words, the 
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collateral to be posted is calculated on the basis of the aggregated value of the portfolio, but not on the 

basis of any individual transaction. Since a counterparty portfolio is, in most cases, subject to partial-

collateralization, studying partial-collateralization is even more important than studying full-

collateralization.  

One of the central tenets of modern financial economics is the necessity of some trade-off 

between risk and expected value. This paper addresses several essential questions concerning the posting 

of collateral. First, how does collateralization affect expected asset prices? To answer this question, we 

develop a comprehensive analytical framework for pricing collateralized financial contracts. To the best 

of our knowledge, this is the first study that attempts to examine the economic significance and 

implications of different (partial-, full-, and over-; unilateral and bilateral) collateral arrangements in a 

unified way. 

Credit risk may be unilateral, bilateral, or multilateral. Some financial instruments, such as, debt 

products (e.g., loans, bills, notes, bonds, etc.), by nature contain only unilateral credit risk because only 

the default risk of one party appears to be relevant. Whereas some other instruments, such as, over the 

counter (OTC) derivatives, securities financing transactions (SFT), and credit derivatives, bear bilateral or 

multilateral credit risk because two or more parties are susceptible to default risk. 

From the perspective of collateral obligations, collateral arrangements can be unilateral or 

bilateral. In unilateral arrangements, only one predefined counterparty has the right to call for collateral. 

Unilateral agreements are generally used when the other counterparty is much less creditworthy. In 

bilateral arrangements, on the other hand, both counterparties have the right to call for collateral. Bilateral 

agreements become increasingly popular. 

In this paper, we will focus on the three most common cases: i) unilateral collateralization against 

unilateral credit risk, ii) bilateral collateralization against bilateral credit risk, and iii) bilateral 

collateralization against multilateral credit risk; but the general methodology is equally applicable to other 

situations as well. Our analysis shows that the posting of collateral indeed has a significant effect on the 

pricing of assets. 
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The amount of collateral is determined by a discontinuous and state-dependent indicator function 

that is the root cause of the complexity of collateralized valuation. We find that collateralized contracts 

normally have backward recursive natures and require backward induction valuations. 

Second, how does collateralization affect risk, and does it always reduce credit risk? To answer 

this question, we conduct an extensive quantitative study and reveal some important findings, e.g., 

although many people in financial markets believe that collateralization can always mitigate credit risk, 

we show that a poorly designed and analyzed collateral arrangement can actually increase credit risk. 

Collateralization provides protection in the event of a default, since the collateral taker has 

recourse to the collateral asset and can thus make good some or all of the loss suffered. The collateral 

amount should be greater than the recovery value at default. Otherwise collateralization becomes 

meaningless, because the non-default party would rather receive the recovery value than take the 

collateral when a default occurs. Equivalently, the value of a collateralized portfolio should exceed the 

value of the same portfolio without collateralization. Based on this principle, we derive an upper bound 

on the collateral threshold. If the real collateral threshold is less than this upper bound, the collateral 

arrangement can improve default recovery and mitigate credit risk as intended. If the real collateral 

threshold exceeds this upper bound, the collateral arrangement can actually deteriorate default recovery 

and aggravate credit risk. This is a perfect example of how good intentions may turn into bad outcomes. 

These results further emphasize the importance of carefully designing and quantifying collateral 

arrangements.  

Third, can full-collateralization eliminate counterparty risk completely? The answer depends on 

what type of credit risk one may encounter. We find that full-collateralization can get rid of counterparty 

risk entirely for contracts subject to unilateral or bilateral default risk, e.g., an IRS. This result is 

consistent with the current market practice in which market participants commonly assume fully 

collateralized swaps are risk-free and it is common to build models of swap rates assuming that swaps are 

free of counterparty risk. However, we may not reach the same conclusion for contracts subject to 

multilateral credit risk, e.g., a credit default swap (CDS). 
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A CDS is a trilateral defaultable contract where the three parties are the protection buyer, the 

protection seller, and the reference entity. A CDS contract is normally used to transfer the credit risk of 

the reference entity between two counterparties. The contract reduces the credit risk of the reference 

entity but gives rise to counterparty risk. The risk circularity that transfers one type of risk (reference 

credit risk) into another (counterparty credit risk) within the CDS market is a concern for financial 

stability. The role of CDS in the 2007-2010 financial crisis has been heavily criticized. The total notional 

amount of outstanding CDS contracts fell from $62.2 trillion at the end of 2007 to $26.3 trillion in the 

middle of 2010. Following the financial crisis, almost all CDS contracts are fully collateralized. People 

believe that fully collateralized CDS contracts would guarantee that there should be no risk of failure to 

pay. 

Collateral posting regimes are originally designed and utilized for contracts subject to bilateral 

credit risk (e.g., an IRS), but there are many reasons to be concerned about the success of collateral 

posting in offsetting the risks of contracts subject to multilateral credit risk (e.g., a CDS). First, the values 

of CDS contracts tend to move very suddenly with big jumps, whereas IRS prices are far smoother and 

less volatile than CDS prices. Second, CDS spreads/premia can widen very rapidly. The amount of 

collateral that one party is required to provide at short notice may, in some cases, be close to the notional 

amount of the CDS and may therefore exceed that party’s short-term liquidity capacity, thereby triggering 

a liquidity crisis. Third, CDS contracts have many more risk factors than IRS contracts have. In this paper, 

we provide a profound analysis of the role of collateral in the CDS market and find that full-

collateralization actually cannot neutralize counterparty risk completely for a CDS in the presence of 

default correlations. These findings contradict a prevailing belief in financial markets that full-

collateralization can always eliminate counterparty risk utterly. 

Fourth, how can one adjust a collateral arrangement when things go contrary to his wishes? For 

example, if the collateral threshold exceeds the upper bound, the collateral arrangement actually becomes 

harmful. There are two ways to reduce the collateral threshold: i) reducing the number of non-CSA 

transactions in a portfolio or ii) collateralizing entire counterparty relationships rather than particular 
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products and then decreasing the threshold accordingly. The first solution may require multiple master 

agreements between two parties. Although it is common to use a number of different master agreements 

to govern a trading relationship with the same party under different jurisdictions, the use of separate 

master agreements under the same jurisdiction may not be a good practice since it may create some legal 

uncertainty. The second solution not only offers more flexibility to accomplish a desired collateral 

arrangement but also promotes greater operational and capital efficiency. The results are consistent with 

the recent practice where there is a trend in the privately negotiated derivative markets towards 

collateralizing entire counterparty relationships rather than particular products. 

Fifth, what is the time-variation in the impact of different collateral arrangements? What is the 

actual variation across the different assets? Empirically, we find strong evidence that collateralization 

affects swap rates and CDS premia. The effects are time varying. The difference (spread) between the 

partially collateralized asset and the risk-free asset reflects the cost of bearing unsecured credit risk, 

whereas the difference between the over collateralized asset and the risk-free asset represents the benefit 

of taking over-secured credit risk. The cost or benefit increases as counterparty credit quality deteriorates. 

When counterparty risk is low, fully collateralized assets, partially collateralized assets, and over 

collateralized assets are almost coincident. However, when counterparty risk soars, the differences 

between differently collateralized assets surge, and then reach the peaks during the financial crisis. These 

empirical results are in line with economic intuition and corroborate our theoretical analysis. 

Finally, we study the impact of counterparty risk on collateralized swap rates and collateralized 

CDS premia. Although there is a significant relation between counterparty risk and the cost of 

collateralized borrowing, we show that the effect on collateralized swap rates is relatively small. For a 10-

year partially collateralized IRS, an increase in the floating-rate payer’s credit spread of 100 basis points 

(bps) translates into a 2 bps decline in the swap rate, while a rise in the default correlation of 0.1 (1000 

bps) only results in a 0.1 bps decrease in the swap rate. We also show that the impact of a dealer’s credit 

risk on a CDS premium is small, whereas the effect of the default correlation between a dealer and a 

reference entity on a CDS premium is substantial. For a 5-year partially collateralized CDS, the CDS 
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premium decreases by a 0.2 bps for every 100 bps that the dealer’s credit spread increases, whereas the 

CDS premium declines 21 bps for an increase in the default correlation of 0.1. 

It is worth noting that the impact of the default correlation between the dealer and the reference 

entity on the collateralized CDS premium is much more significant than that on the non-collateralized 

CDS premium (e.g., an increase in the default correlation of 0.1 maps into a 21 bps decline in the 

collateralized CDS premium, but only into an 8.3 bps decrease in the non-collateralized CDS premium). 

These results clearly support our theoretical prediction that collateral arrangements that are originally 

designed and utilized for contracts subject to bilateral credit risk (e.g., an IRS) may not function correctly 

for contracts subject to multilateral credit risk (e.g., a CDS) in the presence of default correlations. 

The remainder of this paper is organized as follows: Section 1 presents a simple example to 

illustrate the basic ideas. Section 2 discusses unilateral collateralization against unilateral credit risk. 

Section 3 elaborates bilateral collateralization against bilateral credit risk. Section 4 describes bilateral 

collateralization against multilateral credit risk. The conclusions and discussion are provided in Section 5. 

All proofs and some detailed derivations are contained in the appendices. 

  

1. A Simple Example 

Consider a generic financial contract that promises to pay a 0TX  from party B to party A at 

maturity date T, and nothing before date T. The contract can be a transaction or a portfolio. We assume 

that party A is default-free, whereas party B is defaultable. This is a unilateral credit risk case where only 

the default risk of party B is relevant. Let valuation date be t where Tt  . In this paper, all calculations 

are from the perspective of party A.  

The risk free value of the financial contract is given by 

 










−==  T

T

tT
F XduurEXTtDEtV )(exp),()(          (1) 
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where []E  denotes the risk-neutral expectation, ),( TtD  denotes the risk-free discount factor at t for the 

maturity T, and )(ur  denotes the risk-free short rate at time u ( Tut  ). 

1.1 Without a collateral agreement 

Assume that party A and party B do not have a CSA agreement. The binomial default rule 

considers only two possible states: default or survival. For the discrete one-period (t, T) economy, at the 

end of the period the financial contract either survives with the survival probability ),( Ttp  or defaults 

with the default probability ),( Ttq  where 1),(),( =+ TtpTtq . The survival payoff is equal to the 

promised payoff TX  itself and the default payoff is a fraction of the promised payoff given by TX , 

where   denotes the default recovery rate. Therefore, the risky value or the non-CSA value of the 

contract is the discounted expectation of the payoffs and is given by 

( ) TT
NC XTtpXTtqTtDEtV ),(),(),()( +=       (2) 

If we assume that default probabilities, interest rates, and recovery rates are uncorrelated, the 

equation (2) can be further expressed as, 

      )(),(),(),(),(),()( tVTtqTtpXTtDETtqTtptV F
T

NC  +=+=     (3) 

where  ),(),( TtpETtp =  and   ),(1),(),( TtpTtqETtq −==  denote the expected survival probability 

and the expected default probability respectively. This formula therefore accounts for the fundamental 

value, the default and survival probabilities, and the recovery at default. 

 The difference between the risk-free value and the risky value is called the credit value 

adjustment (CVA). The CVA reflects the market value of counterparty risk or the cost of protection 

required to hedge the credit risk of counterparties and is given by 

  )(1),()()()( tVTtqtVtVtCVA FNCF −=−=        (4) 

 Since the recovery rate is always less than 1, we have 0)( tCVA  or FNC VtV )( , i.e., the risky 

value is less than the risk-free value. An intuitive explanation is that the credit risk or the potential default 

loss makes the financial contract less valuable. 
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1.2 With a collateral agreement 

Next, assume that there is a CSA agreement between parties A and B in which only party B is 

required to deliver collateral when the mark-to-market (MTM) value arises over the collateral threshold H. 

This is a case of unilateral collateralization against unilateral credit risk. 

Conceptually, collateralization may reduce the default probabilities of firms as their leverage has 

been reduced. This effect, however, is very difficult to measure. Therefore, in this paper, we follow the 

general market consensus (see ISDA (2005)): collateral does not turn a bad counterparty into a good one 

– it will have no effect on your counterparty’s default probability and will not improve the counterparty’s 

credit rating. 

Under a CSA agreement, the collateral is called as soon as the MTM value rises above the given 

collateral threshold H , or more precisely, above the threshold amount plus the minimum transfer amount, 

where H > 0 corresponds to partial-collateralization, H = 0 corresponds to full-collateralization, and H < 

0 corresponds to over-collateralization. If the value of the contract to party A is less than the collateral 

threshold, no collateral is required from party B. If the value of the contract to party A is greater than the 

threshold, the required collateral is equal to the difference between the value and the threshold. Thus, the 

collateral amount posted at time t is given by 





 −

=
otherwise

HtVifHtV
tC

CC

0

)()(
)(      (5) 

where )(tV C  is the value of the collateralized contract at time t. 

Let us first consider the case of HtV C )(  where HtVtC C −= )()( . The major benefit of 

collateralization should be viewed as an improved recovery in the event of a counterparty default. At time 

T, if the contract survives, the survival value is the promised payoff TX  and the collateral taker returns 

the collateral to the collateral provider. If the contract defaults, the collateral taker possesses the collateral 

and the default payoff is the future value of the collateral, i.e., ),(/)( TtDtC . Here we consider the time 

value of money only. It can be seen from this, that collateral does not have any bearing on the survival 
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payoff; instead, it takes effect on the default payoff only. The CSA value of the contract is the discounted 

expectation of the payoffs and is given by 

( ) 

( )  T
C

T
C

XTtDETtpHtVTtq

XTtpTtDtCTtqTtDEtV

),(),()(),(

),(),(/)(),(),()(

+−=

+=
      (6) 

or equivalently, 

  ),()(),(/),(),()( TtoHtVTtpTtqHXTtDEtV F
T

C −=−=                   (7) 

where ),(/),(),( TtpTtqTto = denotes the default odds that are expressed as the ratio of the default 

probability to the survival probability. Since the default odds are an expression of relative default 

probabilities, their value range can be from 0 to positive infinity. As we can see from equation (7), the 

collateralization has a significant effect on the value of the contract as the threshold H moves away from 

zero. 

The default odds are just an alternative way of expressing the likelihood of default. In gambling, 

the odds do not represent the true chances that the event will occur, but are the amounts that the 

bookmaker will pay out on the winning bets. We may think of ),( TtoH as the cost/payout of bearing the 

unsecured credit risk. Equation (7) says that the value of the collateralized contract is equal to the risk-

free value minus the cost of taking the unsecured credit risk. This formula therefore accounts for the 

fundamental value, the relative default probability, and the collateralization. One sanity check is that the 

recovery rate should not appear in collateralized valuation because the non-default party has recourse to 

the collateral in the event of a default. 

The difference between the CSA value and the non-CSA value reflects the benefit (a measure of 

how much collateralization may reduce credit risk) of the collateral arrangement, given by 

( ) ),()(),()(1),()()( TtoHtCVATtoHtVTtqtVtVBNT FNCC −=−−=−=    (8) 

We discuss the following three cases: Case 1: 0=H  corresponds to full-collateralization. 

According to equation (7), we have )()( tVtV FC =  when 0=H , i.e., the CSA value under full-

collateralization is equal to the risk-free value. In other words, full-collateralization can eliminate the 
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unilateral credit risk completely. This is consistent with the market practice where market participants 

commonly assume fully collateralized contracts are risk-free. Full-collateralization is increasingly popular 

at the transaction level. From equation (8), we obtain CVABNT =  when 0=H , i.e., the benefit of full-

collateralization is exactly equal to the CVA. Said differently, full-collateralization can entirely cover the 

cost of protection required to hedge unilateral credit risk. 

Case 2: 0H  corresponds to partial-collateralization. According to equation (7), we get 

)()( tVtV FC   when 0H , i.e., the CSA value under partial-collateralization is less than the risk-free 

value. From equation (8), we have CVABNT   when 0H , i.e., the benefit of partial-collateralization 

can not completely offset the cost of hedging the credit risk. Partial-collateralization that reflects the risk 

tolerance and commercial intent of the firms is commonly seen at the portfolio level, because some 

products in the portfolio are collateralized and others are not. 

Case 3: 0H  corresponds to over-collateralization. According to equation (7), we have 

)()( tVtV FC   when 0H . It is worth noting that the CSA value under over-collateralization is actually 

greater than the risk-free value. Over-collateralization is typically a one-way obligation for an end user to 

post additional collateral to a dealer, primarily as a cushion to guard against the residual credit risks (e.g., 

the replacement cost may continue to increase during the close-out period). Although both parties are 

subject to these residual credit risks, typically only the dealer is protected against them. This market 

practice has been developed based on the role that dealers play in the market and their relative credit 

standing. 

 Since collateral is used to improve recovery and thus mitigate credit risk, the collateral amount, in 

principal, should be greater than the recovery value at default. Otherwise, collateralization loses 

legitimacy, because the non-default party would rather receive the recovery value than take the collateral. 

Equivalently, the CSA value should be greater than the non-CSA value of the same portfolio, i.e., 

)()( tVtV NCC             (9) 

 According to equations (3) and (7), inequality (9) can be further expressed as 
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  )(),(),(),(/),()( tVTtqTtpTtpTtqHtV FF +−              (10) 

or equivalently, 

( ) )(1),(: tVTtpHH FU −=       (11) 

 Inequality (11) gives an upper bound on H. If we regard ( ) )(1),( tVTtq F−  as the expected 

default loss (the loss multiplied by the default probability), then we can think of ( ) )(1),( tVTtp F−  as 

the unexpected/complement default loss. Inequality (11) tells us that a well-designed collateral threshold 

should be less than the unexpected default loss.  

If UHH  , we have )()( tVtV NCC   (the CSA value is greater than the non-CSA value) and 

BNT > 0 (the benefit of the collateralization is positive) according to equation (8). This is a risk 

improvement situation where the collateral arrangement reduces credit risk. If UHH  , we get 

)()( tVtV NCC   (the CSA value is less than the non-CSA value) and BNT < 0 (the benefit of the 

collateralization is negative). This is a risk deterioration situation where the collateral arrangement 

actually aggravates credit risk. Obviously, good intentions in this case turn out bad results. If UHH = , 

we obtain )()( tVtV NCC =  (the CSA value is equal to the non-CSA value) and BNT = 0 (the benefit of the 

collateralization is zero). This is a breakeven situation: no harm, no benefit. The above discussion further 

emphasizes the importance of quantifying collateralization. 

Then, let us consider the case of HtV C )(  where 0)( =tC . At time T, if the contract survives, 

the survival payoff is the promised payoff TX . If the contract defaults, the default payoff is 0 (the 

collateral amount is zero). The CSA value of the contract is the discounted expectation of the payoffs and 

is given by 

( )   TT
C XTtDETtpXTtpTtDTtqtCTtDEtV ),(),(),(),(/),()(),()( =+=                   (12) 

We may think of  TXTtDETtp ),(),(  as the expected survival value, which is independent of H.  

Equation (12) says that when H is greater than the expected survival value, the CSA value becomes 
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irrelevant to H and is equal to the expected survival value itself. Consequently, the benefit of the 

collateral arrangement is given by 

  )(),(),(),()()( tVTtqXTtDETtqtVtVBNT F
T

NCC  −=−=−=   (13) 

 Equation (13) leads to BNT < 0 and )()( tVtV NCC  . Similar to the risk deterioration situation 

above, the collateral arrangement in this case actually increases credit risk. 

1.3 Numerical results 

We choose a very simple zero-coupon bond with a one-year maturity and a $1000 principal 

amount. We assume that i) there is a constant interest rate (continuously compounded) 02.0=r ; ii) the 

issuer (party B) has a constant recovery rate of 60%; iii) the one-year survival probability of party B is 

0.99; and iv) only party B is required to deliver collateral. 

The risk-free value can be easily calculated as $980.2 according to equation (1); the non-CSA 

value as $976.3 according to equation (3); the upper bound as 388.2 according to equation (11); and the 

expected survival value as $970.4 according to equation (12). We can also compute the CSA value for 

any given collateral threshold H based on equation (7) or equation (12). Figure 1 plots the relationship 

between the collateral threshold and the CSA value. The x-axis represents the collateral threshold H and 

the y-axis represents the CSA value of the contract. Point A (0, $980.2) in this diagram corresponds to the 

full-collateralization where H = 0 and 2.980)()( == tVtV FC
 (demonstrating that full-collateralization 

can eliminate unilateral credit risk completely). Point B (388.2, $976.3) illustrates the upper bound case 

where 2.388== UHH  and 3.976)()( == tVtV NCC
. Point C (970.4, $970.4) represents the boundary 

situation where 4.970)( == HtV C
.  
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Effect of Collateral on the Price of a Singe-Payment Contract
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Figure 1.  CSA Value of a Single Payment Contract vs. Collateral Threshold 

This diagram illustrates the relationship between the CSA value and the collateral threshold. Point A (0, 

$980.2) corresponds to the full-collateralization where the CSA value is equal to the risk-free value. Point 

B (388.2, $976.3) represents the upper bound case where the CSA value is equal to the non-CSA value. 

Point C (970.4, $970.4) illustrates the situation where the CSA value is equal to H.  

 

The line in Figure 1 is divided into four parts by points A, B, and C. The line segment on the left 

side of point A corresponds to the over-collateralization where 0H  and )()( tVtV FC  . The line 

segment AB represents the risk improvement partial-collateralization where 
UHH 0  and 

)()( tVtV NCC  . The collateral arrangement in this case reduces credit risk as intended. The line segment 

BC exhibits the risk deterioration partial-collateralization where 
UHH   and )()( tVtV NCC  . The 

collateral arrangement in this case actually increases credit risk. The line segment on the right side of 

Point C is flat, i.e., the CSA value is irrelevant to H when H is too big. It is worth to note that the value of 

a contract can not be less than the expected survival value. 

This example is very simple, but it shows several essential features of pricing a collateralized 

contract and quantifying a collateral arrangement. It also provides the intuition for the more general 

results. In the following sections, we will develop the idea illustrated in this example into a 

comprehensive quantitative framework in a more rigorous manner. 
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2. How Does Unilateral Collateralization Affect Unilateral Credit Risk? 

We consider a filtered probability space (  , F ,  
0ttF , P ) satisfying the usual conditions, 

where   denotes a sample space, F  denotes a  -algebra, P  denotes a probability measure, and 

 
0ttF  denotes a filtration.  

In the reduced-form framework, the stopping (or default) time i  of firm i is modeled as a Cox 

arrival process (a doubly stochastic Poisson process) whose first jump occurs at default and is defined by, 

 it

sii dsht = 0
)(:inf      (14) 

where )( sih   denotes the stochastic hazard rate or arrival intensity dependent on an exogenous common 

state s , and i  is a unit exponential random variable independent of s . Dependence between the 

default times is only introduced by the dependence of the intensity )( sih   on a common process s . 

Consequently, conditional on the path of s , defaults are independent, which is the reason why this setup 

is also often called the conditional independence setup. 

It is well-known that the survival probability from time t to s in this framework is defined by 







−== 

s

t iii duuhtsPstp )(exp),|(:),(       (15a) 

 The default probability for the period (t, s) in this framework is defined by 







−−=−== 

s

t iiii duuhstptsPstq )(exp1),(1),|(:),(    (15b) 

 Applying the law of iterated expectations, we express the expected survival probability for the 

period (t, s) as 












−=  tF

s

t ii duuhEstp )(exp),(          (16a) 
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where  tE F•  is the expectation conditional on the tF . The expected default probability for the period (t, 

s) is expressed as 












−−=−=  tF

s

t iii duuhEstpstq )(exp1),(1),(      (16b) 

Two parties are denoted as A and B. The unilateral credit risk assumes that only one party is 

defaultable and the other one is default-free. In this section, we assume that party A is default-free, 

whereas party B is defaultable. The unilateral CSA agreement between parties A and B only requires party 

B to deliver collateral when the MTM value arises over the collateral threshold H. For reasons that will 

become clear shortly, we focus initially on single payment cases. 

Suppose that a contract has m cash flows. Let the m cash flows be represented as 0iX  with 

payment dates iT , where i = 1,…,m. 

Extending equation (22) from one-period to multiple-periods, we derive the following proposition: 

Proposition 2: The non-CSA value of the multiple payment contract subject to unilateral credit risk is 

given by 

( )  =

−

= +=
m

i ti

i

j jj
NC XTTGEtV

1

1

0 1),()( F          (26a) 

where 0
Tt =  and 

 )(),(),(),(),( 11111 +++++ += jjjjjjjjj TTTqTTpTTDTTG         (26b) 

Proof: See the Appendix. 

This is a closed-form solution. Proposition 2 says that for a non-CSA contract subject to unilateral 

credit risk, we can evaluate each payoff separately and sum the corresponding results. In other words, 

payoffs in this case can be treated as independent. 

Using a similar derivation as in Proposition 2, we can extend Proposition 1 from one-period to 

multiple-periods. The CSA value of the multiple payment contract subject to unilateral credit risk is given 

by 
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( )  ( )   
−

= +

−

= +=

−

= + −=
1

0 1

1

0 11

1

0 1 ),(),(),()(
m

i ii

i

j jj

m

i i

i

j jj
C TTJTTKEXTTKEtV tt FF           (27a) 

where 

 ),(/),(11),(),(),( 11),(111 1 +++++ +
+= jjjjTTLHjjjjjj TTpTTqTTDTTpTTK

jj
       (27b) 

),(1),(/),(1),( 1),(11),(1 11 ++++ ++
== jjTTLHjjjjTTLHjj TToHTTpTTqHTTJ

jjjj
         (27c) 

( ) tF1111 )(),(),( ++++ += jj
C

jjjj XTVTTKETTL      (27d) 

The valuation in equation (27) is complex. The intermediate values are vital to determine the final 

price. For a payment period, the current price has a dependence on the future price. Only on the final 

payment date mT , the value of the contract and the maximum amount of information needed to determine 

the ),( 1 mm TTL − , ),( 1 mm TTK −  and ),( 1 mm TTJ −  are revealed. This type of problem can be best solved by 

working backwards in time, with the later value feeding into the earlier ones, so that the process builds on 

itself in a recursive fashion, which is referred to as backward induction. The most popular backward 

induction valuation algorithms are lattice/tree and regression-based Monte Carlo.  

 The benefit of the collateral arrangement is given by )()( tVtVBNT NCC −= . We can solve the 

upper bound UH  numerically according to the boundary condition 0BNT . A carefully designed 

collateral arrangement should meet UHH  . 

 

3. How Does Bilateral Collateralization Affect Bilateral Credit Risk? 

Bilateral credit risk or counterparty risk arises in connection with OTC derivatives and SFT, since 

both contract parties are exposed to default risk. The hypothesis of a unilateral counterparty risk has been 

seen in the past as a practical estimate for modeling contracts between major financial institutions and 

their clients. But the realization that even the most prestigious investment banks could go bankrupt has 

shattered the foundations for resorting to unilateral models. The clients of banks are nowadays prone to 

question such an assumption and are willing to ask for suitable adjustments of contractual terms in order 
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to gain a better security on their financial contracts, as well as on their collaterals, in the event of a 

counterparty default. 

Bilateral collateral arrangements enable the counterparties to pass collateral between each other to 

cover the MTM exposure of the specified contracts. Under a two-way agreement, the collateralization 

obligation is mutual and applicable to both counterparties. 

There is ample evidence that corporate defaults are correlated. For example, companies in the 

same geographical region or producing the same type of products tend to be affected similarly by external 

events and as a result may experience financial difficulties at the same time. Default correlation refers to 

the tendency for two firms to default at the same time. Capturing default correlation in counterparty risk is 

critical. 

Two counterparties are denoted as A and B. The binomial default rule considers only two possible 

states: default or survival. Therefore, the default indicator jY  for party j (j=A, B) follows a Bernoulli 

distribution, which takes value 1 with default probability jq , and value 0 with survival probability jp , 

i.e.,  jj pYP == }0{  and jj qYP == }1{ . The marginal default distributions can be determined by the 

reduced-form models. The joint distributions of a bivariate Bernoulli variable can be easily obtained via 

the marginal distributions by introducing extra correlations. 

Consider a pair of random variables ( AY , BY ) that has a bivariate Bernoulli distribution. The joint 

probability representations are given by 

ABBABA ppYYPp +==== )0,0(:00     (28a) 

ABBABA qpYYPp −==== )1,0(:01      (28b) 

 ABBABA pqYYPp −==== )0,1(:10      (28c) 

 ABBABA qqYYPp +==== )1,1(:11      (28d) 

where    BBAAABBAABBBAAAB pqpqqYqYE  ==−−= ))((: , jjjj qpqYE =+= 01)( , and  

( )  jjjjjjjjj qpqppqqYE =+=−= 2222 : ;  AB  denotes the default correlation coefficient of A and B. 
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Let valuation date be t. Consider a financial contract that promises to pay a TX  from party B to 

party A at maturity date T, and nothing before date T where tT  . The payoff TX  may be positive or 

negative, i.e. the contract may be either an asset or a liability to each party.  

Let us first consider the case without a CSA. If 0)( + ttV , there are a total of four possible 

states at time T: i) Both A and B survive with probability 00p . The contract value is equal to the payoff 

TX . ii) A defaults but B survives with probability 10p . The contract value is a fraction of the payoff given 

by TB XT )(  where B  represents the non-default recovery rate. B =0 represents the one-way 

settlement rule, while B =1 represents the two-way settlement rule. iii) A survives but B defaults with 

probability 01p . The contract value is a fraction of the payoff  TB XT )( , where B  represents the default 

recovery rate. iv) Both A and B default with probability 11p . The contract value is a fraction of the payoff 

given by TAB XT)( , where AB  denotes the joint recovery rate when both parties A and B default 

simultaneously. A similar logic applies to the case of 0)( + ttV . Therefore, the non-CSA value is the 

discounted expectation of the payoffs and is given by 




( ) ( ) tTAXBXtT

tTABAAX

tTABBBX
NC

XTtTtTtDEXTtE

XTtpTTtpTTtpTTtp

XTtpTTtpTTtpTTtpTtDEtV

TT

T

T

FF

F

F

),(1),(1),(),(

),()(),()(),()(),(1

),()(),()(),()(),(1),()(

00

111001000

111001000













+==

++++

+++=

     (29a) 

where 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTt

ABBBABABAB

ABBABBABB





+−−++

++=
       (29b) 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTt

ABAAABABAB

BAABAAABA





+−−++

++=
        (29c) 

We may think of ),( Tt as the bilaterally risk-adjusted discount factor. Equation (29) tells us that 

the non-CSA price of a single payment contract subject to bilateral credit risk can be expressed as the 

present value of the payoff discounted by a bilaterally risk-adjusted discount factor that has a switching-

type dependence on the sign of the payoff. 
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Next, we study the impact of collateral on this contract. The collateral amount at t is given by 









−



−

=

A
C

A
C

B
C

A

B
C

B
C

HtVifHtV

HtVHif

HtVifHtV

tC

)()(

)(0

)()(

)(     (30a) 

or 

( ) ( )A
C

HtVB
C

HtV HtVHtVtC
AB

−+−=  )(1)(1)( )()(    (30b) 

where 0BH  and 0AH  are the collateral thresholds for parties B and A. 

At time T there are several possible states: i) Both A and B survive with probability 00p . The 

value of contract is equal to the payoff TX . ii) Either or both parties A and B default. The contract value 

is the future value of the collateral, i.e., ),(/)( TtDtC . Therefore, we have the following proposition. 

Proposition 3: The bilateral CSA value of the single payment contract subject to bilateral credit risk is 

given by 

  ),(|),()( TtQXTtMEtV T
C −= tF       (31a) 

where  

 ),(/11),(/1),(),(),( 00),(),(00),(00 TtpTtpTtpTtDTtM
ABAB HTtHTtHHTt  ++=      (31b) 

( ) ( ) ),(/),(11),(/),(11),( 0000),(0000),( TtpTtpHTtpTtpHTtQ AHTtBHTt AB
−+−=       (31c) 

where  tFTXTtpTtDETt ),(),(),( 00= ,  and  tF),(),( 0000 TtpETtp = . 

Proof: See the Appendix. 

We may think of ),( TtM  as the bilaterally CSA adjusted discount factor and ),( TtQ  as the cost 

of bearing the unsecured credit risk. Proposition 3 tells us that the value of the bilaterally collateralized 

contract is equal to the present value of the payoff discounted by the bilaterally CSA adjusted discount 

factors minus the cost of taking the unsecured counterparty risk. 

If we assume that default probabilities, interest rates, and recovery rates are uncorrelated, 

Proposition 3 can be further expressed as: 
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  ),()(),(ˆ),(|),(),(ˆ)( TtQtVTtOTtQXTtDETtOtV F
T

C −=−= tF             (32a) 

where  

ABAB HTtHTtHHTt
TtpTtO


++=

),(ˆ00),(ˆ),(ˆ 1),(11),(ˆ


   (32b) 

  )(),(),(),(),(ˆ
0000 tVTtpXTtDETtpTt F

T == tF    (32c) 

In particular, if 0== BA HH  (corresponding to bilateral full-collateralization), we have 

1),(ˆ =TtO , 0),( =TtQ , and )()( tVtV FC =  according to equation (32), i.e., under full-collateralization the 

bilateral CSA value of the contract is equal to the risk-free value. In other words, bilateral full-

collateralization can completely eliminate bilateral credit risk. 

 

4. How Does Bilateral Collateralization Affect Multilateral Credit Risk? 

The interest in the financial industry for the modeling and pricing of multilateral defaultable 

contracts arises mainly in two respects: in the management of credit risk at a portfolio level and in the 

valuation of credit derivatives.  

Let us first discuss the three-party case. A CDS is a contract subject to trilateral credit risk where 

the three defaultable parties are counterparties A, B and reference entity F. CDS contracts are the most 

popular form of credit derivatives and are also the most important building blocks in the credit market. An 

understanding of credit derivatives therefore must be underpinned by a full understanding of the CDS.  

A CDS is a contract that provides insurance against the risk of a default by the reference entity. 

The buyer of the CDS makes periodic payments to the seller until the end of the life of the CDS or until a 

credit event occurs. A credit event usually requires a final accrual payment by the buyer and a loss 

protection payment by the seller. The protection payment is equal to the difference between par and the 

price of the cheapest to deliver (CTD) asset of the reference entity on the face value of the protection. 

Normally, a CDS is used to transfer the credit risk of a reference entity from one party to the 

other. The contract reduces the credit risk of the reference entity but gives rise to another form of risk: 
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counterparty risk. The counterparty risk has become the main concern in the CDS market. During the 

recent financial crisis, CDS was blamed for playing a pivotal role in the collapse of Lehman Brothers and 

the disintegration of AIG. The use of collateral for CDS has significantly increased since then. Indeed, 

almost all CDS contracts (>97%) are fully collateralized according to the ISDA Margin Survey (see ISDA 

(2010)). Can full-collateralization really guarantee that there is no risk of failure to pay in the CDS market? 

The default indicator for party j (j = A or B or F) follows a Bernoulli distribution, which takes 

value 1 with default probability jq , and value 0 with survival probability jp . The joint probability 

representations of a trivariate Bernoulli distribution (see Teugels (1990) for details) are given by 

ABFBFAAFBABFFBAFBA ppppppYYYPp  −+++===== )0,0,0(:000           (35a) 

ABFBFAAFBABFFBAFBA qppppqYYYPp  ++−−===== )0,0,1(:100           (35b) 

ABFBFAAFBABFFBAFBA pqppqpYYYPp  +−+−===== )0,1,0(:010           (35c) 

ABFBFAAFBABFFBAFBA ppqqppYYYPp  +−−+===== )1,0,0(:001          (35d) 

ABFBFAAFBABFFBAFBA qqppqqYYYPp  −−−+===== )0,1,1(:110           (35e) 

ABFBFAAFBABFFBAFBA qpqqpqYYYPp  −−+−===== )1,0,1(:101           (35f) 

ABFBFAAFBABFFBAFBA pqqqqpYYYPp  −+−−===== )1,1,0(:011           (35g) 

ABFBFAAFBABFFBAFBA qqqqqqYYYPp  ++++===== )1,1,1(:111           (35h) 

where 

 ( )))()((: FFBBAAABF qYqYqYE −−−=         (35i) 

We define a new statistic, comrelation, as a generalization of the concept of the correlation for 

three random variables as follows: 

 

3 333

))()((

FFBBAA

FFBBAA
ABF

XEXEXE

XXXE






−−−

−−−
=    (36) 

where AX , BX , and FX  are three random variables; A , B , and F  are the means of AX , BX , and 

FX . 
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 According to the Holder inequality, we have 

( )

3 333

))()(())()((

FFBBAA

FFBBAAFFBBAA

XEXEXE

XXXEXXXE





−−−

−−−−−−

   (37) 

Obviously, the comrelation is in the range of [-1, 1]. Equation (35i) can be rewritten as 

( )

3 222222

3 333

)()()(

))()((:

FFFFBBBBAAAAABF

FFBBAAABFFFBBAAABF

qpqpqpqpqpqp

qYEqYEqYEqXqYqYE

+++=

−−−=−−−=




     (38) 

where )(01 22333

jjjjjjjjjj qpqppqqqqYE +=−+−=− , jjjj qpqYE =+= 01)( , FBAj ,,= . 

 

Numerical and empirical results 

In our study, we choose a 5-year CDS with a quarterly payment frequency and a $1,000,000 

notional. Counterparty A buys a protection from counterparty B (dealer), i.e., party A pays a periodic 

premium to party B and, in exchange, receives a payoff if the reference entity F defaults.  

Since the payoffs of a CDS are mainly determined by credit events, we need to characterize the 

evolution of the hazard rates. Here we choose the Cox-Ingersoll-Ross (CIR) model. The CIR process has 

been widely used in the literature of credit risk, given by 

tttt dWhdthbadh +−= )(         (46) 

where a denotes the mean reversion speed, b denotes the long-term mean,   denotes the volatility, and 

tW   denotes the Brownian motion. 

  

Table 4:  Risk-Neutral Parameters for CIR Model 

This table presents the risk-neutral parameters that are calibrated to the current market. ‘A+100bps’ 

represents a ‘100 bps’ parallel shift in the A-rated CDS spreads. 

Credit Quality A A+100bps A+200bps A+300bps 

Long-Term Mean a  0.035 0.056 0.077 0.099 

Mean Reverting Speed b 0.14 0.18 0.25 0.36 
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Volatility   0.022 0.028 0.039 0.056 

 

The market data are shown in Table 1 (see https://finpricing.com/lib/IrBasisCurve.html). The 

calibrated parameters are shown in Table 4. The details of the calibration are beyond the scope of this 

paper.  

We assume that i) the interest rates shown in table 1 are deterministic; ii) the reference entity F 

has an “A+200bps” credit quality; iii) both parties have a constant default recovery rate of 60%; iv) both 

parties have a constant non-default recovery rate of 100% (two-way settlement); and v) the joint recovery 

is 50%, i.e., 5.0=AB .  

First, we study the impact of counterparty risk on CDS premia. By definition, a breakeven CDS 

spread is a premium that makes the market value of a given CDS at inception zero. The effect of 

counterparty risk on the CDS premia is displayed in Table 5. We discuss the following three cases:  

Case 1: There is no default correlation between the dealer and the reference entity. In this case, an 

increase in the dealer’s credit spread of 100 bps translates into a 0.8 bps decline in the CDS. Since a CDS 

contract could involve a very large payment by the protection seller to the protection buyer, people 

normally believe that the size of the effect of counterparty risk tends to be orders of magnitude larger than 

those for IRS. However, our model shows that without taking into account default correlations, the effect 

of counterparty risk on CDS premia is relatively small. This finding is in line with the findings of the 

empirical study of Arora et al (2010). They empirically find that an increase in the dealer’s credit spread 

of 645 bps only maps into 1 bps decrease on average in the dealer’s spread for selling credit protection.  

 

Table 5:  Impact of Counterparty Risk on CDS Premia 

This table shows the impact of the dealer’s credit quality on the CDS premia. We assume that i) party A is 

risk-free and party B (dealer) is risky, and ii) 0=== ABFAFAB  . The default recovery rates for all 

parties are 0.6 and the joint recovery rate is 0.5. Reference entity F has an “A+200bps” credit quality. 

‘A+200bps’ represents a ‘200 bps’ parallel shift in the A-rated CDS spreads. 

Party B A A+100bps A+200bps A A+100bps A+200bps A+100bps A+100bps 

https://finpricing.com/lib/IrBasisCurve.html
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Correlation BF  0 0 0 0.1 0.1 0.1 0.2 0.3 

CDS premium 0.02694 0.02686 0.02677 0.02641 0.02603 0.02573 0.02519 0.02436 

 

Case 2: There is a default correlation between the dealer and the reference entity (e.g., let 

1.0=BF ). We find that a rise in the dealer’s credit spread of 100 bps results in a 3.4 bps decline in the 

CDS premium. The results indicate that CDS premia are more sensitive to counterparty risk in the 

presence of default correlations. 

Case 3:  We show the sensitivity of CDS premia to changes in the default correlation between the 

dealer and the reference entity: an increase in the default correlation of 0.1 (1000 bps) translates into an 

8.3 bps decrease in the CDS premium. This is consistent with the economic intuition that a protection 

seller who is positively correlated with the reference entity (a wrong way risk) should charge a lower 

price for selling credit protection. 

We repeat a similar exercise for the collateralized CDS premia where we assume that 0=AH  

and 2000=BH . The results are presented in Table 6. Without taking into account the default correlation 

between the dealer and the reference entity, we find that an increase in the dealer’s credit spread of 100 

bps translates into a 0.2 bps decline in the collateralized CDS premium. However, if we take into account 

the default correlation (e.g., let 1.0=BF ), a rise in the dealer’s credit spread of 100 bps results in a 8 bps 

decline in the CDS premium. In addition, a hike in the default correlation of 0.1 causes a 21 bps decrease 

in the collateralized CDS premium.  

 

Table 6:  Impact of Counterparty Risk on Collateralized CDS Premia 

This table displays the effect of the dealer’s credit quality on the collateralized CDS premia where 

0=AH  and 2000=BH . We assume that i) party A is risk-free and party B (dealer) is risky, and ii) 

0=== ABFAFAB  . Reference entity F has an “A+200bps” credit quality. ‘A+200bps’ represents a 

‘200 bps’ parallel shift in the A-rated CDS spreads. 

Party B A A+100bps A+200bps A A+100bps A+200bps A+100bps A+100bps 
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Correlation BF  0 0 0 0.1 0.1 0.1 0.2 0.3 

CDS premium 0.02698 0.02696 0.02693 0.02563 0.02482 0.02403 0.02269 0.02056 

 

It is worth noting that the impact of the default correlation on the collateralized CDS premium is 

much more substantial than that on the non-collateralized CDS premium. These numerical results clearly 

support our theoretical prediction that collateral arrangements that are originally designed and utilized for 

contracts subject to bilateral credit risk (e.g., an IRS) may not be suitable for contracts subject to 

multilateral credit risk (e.g., a CDS) in the presence of default correlations. 

Next, we discuss the impact of different collateral arrangements on CDS premia. We assume that 

i) party A has an ‘A+100bps’ credit quality and party B has an ‘A’ credit quality; ii) 23.0=ABF , 

1.0=== BFAFAB  ; and iii) 6.0=AB . The CDS premium is supposed to be 0.025. The counterparty-

risk-free value can be easily computed as $7953.3 based on equation (43). The non-CSA value can be 

calculated as $5992.8 according to equation (42). Since the main risk of CDS is that the seller of 

protection is unable to pay in the case of a credit event, we are more interested in the effects of collateral 

posted by party B on the CDS value.  

We use equation (44) to price the collateralized CDS. The effects of collateral on CDS values are 

shown in Figure 7. The relationship is convex rather than linear. Point A (-3900, $7953.3) in this diagram 

represents the over-collateralization where 3900−=BH  and 3.7953)()( == tVtV FC
. Point B (0, 

$7254.8) illustrates the full-collateralization where 0=BH  and )(8.7254)( tVtV FC =  (demonstrating 

that full-collateralization can not completely eliminate counterparty risk for a CDS). Point C (12100, 

$5992.8) exhibits the upper bound case where 12100=BH  and 8.5992)()( == tVtV NCC
.  
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Effect of Collateral on the CSA Value of a CDS
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Figure 7.  CSA Value of a CDS vs. Collateral Threshold BH  

This diagram illustrates the relationship between the CSA Value of a CDS and the collateral threshold 

BH  where 0=AH . Point A (-3900, $7953.3) corresponds to the over-collateralization where the CSA 

value is equal to the risk-free value. Point B (0, $7254.8) represents the full-collateralization. Point C 

(12100, $5992.8) exhibits the upper bound case where the CSA value is equal to the non-CSA value.  

 

From Figure 7, we can draw the following conclusions: i) Full-collateralization in the CDS 

market can not eliminate counterparty risk completely, i.e., under full-collateralization the CSA value of a 

CDS is not equal to the counterparty-risk-free value; ii) Only certain over-collateralization can entirely 

neutralize counterparty risk; iii)  If 3900−BH , the CSA value exceeds the risk-free value; If 

121003900 − BH , the CSA value is greater than the non-CSA value, and the collateral arrangement in 

this case reduces credit risk; If 12100BH , the CSA value is less than the non-CSA value, and the 

collateralization in this case actually deteriorates credit risk. 
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Effect of Collateral on the CDS Premium
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Figure 8.  Collateralized CDS Premium vs. Collateral Threshold BH  

This diagram illustrates the relationship between the collateralized CDS premium and the collateral 

threshold BH  where 0=AH . Point A (-3900, 0.0270) corresponds to the over-collateralization where 

the CSA value is equal to the risk-free value. Point B (0, 0.02684) represents the full-collateralization. 

Point C (12100, 0.02661) exhibits the upper bound case where the CSA value is equal to the non-CSA 

value.  

 

We can further study the effects of collateral on CDS premia. We assume that the above CDS is a 

new trade and everything else remains the same. The 5-year counterparty-risk-free CDS premium is 

calculated as 0.0270. The non-CSA CDS premium is computed as 0.02661. The fully collateralized CDS 

premium is calculated as 0.02684. The effects of collateral on the CDS premia are shown in Figure 8. 

Finally, using the same data as in the previous section, we conduct an empirical study. We 

assume that i) both party B (dealer) and reference entity F have a generic AA credit quality and party A is 

risk-free; and ii) 0=AH . We discuss three collateral arrangements: 0=BH (full-collateralization), 

2000=BH  (partial-collateralization), or 2000−=BH (over-collateralization). 

We first consider the case where there is no correlation between the dealer and the reference 

entity. We have 0==== ABFBFAFAB   since 0=BF  and 0=Ah . The time series plots of 

collateralized CDS spreads under different collateral arrangements are shown in Figure 9. The fully 
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collateralized CDS spreads coincide with the market (counterparty-risk-free) CDS spreads. The difference 

between the partially collateralized CDS spread and the market CDS spread reflects the cost of bearing 

unsecured credit risk, whereas the difference between the over collateralized CDS spread and the market 

CDS spread represents the benefit of taking over-secured credit risk. The cost/benefit increases as the 

counterparty credit quality deteriorates. 

 

Collateralized and Market CDS Spreads
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Figure 9.  Time Series of Collateralized CDS Spreads (without Default Correlation) 

This diagram illustrates the impact of collateralization on the time series of CDS spreads from January 1, 

2007 to April 5, 2011, where the default correlation is zero, i.e., 0=BF . The three different 

arrangements are i) full-collateralization ( 0=AH  and 0=BH ), ii) partial-collateralization ( 0=AH  and 

2000=BH ), and iii) over-collateralization ( 0=AH  and 2000−=BH ). The fully collateralized CDS 

spreads coincide with the market CDS spreads. 

 

Figure 9 exhibits significant time variations in the collateralized CDS spreads. Prior to July 2007, 

the CDS spreads are low and tranquil. As a result, the partially collateralized CDS spreads, the fully 
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collateralized CDS spreads, and the over collateralized CDS spreads are almost coincident. But after July 

2007, the CDS spreads rise dramatically. The difference between the partially collateralized CDS spread 

and the market CDS spread soars, and reaches a peak of -85 bps, while the difference between the over 

collateralized CDS spread and the market CDS spread surges, and hits a peak of 101 bps. These time 

variations are strong evidence that the cost/benefit of taking unsecured/over-secured credit risk is relative 

to the credit quality. 
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Figure 10.  Time Series of Collateralized CDS Spreads (with Default Correlation) 

This diagram illustrates the impact of collateralization on the time series of CDS spreads from January 1, 

2007 to April 5, 2011 where the default correlation is not 0 (e.g., 2.0=BF ). The collateral arrangements 

are: full-collateralization ( 0=AH  and 0=BH ), partial-collateralization ( 0=AH  and 2000=BH ), and 

over-collateralization ( 0=AH  and 2000−=BH ). 
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We then consider the case where the correlation between the dealer and the reference entity is not 

0 (for instance, let 2.0=BF ). The empirical results are displayed in Figure 10. From the time series 

plots, we find that the default correlation has a substantial effect on the CDS spreads. During the financial 

crisis, the difference between the partially collateralized CDS spread and the market CDS spread reaches 

a peak of -8412 bps; the difference between the over collateralized CDS spread and the market CDS 

spread hits a record of -7378 bps; and the difference between the fully collateralized CDS spread and the 

market CDS spread rises to a crescendo of -7916 bps. In general, the party buying default protection 

should worry about the default correlation between the reference entity and the default protection seller. 

 

5. Conclusion and Discussion 

This article addresses a very important topic of the impact of collateralization on asset prices and 

risk management. This is the so called plumbing of financial system that affects many outcomes. To the 

best of our knowledge, our study is the first of its kind, attempting to provide a thorough quantitative 

analysis of the economic advantages and disadvantages of different collateral arrangements in a unified 

way. 

The prevailing beliefs in financial markets are that collateralization can always mitigate credit 

risk and furthermore full-collateralization can eliminate credit risk completely. Our findings challenge 

this view. We find that a poorly designed collateral agreement can actually increase credit risk. We also 

find that although full-collateralization can eliminate counterparty risk completely for contracts subject to 

bilateral credit risk (e.g., an IRS), it can not get rid of counterparty risk entirely for contracts subject to 

multilateral credit risk (e.g., a CDS). 

Empirically, we find strong evidence that collateralization affects swap rates and CDS premia. 

The effects are time varying. In particular, the effects of the default correlations between dealers and 

reference entities on collateralized CDS premia are substantial. 
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The results further emphasize the importance of carefully designing and quantifying collateral 

arrangements in order to make the right business decisions. These findings may be of interest to 

regulators, academics and practitioners. 

Second, we assume that it is costless to post and maintain collateral. In fact, there are many costs 

inherent in a collateral process, mainly financial costs and operational costs. Financial costs include initial 

and ongoing legal expenses associated with the negotiation process and the development and maintenance 

of necessary documentation. Financial costs should also contain custodian charge fees for safekeeping of 

collateral and fees for delivery or receipt of collateral. The interest rate differential on cash investments 

may be an additional financial cost. Operational costs include system development and enhancement, 

operation maintenance, and any logistic support. In general, each counterparty absorbs the cost of holding 

the other’s collateral, and these costs are generally understood to cancel each other out since the collateral 

terms will often be the same for either party. However, if the cost is not negligible, how can one measure 

and calibrate it? 

Third, the practice of reusing posted collateral in another transaction has become extremely 

widespread and is generally referred to as “rehypothecation”. Rehypothecation is a practice that occurs 

principally in the financial markets, where a bank or other broker-dealer reuses the collateral pledged by 

its clients as collateral for its own borrowing. Rehypothecation can generate a liquidity risk for the 

collateral provider through excess collateralization as a result of either a lag in collateral delivery or 

haircuts on securities posted as collateral. How can one model rehypothecation? 

Finally, there is a time lag, called margin period of risk, which is the time period during which the 

institutions would execute a replacement trade. It is usually assumed to be the sum of call period and cure 

period. The call period is the time period that defines the frequency at which collateral is monitored and 

called for. The cure period is the time interval between the time when the counterparty ceases to post 

collateral and an early termination event being declared by the dealer. The margin period of risk exposes 

firms with additional exposure above the threshold. How does this time lag affect valuation and risk? 
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