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An Extended Goodwin Model with Endogenous Technical Change: Theory and Simulation 

for the US Economy (1960-2019) 

John Cajas Guijarro1 

Abstract 
This paper extends the two-dimensional Goodwin model of distributive cycles by incorporating 

endogenous technical change, inspired on some insights originally formulated by Marx. We 

introduce a three-dimensional dynamical system, expanding the model to include wage share, 

employment rate, and capital-output ratio as state variables. Theoretical analysis demonstrates an 

economically meaningful and locally stable equilibrium point, and the Hopf bifurcation theorem 

reveals the emergence of stable limit cycles as the mechanization-productivity elasticity 

surpasses a critical value. Econometric estimation of model parameters using ARDL bounds 

cointegration tests is performed for the US economy from 1965 to 2019. Simulations show 

damped oscillations, limit cycles, and unstable oscillations, contributing to the understanding of 

complex capitalist dynamics. 

Keywords: Goodwin model, endogenous technical change, Hopf bifurcation, ARDL, numerical 

simulations  

JEL Classification: C61, E11, E32, O33, O41 

 

1. Introduction 

As mentioned by Barrales-Ruiz et al. (2022), the theory of distributive cycles posits that 

economic growth and its cyclical fluctuations result from the conflictual interaction between 

profit-seeking capital and workers employed on its behalf. The original impetus for this theory 
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was formulated by Marx (1867/1975) in his discussion on capitalist accumulation and the reserve 

army of labor. One of the first mathematical formulations of this theory can be traced to the 

model of endogenous distributive cycles introduced by Goodwin (1967).2 The Goodwin model 

has received attention from both theoretical and empirical fronts.3 Particularly, a relevant line of 

empirical research emerged with the econometric estimations for the United Kingdom presented 

by Desai (1984) and subsequently extended for ten OECD economies by Harvie (2000). 

Grasselli and Maheshwari (2018) further enhanced these estimations using cointegration 

techniques for the same ten economies. While these works represent valuable contributions to the 

empirical understanding of distributive cycles, they are confined by the two-dimensional 

framework imposed by the original version of Goodwin’s (1967) model. In this version, 

clockwise cyclic patterns are identified solely in the phase plane formed by the wage share and 

the employment rate. This limitation is relevant as the two-dimensional fails version of 

Goodwin’s model fails to represent complex dynamics associated with how income distribution 

affects other economic processes such as technical change. 

This paper attempts to expand the theoretical and empirical study of distributive cycles by 

econometrically estimating an extended version of Goodwin’s (1967) model. This extension 

accounts for endogenous cycles in three dimensions: wage share, employment rate, and capital-

output ratio.4 Justifying the inclusion of a third dimension, the paper formulates a theoretical 

model that extends the original work of Goodwin (1967). This extension assumes the existence 

of endogenous technical change, driven by the capitalist inclination to enhance labor productivity 

                                                 
2 For a literature review on the analytical representations of Marx’s insights about capitalist accumulation and the 

reserve army of labor, see Cámara Izquierdo (2022). 
3 For a brief literature review of the theoretical extensions and the empirical studies based on Goodwins’ (1967) 

model, see Azevedo Araujo et al. (2019). 
4 Other extensions of the Goodwin model where the capital-output ratio is a state variable alongside the employment 

rate and the wage share include Shah and Desai (1981), Foley (2003), and Julius (2005), although they consider 

specifications for technical change that differ to those employed in this paper. 
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through mechanization of the production process. Simultaneously, mechanization itself is viewed 

as a response by capitalists during their distributive struggle with the working class. These 

assumptions draw from insights originally formulated by Marx. To validate the relevance of the 

theoretical model, the paper analytically establishes that the model possesses an economically 

meaningful equilibrium point that is locally stable. Additionally, the paper employs the existence 

part of the Hopf bifurcation theorem for three-dimensional dynamical systems to demonstrate 

that the model tends to generate stable limit cycles near its equilibrium point when the 

mechanization-productivity elasticity surpasses a critical value. 

Having formulated and validated the theoretical model, the paper proceeds to the 

econometric estimation of its parameters, following a procedure analogous to that applied by 

Grasselli and Maheshwari (2018). Specifically, we use the ARDL bounds cointegration test 

proposed by Pesaran et al. (2001) to estimate the parameters of the dynamic equations describing 

the dynamics of mechanization and the real wage, while other parameters are estimated using 

log-regressions as well as historical means. The methodology is applied to data from the 

AMECO5 database for the United States spanning from 1965 to 2019. Using the estimated 

parameters, the paper presents numerical simulations of the theoretical three-dimensional model, 

yielding trajectories characterized by damped oscillations. These simulated trajectories are then 

compared with the actual time series of the wage share, the employment rate, and the capital-

output ratio observed for the US economy. The paper also constructs simulations to illustrate the 

model’s capacity to generate limit cycles and unstable oscillations. Consequently, the paper 

endeavors to contribute both to the theoretical study of high-dimensional dynamic systems and 

the empirical estimation of an extension of the Goodwin model of distributive cycles. 

                                                 
5 Annual macro-economic database of the European Commission's Directorate General for Economic and Financial 

Affairs. 
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The rest of the paper has the following structure. Following this introduction, Section 2 

briefly reviews the Goodwin model with general capital accumulation rate formulated by 

Grasselli and Maheshwari (2018), which serves as a baseline. Section 3 presents the extended 

version of Goodwin’s model with endogenous technical change, resulting in a three-dimensional 

dynamical system. The paper analytically establishes the local stability of this theoretical model 

and its propensity to generate stable limit cycles around its equilibrium point (Appendix B). 

Section 4 delineates the main results of the simulation of the extended model calibrated using 

parameters estimated for the US economy from 1965 to 2019 (Appendix C), along with some 

descriptive statistics. Section 5 utilizes additional simulations to illustrate the capability of the 

model to generate limit cycles and discuss the role played by the mechanization-productivity 

elasticity. Finally, Section 6 concludes. 

2. The Goodwin Model with a General Capital Accumulation Rate 

In this section, we introduce the Goodwin model with a general capital accumulation rate, as 

formulated originally by Grasselli and Maheshwari (2018). This model serves as the baseline for 

the extended version we present in the following section. Building upon Goodwin (1967), we 

establish the following initial assumptions: Consider a closed economy without government that 

relies solely on labor and fixed capital as inputs for producing a single commodity, which can be 

allocated for either consumption or investment (there are no intermediate goods). Labor 

productivity and labor supply exhibit constant growth rates, while the capital needed per unit of 

output remains constant, as indicated by a fixed capital/output ratio. There are two social classes: 

workers, who earn wages and allocate their entire income toward consumption without saving, 

and capitalists, who earn profits and consistently save a fixed proportion of their income to 

finance investment. The economic system is characterized by the equality of investment and 
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savings, with no presence of debt or inflation, and all economic variables are measured in real 

terms. The real wage experiences growth, particularly in proximity to full employment of labor, 

and all variables are measured in continuous time.6 

Given these initial assumptions, let 𝑤 represent the real wage, 𝑙 denote the employed labor 

force, and 𝑞 signify real output.7 We introduce the wage share 𝑢 as: 

𝑢 =
𝑤𝑙

𝑞
     (1) 

Building upon the initial assumptions, 1 − 𝑢 corresponds to the profit share, and 𝑞(1 − 𝑢) 

represents total profits. Furthermore, we introduce 𝑠 as the savings-accumulation rate (0 < 𝑠 ≤

1), 𝑘 as the total capital, and 𝛿 as the depreciation rate of capital. The real net investment �̇� is 

then defined as follows:8 

�̇� = 𝑠𝑞(1 − 𝑢) − 𝛿𝑘    (2) 

Concerning the capital required for production, we define the capital/output ratio 𝜎 as: 

𝜎 =
𝑘

𝑞
    (3) 

Upon applying logarithms and time differentiation to equation (3), we observe that the 

assumption of a constant capital/output ratio (�̇� = 0) holds when the growth rate of capital 

equals the growth rate of output: 

�̇�

𝑘
=

�̇�

𝑞
    (4) 

Now, if we define labor productivity 𝑎 as: 

                                                 
6 For a discrete-time version of Goodwin’s (1967) model, see Grasetti et al. (2020). 
7 A summary of the notation employed in this paper is available in Appendix A. Furthermore, all mathematical 

derivations and numerical simulations featured in this study were conducted using a Mathematica notebook that is 

available as supplementary material. More details are available upon request to the author.  
8 For any variable 𝑥, �̇� = 𝑑𝑥/𝑑𝑡 denotes its time derivative, while �̇�/𝑥 represents its growth rate. 
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𝑎 =
𝑞

𝑙
    (5) 

Then, by applying logarithms and time differentiation to equation (5), we get an expression 

for the growth rate of productivity: 

�̇�

𝑎
=

�̇�

𝑞
−

𝑙̇

𝑙
      (6) 

Given the initial assumption that productivity grows at a constant rate, we can express this 

concept as: 

�̇�

𝑎
= 𝛼      (7) 

where 𝛼 represents an exogenous constant. Regarding labor dynamics, if 𝑛 represents the total 

labor supply, we can define the employment rate as: 

𝑣 =
𝑙

𝑛
     (8) 

Applying logarithms and time differentiation to equation (8) gives: 

�̇�

𝑣
=

𝑙̇

𝑙
−

�̇�

𝑛
      (9) 

Under the initial assumption that labor supply maintains a constant growth rate, we express 

this rate as: 

�̇�

𝑛
= 𝛽      (10) 

where 𝛽 is an exogenous constant.9 

By considering equations (1) to (10), we can identify the influence of the wage share 𝑢 on 

the dynamics of capital accumulation. For instance, when the wage share decreases (↓ 𝑢), ceteris 

paribus, it triggers a chain of effects: it augments the profit share, elevates total profits, fosters 

                                                 
9 For a model of capitalist dynamics that assumes an endogenous growth rate of labor supply, see Harris (1983). 
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increased savings, and stimulates investment, resulting in an acceleration of total capital (↑ �̇�/𝑘). 

This sequence of effects is represented by dividing equation (2) by the total capital 𝑘, yielding: 

�̇�

𝑘
=

𝑠𝑞(1 − 𝑢)

𝑘
− 𝛿    (11) 

The acceleration of capital causes a higher growth rate in output, a consequence of the 

assumption of a constant capital/output ratio. This effect is observed by substituting equations (3) 

and (4) into (11): 

�̇�

𝑞
=

𝑠(1 − 𝑢)

𝜎
− 𝛿    (12) 

To achieve accelerated output growth, there must be a corresponding increase in the growth 

rate of the employed labor force, discounting the influence of productivity. This effect is noted 

by substituting equation (12) into (6) and solving for the growth rate of the employed labor force: 

𝑙̇

𝑙
=

𝑠(1 − 𝑢)

𝜎
− 𝛿 −

�̇�

𝑎
      (13) 

A stronger growth rate of the labor force employed implies an acceleration of the 

employment rate, discounting the growth rate of labor supply. This consequence becomes 

apparent by substituting equation (13) into (9), resulting in: 

�̇�

𝑣
=

𝑠(1 − 𝑢)

𝜎
− 𝛿 −

�̇�

𝑎
−

�̇�

𝑛
      (14) 

Substituting equations (7) and (10) into (14) and rearranging terms yields: 

�̇�

𝑣
=

𝑠

𝜎
− (𝛼 + 𝛽 + 𝛿) −

𝑠𝑢

𝜎
     (15) 

Equation (15) is equivalent to the first dynamic equation originally formulated by Goodwin 

(1967), although it introduces two additional components suggested by Grasselli and 

Maheshwari (2018): the savings-accumulation rate 𝑠 and the depreciation rate 𝛿. To simplify 

notation, we can express equation (15) as follows: 
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�̇�

𝑣
= 𝐴0 − 𝐴1𝑢, 𝐴0 =

𝑠

𝜎
− (𝛼 + 𝛽 + 𝛿), 𝐴1 =

𝑠

𝜎
     (16) 

Here we note that 𝐴1 is always positive. Assuming that 𝑠 is sufficiently high and 

(𝛼 + 𝛽 + 𝛿) is sufficiently low to ensure a positive value for 𝐴0, equation (16) encapsulates the 

influence of the wage share on the dynamics of the employment rate. For instance, when the 

profit share falls (↓ 𝑢), it leads to an acceleration in the employment rate (↑ �̇�/𝑣). Now, 

according to Marx, the dynamics of the employment rate 𝑣 (associated with the reserve army of 

labor)10 have consequences on the real wage 𝑤. In his own words: 

Taking them as a whole, the general movements of wages are exclusively regulated by the expansion and 

contraction of the industrial reserve army, and these again correspond to the periodic changes of the 

industrial cycle. They are, therefore, not determined by the variations of the absolute number of the 

working population, but by the varying proportions in which the working class is divided into active and 

reserve army, by the increase or diminution in the relative amount of the surplus population, by the extent 

to which it is now absorbed, now set free (Marx, 1867/1975, p. 631). 

 

Goodwin (1967) represents this insight through a simplified real wage Phillips curve 

structured as follows: 

�̇�

𝑤
= −𝛾 + 𝜌𝑣, 𝛾, 𝜌 > 0     (17) 

where 𝛾 represents an autonomous tendency of the real wage to fall and 𝜌 is the effect of the 

employment rate on the real wage. Here, a decrease in 𝛾 or an increase in 𝜌 may be interpreted as 

a strengthening of the working class's bargaining power, enabling them to negotiate the 

acceleration of the real wage.11 If the real wage accelerates, a corresponding acceleration in the 

wage share may also be observed. This relationship becomes evident by applying logarithms and 

time derivatives to equation (1), yielding: 

                                                 
10 Implicitly, we assume that the reserve army of labor consists solely of unemployed workers. 
11 A similar interpretation of the parameters of the wage Phillips curve in terms of bargaining power can be found in 

the works of Mehrling (1986) and Cajas Guijarro and Vera (2022). 
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�̇�

𝑢
=

�̇�

𝑤
+

𝑙̇

𝑙
−

�̇�

𝑞
     (18) 

By substituting equation (6) into (18), we can include the effect of the growth rate of labor 

productivity on the dynamics of the wage share: 

�̇�

𝑢
=

�̇�

𝑤
−

�̇�

𝑎
     (19) 

Subsequently, incorporating equation (17) into (19) yields: 

�̇�

𝑢
= −𝛾 + 𝜌𝑣 −

�̇�

𝑎
     (20) 

Finally, substituting equation (7) into (20), we arrive at the second dynamic equation 

originally proposed by Goodwin (1967): 

�̇�

𝑢
= −(𝛼 + 𝛾) + 𝜌𝑣     (21) 

To simplify notation, we can present this equation as: 

�̇�

𝑢
= −𝐵0 + 𝐵1𝑣, 𝐵0 = 𝛼 + 𝛾, 𝐵1 = 𝜌     (22) 

where 𝐵0 and 𝐵1 are always positive. Equation (22) captures how the employment rate 

shapes the evolution of the wage share. To illustrate, when the employment rate increases (↑ 𝑣), 

it propels an acceleration in the wage share (↑ �̇�/𝑢). This, in turn, paves the way for potential 

future increases in the wage share (↑ 𝑢), which, as per equation (15), subsequently triggers a 

future deceleration in the employment rate (↓ �̇�/𝑣). This cyclical interaction permanently 

reinforces the dynamic relationship between these variables. Consequently, as mentioned by 

Goodwin (1967), equations (15) and (22) jointly define a two-dimensional dynamical system that 

engenders closed clockwise cycles within the plane formed by the state variables 𝑢 and 𝑣. In 

fact, when 𝐴0 > 0, these equations resemble the structure of the predator-prey model, 

independently formulated by Lotka (1910) and Volterra (1927). In this analogy, the wage share 𝑢 
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corresponds to the predator, while the employment rate 𝑣 takes on the role of the prey.12 In this 

sense, Goodwin claimed that: 

It has long seemed to me that Volterra’s problem of the symbiosis of two populations-partly 

complementary, partly hostile-is helpful in the understanding of the dynamical contradictions of 

capitalism, especially when stated in a more or less Marxian form (Goodwin, 1967, p. 55). 

3. An Extended Goodwin Model with Endogenous Technical Change 

The Goodwin model discussed in the preceding section incorporates Marx's insight regarding the 

influence of the reserve army of labor, indirectly represented by the employment rate, on the 

dynamics of the real wage. However, Marx's discussion about the role of the reserve army of 

labor in the dynamics of capitalist accumulation is notably intricate. An essential aspect in this 

regard is the interaction between the reserve army of labor and capitalist-driven technical change. 

For instance, consider the following intuitions expressed by Marx: 

Once given the general basis of the capitalistic system, then, in the course of accumulation, a point is 

reached at which the development of the productivity of social labour becomes the most powerful lever of 

accumulation (…)  

The degree of productivity of labour, in a given society, is expressed in the relative extent of the means of 

production that one labourer, during a given time, with the same tension of labour power, turns into 

products. The mass of the means of production which he thus transforms, increases with the 

productiveness of his labour. But those means of production play a double part. The increase of some is a 

consequence, that of the others a condition of the increasing productivity of labour. E. g., with the 

division of labour in manufacture, and with the use of machinery, more raw material is worked up in the 

same time, and, therefore, a greater mass of raw material and auxiliary substances enter into the labour 

process. That is the consequence of the increasing productivity of labour. On the other hand, the mass of 

machinery, beasts of burden, mineral manures, drain-pipes, etc., is a condition of the increasing 

productivity of labour. So also is it with the means of production concentrated in buildings, furnaces, 

means of transport, etc. But whether condition or consequence the growing extent of the means of 

production, as compared with the labour power incorporated with them, is an expression of the growing 

productiveness of labour. The increase of the latter appears, therefore, in the diminution of the mass of 

labour in proportion to the mass of means of production moved by it, or in the diminution of the 

subjective factor of the labour process as compared with the objective factor (Marx, 1867/1975, p. 617). 

In the context of these insights, two critical aspects of technical change become apparent: 

increasing labor productivity and the mechanization of production processes. As an outcome of 

these concurrent processes, the bulk of means of production tends to accelerate at a more rapid 

                                                 
12 Some comments about the predator-prey interpretation of the Goodwin model can be found in Solow (1990). 
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pace compared to the mass of labor employed. To formalize this concept, for the sake of 

simplicity, if we maintain the assumption that the economy exclusively relies on fixed capital 

and produces a single commodity applicable for both consumption and investment, we can 

introduce a mechanization ratio denoted as 𝑚: 

𝑚 =
𝑘

𝑙
     (23) 

Here, the total capital 𝑘 represents the mass of the means of production, while 𝑙 represents 

the mass of labor employed.  

In accordance with the assumption of an absence of intermediate goods, we can infer, 

drawing from Marx's insights, that a higher mechanization ratio (↑ 𝑚) causes a heightened labor 

productivity (↑ 𝑎). Consequently, we extend the Goodwin model by replacing equation (7), 

which previously assumed a constant productivity growth rate, with a new dynamic equation. 

This equation assumes an endogenous productivity growth rate that depends on the dynamics of 

mechanization in the following way: 

�̇�

𝑎
= 𝛼0 + 𝛼1 (

�̇�

𝑚
) , 0 < 𝛼0 < 1, 0 < 𝛼1 < 1     (24) 

In this expression, 𝛼0 represents the inclination of productivity to increase autonomously, 

while 𝛼1 denotes the elasticity of labor productivity with respect to mechanization, which we 

refer to as the mechanization-productivity elasticity. Here we assume that mechanization has 

positive but decreasing returns, implying that 0 < 𝛼1 < 1. 

If both productivity 𝑎 and mechanization 𝑚 undergo changes, it inevitably results in an 

alteration of the capital/output ratio. To illustrate this, we can substitute equations (5) and (23) 

into (3), yielding: 

𝜎 =
𝑚

𝑎
    (25) 
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By applying logarithms and time differentiation to equation (25), we derive: 

�̇�

𝜎
=

�̇�

𝑚
−

�̇�

𝑎
    (26) 

At this stage of the discussion, we require to explain the factors driving the dynamics of 

mechanization. Here, once again, we draw upon Marxian insights for inspiration. Specifically, 

we turn our attention to an observation articulated by Paul Sweezy: 

The reserve army is recruited primarily from those who have been displaced by machinery, whether this 

takes the more striking form of the repulsion of laborers already employed, or the less evident but not less 

real form of the more difficult absorption of the additional laboring population through the usual 

channels. That Marx thought of the introduction of labor-saving machinery as a more or less direct 

response on the part of capitalists to the rising tendency of wages is clearly indicated in the following 

passage: 

“Between 1849 and 1859, a rise of wages took place in the English agricultural districts. This was the 

result of an unusual exodus of the agricultural surplus population caused by the demands of war, the vast 

extension of railroads, factories, mines, etc. (…) What did the farmers do now? (…) They introduced 

more machinery and in a moment the laborers were redundant again in a proportion satisfactory even to 

the farmers. There was now ‘more capital’ laid out in agriculture than before, and in a more productive 

form. With this the demand for labor fell not only relatively but absolutely” 

So far as the individual capitalists are concerned, each takes the wage level for granted and attempts to do 

the best he can for himself. In introducing machinery he is therefore merely attempting to economize on 

his own wage bill. The net effect of all capitalists’ behaving in this way, however, is to create 

unemployment which in turn acts upon the wage level itself. It follows that the stronger the tendency of 

wages to rise, the stronger also will be the counteracting pressure of the reserve army, and vice versa 

(Sweezy, 1964, p. 88). 

Drawing from this observation, we propose the following simplified dynamic equation in 

which the growth rate of mechanization is treated as an endogenous variable that depends on the 

distribution process between wages and capitalist profits: 

�̇�

𝑚
= −𝜓0 + 𝜓1𝑢, 𝜓0, 𝜓1 > 0     (27) 

Here, 𝜓0 represents an autonomous stabilizing effect, while 𝜓1 denotes the impact of the 

wage share on the growth rate of mechanization. This effect is assumed to be positive, given the 

assumption that an increase in the wage share (↑ 𝑢) subsequently leads to a decline in the profit 

share (↓ (1 − 𝑢)). This, in turn, incentivizes the capitalist class to adopt novel production 

techniques that enable them to ‘substitute labor with machinery.’ Consequently, this leads to an 
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acceleration in mechanization (↑ �̇�/𝑚). Thus, a higher value for 𝜓1 implies that capitalists 

possess a stronger power to mechanize production as a response to its distributive struggle with 

the working class.13 

Substituting equation (27) into (24) yields an expression that describes a positive influence 

of the wage share 𝑢 on the growth rate of productivity:14 

�̇�

𝑎
= 𝛼0 − 𝛼1𝜓0 + 𝛼1𝜓1𝑢     (28) 

Further, by substituting equations (27) and (28) into (26), we derive a dynamic equation 

governing the growth rate of the capital/output ratio 𝜎. As a result, this term becomes a new state 

variable in the extended version of the Goodwin model with endogenous technical change 

presented in this paper: 

�̇�

𝜎
= −[𝛼0 + (1 − 𝛼1)𝜓0] + (1 − 𝛼1)𝜓1𝑢     (29) 

With 𝜎 now being an endogenous variable, other equations require adjustments to accurately 

extend the Goodwin model. To begin, since 𝜎 is no longer a constant term, we should substitute 

equation (4) with the following expression, which is derived by applying logarithms and time 

differentiation to equation (3): 

�̇�

𝜎
=

�̇�

𝑘
−

�̇�

𝑞
    (30) 

                                                 
13 The assumption underlying the term 𝜓1 and its sign is not arbitrary but is rooted in the Marxian literature on 

cyclical models. In fact, a similar assumption can be found in Eagly's (1972) Marxian model of economic cycles. 

Specifically, Eagly posits that a higher employment rate translates into enhanced bargaining power for the working 

class, enabling them to negotiate higher wage rates. In response, the capitalist class accelerates mechanization to 

diminish the bargaining power of workers. In contrast to Eagly, equation (27) directly links the dynamics of 

mechanization with the distribution process through the inclusion of the wage share. 
14 For an exploration of various methods for endogenizing labor productivity, which includes the potential positive 

influence of the wage share, refer to Dutt (2013). 
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Incorporating equations (3) and (30) into (11) and rearranging terms yields a new expression 

for the growth rate of output, which should replace equation (12): 

�̇�

𝑞
=

𝑠(1 − 𝑢)

𝜎
− 𝛿 −

�̇�

𝜎
     (31) 

By substituting equation (31) into (6) and solving for the growth rate of labor force 

employed, we obtain a new expression that should substitute equation (13): 

𝑙̇

𝑙
=

𝑠(1 − 𝑢)

𝜎
− 𝛿 −

�̇�

𝑎
−

�̇�

𝜎
      (32) 

Combining equation (9), (26) and (32) gives: 

�̇�

𝑣
=

𝑠(1 − 𝑢)

𝜎
−

�̇�

𝑛
− 𝛿 −

�̇�

𝑚
      (33) 

Substituting equations (10) and (27) into (33) and rearranging terms yields: 

�̇�

𝑣
=

𝑠

𝜎
− (𝛽 + 𝛿 − 𝜓0) − (

𝑠

𝜎
+ 𝜓1) 𝑢     (34) 

This expression supplants equation (15) and represents an extended dynamical equation for 

the growth rate of the employment rate. It embraces the effects linked to endogenous 

mechanization and productivity, highlighting the altered nature of 𝜎 from a constant term to an 

additional endogenous state variable within the model. Importantly, this variable introduces a 

non-linear influence on the growth rate of 𝑣. 

Finally, by combining equations (17), (19), and (28), we arrive to an extended dynamic 

equation for the growth rate of the wage share, supplanting equation (21): 

�̇�

𝑢
= −(𝛼0 + 𝛾 − 𝛼1𝜓0) − 𝛼1𝜓1𝑢 + 𝜌𝑣     (35) 

Equations (29), (34), and (35) constitute a three-dimensional dynamical system that 

characterizes the fully extended version of the Goodwin model, incorporating endogenous 

technical change as proposed in this paper. The state variables within this system encompass the 
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wage share (𝑢), the employment rate (𝑣), and the capital/output ratio (𝜎). In the steady state (�̇� =

�̇� = �̇� = 0), this dynamical system has a non-trivial equilibrium point denoted as (𝑢∗, 𝑣∗, 𝜎∗), 

which is given by: 

𝑢∗ =
𝑍2

𝜓1𝑍1
, 𝑣∗ =

𝑍3

𝜌𝑍1
,    𝜎∗ =

𝑍5

𝑍4
     (36) 

where: 

𝑍1 = 1 − 𝛼1, 𝑍2 = 𝛼0 + (1 − 𝛼1)𝜓0, 𝑍3 = 𝛾(1 − 𝛼1) + 𝛼0 

𝑍4 = 𝜓1[(1 − 𝛼1)(𝛽 + 𝛿) + 𝛼0], 𝑍5 = 𝑠[(1 − 𝛼1)(𝜓1 − 𝜓0) − 𝛼0] 

In Appendix B, we analytically prove that this equilibrium point is positive and stable under 

the following conditions:  

0 < 𝛼0 < 1, 𝛼1
𝑐 < 𝛼1 < 1, 𝜓0 < 𝜓1, 𝛼0 < (1 − 𝛼1)(𝜓1 − 𝜓0)     (37) 

Here, the lower bound 𝛼1
𝑐 is equal to:  

𝛼1
𝑐 =

𝑍6 − √𝑍7

2𝑍8
     (38) 

where: 

𝑍6 = (𝛼0 + 𝛽 + 𝛿)𝜓1 + (𝛼0 + 𝛽 + 𝛿 + 𝜓0)(𝜓1 − 𝜓0) − 𝛼0𝜓0 

𝑍7 = (𝛽 + 𝛿 + 𝜓1 − 𝜓0)[(𝛽 + 𝛿 + 𝜓1 − 𝜓0)𝜓0
2 + 4𝛼0𝜓1(𝛼0 + 𝛽 + 𝛿)] 

𝑍8 = (𝛽 + 𝛿)𝜓1 + 𝜓0(𝜓1 − 𝜓0) 

Within the same Appendix, we employ the existence part of the Hopf bifurcation theorem 

for three-dimensional dynamical systems to establish that the model described by equations (29), 

(34), and (35) can generate limit cycles near its equilibrium point. These limit cycles represent 

closed periodic solutions revolving around the equilibrium point, gradually attracting nearby 

trajectories over time. They come into existence as the parameter 𝛼1, representing the 

mechanization-productivity elasticity, approaches the critical value 𝛼1
𝑐 as defined in equation 
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(38). Building upon these analytical findings, the subsequent section features numerical 

simulations of the extended Goodwin model proposed in this paper, specifically applied to the 

US economy. The objective is to illustrate the cyclic nature of the model’s dynamics and discuss 

the role played by the term 𝛼1.  

4. Simulating the Extended Goodwin Model for the US Economy 

To perform simulations of the extended Goodwin model with endogenous technical change, 

as discussed in the preceding section, it is necessary to assign numerical values to the model's 

parameters. In this regard, we utilized the parameter estimates presented in Table 1, which have 

been derived from empirical estimations using annual data for the US economy spanning from 

1960 to 2019. The estimation procedure follows an approach analogous to that employed by 

Grasselli and Maheshwari (2018), and the details of the procedure are provided in Appendix C.  

Table 1. Parameter Estimates for the Extended Goodwin Model (US Economy) 

𝛿 �̂� �̂� �̂�0 �̂�1 �̂�0 �̂�1 𝛾 �̂� 

0.05198494 0.5626761 0.01399579 0.0120001 0.3334868 0.2678959 0.4210462 0.2677537 0.3065009 

Note: Parameter estimates obtained based on the procedure detailed in Appendix C.  

Using the parameter values provided in Table 1 and inserting them into equation (36), we 

obtained the following equilibrium values for the state variables: 

𝑢∗ = 0.6790, 𝑣∗ = 0.9323,    𝜎∗ = 2.1504     (39) 

where: 

𝑍1 = 0.6665, 𝑍2 = 0.1905, 𝑍3 = 0.1904, 𝑍4 = 0.0235, 𝑍5 = 0.0506 

Furthermore, it can be confirmed that the values presented in Table 1 satisfy the conditions 

outlined in expression (37), ensuring the stability of the positive equilibrium (𝑢∗, 𝑣∗, 𝜎∗): 

0 < 𝛼0 = 0.012 < 1, 𝛼1
𝑐 = 0.1527 < 𝛼1 = 0.3334 < 1, 𝜓0 = 0.2678 < 𝜓1 = 0.421,

𝛼0 = 0.012 < (1 − 𝛼1)(𝜓1 − 𝜓0) = 0.102 
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where:  

𝑍6 = 0.0825, 𝑍7 = 0.0037, 𝑍8 = 0.0688 

Having confirmed that the estimated parameter values for the US economy meet the 

theoretical conditions for a positive and stable equilibrium, the next step in constructing our 

numerical simulation is defining the initial conditions of the state variables {𝑢1, 𝑣1, 𝜎1}. To select 

these initial conditions, we implemented the following procedure: First, we initiated the model 

trajectories using each historical triplet {𝑢𝑡
𝐻, 𝑣𝑡

𝐻 , 𝜎𝑡
𝐻} observed for the US economy from 𝑡 =

1960 to 𝑡 = 2019 as a candidate initial condition. This resulted in 𝑆 = 1,2,3, … ,60 preliminary 

simulations. Next, for each simulation 𝑆, we compared the complete historical series of values 

{𝑢𝑡
𝐻, 𝑣𝑡

𝐻 , 𝜎𝑡
𝐻}𝑡=1960

2019  with the corresponding simulated series {𝑢𝑡
𝑆, 𝑣𝑡

𝑆, 𝜎𝑡
𝑆}𝑡=1960

2019 . This comparison 

was done by calculating an Average Euclidean Distance (AED) as follows: 

𝐴𝐸𝐷𝑆 =
1

60
∑ √(𝑢𝑡

𝐻 − 𝑢𝑡
𝑆)2 + (𝑣𝑡

𝐻 − 𝑣𝑡
𝑆)2 + (𝜎𝑡

𝐻 − 𝜎𝑡
𝑆)2

2019

𝑡=1960

, 𝑆 = 1,2,3, … ,60     (40) 

Finally, we selected the definitive initial condition as the historical triplet {𝑢𝑡
𝐻, 𝑣𝑡

𝐻, 𝜎𝑡
𝐻} that 

corresponds to the simulation with the minimum Average Euclidean Distance. As a result of this 

procedure, we selected the following initial values for the state variables: 

{𝑢1, 𝑣1, 𝜎1} = {𝑢1962
𝐻 , 𝑣1962

𝐻 , 𝜎1962
𝐻 } = {0.6703,   0.9500,   3.1460}     (41) 

Using the parameter values from Table 1 and the initial conditions defined in expression 

(41), we conducted a definitive simulation to generate time series, two-dimensional, and three-

dimensional trajectories of the model’s state variables (𝑢, 𝑣, 𝜎). These simulated trajectories were 

then compared with historical data from the US economy spanning from 1960 to 2019. The 

comparison results are depicted in Figures 1, 2, and 3. These figures consistently illustrate that 
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the extended Goodwin model effectively generates stable ‘cyclical’ trajectories, specifically 

damped oscillations, when calibrated for the US economy.   
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Figure 1. Observed and Simulated Time Series (US Economy) 

 

 

 

 



 20 

Figure 2. Observed and Simulated 2D Trajectories (US Economy) 
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Figure 3. Observed Data and Simulated 3D Trajectory (US Economy) 

 

In terms of comparing the simulated trajectories to historical data, we followed a similar 

approach to Harvie (2000) and Grasselli and Maheshwari (2018). We contrasted the estimated 

equilibrium values, as presented in equation (39), with the historical means of the state variables. 

The results of this comparison are summarized in Table 2, where we observe differences 

between the estimated equilibrium values and the historical means for the wage share (𝑢), 

employment rate (𝑣), and capital/output ratio (𝜎). Specifically, the estimated equilibrium values 

are 5.2% higher, 1.28% lower, and 18.04% lower than the historical means, respectively.  

At first glance, these results might suggest that the extended Goodwin model discussed in 

this paper struggles to accurately match the historical means of the wage share and, especially, 

the capital/output ratio. However, a closer examination of the historical and simulated time series 

for these variables in Figure 1 reveals that averages may not necessarily provide the best 
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estimators of equilibrium values. For instance, the historical wage share in the US exhibits a 

significant decreasing trend, particularly since 1970, a pattern the model struggles to replicate, a 

challenge also encountered in simulations by Grasselli and Maheshwari (2018). In contrast, the 

historical capital/output ratio demonstrates a notable decreasing trend from 1960 to 2000. In this 

case, the extended Goodwin model seems to satisfactorily replicate this trend. However, it fails 

to completely capture the subsequent recovery in the capital/output ratio during the following 

years. When considering the employment rate, both historical and simulated time series appear to 

fluctuate around similar values. 

To assess the model's fit more quantitatively, Table 2 also provides the root-mean-square 

error (RMSE) of the simulated trajectories of each state variable as a proportion of its historical 

mean. The RMSE accounts for 5.93% of the historical mean for the wage share, 4.13% for the 

employment rate, and 4.63% for the capital/output ratio. It's worth noting that, in comparison, 

Grasselli and Maheshwari (2018) reported lower RMSE values of 5.4% for the wage share and 

1.4% for the employment rate in their simulations for the US economy. While our model exhibits 

slightly lower goodness-of-fit in the case of the wage share and employment rate, this difference 

appears to be modest. Furthermore, this discrepancy may be offset by the increased theoretical 

and analytical complexity introduced by the extended Goodwin model with endogenous 

technical change presented in this paper, particularly due to the inclusion of the capital/output 

ratio as a third state variable. Importantly, this variable seems to be simulated with acceptable 

accuracy by the model. 
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Table 2. Mean, Equilibrium, and RMSE of Simulated Trajectories (US Economy) 

State variables 
Historical 

mean (A) 

Estimated 

equilibrium (B) 

Difference (A-B) as 

a proportion of (A) 

RMSE of simulated 

trajectories as a 

proportion of (A) 

Wage share (𝑢) 0.6454 0.6790 5.20 % 5.93 % 

Employment rate 

(𝑣) 
0.9444 0.9323 -1.28 % 4.13 % 

Capital/output 

ratio (𝜎) 
2.6237 2.1504 -18.04 % 4.63 % 

 

5. Limit Cycles and the Mechanization-Productivity Relationship 

Referring back to Appendix B, our utilization of the existence part of the Hopf bifurcation 

theorem for three-dimensional dynamical systems suggests that the extended Goodwin model 

under study possesses the capacity to generate limit cycles as the mechanization-productivity 

elasticity 𝛼1 approaches the critical value 𝛼1
𝑐 defined in equation (38). Building upon this 

analytical outcome and recognizing that substituting the values provided in Table 1 into equation 

(38) yields an estimated critical value of 𝛼1
𝑐 = 0.1527, we can proceed to create a new numerical 

simulation of the extended Goodwin model capable to generate limit cycles. This simulation 

involves the replacement of the estimated value of 𝛼1 with the critical value 𝛼1
𝑐, as outlined in 

Table 3. 

Table 3. Parameter Estimates for the Extended Goodwin Model (Limit Cycle) 

𝛿 �̂� �̂� �̂�0 �̂�1 = �̂�1
𝑐 �̂�0 �̂�1 𝛾 �̂� 

0.05198494 0.5626761 0.01399579 0.0120001 0.15269969 0.2678959 0.4210462 0.2677537 0.3065009 

Note: The parameter values used are consistent with those in Table 1, except for substituting the estimated value of 

𝛼1 with the critical value 𝛼1
𝑐. For details, see Appendix C. 

Substituting the values from Table 3 into equation (37) yields a revised equilibrium point, 

which slightly differs from the equilibrium point in equation (39): 
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𝑢∗ = 0.6699, 𝑣∗ = 0.91979,    𝜎∗ = 2.3175     (42) 

Applying the Average Euclidean Distance minimization method described in the preceding 

section, we get new initial conditions: 

{𝑢1, 𝑣1, 𝜎1} = {𝑢1963
𝐻 , 𝑣1963

𝐻 , 𝜎1963
𝐻 } = {0.6672,   0.9475,   3.1006}     (43) 

Using the parameter values from Table 3 and the initial conditions specified in equation 

(43), we conducted a new simulation of the model to derive two-dimensional and three-

dimensional trajectories of the state variables (𝑢, 𝑣, 𝜎). We then compared the results with the 

historical data for the US. The comparison is illustrated in Figures 4 and 5, showcasing the 

extended Goodwin model's capability to generate limit cycles as 𝛼1 approaches 𝛼1
𝑐. 

Regarding the model's fit, Table 4 indicates that the trajectories simulated in the case with 

limit cycles revolve around equilibrium values that closely align with the historical means of the 

state variables, representing an improvement over the simulation presented in the previous 

section. However, the RMSE is slightly higher for the trajectories associated with both the wage 

share and the employment rate, while being lower for the trajectory linked to the capital/output 

ratio. This reaffirms the notion that the extended Goodwin model may serve as an effective 

analytical tool for understanding the dynamics of the latter variable even in the case of limit 

cycles.  

Table 4. Mean, Equilibrium, and RMSE of Simulated Trajectories (Limit Cycles) 

State variables 
Historical 

mean (A) 

Estimated 

equilibrium (B) 

Difference (A-B) as 

a proportion of (A) 

RMSE of simulated 

trajectories as a 

proportion of (A) 

Wage share (𝑢) 0.6454 0.6699 3.78 % 6.63 % 

Employment rate 

(𝑣) 
0.9444 0.9197 -2.61 % 5.82 % 

Capital/output 

ratio (𝜎) 
2.6237 2.3175 -11.67 % 4.31 % 
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Figure 4. Observed and Simulated 2D Trajectories (Limit Cycle) 
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Figure 5. Observed Data and Simulated 3D Trajectory (Limit Cycle) 

 

The theoretical and simulation results obtained thus far highlight the significant sensitivity 

of the extended Goodwin model’s ‘cyclical’ behavior to the magnitude of the mechanization-

productivity elasticity 𝛼1. In fact, running an additional simulation of the model with 𝛼1 > 𝛼1
𝑐, 

ceteris paribus, yields trajectories characterized by unstable oscillations. This finding 

complements the previous observations of limit cycles for 𝛼1 ≈ 𝛼1
𝑐 and damped oscillations for 

𝛼1 < 𝛼1
𝑐. The relationship between these ‘cyclical’ trajectories and the elasticity 𝛼1 is 

summarized in Figure 6. Therefore, a thorough discussion regarding the determinants of the 

behavior of the mechanization 𝛼1 becomes crucial for a deeper understanding of the dynamics of 

capitalism, particularly in the context of endogenous technical change and distributive cycles 

generated by class-struggle. 
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Figure 6. Relationship between ‘Cycles’ and Mechanization-Productivity Elasticity  

 

Note: Unstable oscillations simulated with 𝛼1 = 0.1427, while other parameters match those presented in Table 1. 

Damped oscillations and limit cycles correspond to simulations presented in Figures 2 and 4, respectively. 

While a comprehensive discussion of the determinants of 𝛼1 extends beyond the scope of 

this paper, it is worthwhile to propose some initial insights. Unlike interpreting 𝛼1 solely as an 

elasticity term influenced by technological factors, which is the conventional perspective in 

orthodox economics, a Marxian perspective may suggest that the relationship between 

mechanization and labor productivity, represented by 𝛼1, is also shaped by the broader context of 

the class struggle and its impact on variables such as the average labor intensity. In line with 

Marx's observations (1867/1975), heightened mechanization of production and a larger reserve 

army of labor can potentially boost productivity. This boost may occur as these factors contribute 

to increased labor intensity through intensified work processes prompted by the threat of 

dismissal or similar mechanisms. Consider, for instance, the following passages:  

In proportion as the use of machinery spreads, and the experience of a special class of workmen 

habituated to machinery accumulates, the rapidity and intensity of labor increases (Marx, 1867/1975, p. 

412). 

The development of the capitalist mode of production (…) enables the capitalist, with the same outlay of 

variable capital, to ser in action more labor by greater exploitation (extensive or intensive) of each 



 28 

individual labor power (…) The overwork of the employed part of the working class swells the ranks of 

the reserve, whilst conversely the greater pressure that the latter by its competition exerts on the former, 

forces these to submit to overwork and to subjugation under the dictates of capital. The condemnation of 

one part of the working class to enforced idleness by the overwork of the other part, and the converse, 

becomes a means of enriching the individual capitalists, and accelerates at the same time the production 

of the industrial reserve army on a scale corresponding with the advance of social accumulation (Marx, 

1867/1975, pp. 629–630). 

We could therefore postulate that the impact of mechanization on productivity is closely 

linked to the employment rate due to the influence of the reserve army of labor on labor intensity. 

As the employment rate decreases, the relative weight of the unemployed reserve army in the 

labor supply rises, diminishing the bargaining power of the working class. In this scenario, 

capitalists can leverage their position to demand higher productivity from workers, for a given 

mechanization growth rate, potentially through intensified work processes driven by the fear of 

job loss or similar factors. Consequently, within the context of the extended Goodwin model 

presented in this paper, we might posit an inverse relationship between the mechanization-

productivity elasticity and the employment rate, denoted as 𝛼1 = 𝑓(𝑣) with 𝑓′ < 0. However, 

this assumption may significantly increase the complexity of the three-dimensional dynamical 

system originally defined by equations (29), (34), and (35) depending on the specific form of 𝑓 

derived from the econometric analysis of historical data from the US or other capitalist economy. 

Therefore, we propose this additional extension of the model as a subject for future theoretical 

and empirical discussion.15  

6. Conclusions 

This paper has extended the Goodwin model to delve into the dynamic nature of capitalism, 

encompassing the influence of endogenous technical change, as inspired by Marx’s intuitions 

regarding the interaction between mechanization and labor productivity within the framework of 

                                                 
15 For a more comprehensive theoretical exploration of the interplay between class struggle, labor intensity, 

productivity, and endogenous cycles, see Cajas Guijarro and Vera (2022) and Cajas Guijarro (2023). 
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distributive cycles resulting from the class struggle between workers and capitalists. The 

analytical study of this extended, coupled with numerical simulations using parameter values 

estimated for the US economy from 1960 to 2019, has yielded significant insights from both 

theoretical and empirical standpoints. 

From a theoretical perspective, the application of the existence part of the Hopf bifurcation 

theorem for three-dimensional dynamical systems has identified the mechanization-productivity 

elasticity (𝛼1) as a pivotal determinant of the cyclical behavior of the trajectories generated by 

the extended Goodwin model proposed here. These findings, reinforced through the numerical 

simulation of the model for the US economy, reveal the existence of damped oscillations when 

𝛼1 exceeds a critical value 𝛼1
𝑐, which is equal to 0.1526. Additional simulations confirm the 

presence of limit cycles as 𝛼1 approaches this critical value and unstable oscillations when 𝛼1 

falls below it, underscoring the decisive role of 𝛼1 in shaping capitalist ‘cyclical’ dynamics 

within a context of distributive cycles and endogenous technical change. 

However, our theoretical discussion, again guided by Marx’s insights, posits that 𝛼1 is not 

merely a technological factor. Instead, it operates within a broader context influenced by the 

dynamics of the class struggle. In accordance with this Marxian perspective, the connection 

between mechanization and labor productivity is intricately tied to variables such as labor 

intensity. Elevated labor intensity, driven by intensified work processes due to the threat of job 

insecurity, may be considered as a critical component of the cyclical dynamics within a context 

of capitalist endogenous technical change, warranting future exploration through more intricate 

versions of the extended Goodwin model proposed herein. To initiate this exploration, it may be 

useful to consider the possibility of an inverse relationship between the mechanization-

productivity elasticity and the employment rate, indirectly representing the influence of the 
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reserve army of unemployed on labor intensity. Another avenue for future theoretical exploration 

involves expanding the extended Goodwin model to incorporate additional insights from 

Marxian economics like, for instance, the potential implications of a falling rate of profit. In this 

context, the model of long cycles developed by Nikolaos et al. (2022) could serve as a useful 

reference. 

From an empirical standpoint, the numerical simulation of the extended Goodwin model, 

calibrated for the US economy, provides evidence of the model’s capability to generate stable 

‘cyclical’ trajectories that can be compared to historical data for the state variables, namely, the 

wage share (𝑢), the unemployment rate (𝑣), and the capital/output ratio (𝜎). The adjustment 

between simulated trajectories and historical data reveals promising results. While the estimated 

equilibrium values for these variables exhibit modest deviations from their historical means, a 

detailed examination of historical and simulated time series offers a more comprehensive 

understanding. The historical wage share in the US has shown a pronounced declining trend 

since the 1970s, a pattern that the model struggles to replicate, challenge also encountered in 

simulations by Grasselli and Maheshwari (2018). In contrast, the historical capital/output ratio 

portrays a decreasing trend up to 2000, a trend the model accurately mirrors, albeit not entirely 

capturing the subsequent recovery observed in historical data. Notably, the employment rate 

displays relatively consistent trajectories in both historical and simulated data. A quantitative 

perspective, incorporating the root-mean-square error (RMSE) of simulated trajectories as a 

proportion of their historical means, provides further insights. While the RMSE for the wage 

share and the employment rate is slightly higher compared with Grasselli and Maheshwari 

(2018), these discrepancies remain within a reasonable range. On the contrary, the RMSE for the 

capital/output ratio is relatively lower, reinforcing the notion that the extended Goodwin model is 
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a suitable analytical tool for comprehending the dynamics of this variable. Even in the case of 

limit cycles, the simulated trajectories of the state variables exhibit an acceptable fit when 

compared to historical data. 

In summary, this extended Goodwin model with endogenous technical change seems to 

contribute to the understanding of the intricate and potentially cyclical dynamics of capitalism, 

from both theoretical and empirical perspectives. Particularly, the theoretical validation of the 

stability of the three-dimensional model and its capacity to generate limit cycles establishes a 

connection with other studies focused on high-dimensional dynamical systems, as mentioned by 

Azevedo Araujo et al. (2019). Moreover, the calibration of the three-dimensional system, 

encompassing endogenous distributive cycles in the context of the US economy, attempts to 

connect the theoretical examination of high-dimensional models and the empirical investigations 

originally formulated by authors like Desai (1984), Harvie (2000), and Grasselli and Maheshwari 

(2018), focused on econometrically estimate parameters associated with the Goodwin model. 

Perhaps, by integrating these diverse perspectives, we can gain better and deeper insights into the 

complexity and vulnerabilities of capitalism. 
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Appendix A: Notation 

Symbol Description 

𝑞 Output 

𝑘 Total (fixed) capital 

�̇� =
𝑑𝑘

𝑑𝑡
 Net investment 

𝑤 Real wage 

𝑙 Total labor force employed 

𝑎 Labor productivity 

𝛼 Growth rate of labor productivity 

𝜎 Capital/output ratio 

𝑛 Labor supply 

𝛽 Growth rate of labor supply 

𝑢 Wage share 

𝑣 Employment rate 

𝛿 Depreciation rate 

𝑠 Savings-accumulation rate 

𝛾 Autonomous tendency of the real wage to fall 

𝜌 Effect of the employment rate on the real wage 

𝑚 Mechanization 

𝛼0 Autonomous tendency of productivity to grow 

𝛼1 Effect of mechanization on productivity 

𝜓0 Autonomous tendency of mechanization to stabilize 

𝜓1 Effect of the wage share on mechanization 
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Appendix B: Dynamic Analysis of the Extended Goodwin Model 

Consider the extended Goodwin model with endogenous technical change, originally 

defined by equations (35), (34), and (29), which are restated here as equations (A1), (A2), and 

(A3) respectively: 

�̇�

𝑢
= −(𝛼0 + 𝛾 − 𝛼1𝜓0) − 𝛼1𝜓1𝑢 + 𝜌𝑣     (𝐴1) 

�̇�

𝑣
=

𝑠

𝜎
− (𝛽 + 𝛿 − 𝜓0) − (

𝑠

𝜎
+ 𝜓1) 𝑢     (𝐴2) 

�̇�

𝜎
= −[𝛼0 + (1 − 𝛼1)𝜓0] + (1 − 𝛼1)𝜓1𝑢     (𝐴3) 

In the steady state (�̇� = �̇� = �̇� = 0), this three-dimensional dynamical system has a non-

trivial equilibrium point (𝑢∗, 𝑣∗, 𝜎∗), which is given by: 

𝑢∗ =
𝑍2

𝜓1𝑍1
, 𝑣∗ =

𝑍3

𝜌𝑍1
,    𝜎∗ =

𝑍5

𝑍4
     (𝐴4) 

where: 

𝑍1 = 1 − 𝛼1, 𝑍2 = 𝛼0 + (1 − 𝛼1)𝜓0, 𝑍3 = 𝛾(1 − 𝛼1) + 𝛼0 

𝑍4 = 𝜓1[(1 − 𝛼1)(𝛽 + 𝛿) + 𝛼0], 𝑍5 = 𝑠[(1 − 𝛼1)(𝜓1 − 𝜓0) − 𝛼0] 

To guarantee the existence of a positive equilibrium point (𝑢∗ > 0, 𝑣∗ > 0, 𝜎∗ > 0), we 

make the following assumptions: 

0 < 𝛼0, 𝛼1 < 1, 𝜓0 < 𝜓1, 𝛼0 < (1 − 𝛼1)(𝜓1 − 𝜓0)     (𝐴5) 

These assumptions guarantee that all terms 𝑍1 to 𝑍5 are positive. Now, linearizing equations 

(A1), (A2), and (A3) around the equilibrium point (𝑢∗, 𝑣∗, 𝜎∗) yields the following system of 

equations in matrix form: 
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[
Δ�̇�
Δ�̇�
Δ�̇�

] =

[
 
 
 
 
 
 −

𝛼1𝑍2

𝑍1

𝑠𝜌𝑍2

𝜓1𝑍1
0

−
𝑍6(𝑠𝑍4 + 𝜓1𝑍5)

𝜌𝑍1𝑍4𝑍5
0 −

𝑠𝑍3𝑍4
2

𝜌𝜓1𝑍1
2𝑍5

𝜓1𝑍1𝑍5

𝑠𝑍4
0 0

]
 
 
 
 
 
 

[
Δ𝑢
Δ𝑣
Δ𝜎

] 

The characteristic polynomial of the Jacobian matrix of this linearized system is equal to: 

𝜆3 + 𝑏1𝜆
2 + 𝑏2𝜆 + 𝑏3 = 0 

where: 

𝑏1 =
𝛼1𝑍2

𝑍1
, 𝑏2 =

𝑍2𝑍3(𝑠𝑍4 + 𝜓1𝑍5)

𝜓1𝑍1
2𝑍5

, 𝑏3 =
𝑠𝑍2𝑍3𝑍4

𝜓1𝑍1
2  

According to the Routh-Hurwitz criteria, when 𝑏1, 𝑏2, 𝑏3, are all positive and 𝑏1𝑏2 − 𝑏3 >

0, all eigenvalues 𝜆 have negative real components, ensuring local stability of the model around 

its equilibrium point. In this sense, the assumptions represented in expression (A5) guarantee that 

𝑏1, 𝑏2, and 𝑏3 are positive. Concerning 𝑦 = 𝑏1𝑏2 − 𝑏3, firstly we note that: 

𝑦 = 𝑏1𝑏2 − 𝑏3 =
𝑍2𝑍3[𝑍2(𝑍4 + 𝛼1𝑍1𝜓1

2) − 𝜓1(𝛼1𝑍2
2 − 𝑍1

2𝑍4)]

𝜓1𝑍1
3𝑍5

 

Given this result and previous assumptions, it can be proved that 𝑏1𝑏2 − 𝑏3 is positive 

when:16 

𝛼1
𝑐 < 𝛼1 < 1     (𝐴6) 

Here, the lower bound 𝛼1
𝑐 is given by: 

𝛼1
𝑐 =

𝑍6 − √𝑍7

2𝑍8
     (𝐴7) 

where: 

                                                 
16 For the sake of simplicity, we focus on the critical value 𝛼1

𝑐 that aligns with the assumptions presented in 

expression (A5) and holds economic significance when considering the parameter values estimated for the US 

economy from 1960 to 2019. 
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𝑍6 = (𝛼0 + 𝛽 + 𝛿)𝜓1 + (𝛼0 + 𝛽 + 𝛿 + 𝜓0)(𝜓1 − 𝜓0) − 𝛼0𝜓0 

𝑍7 = (𝛽 + 𝛿 + 𝜓1 − 𝜓0)[(𝛽 + 𝛿 + 𝜓1 − 𝜓0)𝜓0
2 + 4𝛼0𝜓1(𝛼0 + 𝛽 + 𝛿)] 

𝑍8 = (𝛽 + 𝛿)𝜓1 + 𝜓0(𝜓1 − 𝜓0) 

In addition to stability, it is possible to prove that the equilibrium point (𝑢∗, 𝑣∗, 𝜎∗) can 

transition from stable to unstable while the solutions oscillate around it. In other words, the 

model exhibits a Hopf bifurcation, indicating the potential to generate limit cycles when a 

bifurcation parameter approaches a critical value. Following Liu (1994), we can establish the 

existence of limit cycles by employing the existence component of the Hopf bifurcation theorem 

for three-dimensional dynamical systems. This process involves verifying the existence of a 

bifurcation parameter 𝑥, which has a critical value 𝑥𝑐 that satisfies the following condition: 

𝑏1(𝑥
𝑐), 𝑏2(𝑥

𝑐), 𝑏3(𝑥
𝑐) > 0, 𝑦(𝑥𝑐) = 0,

𝑑𝑦

𝑑𝑥
|
𝑥=𝑥𝑐

≠ 0     (𝐴8) 

By designating 𝑥 = 𝛼1 as the bifurcation parameter and 𝑥𝑐 = 𝛼1
𝑐, as defined in equation 

(A7), as its critical value, we can demonstrate that 𝛼1
𝑐 satisfies the conditions represented in 

expression (A8). On one hand, 𝑏1, 𝑏2, and 𝑏3 remain positive when 𝛼1 = 𝛼1
𝑐, as 𝛼1

𝑐 aligns with 

the assumptions presented in (A5). On the other hand, it can be proved that the derivative 

𝑑𝑦

𝑑𝛼1
|
𝛼1=𝛼1

𝑐
 is positive, at least for relevant values of the model’s parameters.17 

In summary, the extended Goodwin model presented in this paper exhibits a stable positive 

equilibrium point (𝑢∗, 𝑣∗, 𝜎∗) under conditions (A5) and (A6). Furthermore, as 𝛼1 approaches 𝛼1
𝑐, 

the simplified model can produce limit cycles near its equilibrium point. 

  

                                                 
17 In the case of the parameters estimated for the US economy and detailed in Appendix C, the derivative is positive 

and equal to 0.0415782. 
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Appendix C: Parameter Estimation for Simulating the Extended Model 

To develop numerical simulations for the extended Goodwin model with endogenous 

mechanization, we perform parameter estimation using annual data sourced from the AMECO 

database for the US economy from 1960 to 2019. Our estimation approach closely mirrors the 

procedure employed by Grasselli and Maheshwari (2018). In terms of data compilation and 

processing, our initial step involves extracting the variables outlined in Table A1 from the 

AMECO database. Subsequently, we compute initial time series necessary for the analysis of the 

extended Goodwin model, adhering to the definitions provided by Grasselli and Maheshwari 

(2018), as elaborated in Table A2. 

Table A1. Original Variables obtained from AMECO Database 

Variable from AMECO Database Units Symbol 

Gross domestic product at current factor cost Mrd ECU/EUR GDP_fc 

Price deflator gross domestic product ECU/EUR: 2015 = 100 def_GDP 

Compensation of employees: total economy Mrd ECU/EUR comp_emp 

Number of self-employed: total economy 

(National accounts) 
Number of people self_emp 

Employees, persons: total economy (National 

accounts) 
Number of people tot_emp 

Total unemployment. Member States: definition 

EUROSTAT. Nonmember States: OECD 
Number of people tot_unemp 

Net capital stock at 2015 prices: total economy Mrd ECU/EUR k_stock 

Consumption of fixed capital at current prices: 

total economy 
Mrd ECU/EUR cons_fixk 

Price deflator gross fixed capital formation: total 

economy 
ECU/EUR: 2015 = 100 def_fixk 

Gross fixed capital formation at current prices: 

total economy 
Mrd ECU/EUR fixkn 

Price deflator gross fixed capital formation: total 

economy 
ECU/EUR: 2015 = 100 fixkp 
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Table A2. Estimation of Initial Time Series for the Extended Goodwin Model 

Symbol Description Estimation 

𝑞𝑡 Output GDP_fc / def_GDP 

𝑘𝑡 Total (fixed) capital k_stock 

𝑙𝑡 
Total labor force 

employed 
self_emp + tot_emp 

𝑛𝑡 Labor supply self_emp + tot_emp + tot_unemp 

𝑣𝑡 Employment rate 𝑙𝑡 / 𝑛𝑡 

𝑊𝑡 Wage bill (1 + self_emp / tot_emp) * (comp_emp / def_GDP) 

𝑤𝑡 Real wage 𝑙𝑡 / 𝑊𝑡 

𝑢𝑡 Wage share 𝑊𝑡 / 𝑞𝑡 

𝛿𝑡 Depreciation rate cons_fixk / (def_fixk * k_stock) 

Π𝑡 Gross real profits 𝑞𝑡 − 𝑊𝑡  

𝑠𝑡 
Savings-Accumulation 

rate 
(fixkn / fixkp) / Π𝑡 

𝜎𝑡 Capital/output ratio 𝑘𝑡 / 𝑞𝑡 

𝑎𝑡 Labor productivity 𝑞𝑡 / 𝑙𝑡 

𝑚𝑡 Mechanization 𝑘𝑡 / 𝑙𝑡 

Note: Estimation using variables from Table A1 and definitions provided by Grasselli and 

Maheshwari (2018) 

After obtaining the initial time series data as detailed in Table A2, we proceed to estimate 

the primary parameters of the extended Goodwin model. To this end, we follow the approach of 

Grasselli and Maheshwari (2018), utilizing historical means as parameter values for the 

depreciation rate (𝛿) and the average savings-accumulation rate (�̂�). This leads to the following 

parameter estimates: 

𝛿 = 0.05198, �̂� = 0.56267 
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For the growth rate of labor supply (�̂�) and the growth rate of labor productivity (�̂�), we 

estimate the following log-regressions: 

ln 𝑛𝑡 = 11.31
(0.01595)

 + 0.013995
(0.0004)

𝑡 + �̂�𝑛𝑡, 𝑅2 = 0.9423 

ln 𝑎𝑡 = 2.1011
(0.7847)

 + 0.012001
(0.0008)

𝑡 + 0.3334868
(0.0671)

𝑚𝑡 + �̂�𝑎𝑡, 𝑅2 = 0.9912 

where �̂�𝑛𝑡 and �̂�𝑎𝑡 represent the estimated residuals. By applying time derivatives to these 

regressions, we obtain the following estimates: 

𝑛�̇�

𝑛𝑡

̂
= �̂� = 0.013995,

�̇�𝑡

𝑎𝑡

̂
= �̂�0 + �̂�1𝑚𝑡 = 0.012001 + 0.3334868𝑚𝑡 

Now, to estimate the remaining parameters of the model, we introduce the discrete-time 

versions of equations (17) and (27), respectively:  

Δ ln𝑤𝑡 = −𝛾 + �̂�𝑣𝑡 + �̂�1𝑡     (𝐴9) 

Δ ln𝑚𝑡 = �̂�0 + �̂�1𝑢𝑡 + �̂�2𝑡     (𝐴10) 

Here, for any variable 𝑋𝑡, Δ ln 𝑋𝑡 = ln𝑋𝑡 − ln𝑋𝑡−1 represents a discrete approximation of 

its growth rate, while �̂�1𝑡, and �̂�2𝑡 denote estimated residuals.  

To estimate the values of 𝛾, �̂�0, �̂�1, and �̂� we employ the long-run multipliers derived from 

the Autoregressive Distributive Lag (ARDL) estimator, following the bounds-testing procedure 

proposed by Pesaran et al. (2001). This approach requires that the time series used in the ‘level 

equations’ (A9), and (A10) are either stationary (𝐼(0)) or, at most, integrated of order one (𝐼(1)). 

We ascertain this requirement through the Augmented Dickey Fuller (ADF) test, which suggests 

that all the time series considered within these equations appear to be 𝐼(1) with a 99% 

confidence level, as indicated in Table A3.  
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Table A3. Unit Root Tests 

Variables 
ADF test (levels) ADF test (first difference) 

Statistic p-value Statistic p-value 

Δ ln𝑤𝑡 -2.6853 0.2979 -4.9251 <0.01 

𝑣𝑡 -2.5778 0.3413 -6.1129 <0.01 

Δ ln𝑚𝑡 -3.0684 0.1431 -5.7054 <0.01 

𝑢𝑡 -3.0771 0.1396 -5.3948 <0.01 

Note: ADF tests conducted including 3 lags. 

After confirming that all variables employed in equations (A9) and (A10) are 𝐼(1), we 

proceed to estimate two Unrestricted Error Correction Models (UECM) characterized by the 

following equations: 

Δ(Δ ln𝑤𝑡) = 𝑏1,0 + 𝑏1,1(Δ ln𝑤𝑡−1) + 𝑏1,2𝑣𝑡−1 + ∑ 𝜓1,𝑗

𝑝1−1

𝑗=1

Δ(Δ ln𝑤𝑡−𝑗) + ∑ 𝛾1,𝑗Δ𝑣𝑡−𝑗

𝑞1−1

𝑗=0

+ 𝜀1𝑡      (𝐴11) 

Δ(Δ ln𝑚𝑡) = 𝑏2,0 + 𝑏2,1(Δ ln𝑚𝑡−1) + 𝑏2,2𝑢𝑡−1 + ∑ 𝜓2,𝑗

𝑝2−1

𝑗=1

Δ(Δ ln𝑚𝑡−𝑗) + ∑ 𝛾2,𝑗Δ𝑢𝑡−𝑗

𝑞2−1

𝑗=0

+ 𝜀2𝑡   (𝐴12) 

These models can be estimated using Ordinary Least Squares (OLS). In addition, we 

incorporate dummy variables and select the lag lengths 𝑝𝑖 and 𝑞𝑖 to obtain satisfactory results in 

terms of the estimated residuals. To carry out these estimations for the US economy over the 

period from 1965 to 2019, we utilized the R package ARDL developed by Natsiopoulos and 

Tzeremes (2022). The results are presented in Tables A4 and A5, indicating that nearly all the 

regressors included in the two models exhibit statistical significance at the 95% confidence level. 

Concerning residuals diagnostics, Table A6 suggests that, at a 95% confidence level, we do not 

find evidence to reject the absence of serial correlation (Breusch-Godfrey test), homoskedasticity 

(Breusch-Pagan test), the absence of ARCH effects, conformity with normality (Jarque Bera 

test), no functional form misspecification (RESET test), and model stability (CUSUM OLS and 

recursive residuals). 
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Table A4. Estimation of Equation (A11)  

Regressor Coefficient 
Standard 

Error 
t-value p-value 

Intercept -0.193238 0.098968 -1.953 0.056485 

Δ ln𝑤𝑡−1 -0.721699 0.128696 -5.608 8.85E-07 

𝑣𝑡−1 0.221201 0.104548 2.116 0.039365 

Δ𝑣𝑡 0.570543 0.154254 3.699 0.000539 

Δ𝑣𝑡−1 -0.411427 0.149772 -2.747 0.008339 

𝐷1970 -0.010049 0.004569 -2.2 0.032482 

𝐷1980 0.007243 0.003516 2.06 0.044628 

𝐷2000 -0.004972 0.002817 -1.765 0.083624 

Note: Each dummy variable 𝐷𝜏 assumes a value of 1 for years 𝑡 ≥ 𝜏. 

Table A5. Estimation of Equation (A12) 

Regressor Coefficient 
Standard 

Error 
t-value p-value 

Intercept -0.179973 0.065248 -2.758 0.00791 

Δ ln𝑚𝑡−1 -0.671803 0.118572 -5.666 5.82E-07 

𝑢𝑡 0.28286 0.099764 2.835 0.00643 

𝐷2000 0.015157 0.004845 3.128 0.00283 

Note: The dummy variable 𝐷2000 assumes a value of 1 for years 𝑡 ≥ 2000. 

Table A6. Tests for Residuals 

Tests 

Residuals of equation (A11) 

(Δ ln𝑤𝑡)  

Residuals of equation (A12) 
(Δ ln𝑚𝑡) 

Statistic p-value Statistic p-value 

Breusch-

Godfrey 

1 lag 0.91394 0.3391 0.38171 0.5367 

2 lags 1.3114 0.5191 0.53716 0.7645 

3 lags 2.8452 0.4161 0.78497 0.8531 

4 lags 5.1545 0.2718 1.1656 0.8837 

5 lags 7.1279 0.2113 1.6035 0.9008 

Breusch-Pagan 7.702 0.3596 2.8936 0.4083 

ARCH LM 6.189 0.9063 2.9291 0.996 

Jarque Bera 4.2707 0.1182 3.5303 0.1712 

RESET 0.01268 0.9874 0.94783 0.3942 

CUSUM OLS residuals 0.44539 0.9888 1.0361 0.2333 

CUSUM recursive 

residuals 
0.55577 0.503 0.64118 0.339 
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After checking the estimated residuals, we conduct an F test to examine the null hypothesis 

of no long-run relationship (𝐻0: 𝑏𝑖,1 = 𝑏𝑖,2 = 0), as well as a t test to evaluate the null hypothesis 

of the existence of a degenerate case (𝐻0: 𝑏𝑖,1 = 0), as required by the bounds-testing procedure 

proposed by Pesaran et al. (2001). The results of these tests are presented in Table A7, providing 

evidence to reject the null hypotheses at the 99% confidence level. In other words, we can assert 

that equations (A11) and (A12) effectively establish the presence of long-run relationships 

among the considered variables. Given this outcome, we proceeded to estimate the long-run 

coefficients 𝛾, �̂�, �̂�0, and �̂�1 as indicated in Table A8. Notable, all these long-run coefficients 

are statistically significant at the 95% confidence level. Consequently, we consider these 

estimations to complete the parameter values necessary for simulating the extended Goodwin 

model. 

Table A7. Long-Run Relationship Tests (statistics and p-value) 

 Equation (A11) (Δ ln𝑤𝑡)  Equation (A12) (Δ ln𝑚𝑡) 

F test 15.72732 (<0.01) 16.98549 (<0.01) 

t test -5.607783 (<0.01) -5.665764 (<0.01) 

Note: Tests obtained for the case of unrestricted intercept and no trend. 

Table A8. Long-run Estimates for Equations (A9) and (A10) 

 
Dependent 

variable 
Coefficient Estimate t-value p-value 

Equation 

(A1) 
Δ ln𝑤𝑡 

−𝛾 -0.2677537 -2.071292 0.04351168 

�̂� 0.3065009 2.27039 0.02752601 

Equation 

(A2) 
Δ ln𝑚𝑡 

−�̂�0 -0.2678959 -2.771119 0.007646434 

�̂�1 0.4210462 2.860701 0.005999657 
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