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Abstract

We introduce needs in the rate-setting problem for essential services, like

water or electricity. The goal is to ensure that households with higher needs

are not penalized, all the while holding them responsible for their consumption.

We show that conventional methods like monetary subsidies cannot achieve

this goal in a budget-balanced way. Instead, we characterize axiomatically

two families of cost-sharing rules, each favoring one aspect—compensation or

responsibility—over the other. A focal solution, dubbed the utility-free solution,

emerges as a desirable compromise when households differ only in their needs.

We identify specific variants of these rules that protect small consumers from

the cost externality imposed by larger consumers. Lastly, we show how one can

implement these schemes with realistic informational assumptions; i.e., without

making explicit interpersonal comparisons of needs and consumption.
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1 Introduction

Some public utilities, like water and wastewater services, or electricity, are essential to

achieving a decent standard of living. The 2021-2023 global energy crisis is a manifes-

tation of the affordability issue surrounding the need to consume energy. Moreover,

rolling blackouts and clean water shortages in various parts of the U.S. due to decay-

ing or otherwise inadequate infrastructure point to the problem of sustainability and,

in turn, to the issue of insufficient financing.

In a society where households differ in terms of their needs for essential services,

rates should be set so as to finance those services sustainably while leveling the playing

field by taking needs into account. In practice, commendable efforts have been made

in this regard, with rate schedules typically taking the form of multi-part tariffs

(block pricing), including discounts given to households with higher needs (for the

case of water supply in the US, see AWWA, 2017). These discounts can take the form

of rebates to low-income households, which may be subsidized by a higher overall

rate structure. Alternatively, increasing-block rate schedules subsidize the lowest

block through rate premiums for large consumers, hence affording all households a

low rate to meet basic needs. In the case of water services, this also addresses the

issue of resource conservation.1 Similarly, it may also push toward reducing energy

consumption.

Nevertheless, while these practices recognize the fact that linear pricing is gen-

erally unfair and ill-adapted to ensure budget balance, rate design is largely left to

rule-of-thumb considerations.2

Our aim is to design budget-balanced pricing schemes that do not unduly penalize

consumers for having higher needs. As we shall see, attempting to fully shield con-

sumers from an increase in their own needs, while sharing fairly the burden among

others, is impossible (Proposition 1). Some conventional solutions like needs-based

rate schedules or monetary subsidies take slightly different approaches, yet cannot

realistically achieve these goals. We explore in formal detail in Section 4 why this is

the case.

1The recent move towards "water budget-based rates" or, more accurately, to "sustainable"
rate design in some U.S. municipalities reflects these concerns (Barr and Ash, 2015; Barraqué and
Montginoul, 2015; Dinar and Ash, 2015)

2For example, the M1 Manual of the American Water Works Association, a highly-regarded
reference by North American water utilities, gives surprisingly little guidance on how to determine
rate blocks: “Generally, rate blocks should be set at logical break points.” (AWWA, 2022, p.107)
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Our fairness objective is distinct from the conventional notion of “affordabil-

ity”. We require that households with higher needs—e.g., because they are of larger

size—are not at a disadvantage in their ability to achieve a given welfare level. Hence,

while affordability is generally a measure of financial pressure exerted on lower-income

households, our fairness criterion applies to the entire population. We elaborate on

the distinction between affordability and our fairness objective in Section 2.

We develop a framework to formally take matters of (partial) responsibility into

account when designing rates for utility services. Each consumer is summarized by

their consumption and their needs, which may differ from one consumer to the next.

While we take the view that consumers should not be penalized for their needs, we

deem them fully responsible for their consumption beyond those needs.

Our approach builds on the axiomatic framework of liberal egalitarianism, which

aims at compensating differences in “non-responsibility” characteristics while preserv-

ing differences in characteristics under one’s control. Classically, in a labor setting,

individuals are deemed responsible for their effort but have no control over their tal-

ents. Here, consumers have no control over their needs but are responsible for their

consumption beyond that amount.

To be clear, our view of needs does not necessarily coincide with what are custom-

arily labeled “basic needs”—say, the minimum requirement of 50 liters of clean water

per person per day put forth by the World Health Organization (Gleick, 1996)—but

should be understood more broadly. In particular, the notion of needs may not only

be physiological, but can vary geographically, culturally, as well as individually. We

adopt the view that one’s needs is a consumption level that one should not be held

responsible for consuming. Whatever the underlying interpretation, it turns out that

consumption is thus a “hybrid” characteristic of sorts: the portion required to meet

one’s needs falls into the non-responsibility category, whereas the remainder falls into

the sphere of responsibility. In the context of water services, this may lead a needs-

oriented provider to offer rebates at low consumption levels—required for food and

hygiene—but not for discretionary uses—like filling a swimming pool.

A general theme of the literature on liberal egalitarianism is that the two desider-

ata of compensation and responsibility are incompatible (Bossert, 1995; Bossert and

Fleurbaey, 1996; Cappelen and Tungodden, 2006a). Accordingly, one must set less

ambitious goals for redistributive policies. This is typically done by giving prior-

ity to one ideal—compensation or responsibility—while limiting the scope of the
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other (Fleurbaey, 2008, and references therein), leading to the Egalitarian Equiva-

lent and Conditional Equality solutions, respectively. Likewise, we characterize two

polar families of solutions: Egalitarian Equivalent solutions emphasize compensation

for differences in needs (Theorem 1) while Conditional Equality solutions emphasize

responsibility for excessive consumption (Theorem 2).

Contrasting with previous results, the solutions we obtain are not unique, but

are instead families of solutions, because they depend on two additional dimensions

that the literature is currently not equipped to handle: how to account for “hybrid”

characteristics and how to account for cost externalities. The latter is embodied in

the nonlinearity of the cost function, which links consumers through the requirement

of balancing the budget. Regarding the former, each family of solutions will produce

different pricing schemes depending on how one measures responsibility. Measuring

responsibility in terms of consumption (q) beyond needs (q̄), formally r = q− q̄, or in

terms of its fraction relative to one’s own needs, r = (q − q̄) /q̄, are but two examples.

We call these views absolute responsibility and relative responsibility, respectively.3

When welfare can be evaluated by means of a (common) utility function, u,—i.e.,

when consumers may differ in their needs but not in their preferences—and when the

planner chooses a responsibility view that is consistent with the actual well-being of

consumers—so that u = v ◦ r for some increasing function v—, there exists a unique

solution that is actually compatible with a much stronger compensation requirement

than otherwise. We coin this solution the utility-free rate-function (Theorem 3).

This implies that, when differences in needs summarize the relevant differences across

consumers, a minimal knowledge of the (common) preferences can afford greater

compatibility between the desiderata of compensation and reward, a sharp contrast

with existing results in the literature on liberal egalitarianism.

Even with a specific view on responsibility, much freedom remains regarding how

to account for cost externalities within each family of solutions. Indeed, the partial

responsibility approach determines that a portion of the total cost is devoted to

meeting one’s needs—thus escaping responsiblity. How to split the remainder—for

which consumers are deemed responsible—falls into the realm of cost-sharing theory.

In principle, any cost-sharing rule can be associated with any family of solutions and

3Relative responsibility makes sense when q̄ is a proxy for household size, for example. It attaches
more responsibility for a given level consumption beyond needs, q − q̄, to a single person than to,
say, a household of five.
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any responsibility view.

Given the nature of the services at hand, we highlight the well-known serial cost-

sharing rule (Moulin and Shenker, 1992) because it exhibits strong fairness properties

both when costs are convex and concave (Moulin, 1996). This leads us to character-

izing needs-adjusted serial solutions (Propositions 4-6), which are the counterparts

to the general solutions of Theorems 1-3 when requiring the additional property of

Independence of Higher Responsibility, the requirement that my bill is not affected by

consumers who bear more responsibility than me. Section 6 displays how to construct

the needs-adjusted serial solutions.

Lastly, in Section 7, we show how one can implement the above schemes with

realistic informational assumptions; i.e., without making explicit interpersonal com-

parisons of needs or consumption, which would prove very difficult and possibly coun-

terproductive for all but very small populations. To do so, we use household size as

a proxy for needs and denote by q̄s the needs of a household of size s. Using aggre-

gate information to summarize distributional aspects, we design rate schedules that

otherwise explicitly depend on the sole individual characteristics of households.

Although our results apply to all cost functions, an illustrative example is useful.

Assume costs are quadratic: C (Q) = cQ2/2. Under absolute responsibility, the serial

utility-free rate function yields:

xabs (q, s) =
1

N

cQ2

2
+ cQ

(
q − q̄s −

Q− Q̄

N

)
, (1)

where Q̄ is the quantity needed to cover the needs of the entire population, and N

is the total number of households. In words, consumers share the total cost equally

and are rewarded or penalized for deviation from the average responsibility level.

These deviations in responsibility are priced at marginal cost. Here, because marginal

responsibility is proportional to marginal consumption, this means that deviations in

consumption are also priced at marginal cost. When individual consumers are small

relative to the aggregate, as is typically the case for publicly-provided public goods

such as residential water and electricity, this pricing schemes approximate first-best

incentives.

The rate schedule changes significantly under the relative responsibility view, r =

(q − q̄s) /q̄s. Assuming that the responsibility of consumers is identically distributed
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across types, we obtain the following bill for households of size s that consume q:

xrel (q, s) =
1

N

cQ2

2
+ cQ

Q̄

N

(
q − q̄s
q̄s

− Q− Q̄

Q̄

)
. (2)

Again, the utility-free rate function charges everyone the average cost and prices

deviations from the average responsibility, but this time at the marginal cost of re-

sponsibility if needs were equal to Q̄/N . This means that marginal consumption is

not priced at the same rate for all: if q̄s > Q̄/N consumption is priced at less than

the marginal cost while the consumption of households with lower-than-average needs

(q̄s < Q̄/N) is priced above marginal cost.

2 Related Literature

Liberal egalitarianism. Our work expands the literature on liberal egalitarianism

in two ways. First, we extend the theory to settings with externalities. To our

knowledge, the only other effort in this direction is Billette de Villemeur and Leroux

(2011), which tackles the issue of global climate change and the design of transfer

schemes between countries to account for their responsibility in current greenhouse

gas emissions and, possibly, their non-responsibility in past emissions. Externalities

are introduced through a (nonlinear) damage function, but needs are absent from

their setting.

Our second contribution has to do with our consideration of a characteristic—here,

consumption—for which one is both partly responsible and partly non-responsible.

Early works in the economics literature on liberal egalitarianism (Bossert, 1995;

Bossert and Fleurbaey, 1996; Fleurbaey and Maniquet, 2006; Cappelen and Tun-

godden, 2006a) considered characteristics to be either responsibility characteristics,

like effort, or non-responsibility characteristics, like talent. Cappelen and Tungodden

(2006b) were the first to investigate the implications of the choice of “responsibility

cut”; remarkably, increasing the realm of non-responsibility characteristics did not

necessarily lead to more redistribution.

Since then, several works have considered various interpretations of the respon-

sibility cut. For example, Billette de Villemeur and Leroux (2011) have considered

varying degrees of historical responsibility in past greenhouse gas emissions. Closer

to the work at hand, Ooghe and Peichl (2014) and Ooghe (2015) introduced the
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notion of “partial control” over some characteristics to handle different degrees of

responsibility in any given characteristic. According to this “soft cut”, a consumer

may be responsible for, say, only 30% of their intellectual skills, the remainder being

attributable to inborn abilities or environmental factors. Our view of consumption

as a hybrid characteristic differs from theirs in that we deem households fully non-

responsible for the portion aimed at satisfying their needs, but fully responsible for

the remaining portion, viewed as discretionary. In other words, the responsibility cut

we consider is quantitative—the responsibility in consumption depends on the value

of consumption—, rather than qualitative—whereby the extent of responsibility in a

characteristic is independent of that characteristic’s value.

Fair division. Despite mounting empirical evidence suggesting that needs are a

relevant ingredient of fairness (Konow, 2001, 2003; Nicklisch A, and F. Paetzel, 2020;

Bauer et al., 2022), the literature on fair division has only recently considered needs

in a formal fashion. Specifically, although in a setting different from ours, several

works modify the classical rationing problem—where a fixed social endowment must

be divided among several recipients—to account for “needs”, though with varying

interpretations. In Xue (2018) and Long et al. (2021), needs are treated as a satiation

point: any amount resource allocated beyond that point is wasteful. Hougaard et al.

(2013), introduce the notion of “baselines”, which act as reference or entitlement

levels depending on how plentiful the resource to be allocated is. Finally, Bergantiños

et al. (2012) and Manjunath (2012) interpret needs as a minimal value, which is closer

to our interpretation. Consumption beyond that point is optional (or discretionary)

but still increases well-being.

More recently, Mart́ınez and Moreno-Ternero (2022) take needs into account in an

income redistribution problem. There, however, the redistribution is not utility-based

whereas needs explicitly enter the utility function in our approach.

Because we ask for full cost recovery, the relevant strand of the fair division liter-

ature is that of cost sharing. To our knowledge, ours is the first cost-sharing paper

to explicitly address the issue of needs. The closest work in that direction leads to a

sharing rule that protect small consumers when costs are convex (Moulin and Shenker,

1992): the serial cost sharing rule. We build upon this sharing rule to complement

our approach in Section 6.

Needs and affordability. Although empirical evidence suggests that needs are
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a relevant criterion for fair distribution, needs are seldom made explicit as a basis

for fair compensation in the economics literature.4 The general consensus seems to

be that such a specification is unwarranted because consumers take their needs into

account when making purchasing or labor decisions.

Instead, the economics literature has primarily turned to the concept of affordabil-

ity as a metric to evaluate fair distribution (Kessides et al., 2009, and many references

therein). The aim of affordability is to ensure that all households can reasonably com-

fortably purchase goods and services that are necessary to achieve a decent standard

of living. Interestingly, however, the very concept of affordability rests on the ability

to meet one’s needs, a feature that is particularly explicit in official documents (e.g.,

Canada’s Mortgage and Housing Corporation, 2019). Indeed, we talk about the af-

fordability of items like housing, food and energy, but never about the affordability of

fine jewelry or other luxury goods, for example. So affordability-concerned economists

are at least implicitly aware that needs matter. We suspect the reluctance to spell out

the needs of consumers as a separate variable is mainly a practical one—say, trusting

that revealed preferences will be more accurate than outside measurement, possibly

rightfully so—rather than a conceptual one. Here, we choose to make explicit the

needs of consumers because, despite likely measurement errors, we believe that doing

so allows one to better design rates for essential services.

Moreover, we claim that the goal of affordability, although valuable in its own

right, is but a sufficient condition for the fair pricing of essential services. This is

because affordability only focuses on the lower end of the income distribution (vertical

equity) but is silent about how to treat mid- to high-income households. As such,

affordability cannot prevent the inequity that stems from non-poor households with

different needs, which is a matter of horizontal equity: among otherwise identical

households, those with higher needs should not end up with fewer opportunities.

These two equity dimensions only coincide in the very specific case where needs and

income are perfectly (negatively) correlated, which is generally not the case.5

4Exceptions include Mayshar and Yitzhaki (1996), Ebert (1997), Trannoy (2003), Duclos et al.
(2005), and Fleurbaey et al. (2014).

5Relatedly, Sallee (2019) finds that, though theoretically possible, achieving a Pareto improve-
ment by recycling revenue from a carbon tax is practically infeasible due to the insufficient corre-
lation between the variables that determine the transfer scheme and those that determine the tax
burden. In our setting, there is every reason to suspect that the correlation between income and
needs is similarly insufficient to warrant being able to handle differences in needs by simply tackling
affordability.
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Hence, while related, our approach can be seen as orthogonal to that of affordabil-

ity. We merely aim to ensure that no one is unduly penalized for their needs, which

has consequences for the pricing structure. Whether the distribution of additional

funds to low-income households is then needed to achieve affordability is a separate

issue.

3 Model and notation

The Model. Let N = {1, ..., n} be the set of consumers. Consumer i consumes a

quantity qi ≥ 0. Serving total demand, Q =
∑n

i=1 qi, costs C (Q) ≥ 0, where C is an

increasing cost function.6 We denote by Γ the class of cost functions.

Full cost recovery is essential to the sustainability of the infrastructure.7 Thus,

we require that the consumers’ bills, the xi’s, cover the total cost:

n∑
i=1

xi = C (Q) . (3)

Our aim is to define appropriate formulas to compute the bills of consumers. We

restrict ourselves to the case where no profits are made, owing to the public nature

of the service, so that the budget constraint (3) is binding whenever all consumers

consume at least their needs (qi ≥ q̄i for all i).

Consumer i’s consumption needs are denoted q̄i ≥ 0. We adopt a quasi-linear

setup, where Consumer i’s utility level is defined by:

Ui (qi, q̄i, xi) = ui (qi, q̄i)− xi.

The utility function ui, which is possibly consumer specific, is defined on R2
+ and

is assumed to be increasing in qi and decreasing in q̄i. When consumers consume

6We use the following convention: by ’increasing’ we mean ’strictly increasing’. We use the
term ’non-decreasing’ when the monotonicity is not strict. Similarly, by ’positive’ we mean ’strictly
positive’, and use ’nonnegative’ when zero is not excluded.

7For example, while it remains an empirical matter whether pricing water actually leads to
economic efficiency in practice, it is widely recognized that full cost recovery is essential to the sus-
tainability of the infrastructure (Massarutto, 2007; AWWA, 2017; Canadian Water and Wastewater
Association, 2015) and is “a key preoccupation” of many OECD countries (OECD, 2010). Still in the
context of water services, Massarutto (2007) identifies three important benefits of recovering costs
through the pricing structure: to “ensure the viability of water management systems”, to “maintain
asset value over time”, and to “guarantee the remuneration of inputs”.
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exactly their needs, they share a common utility level that, without loss of generality,

we shall set to zero. Formally,

ui (q̄i, q̄i) ≡ 0, ∀q̄i ≥ 0,∀i ∈ N.

We shall also assume ui to be continuously differentiable, with positive cross-derivative—

∂2ui/∂qi∂q̄i > 0—to reflect the fact that higher needs increase the importance—i.e.,

the marginal utility—of consumption. We denote by Υ the class of utility functions.

Defining responsibility. Our aim is to design a pricing rule that does not

penalize consumers with higher needs while still taking into account individual re-

sponsibilities with respect to consumption. To do so, we must define the consumers’

domain of responsibility. We shall consider that consumers are not responsible for

their needs, q̄i, but are responsible for any consumption beyond those needs. The

extent of their responsibility can be measured in many different ways. For the sake

of generality, we define a real-valued function, r (qi, q̄i), defined on R2
+, which is in-

creasing in consumption, qi, decreasing in needs, q̄i, and normalized to zero whenever

qi ≤ q̄i. We shall further assume that r is differentiable. When no confusion is

possible, we abuse notations slightly by denoting ri = r (qi, q̄i).

For example, r (qi, q̄i) = qi − q̄i , which we refer to as the absolute responsibil-

ity view, considers that consumers are only responsible for the amount of discre-

tionary consumption. A more nuanced approach, the relative responsibility view,

r (qi, q̄i) = (qi − q̄i) /q̄i, assigns responsibility relative to the consumer’s needs (e.g.,

defined according to household size).

A consumption-needs profile (or simply a profile) is a list of n consumption-needs

pairs that we shall denote (q, q̄) ∈ R2n
+ , abusing notations slightly.8

Having defined the notion of responsibility, we can now share the total cost ac-

cording to the responsibility profile, r ≡ r (q, q̄) = (r1, r2, ..., rn) ∈ Rn
+. A rate

function takes all the information in the economy into account and is a mapping

x : R2n
+ × R × Υn × Γ → Rn such that

∑
i∈N xi (q, q̄, r,u, C) = C (Q), where

u = (u1, ..., un) is the profile of the consumers’ utility functions.

8We shall adopt the convention that boldface type refers to the vector of the relevant variables.
E.g., q = (q1, ..., qn) and q̄ = (q̄1, ..., q̄n).
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Figure 1: Responsibility is measured from q̄. Given the position of q relative to q̄
in this figure, if responsibility is defined as qi − q̄i (absolute responsibility) consumer
1 is considered to bear more responsibility than consumer 2 in her discretionary
consumption. If it is defined as (qi− q̄i)/q̄i (relative responsibility), the reverse holds.
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Section 7 will be devoted to obtaining explicit formulas based on illustrative ex-

amples. Until then, fix the cost function, C, the utility function profile, u, and the

responsibility function, r. As a result, we abuse notations slightly and write x (q, q̄)

instead of the more cumbersome x (q, q̄, r,u, C).

A minimal fairness requirement we shall adopt throughout is that rate functions

should satisfy anonymity. Formally, we require that, for any permutation of con-

sumers, π : N → N :

xπ(i) (qπ, q̄π) = xi (q, q̄) for all i ∈ N ,

where qπ (resp. q̄π) is the vector of consumption (resp. needs) after permutation of

consumers along π.

Remark. Anonymity implies the equal treatment of equals: [(qi, q̄i) = (qj, q̄j)] =⇒
[xi (q, q̄) = xj (q, q̄)]. Two consumers with identical needs and identical consumption

must pay the same bill.

4 Why full needs protection is an unrealistic pur-

suit

When tasked with treating fairly consumers with different needs, a natural inclination

is to operate in two steps. First, address the heterogeneity in needs through some

compensation mechanism. Then, once consumers are on an equal footing, apply a

classical pricing scheme that ignores differences in needs.

The underlying objective of the first stage is to compensate consumers so as to

shield them from the impact of their needs on their well-being. Formally, when the

needs of Consumer i increase from q̄i to q̄′i, her well-being should not be affected:

ui (qi, q̄
′
i)− xi (q, q̄

′) = ui (qi, q̄i)− xi (q, q̄) , (4)

where q̄′ is the vector q̄ whose i’th coordinate has been replaced with q̄′i.

Rearranging yields:

xi (q, q̄
′)− xi (q, q̄) = ui (qi, q̄

′
i)− ui (qi, q̄i) , (5)
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while dividing through by q̄′i − q̄i and taking the limit as q̄′i approaches q̄i yields:

∂xi

∂q̄i
=

∂ui

∂q̄i
. (6)

Equation (6) states that, along the needs dimension, the shape of Consumer i’s rate

schedule should be the same as her utility function in order to fully absorb the utility

consequences of an increase in her needs.

On the other hand, the motivation for shielding Consumer i from an increase in

her own needs is that this increase is not her responsibility. But by that reasoning, the

increase in Consumer i’s needs is not Consumer j’s responsibility either. So Consumer

j should not be affected any more than Consumer i.9 Hence, because Consumer

i’s well-being is unchanged, Consumer j’s well-being must also be unaffected. And

because a change in q̄i only impacts Consumer j’s through the rate schedule (but not

through the utility function), xj must be unaffected. Formally,

∂xj

∂q̄i
= 0 (7)

for all j ̸= i.

However, the rate schedule must cover the total cost:
∑n

i=1 xi = C (Q). Upon

considering an infinitesimal change in q̄i, and noticing that this does not affect the

total cost, we obtain:
∂xi

∂q̄i
+
∑
j ̸=i

∂xj

∂q̄i
= 0. (8)

According to (6) and (7), this turns into:

∂ui

∂q̄i
= 0. (9)

We have thus established the following:

Proposition 1. A rate structure can fully shield a consumer from an increase in

their own needs, while not imposing a larger burden on others, only when needs do

not impact that consumer’s utility—i.e., only when needs are irrelevant.

In other words, we obtain the somewhat paradoxical result that fully needs pro-

9The property that the burden befalls equally on Consumer i and Consumer j plays a key role
in the rest of the article, and is called Solidarity from Section 5 onward.
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tection can only be achieved when needs actually do not matter. This is tantamount

to saying that it is impossible and should not be pursued.

The impossibility clearly rests on the strong restriction that, in addition to pro-

tecting a consumer from an increase in their own needs, the rate structure should

also not impose a burden onto other consumers. When the budget must be balanced,

the requirement that the well-being of all is unaffected can only be satisfied if needs

themselves do not impact utility.

Throughout the remainder of the article (Section 5 onward) we argue that ensur-

ing that consumers are not unduly affected by changes in needs—rather than fully

protected—is actually a worthwhile pursuit that deserves careful consideration and

we show how it can be done.

But first, we mention two approaches to handling needs that, although intuitive,

are unsatisfactory: needs-based rate schedules and monetary subsidies. Both run

into severe restrictions despite not imposing the strong requirements of Proposition

1. Specifically, resorting to needs-based rate schedules only makes sense on a small

class of cost functions, a restriction that stems from the requirement to balance the

budget alone; i.e., even before considering needs protection (Proposition 2). As for

monetary subsidies, Proposition 3 establishes that shielding consumers from their

own needs only—i.e., irrespective of how others are affected—can only happen if q̄i

does not affect marginal utility (and is thus not a relevant measure of needs).

4.1 Needs-based rate schedules

A simple way of accounting for differences in needs while simultaneously holding

consumers responsible for consumption beyond their needs could be to make rate

schedules needs-contingent. In practice, this could take the form of conditioning the

rate schedule on the size of the household, for example. Formally:

Axiom. (Equal Rate Schedule for Equal Needs, ERSEN)

The functions qi 7→ xi (q, q̄) and qj 7→ xj (q, q̄) must be identical whenever q̄i = q̄j.

ERSEN guarantees that consumers with equal needs face the same rate schedule.

As it turns out, however, ERSEN is not compatible with budget balance unless the

cost function is affine:

Proposition 2. No rate function satisfies ERSEN unless the cost function is affine:

C (Q) = F + cQ with F ∈ R and c > 0.
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Proof. Let (q, q̄) ∈ R2n
+ such that q̄i = q̄j for some i ̸= j. By ERSEN, the rate

schedule of consumer i, f : q′i 7→ xi ((q
′
i,q−i) , q̄), must be independent of the value of

qj for any j ̸= i.10 Hence, for any j ̸= i, it must be the case that xj ((q
′
i,q−i) , q̄) =

xj (q, q̄). It then follows from budget balance that Consumer i must bear the entirety

of the change in cost brought about by her change in consumption:

f (q′i)− f (qi) = C (Q− qi + q′i)− C (Q) ∀q′i ∈ [q̄i,+∞). (10)

Because the function f cannot depend on qj (by ERSEN), the above expression must

also hold if we can replace qj by q′j:

f (q′i)− f (qi) = C
(
Q− qi + q′i − qj + q′j

)
− C

(
Q− qj + q′j

)
, (11)

for all
(
q′i, q

′
j

)
∈ [q̄i,+∞)× [q̄j,+∞). Taken together, Expressions (10) and (11) yield:

C (Q− qi + q′i)− C (Q) = C
(
Q− qi + q′i − qj + q′j

)
− C

(
Q− qj + q′j

)
, (12)

for all
(
q′i, q

′
j

)
∈ [q̄i,+∞)× [q̄j,+∞).

Already, Expression (12) suggests that C increases at a constant rate. We prove

this formally by rewriting the expression as a functional equation. Let h > 0 and

consider q′i = qi + h and q′j = qj + h. Expression (12) becomes:

C (Q+ h)− C (Q) = C (Q+ 2h)− C (Q+ h) ∀h ≥ 0. (13)

Rearranging and defining g : h 7→ C (Q+ h) on R+ yields:

g (2h) + g (0) = 2g (h) ∀h ≥ 0. (14)

Expression (14) must hold for all h and thus defines a functional equation in g. This

is a well-known Cauchy equation (Aczél, 1967), which requires g to be linear in its

argument, meaning that C must be affine. Having started from an arbitrary profile

(q, q̄), the result follows on the full domain of C.

ERSEN effectively requires that the rate schedule a consumer faces depends only

on the profile of needs, but not on the consumption vector. However, this ignores

10In formal proofs, we denote by (q′i,q−i) the vector q whose i’th coordinate is replaced by q′i.
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the interdependence that exists between consumers through the cost function when

the marginal cost is not constant. Proposition 2 expresses the fact that, should

consumers indeed be interdependent through the cost function, rate schedules cannot

be determined ex ante on the sole basis of needs.11

Naturally, if the cost function C is affine, of the form C (Q) = F + cQ for some

c > 0, the cost-sharing problem becomes substantially simpler: ERSEN requires

that each consumer pays xi (q, q̄) = yi (q̄) + cqi where the functions (yi)i∈N are

symmetric—q̄i = q̄j =⇒ yi (q̄) = yj (q̄)—and sum up to F ,
∑

i∈N yi ≡ F .

For example, any linear function of the difference between one’s needs and the

average needs of the population, after splitting the fixed cost equally, will work:

yi (q̄) = F/n+ λ (µ− q̄i), for some λ ≥ 0, where µ = (1/n)
∑

j q̄j. This yields,

xi (q, q̄) = F/n+ λ (µ− q̄i) + cqi, (15)

for some λ ≥ 0.

Other solutions exist, like those that consider coarse needs categories. For exam-

ple, fix q̄∗ and q̄∗∗ to be, respectively, a relatively low level of needs (e.g., the needs

of a two-person household) and a relatively high level of needs (e.g., the needs of a

five-person household). Denote by l (resp. h) the number of households whose needs

are below q̄∗ (resp. above q̄∗∗). Subsidizing high-needs families by taxing low-needs

households is a viable solution:

xi (q, q̄) = F/n+ cqi +


λh if q̄i¡q̄

∗

0 if q̄i ∈[q̄∗, q̄∗∗]

−λl if q̄i¿q̄
∗∗

(16)

While attractively simple, recall that the two-part tariffs in (15) and (16) are only

satisfactory if the cost function is affine. Moreover:

Remark 1. If a rate function is designed to satisfy ERSEN but also with the objective

to share the burden of a change in one consumer’s needs across all individuals, one

11For a general proof of the incompatibility between budget balance and equal rate schedules,
albeit where needs are absent, see Billette de Villemeur and Leroux (2016).
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must have:12

xi (q, q̄) = F/n+ cqi.

Hence, once again, the needs question is handled by evacuating it entirely.

4.2 Monetary subsidy

Proposition 2 established that setting rates that depend only on needs and individ-

ual consumption is too demanding a requirement because actual cost functions may

generally not be affine.

A more flexible approach is to charge according to consumption, ti (q), as one

would in the absence of needs, and grant a subsidy based on needs si (q̄),
13 so that

the consumer’s net payment is ti (q) − si (q̄). In principle, this allows the service

provider to neatly separate the issue of responsibility from that of needs compensation.

Moreover, because it does not rely on financing the total cost (because of the subsidy)

there is hope yet that we can escape the negative result of Proposition 1.

Specifically, the consumption charges should cover the total cost,∑
i

ti (q) = C (Q) , (17)

while the monetary subsidies cover the collective cost of meeting the population’s

needs, 14 ∑
i

si (q̄) = C
(
Q̄
)
. (18)

Moreover, the purpose of the subsidy is to ensure that one does not pay whenever

one consumes only one’s own needs:

[qi = q̄i] =⇒ [ti (q)− si (q̄) = 0] . (19)

12One easily checks that budget balance imposes the functions (yi)i∈N to be constants. And,
because of the symmetry requirement—[q̄i = q̄j ] =⇒ [yi (q̄) = yj (q̄)]—they must actually all equal
F/n.

13Note that consumer i’s rebate cannot depend solely on consumer i’s own needs—so that we
must have si (q̄) rather than si (q̄i)—otherwise we run into similar impossibilities as in Section 4.1.

14The reader will have noticed that the total net payments add up to C (Q)−C
(
Q̄
)
rather than

C (Q). This implies that some authority (the government, say) subsidizes the essential service at
hand. For example, it corresponds to the practical situation where subsidies are granted in the form
of welfare checks to households.
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Proposition 3. A service charge, ti (q), coupled with a monetary subsidy, si (q̄), to

shield consumers from the impact of increases in their own needs is only effective if

all consumers’ utility functions are of the form ui (qi, q̄i) ≡ vi (qi) − vi (q̄i) for some

increasing function vi, possibly individual-specific.

Proof. Appendix A.1.

The functional form ui (qi, q̄i) = vi (qi) − vi (q̄i) imposes ∂2ui/∂qi∂q̄i = 0, im-

plying that q̄i has no impact on marginal utility. By contrast, we had assumed

∂2ui/∂qi∂q̄i > 0 at the outset for q̄i to convey the notion of needs. The marginal

utility of consumption, calculated at a given level qi, should be larger when needs

have not yet been met—qi < q̄i—than when they have—qi > q̄i. Yet, the required

additive separability of ui precludes this. Put differently, Proposition 3 establishes

that a service-charge-plus-monetary-subsidy scheme can only shield consumers from

their needs when needs do not exist.

The political implications of Proposition 3 are significant. For one thing, the

Proposition establishes that the most common tool used by governments to handle

needs heterogeneity in a population, which consist in simply handing out cash trans-

fers, is actually not sufficient to shield consumers from the impact of their own needs

even if those transfers are needs-based.

5 Compensation and Responsibility

The negative results of the previous section are indicative of the strong tension be-

tween compensating for one’s needs, on the one hand, and holding consumers re-

sponsible for their consumption, on the other. In particular, Proposition 2 clearly

demonstrates that one must depart from the simplistic view according to which con-

sumers can ignore the impact they have on others, as is assumed to be the case under

perfect competition, for instance.

We therefore adopt a more comprehensive view in which bills depend explicitly on

the entire profile of consumption and needs. We shall thus stick to our encompassing

approach, which aims at financing the total cost, C (Q), by accounting jointly for

the qi’s and the q̄i’s. Also, we allow ourselves to consider individual well-being,

ui (qi, q̄i)− xi, as a relevant metric for compensation.
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In our view, the hallmark of compensation consists in ensuring that differences in

needs do not drive differences in well-being. Formally, this amounts to spreading the

impacts of a change in one consumer’s needs equally across the population:

Axiom. (Solidarity)

For any i ∈ N and any two profiles (q, q̄) and (q, q̄′) such that q̄′i ̸= q̄i and q̄′j = q̄j

for all j ∈ N\ {i} , then

[
uj

(
qj, q̄

′
j

)
− x′

j

]
− [uj (qj, q̄j)− xj] = [ui (qi, q̄

′
i)− x′

i]− [ui (qi, q̄i)− xi] ,

for all j ∈ N , where x = x (q, q̄) and x′ = x (q, q̄′).

Regarding responsibility, a natural requirement is that the portion of costs result-

ing from consumption above and beyond the needs of the population, C(Q)−C(Q̄),

should be distributed to consumers according to their responsibility in this portion of

the total cost. We do this by introducing a cost-sharing rule, ξ, to split C(Q)−C(Q̄)

according to the responsibility profile, r. Keeping with the desideratum of anonymity,

we shall consider only symmetric cost-sharing rules:

ξ
(
r, C − C(Q̄)

)
is a symmetric function of the variables ri, i ∈ N.

The function ξ embodies how we want to hold consumers accountable for their con-

sumption.15 We shall take ξ as given for now, so as to focus on the articulation

between responsibility and compensation. Later, in Section 6, we shall pin down a

functional form for ξ with additional desirable properties.

Axiom. (Shared Responsibility)

xk (q, q̄)− xk (q̄, q̄) = ξk
(
r, C − C

(
Q̄
))

∀k ∈ N.

Remark. Our setting encompasses the classical cost-sharing framework when needs

are absent (e.g., Moulin, 2002). There, Solidarity is a moot point, and responsibility

amounts to consumption (ri ≡ qi).

As we shall see, the tension between compensation and responsibility remains

despite this broader approach (Corollary 1), but becomes manageable provided one

15If needs were not an issue, we would be back to the classical cost-sharing framework where
ξ (q, C) alone defines the shares to be paid (see Moulin, 2002, for a thorough survey).
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chooses to focus more on compensation at the expense of responsibility (Theorem

1) or vice versa (Theorem 2). We will also establish that one can strike a balanced

compromise between compensation and responsibility, provided the planner’s view on

responsibility is one that reflects the preferences of the consumers (Theorem 3).

5.1 Putting compensation first

Turning to compensation first, we investigate to what extent Solidarity is com-

patible with Shared Responsibility. Specifically, we specify how much one must

weaken the responsibility requirement in order to maintain an uncompromising view

of compensation.

A less demanding requirement than Shared Responsibility is to share costs

according to ξ only when the needs of all are identical and, moreover, equal to a

reference level, q̄0 ∈ R+:

Axiom. (Shared Responsibility for Reference Needs, SRRN)

For some reference level of needs, q̄0 ∈ R+:

[q̄i = q̄0,∀i ∈ N ] =⇒ [xk (q, q̄0)− xk (q̄0, q̄0) = ξk (r0, C − C (nq̄0)) , ∀k ∈ N ]

where q̄0 = (q̄0, q̄0, ..., q̄0) and r0,i = r (qi, q̄0) for all i ∈ N .

Clearly, SRRN only applies to a small subset of situations and is therefore much

less demanding than Shared Responsibility. However, it is a necessary weakening

to allow Solidarity to operate in full force. Indeed, Solidarity together with SRRN

fully determine a family of rate functions, which we call the Egalitarian Equivalent

solutions,16 that is parametrized by the chosen reference level of needs, q̄0:

Theorem 1. A rate function x satisfies Solidarity and SRRN if and only if x =

xEE where, for a given reference level of needs, q̄0 > 0,

xEE
i (q, q̄) =

C(nq̄0)

n
+ ξi (r0, C − C (nq̄0))

+ [ui (qi, q̄i)− ui (qi, q̄0)]−
1

n

n∑
k=1

[uk (qk, q̄k)− uk (qk, q̄0)] ,

16The name reflects the fact that this family of solutions is reminiscent of the egalitarian equivalent
allocations in the seminal contribution by Pazner and Schmeidler (1978).

20



for all i ∈ N , where r0 = (r (q1, q̄0) , r (q2, q̄0) , ..., r (qn, q̄0)).

Proof. In Appendix A.2.

xEE measures responsibility relative to the common reference level of needs, q̄0:

r0,i = r (qi, q̄0) and splits costs accordingly. Differences between actual needs and the

reference level are compensated for so as to preserve the relative welfare distribution.

Remark 2. The cost-sharing portion of the transfer, (1/n)C (nq̄0)+ξi (r0, C − C (nq̄0)),

is driven by the consumption profile of the consumers and by the cost structure, but is

actually independent of individual needs. By contrast, the redistributive component

of the bill, [ui (qi, q̄i)− ui (qi, q̄0)] − (1/n)
∑n

k=1 [uk (qk, q̄k)− uk (qk, q̄0)], is based on

the benefits the consumers derive from consumption and is independent of costs.

The characterization is tight, in the sense that the Egalitarian Equivalent solution

does not satisfy a stronger version of responsibility where the cost-sharing rule ξ

applies whenever all have the same needs (though not necessarily equal the reference

level of needs). This can be shown by considering a profile (q, (q̄1, q̄1, ..., q̄1)) ∈ R2n
+

such that q̄1 ̸= q̄0 to verify that SRRN cannot be satisfied simultaneously using q̄0

and q̄1. The formal proof can be found in Appendix A.3. In particular, this establishes

formally that Solidarity and Shared Responsibility are incompatible:

Corollary 1. No rate function satisfies Solidarity and Shared Responsibility.

5.2 Putting responsibility first

Next, and somewhat symmetrically to the previous section, we assume a strong stance

on responsibility—meaning that we insist on an uncompromising version of Shared

Responsibility—but explore to what extent Solidarity must be altered to obtain

a feasible solution.

The softening of Solidarity we shall opt for is, this time, tied to a reference level

of responsibility, r0 ≥ 0. It requires all consumers to have the same level of well-being

if all have a common level of responsibility that is equal to the reference level:

Axiom. (Uniform Well-being for Reference Responsibility, UWRR)

For some reference responsibility level, r0 ∈ R+ :

[r (qi, q̄i) = r0,∀i ∈ N ] =⇒ [ui (qi, q̄i)− xi = uj (qj, q̄j)− xj,∀i, j ∈ N ]
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We find that Shared Responsibility and UWRR jointly characterize a family

of rate functions, which we call Conditional Equality solutions,17 that is parametrized

by the choice of a reference responsibility level, r0:

Theorem 2. A rate function x satisfies Shared Responsibility and UWRR if

and only if x = xCE where, for some reference level r0 > 0,

xCE
i (q, q̄) =

C
(
Q̄
)

n
+ ξi

(
r, C − C

(
Q̄
))

+ ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
, (20)

for all i ∈ N , where q0i is defined by r (q0i , q̄i) = r0.

Proof. In Appendix A.4.

Remark 3. The fact that the Conditional Equality solutions satisfy weaker compen-

sation axioms does not mean that the Egalitarian Equivalent solutions are more re-

distributive. Indeed, for the latter, the parameter q̄0 dictates both the portion of the

cost to be shared in an egalitarian fashion and how differences in needs are accounted

for. In particular, when q̄0 = 0, the portion of costs to be split equally under xEE

is nil—C (nq̄0) /n = 0—and consumers are held responsible for their whole consump-

tion. By contrast, xCE always splits equally the portion of costs corresponding to the

needs of the population: C
(
Q̄
)
.

5.3 Choosing the “right” responsibility measure affords a de-

sirable compromise

Theorem 2 is tight because xCE generically does not satisfy a stronger version of the

compensation axiom whereby all obtain the same well-being whenever all have the

same responsibility (but not necessarily the reference responsibility level, see Lemma

1 in Appendix A.5). The only exception is when the consumers differ only in their

needs and the responsibility function, r, reflects the utility derived by the consumers.

In that case there exists a rate function that satisfies this stronger version of the

compensation axiom:

17The name reflects the fact that this family of solutions is reminiscent of the conditional equality
solution in Fleurbaey (1995) in a different context.
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Axiom. (Equal Well-being for Equal Responsibility, EWER)

[ri = rj] =⇒ [ui (qi, q̄i)− xi = uj (qj, q̄j)− xj]

In fact, when consumers differ only in their needs and the responsibility function,

r, reflects the consumers’ utility, Shared Responsibility and EWER together

characterize a unique solution:

Theorem 3. If ui = u ∈ Υ, for all i ∈ N and if r = ρ◦u (or equivalently u = ρ−1◦r)
for some increasing function ρ : R → R+, the unique rate function satisfying Shared

Responsiblity and EWER is the utility-free rate function:

xUF
i (q, q̄) =

C
(
Q̄
)

n
+ ξi

(
r, C − C

(
Q̄
))

for all i ∈ N.

Proof. In Appendix A.5.

The utility-free rate function, xUF , possesses the pragmatic advantage of not re-

quiring knowledge of the utility function to compute rates. This is a significant

advantage over other rate functions when it comes to practical applications. But the

normative implications of Theorem 3 are much greater. Importantly, when consumers

differ only in their needs, but not in their preferences (so that the theorem applies),

cardinal information about preferences is not needed. Indeed, the responsbility rank-

ing, as given by r, coincides with the utility ranking among households (both gross

and net of pricing).

Another remarkable feature of the above characterization is that it does not require

specifying a reference level of needs or of responsibility. That being said, for Theorem

3 to properly apply, the planner must know the population well enough to choose a

responsibility measure that mirrors how consumers actually assess their own well

being. This is because choosing r = ρ ◦ u amounts to choosing a responsibility

measure that actually reflects what matters to consumers: their utility can be written

as u = ρ−1 ◦ r (see the proof in Appendix A.5 for more details). Nevertheless, should

the planner have reasonable grounds for assuming identical preferences as a first

approximation, the rate function xUF , for a well-chosen responsibility measure, is an

attractive candidate to handle both compensation and responsibility.

Finally, note that xUF is a two-part tariff of sorts: it exhibits a fixed fee plus

a variable component. Two-part tariffs—like, say, a fixed fee plus marginal cost
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Shared Responsibility SRRN
Solidarity None (Corollary 1) xEE family (Thm 1)

EWER
None, unless ui = u ∈ Υ, ∀i, and r = ρ ◦ u,

xEE family and more
then xUF (Thm 3)

UWRR xCE family (Thm 2) xEE family and even more

Table 1: Compatibility table between compensation and responsibility axioms. Each
cell indicates the family of rate functions that satisfies both axioms. ’None’ means
the two axioms are incompatible.

pricing—face the valid criticism that small users pay a disproportionate amount of

the overall cost through the fixed component (Moulin, 1996). In principle, a user who

consumes almost nothing faces an effective per-unit price that is almost infinite. By

contrast, the fixed component of xUF , C
(
Q̄
)
/n, is anchored to the cost of meeting

the needs of all. From an individual’s perspective, even if a user were to consume

“only” their needs, and even if those needs were small, meeting one’s needs is itself a

meaningful consumption level, by definition. In turn, no user can complain that they

“pay a lot for almost nothing”. From a collective standpoint, asking everyone to pay

1/n of the cost of meeting the needs of all is justified by solidarity—the idea, not the

axiom—and by the fact that consuming one’s needs is a legitimate pursuit.

Remark 4. Recalling Expression (20), notice that xUF is also a special variant of

the Conditional Equality solutions that consists in choosing zero responsibility as a

reference: r0 = 0, so thatq0 = q̄. This implies charging households the same fee to

meet their own needs, whatever those needs may be. Should they choose to consume

more, they would bear the consequences according to the cost-sharing rule in effect.

From a normative standpoint, choosing “zero responsibility” as the reference level is

ethically meaningful. In a context where consumers have needs, calibrating the rate

function relative to the satisfaction of everyone’s needs is normatively appealing.

Theorems 1, 2 and 3 illustrate the tension between compensating for differences

in needs and holding users responsible for their consumption. Table 1 summarizes

the frontier of comptability between the various versions of these desiderata.
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6 Specifying the cost sharing rule, ξ

Having addressed the interplay between compensation and responsibility in Section 5,

we now tackle the issue of interdependence through the cost function. It is this very

interdependence that prevents conventional solutions from guaranteeing a balanced

budget (recall, in particular, Propositions 2 and 3).

Formally, up until now, we have remained silent on the shape of the cost sharing

rule, ξ, which handles the responsibility portion of the rate function. In principle, any

cost-sharing rule could work. However, we will highlight a well-know ruke that ex-

hibits desirable incentives and fairness properties: the serial cost sharing rule (Moulin

and Shenker, 1992).

6.1 The serial cost sharing rule

In the classical setting, in which needs are absent, consumer i simply demands qi

units. Without loss of generality, suppose q1 ≤ q2 ≤ ... ≤ qn. The serial cost sharing

rule—denoted σ rather than ξ—writes:

σi (q) =
1

n
C (nq1) +

i∑
k=2

1

n− k + 1

[
C
(
Qk
)
− C

(
Qk−1

)]
, (21)

with Qk =
∑

j<k qj + (n− k + 1) qk.
18

Inuitively speaking, the serial rule splits cost increments equally among those who

are responsible for reaching a given demand level. It is very much in the spirit of Lit-

tlechild and Owen’s cost allocation for a landing strip in airport problems (Littlechild

and Owen, 1973): all aircraft carriers use at least the portion of strip required by the

smallest planes and share this cost equally. Then, the extra length of strip required

to accommodate larger planes is split equally among those larger aircraft carriers,

with no additional cost to the smallest carriers. Just like Littlechild and Owen’s cost

allocation for landing strips is the Shapley value of the airport game, the Moulin and

Shenker serial cost sharing rule is also the Shapley value of the appropriate coopera-

tive game (Albizuri et al., 2003). Hence, the serial cost sharing rule inherits a number

of fairness properties, which we briefly discuss.

When costs are convex, reflecting negative externalities in consumption, σ protects

18Naturally, if i = 1, the summation term is zero.
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small consumer from the high marginal cost imposed by large consumers. This is

reflected by a property of Independence of Higher Demands: an individual’s bill is

unaffected by changes in the consumption of larger consumers. The serial rule achieves

this property by effectively capping all demands larger than the individual whose cost

share is being computed (Moulin and Shenker, 1992).

When costs are concave, reflecting positive externalities, σ is one of the few sharing

rules to pass both the No Envy test—no consumer prefers another’s consumption-bill

combination to their own—and the Stand Alone test—no consumer (or combination of

consumers) is asked to pay more than the cost of serving them alone—in equilibrium

(Moulin, 1996). In addition, the serial rule passes the Unanimity test: xi ≥ C (nqi) /n;

my cost share is at least what my fair share would be if every other consumer had

the same demand as my own (Moulin, 1996).

There is a clear trade-off between fairness and efficiency: it is a well-established

fact that no first-best solution passes most equity tests (Vohra, 1992). Nevertheless,

the serial rule exhibits robust strategic properties: While not first-best efficient, the

equilibrium of the game where consumers simultaneously choose their demand level

obtains by elimination of strictly dominated strategies when costs are convex (Moulin

and Shenker, 1992).

6.2 Needs-adjusted serial rate functions

In a framework where needs are present, we adapt the serial rule to be based on

the individual’s responsibility, ri(qi, q̄i), rather than on their raw consumption, qi.

Just like Independence of Higher Demands is a characteristic feature of the (clas-

sical) serial rule, we construct the needs-adjusted serial rule from a new axiom of

Independence of Higher Responsbility : an individual’s bill is unaffected by changes in

the responsibility level—and, hence, the consumption—of consumers with an already

higher responsibilty level.

Axiom. (Independence of Higher Responsibility, IHR) For all (q, q̄) and

(q′, q̄′) such that q̄′ = q̄ and r′ ≥ r. For all i ∈ N, define L (i) = {j ∈ N s.t. rj ≤ ri}
the set of consumers with lower responsibility than i. Then,

{
r′j = rj for all j ∈ L (i)

}
=⇒

{
ξj
(
r′, C − C

(
Q̄
))

= ξj
(
r, C − C

(
Q̄
))

for all j ∈ L (i)
}
.
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Remark 5. Note that for a given profile (q, q̄), such that qi > qj and q̄i > q̄j for some

i and j, then one can find two functional forms r̃ and r̂ such that

r̃ (qi, q̄i) ≥ r̃ (qj, q̄j) and r̂ (qi, q̄i) < r̂ (qj, q̄j) .

Hence, the identity of consumers with a smaller responsibility depends on how re-

sponsibility is measured; i.e., upon the specific functional form for r (recall Figure

1).

Also, notice that when needs are zero for all, the framework boils down to the

classical cost-sharing framework, where consumers are unambiguously ranked in order

of increasing consumption.

Serial Egalitarian Equivalence (xSEE)

When combined with Solidarity and SRRN, the IHR requirement characterizes

a unique family of solutions, which amounts to applying the serial cost-sharing rule

directly to consumption, along with transfers to compensate for differences in needs.

Proposition 4. A rate function x satisfies GS, SRRN and IHR if and only if

x = xSEE where, for a given reference level of needs q̄0 > 0,

xSEE
i (q, q̄) =

C(nq̄0)

n
+

i∑
k=1

1

n− k + 1

[
C
(
Q̃k
)
− C

(
Q̃k−1

)]
+ [ui (qi, q̄i)− ui (qi, q̄0)]−

1

n

n∑
k=1

[uk (qk, q̄k)− uk (qk, q̄0)]

for all i ∈ N , where Q̃k =
∑k

l=1 ql + (n− k) qk with the set of consumers ordered so

as to have q1 ≤ q2 ≤ ... ≤ qn.

Proof. In Appendix B.1.

Remark 6. The rate function xSEE is actually independent of the responsibility func-

tion, r. It handles differences in needs—through the utility-compensation terms—and

differences in consumption—through the cost-sharing terms—separately.

Remark 7. Note that the compensation terms may affect the incentives properties of

the serial cost-sharing rule.
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Serial Conditional Equality (xSCE)

Recall that r (·, q̄i) maps a consumer’s consumption to her responsibility level, given

her needs. Define the inverse of this function, g (·, q̄i) ≡ (r)−1 (·, q̄i), which maps

a responsibility level to the corresponding consumption level given the needs of the

consumer.

When combined with Shared Responsibility and UWRR, the IHR require-

ment characterizes a unique family of solutions, which amounts to applying the serial

cost-sharing rule to responsibility levels, along with transfers to compensate for dif-

ferences in needs.

Proposition 5. A rate function x satisfies Shared Responsibility, UWRR and

IHR if and only if x = xSCE where, for a given reference responsibility level, r0 ≥ 0,

xSCE
i (q, q̄) =

1

n
C
(
Q̂1
)
+

i∑
k=2

1

n− k + 1

[
C
(
Q̂i
)
− C

(
Q̂i−1

)]
(22)

+ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
(23)

for all i ∈ N , where Q̂k =
∑k−1

i=1 qi +
∑n

i=k g (rk, q̄i) with the set of consumers ordered

so as to have r1 ≤ r2 ≤ ... ≤ rn.

Proof. In Appendix B.2.

Remark 8. The rate function xSCE depends on the responsibility function, r, through

the g (rk, q̄i) terms. They are the consumption levels at which consumer i would

achieve responsibility level rk.

Remark 9. The equal split term, C
(
Q̄
)
/n, does not appear in Expression (22) because

it simplifies with the first term of the serial cost-sharing rule:

ξi
(
r, C − C

(
Q̄
))

=
1

n

[
C
(
Q̂1
)
− C

(
Q̄
)]

+
i∑

k=2

1

n− k + 1

[
C
(
Q̂i
)
− C

(
Q̂i−1

)]
.

(24)

The Serial Utility-Free Rate Function (xSUF )

When the consumers share a common utility function and the responsibility function,

r, reflects the utility derived by the consumers, Shared Responsibility, EWER and
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IHR together characterize a unique solution, which amounts to applying the serial

cost-sharing rule to responsibility levels, without any explicit utility adjustments.

Proposition 6. If ui = u ∈ Υ, for all i ∈ N and if r = ρ ◦ u, for some increasing

function ρ : R → R+, the unique rate function satisfying Shared Responsibility,

EWER and IHR is the following:

xSUF
i (q, q̄) =

1

n
C
(
Q̂1
)
+

i∑
k=2

1

n− k + 1

[
C
(
Q̂k
)
− C

(
Q̂k−1

)]
for all i ∈ N ,

(25)

where, for all k ∈ N ,

Q̂k =
k−1∑
i=1

qi +
n∑

i=k

g (rk, q̄i) , (26)

where consumers are ordered so as to have r1 ≤ r2 ≤ ... ≤ rn.

Proof. In Appendix B.3.

7 Accounting for needs in practice

In practice, making explicit interpersonal comparisons of needs and consumption

would be very difficult and possibly counterproductive. Nevertheless, we show how

one can implement the above schemes with realistic informational assumptions (Sec-

tion 7.1) and provide some illustrative examples (Section 7.2).19

7.1 Pricing using aggregate distributions

We now represent the population by a distribution. Assume a finite number of types

in the needs dimension corresponding to, say, household size, and let q̄s denote the

needs of a household of size s ∈ S. The planner does not know each individual’s

utility function, but has enough information to infer us, the typical utility function of

a household of type s ∈ S. We shall use slightly different notation as in the general

case; let ns (q) be the density of type-s households with consumption level q and

let Ns (q) be the associated cumulative distribution: Ns (q) =
∫ q

z=0
ns (z) dz. Define

n (q) =
∑

s∈S ns (q) and N (q) =
∑

s∈S Ns (q). Lastly, Ns =
∫∞
z=0

ns (z) dz denotes the

total number of consumers of size s and N =
∑

s∈S Ns the total population.

19Computations can be found in Appendix C
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Given the responsibility function r ≡ r (q, q̄s), define nr
s (ρ) the density of type-

s households with responsibility level ρ. Let N r
s (ρ) be the associated cumulative

distribution: N r
s (ρ) =

∫ ρ

z=0
nr
s (z) dz and define N r (ρ) =

∑
s∈S N

r
s (ρ). We now

define the following continuous counterparts to the quantities Q̃ and Q̂ of the previous

section, respectively corresponding to the SEE, SCE and SUF schemes:

SEE : Q̃ (q) =

∫ ∞

0

inf{q, z}n (z) dz (27)

SCE and SUF : Q̂ (ρ) =
∑
s∈S

[∫ +∞

0

gs (inf{ρ, z})nr
s (z) dz

]
(28)

with gs (·) ≡ r−1 (·, q̄s).
With this notation, the expression for xSEE for reference needs q̄0 becomes:

xSEE (q, s) =
C(nq̄0)

n
(29)

+

∫ q

z=0

C ′
(
Q̃ (z)

)
dz (30)

+ [us (q, q̄s)− us (q, q̄0)]−
1

N

∑
t∈S

∫ ∞

z=0

[ut (z, q̄t)− ut (z, q̄0)]nt (z) dz.(31)

As before, xSEE splits equally the hypothetical cost if all consumed the reference level

of needs (29) before applying the classical serial cost-sharing rule (30) and granting

a compensation term (31). The latter amounts to granting the difference in utility

relative to having the reference level of needs, q̄0, and subtracting the average of that

difference across the population.

Similarly, the expression for xSCE with reference responsibility level r0 is then

xSCE (ρ, s) =
C
(
Q̂0
)

N
(32)

+

∫ ρ

z=0

1

N −N r (z)
C ′
(
Q̂ (z)

) dQ̂ (z)

dz
dz (33)

+ us

(
q0s , q̄s

)
−
∑
t∈S

Nt

N
ut

(
q0t , q̄t

)
(34)

where q0s = gs (r0) = r−1 (r0, q̄s) and Q̂0 =
∑

s∈S Nsq
0
s . xSCE splits equally the costs

of meeting the needs of all (32) before applying the serial cost-sharing rule modified to
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apply to responsibility levels (33) and granting a compensation term (34). The latter

is the difference between the (virtual) utility level if the household had responsibility

level r0 and the average of that virtual utility level in the population.

Finally, xSUF , which is xSCE associated with reference responsibility level r0 = 0

(recall Remark 4) is relatively simple:

xSUF (ρ, s) =
C
(
Q̄
)

N
+

∫ ρ

z=0

1

N −N r (z)
C ′
(
Q̂ (z)

) dQ̂ (z)

dρ
dz. (35)

In particular, xSUF does not explicitly depend on household size, s, except through

the computation of ρ = r (q, q̄s).

7.2 Illustrative Examples

To illustrate, we now consider two specific forms for r. In the absolute responsibility

view, we have r (q, q̄s) ≡ q− q̄s whereas the relative responsibility view uses r (q, q̄s) ≡
(q − q̄s) /q̄s. If s indeed denotes household size, the former holds households equally

responsible for consumption above needs regardless of their size. By contrast, the

latter view holds larger households less responsible than smaller households for an

identical consumption level above needs. In other words, needs also impact the way

consumption beyond them is considered.

Decreasing Returns to Scale : Quadratic Costs

Assume that costs are given by the following quadratic function: C (Q) = cQ2/2.

Under absolute responsibility, the serial utility-free rate function yields:

xSUF−abs (q, s) =
1

N

cQ2

2
+ cQ

(
q − q̄s −

Q− Q̄

N

)
. (36)

In words, consumers share the total cost equally and are rewarded or penalized for de-

viation from the average responsibility level. These deviations are priced at marginal

cost.

Under relative responsibility, however, marginal consumption is not priced equally

across household types. When the empirical distribution of responsibility is identical
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across types, we obtain the following expression:

xSUF−rel (q, s) =
1

N

cQ2

2
+ cQ

Q̄

N

(
q − q̄s
q̄s

− Q− Q̄

Q̄

)
. (37)

Again, the serial utility-free rate function charges everyone the average cost and

prices deviations from the average responsibility, but this time at the marginal cost

of responsibility if needs were equal to Q̄/N . Observe that if q̄s > Q̄/N consumption

is priced at less than the marginal cost while the consumption of households with

lower-than-average needs (q̄s < Q̄/N) is priced above marginal cost.

While the serial egalitarian equivalent solution, xSEE, and serial conditional equal-

ity solution, xSCE, can be computed in a similar fashion, they do not simplify in any

meaningful way. This is due to the utility terms, which can only be reduced in the

case of overly simplistic functional forms for utility functions. We thus refrain from

providing their explicit expression.

Increasing Returns to Scale: Affine Costs

Assume costs are of the form C(Q) = F + cQ, with F, c ∈ R+. When responsibility

is measured by absolute responsibility, the serial utility-free rate function yields:

xSUF−abs (q, s) =
F + cQ̄

N
+ c (q − q̄s) . (38)

In addition to splitting the fixed cost equally, xSUF−abs also splits the cost of the

population’s needs equally before charging consumers at marginal cost with a rebate

equal to the cost of meeting their needs.

Under the relative responsibility view, and if responsibility is identically dis-

tributed across types, we obtain:

xSUF−rel (q, s) =
F

N
+ c

1

q̄s/
(
Q̄/N

)q. (39)

As with relative responsibility, the utility-free rate function splits the fixed cost

equally. No rebate is granted, however, but consumption is priced at a rate that

is inversely proportional to one’s needs.

As previously, xSEE and xSCE do not simplify in any meaningful way.
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8 Concluding remarks

By making explicit the distribution of needs in the population, we were able to design

sharing rules to account for the essential nature of some public services, like water

and electricity. Being able to manage essential services in a way that accounts for the

needs of the population is important in the best of times, but is even more crucial

when resources become scarce due to climate or geopolitical disruption. The 2021-

2023 global energy crisis is a recent example where several EU countries have limited

heating temperatures to 18°C (Hungary) or 19°C (Belgium, France, Germany, Greece,

and Spain). In doing so, these countries explicitly acknowledged that households

needed to have their homes heated at these temperatures. Hence, the amount of

energy required to heat one’s home to, say, 18°C, could be that household’s q̄i (possibly

in addition to some extra amount for cooking and bathing purposes). Although

dwelling- and weather-specific, this amount can be estimated and fed into our rate

calculations.20

Water and energy provision face the challenge of having to meet three objectives:

intergenerational equity, intragenerational equity and (economic) efficiency. There is

an ongoing debate as to whether linear or nonlinear pricing is better poised to achieve

all three. Intergenerational equity is why budget balance is so important, because it

is required for infrastructure sustainability. By construction, all of our solutions are

budget balanced. Most scholars agree that this feature is of the utmost importance,

given the longlived nature of assets compared to the short lengths of political terms

and their fast-changing priorities.

Intragenerational equity has so far mainly been studied through the lenses of total

surplus allocation (e.g., Griffin and Mjelde, 2011) or of income inequality reduction

(Tsur and Dinar, 1999; Schoengold and Zilberman, 2014). Underlying this preoc-

cupation is the (empirical) fact that small consumers tend to also be low-income

households, thereby lending justification for income redistribution through utilities

pricing, whereby large users should subsidize small users. By contrast, our needs-

focused perspective offers a different approach to fairness, which does not rest on any

correlation between household size and income.

Finally, we have not formally analyzed the economic efficiency of our solutions.

That said, it is clear that those prioritizing responsibility over compensation tend

20We thank David Benatia for this observation.
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to yield outcomes that are closer to maximizing the total surplus. In fact, we have

seen that under the absolute responsibility view the serial utility-free rate function

prices marginal consumption at marginal cost. This is true when costs are quadratic

(Equation 1) but also in the presence of large fixed costs and small marginal cost, as

is commonly the case for water and energy provision (Equation 38). When individual

consumers are small relative to the aggregate, these pricing schemes approximate

first-best incentives—as does the former—or implements them exactly—as does the

latter.

The families of sharing rules we have uncovered leave much freedom to the planner.

She may choose a pricing scheme that places more emphasis on compensation, or on

responsibility. Or she may attempt to achieve both by making the extra effort of

knowing her consumers (and then selecting the responsibility function that matches

those consumers’ utility functions, as per Theorem 3), thereby simplifying the rate

function in the process (because the utility-free solution does not require computing

utility levels). In addition, the formulae we obtain resemble the familiar increasing

block rates and two-part tariffs that utilities and municipalities use, yet ours are

ethically grounded by taking needs into consideration while guaranteeing that total

costs are covered.
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A Appendix: Section 5 Proofs

A.1 Proof of Proposition 3

Consider a service charge that covers the total cost—
∑

i ti (q) = C (Q) for all q ∈
Rn

+—and a subsidy that covers the collective cost of meeting the population’s needs:∑
i si (q̄) = C

(
Q̄
)
for all q̄ ∈ Rn

+.

Consider a profile (q, q̄) ∈ R2n
+ , and an alternative needs profile where only Con-

sumer 1’s needs have changed: q̄′ = (q̄′1, q̄2, ..., q̄n) ∈ Rn
+ with q̄′1 ̸= q̄1. The welfare

consequence to Consumer 1 of her change in needs is equal to:

[u1 (q1, q̄
′
1)− (t1 (q)− s1 (q̄

′))]− [u1 (q1, q̄1)− (t1 (q)− s1 (q̄))] (40)

= [u1 (q1, q̄
′
1) + s1 (q̄

′)]− [u1 (q1, q̄1) + s1 (q̄)] (41)

= [u1 (q1, q̄
′
1)− u1 (q1, q̄1)] + [s1 (q̄

′)− s1 (q̄)] (42)

Because the purpose of the monetary subsidy is to avoid consumers being penalized

(resp. privileged) for having higher (resp. lower) needs, the latter welfare change

should equal zero, so that:

s1 (q̄
′)− s1 (q̄) = u1 (q1, q̄1)− u1 (q1, q̄

′
1) . (43)

The latter must hold for any q̄, q̄′and any q1 ≥ 0. In particular, consider q′1 ̸= q1. It

follows that:

u1 (q
′
1, q̄1)− u1 (q

′
1, q̄

′
1) = u1 (q1, q̄1)− u1 (q1, q̄

′
1) (44)

for all q1, q
′
1, q̄1q̄

′
1 ≥ 0. Hence, defining δ = q′1 − q1, and dividing through by δ, we

obtain:
u1 (q1 + δ, q̄1)− u1 (q1, q̄1)

δ
=

u1 (q1 + δ, q̄′1)− u1 (q1, q̄
′
1)

δ
. (45)

Taking the limit as δ → 0 yields that ∂u1/∂q1 is independent from its second ar-

gument. It follows that u1 is additively separable: there exist two non-decreasing

functions, v1 and w1, such that

u1 (q1, q̄1) ≡ v1 (q1)− w1 (q̄1) . (46)

Recall that we normalized utility functions so that ui (q̄i, q̄i) = 0 for all q̄i. It follows
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that the functions v1 and w1 must be identical, as was to be shown:

u1 (q1, q̄1) ≡ v1 (q1)− v1 (q̄1) . (47)

A.2 Proof of Theorem 1

Let q̄0 ∈ R+ be the reference level of needs and denote by q̄0 = (q̄0, q̄0, ..., q̄0) ∈ Rn
+

the associated reference vector. Let (q, q̄) ∈ R2n
+ . By budget balance and anonymity,

xi (q̄0, q̄0) =
C(nq̄0)

n
. (48)

By SRRN,

xi (q, q̄0)− xi (q̄0, q̄0) = ξi (r0, C − C (nq̄0)) for all i ∈ N, (49)

where r0,i = r (qi, q̄0) for all i.

Define q̄1
0 = (q̄1, q̄0, ..., q̄0). Applying Solidarity between (q, q̄0) and (q, q̄1

0) yields,

for all j ̸= 1:

u1 (q1, q̄1)− x1
1 −

[
u1 (q1, q̄0)− x0

1

]
= uj (qj, q̄0)− x1

j −
[
uj (qj, q̄0)− x0

j

]
(50)

where x0
j = xj (q, q̄0) and x1

j = xj (q, q̄
1
0) for all j ∈ N . This yields:

x1
1 − x0

1 = u1 (q1, q̄1)− u1 (q1, q̄0) + x1
j − x0

j , (51)

for all j ̸= 1. Summing up over all j ̸= 1 yields:

(n− 1)
(
x1
1 − x0

1

)
= (n− 1) [u1 (q1, q̄1)− u1 (q1, q̄0)] +

∑
j ̸=1

(
x1
j − x0

j

)
. (52)

Adding x1
1 − x0

1 to both sides and noticing that
∑

j

(
x1
j − x0

j

)
= 0 by budget balance

yields: x1
1 − x0

1 = n−1
n

[u1 (q1, q̄1)− u1 (q1, q̄0)]

x1
j − x0

j = − 1
n
[u1 (q1, q̄1)− u1 (q1, q̄0)] ∀j ̸= 1.

(53)

Similarly, applying Solidarity to profiles
(
q, q̄k

0

)
where q̄k

0 = (q̄1, q̄2, ..., q̄k, q̄0, ..., q̄0),

successively leads to the following expression, for all iterations, k = 1, ..., n, and all
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consumers 1 ≤ i ≤ k ≤ j ≤ n:

ui (qi, q̄i)− xk
i − ui (qi, q̄i) + xk−1

i (54)

= uk (qk, q̄k)− xk
k − uk (qk, q̄0) + xk−1

k (55)

= uj (qj, q̄0)− xk
j − uj (qj, q̄0) + xk−1

j (56)

Hence, for all k = 1, ..., n, and all consumers 1 ≤ i ≤ k ≤ j ≤ n:

xk−1
i − xk

i (57)

= uk (qk, q̄k)− uk (qk, q̄0) + xk−1
k − xk

k (58)

= xk−1
j − xk

j (59)

Similarly as for k = 1, summing up over all indices and recalling that, by budget

balance,
∑

j

(
xk
j − xk−1

j

)
= 0, we obtain:

xk
k − xk−1

k =
n− 1

n
[uk (qk, q̄k)− uk (qk, q̄0)]

xk
j − xk−1

j = − 1

n
[uk (qk, q̄k)− uk (qk, q̄0)] for all j ̸= k.

(60)

Summing up over all iterations k yields the following:

xn
1 − x0

1 =
n∑

k>1

(
xk
1 − xk−1

1

)
+ x1

1 − x0
1 (61)

= − 1

n

n∑
j>1

[uj (qj, qj)− uj (qj, q̄0)] +

(
n− 1

n

)
[u1 (q1, q̄1)− u1 (q1, q̄0)](62)

= [u1 (q1, q̄1)− u1 (q1, q̄0)]−
1

n

n∑
j=1

[uj (qj, q̄j)− uj (qj, q̄0)] . (63)

Likewise, for all i ∈ N :

xn
i − x0

i = [ui (qi, q̄i)− ui (qi, q̄0)]−
1

n

n∑
j=1

[uj (qj, q̄j)− uj (qj, q̄0)] . (64)

Finally, upon noticing that xn
i = x (q, q̄) and x0

i = xi (q, q̄0), Expression (49)
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yields:

xi (q, q̄) = ξi (r0, C − C (nq̄0)) + xi (q̄0, q̄0) (65)

+ [ui (qi, q̄i)− ui (qi, q̄0)]−
1

n

n∑
j=1

[uj (qj, q̄j)− uj (qj, q̄0)] . (66)

Expression (48) yields the result.

A.3 Proof of tightness of the characterization of EE by Sol-

idarity and SRRN

Let q̄1 > q̄0, we show that no solution can satisy Solidarity along with SRRN

simultaneously for two distinct reference levels of needs, q̄0 and q̄1. Let xEE be the

egalitarian equivalent solution defined relative to reference needs level q̄0 ≥ 0 and

consider a profile (q, q̄1) ∈ R2n
+ such that q̄1 = (q̄1, q̄1, ..., q̄1). Then:

xEE
i (q, q̄1)− xEE

i (q̄1, q̄1) =
C(nq̄0)

n
+ ξi (r0, C − C (nq̄0)) (67)

+ [ui (qi, q̄1)− ui (qi, q̄0)]−
1

n

n∑
k=1

[uk (qk, q̄1)− uk (qk, q̄0)]

−
(
C(nq̄0)

n
+ ξi (r̄0, C − C (nq̄0)) ...

...+ [ui (q̄1, q̄1)− ui (q̄1, q̄0)]−
1

n

n∑
k=1

[uk (q̄1, q̄1)− uk (q̄1, q̄0)]

)

where r̄0 ≡ (r (q̄1, q̄0) , r (q̄1, q̄0) , ..., r (q̄1, q̄0)) ∈ Rn
+. Hence, upon noticing that

ξi (r̄0, C − C (nq̄0)) =
1

n
(C (nq̄1)− C (nq̄0))

by anonymity, Expression (67) simplifies into:

xEE
i (q, q̄1)− xEE

i (q̄1, q̄1) = ξi (r0, C − C (nq̄0))−
1

n
(C (nq̄1)− C (nq̄0)) (68)

+ {ui (qi, q̄1)− ui (q̄1, q̄1)− [ui (qi, q̄0)− ui (q̄1, q̄0)]}

− 1

n

n∑
k=1

{uk (qk, q̄1)− uk (qk, q̄0)− [uk (q̄1, q̄1)− uk (q̄1, q̄0)]}
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The above expression reveals that xEE
i (q, q̄1)−xEE

i (q̄1, q̄1) depends on ui, hence

cannot be driven only by the cost sharing function ξ. In other words, it cannot be

the case that:

xEE
i (q, q̄1)− xEE

i (q̄1, q̄1) = ξi (r1, C − C (nq̄1)) ,

as required by SRRN using q̄1 as a reference level of needs.

A.4 Proof of Theorem 2

Let r0 ∈ R+ be the reference responsibility level and let (q0, q̄) ∈ R2n
+ be such that,

r
(
q0i , q̄i

)
= r0, for all i ∈ N. (69)

By UWRR,

ui

(
q0i , q̄i

)
− xi

(
q0, q̄

)
= uj

(
q0j , q̄j

)
− xj

(
q0, q̄

)
, for all i, j ∈ N. (70)

Hence, for all i ∈ N ,

xi

(
q0, q̄

)
= ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

[
uj

(
q0j , q̄j

)
− xj

(
q0, q̄

)]
, (71)

=
C (Q0)

n
+ ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
, (72)

whereQ0 ≡
∑

j∈N q0j and the first term obtains by budget balance—as
∑

j xj (q
0, q̄) =

C (Q0).

Applying Shared Responsibility between profiles (q0, q̄) and (q̄, q̄) yields:

xi

(
q0, q̄

)
− xi (q̄, q̄) = ξi

(
r0, C − C(Q̄)

)
. (73)

Hence, by symmetry of ξ,

xi (q̄, q̄) = xi

(
q0, q̄

)
−

C (Q0)− C
(
Q̄
)

n
. (74)
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Applying now Shared Responsibility between profiles (q̄, q̄) and (q, q̄) yields:

xi (q, q̄)− xi (q̄, q̄) = ξi
(
r, C − C(Q̄)

)
. (75)

Thus,

xi (q, q̄) = ξi
(
r, C − C(Q̄)

)
+ xi (q̄, q̄) (76)

= ξi
(
r, C − C(Q̄)

)
+ xi

(
q0, q̄

)
−

C (Q0)− C
(
Q̄
)

n
(77)

= ξi
(
r, C − C(Q̄)

)
+

C
(
Q̄
)

n
+ ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
. (78)

A.5 Proof of Theorem 3

In order to prove Theorem 3, we first establish the conditions under which xCE satisfies

a stronger version of compensation than UWRR, which consists in equalizing well-

beings whenever all share the same responsiblity level (though not necessarily the

reference responsibility level). Formally:

Axiom. (Uniform Well-being for Uniform Responsibility, UWUR)

[ri = rj,∀i, j ∈ N ] =⇒ [ui (qi, q̄i)− xi = uj (qj, q̄j)− xj,∀i, j ∈ N ]

Lemma 1. xCE does not satisfy UWUR unless the following two assertions are

true:

(1) all consumers share a common utility function; i.e., ui = u ∈ Υ, for all i ∈ N ,

(2) the responsibility function co-varies with consumers’ utility; i.e., r = ρ ◦ u, for

some increasing function ρ : R → R+.

Proof. Let (q0, q̄) ∈ R2n
+ and (q1, q̄) ∈ R2n

+ be two profiles associated respectively

with the uniform responsibility profiles r0 = (r0, r0, ..., r0) and r1 = (r1, r1, ..., r0) with

r1 ̸= r0. Suppose that x satisfiesUWUR, so that it satisfies in particularUWRR for

the reference responsibility level r0. If it does also satisfy Shared Responsibility,

Theorem 2 implies that it can be written as

xi (q, q̄) =
C
(
Q̄
)

n
+ξi

(
r, C − C(Q̄)

)
+ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
, for all i ∈ N.

(79)
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This says in particular that, when q = q1, we have:

xi

(
q1, q̄

)
=

C
(
Q̄
)

n
+ξi

(
r1, C − C(Q̄)

)
+ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
, for all i ∈ N.

(80)

By symmetry of ξ, we have ξi
(
r1, C − C

(
Q̄
))

=
[
C (Q1)− C

(
Q̄
)]

/n, for all i ∈ N ,

with Q1 =
∑

j q
1
j , so that

xi

(
q1, q̄

)
=

C (Q1)

n
+ ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
, for all i ∈ N. (81)

Because x also satisfies UWRR for the reference responsibility level r1 (to which q1

is associated), it must be the case that

ui

(
q1i , q̄i

)
− xi

(
q1, q̄

)
= uj

(
q1j , q̄j

)
− xj

(
q1, q̄

)
, for all i, j ∈ N. (82)

From the expression of xi (q
1, q̄) established above, we must have

ui

(
q1i , q̄i

)
− ui

(
q0i , q̄i

)
= uj

(
q1j , q̄j

)
− uj

(
q0j , q̄j

)
, for all i, j ∈ N. (83)

This implies in turn that

ui

(
q1i , q̄i

)
− ui

(
q0i , q̄i

)
=

1

n

∑
j∈N

[
uj

(
q1j , q̄j

)
− uj

(
q0j , q̄j

)]
, for all i ∈ N. (84)

This must be true for any responsibility level r0 and r1 and the associated profiles

(q0, q̄) ∈ R2n
+ and (q1, q̄) ∈ R2n

+ . Thus, by setting r1 = 0, so that uj

(
q1j , q̄j

)
= 0 for

all i—and thus considering the associated profile (q̄, q̄) ∈ R2n
+ —we obtain that, for

Shared Responsibility and UWUR to be compatible, the utility functions must

be such that

ui

(
q0i , q̄i

)
=

1

n

∑
j∈N

uj

(
q0j , q̄j

)
(85)

for all i ∈ N and for all profiles (q0, q̄) ∈ R2n
+ such that

r
(
q0i , q̄i

)
= r0, for all i ∈ N. (86)

Now fix r0 and q̄ and define, for all i ∈ N , q (r0, q̄i) = {q ∈ R+|r (q, q̄i) = r0}. By
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continuity and strict monotonicity of r, q (r0, q̄i) is a singleton and (r0, q̄i) 7→ q (r0, q̄i)

defines a continuous function that is increasing in its first argument. Also, define

u0 =
1
n

∑
j∈N uj (q (r0, q̄j) , q̄j).

Expression (85) can be rewritten as

n− 1

n
ui (q (r0, q̄i) , q̄i) =

1

n

∑
j∈N\i

uj (q (r0, q̄j) , q̄j) . (87)

Because the right-hand side is independent of q̄i, it must be that ui (q (r0, q̄i) , q̄i) is also

independent of q̄i, implying that utility is entirely determined by the responsibility

level, r0.

Therefore, there exists some function v : R+ → R such that, for all i and all q̄i,

ui (q (r0, q̄i) , q̄i) = v (r0) , (88)

for all r0 ∈ R+. Because ui and q are both continuous and increasing in their first

argument, v is also a continuously increasing function.

Finally, let (qi, q̄i) ∈ R2
+, evaluating the above expression at r0 = r (qi, q̄i) and

noticing that

q (r (qi, q̄i) , q̄i) = qi (89)

yields:

ui (qi, q̄i) = v (r (qi, q̄i)) . (90)

This in turn implies that the utility must be a (common) transformation of the

responsibility function:

ui = u ≡ v ◦ r. (91)

Because v is a continuous and increasing function of R, we can write:

r = ρ ◦ u, (92)

with ρ = v−1, so that r is a transformation of the common utility function u, as was

to be shown.

We can now proceed with the proof of Theorem 3.

Only if. Let x satisfy Shared Responsibility and EWER. Because EWER is
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more demanding than UWUR, which, in turn, is more demanding than UWRR, x

must also satisfy UWRR. By Theorem 2, x must be a Conditional Equality solution:

xCE
i (q, q̄) =

C
(
Q̄
)

n
+ ξi

(
r, C − C(Q̄)

)
+ u

(
q0i , q̄i

)
− 1

n

∑
j∈N

u
(
q0j , q̄j

)
, (93)

where u is the common utility function and q0 is such that, for all i ∈ N , r (q0i , q̄i) = r0

for some reference responsibility level, r0.

Because EWER is more demanding than UWUR, x must also satisfy UWUR.

By Lemma 1, this can only occur if ui = u for some utility function u and r = ρ ◦ u
for some continuous and increasing function ρ. Moreover, it follows from r = ρ ◦ u

that u
(
q0j , q̄j

)
= ρ−1 (r0) for all j ∈ N . Hence,

xCE
i (q, q̄) =

C
(
Q̄
)

n
+ ξi

(
r, C − C(Q̄)

)
≡ xUF

i (q, q̄) , for all i ∈ N. (94)

If. Because xUF coincides with xCE with reference responsibility level r0 = 0 (see

Remark 4) we already know from Theorem 2 that xUF satisfies Shared Responsi-

bility. Let (q, q̄) ∈ R2n
+ such that r (qi, q̄i) = r (qj, q̄j)for some i, j ∈ N . It follows

from the symmetry of ξ that

ξi
(
r, C − C(Q̄)

)
= ξj

(
r, C − C(Q̄)

)
. (95)

As a result,

xUF
i (q, q̄) = xUF

j (q, q̄) . (96)

Moreover, because r = ρ ◦ u for some continuous and increasing function ρ, we can

write u = ρ−1 ◦ r. Thus,

r (qi, q̄i) = r (qj, q̄j) =⇒ u (qi, q̄i) = u (qj, q̄j) , (97)

and writing ui = uj = u yields

ui (qi, q̄i)− xUF
i (q, q̄) = uj (qj, q̄j)− xUF

j (q, q̄). (98)

Hence, xUF satisfies EWER.
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B Section 6 Proofs

B.1 Proof of Proposition 4

Only If. The proof technique interweaves those of the proof of Theorem 1 and of

the proof of the main theorem in Moulin and Shenker (1992). Suppose x satisfies

Solidarity, IHR and SRRN with reference needs level q0 ≥ 0. Let (q, q̄) ∈ R2n
+

and denote by q̄0 = (q̄0, q̄0, ..., q̄0) ∈ Rn
+ the reference needs vector. By budget balance

and anonymity,

xi (q̄0, q̄0) =
C(nq̄0)

n
for all i ∈ N. (99)

Without loss of generality, assume that q1 ≤ q2 ≤ ... ≤ qn, so that r0,1 ≤ r0,2 ≤ ... ≤
r0,n, where r0,i = r (qi, q̄0) for all i ∈ N .

For all k ∈ N , define

qk = (q1, q2, ..., qk−1, qk, ..., qk) . (100)

Notice that q1 = (q1, q1, ..., q1). Hence, by anonymity,

xi

(
q1, q̄0

)
=

C (nq1)

n
(101)

and

xi

(
q1, q̄0

)
− xi (q̄0, q̄0) =

1

n
[C (nq1)− C (nq̄0)] (102)

for all i ∈ N .

Similarly, for k ≥ 2, SRRN yields

xi

(
qk, q̄0

)
− xi (q̄0, q̄0) = ξi

(
rk0, C − C (nq̄0)

)
(103)

and

xi

(
qk−1, q̄0

)
− xi (q̄0, q̄0) = ξi

(
rk−1
0 , C − C (nq̄0)

)
(104)

for all i ∈ N , with rk0,i = r
(
qki , q̄0

)
and rk−1

0,i = r
(
qk−1
i , q̄0

)
. Therefore, by subtraction,

xi

(
qk, q̄0

)
− xi

(
qk−1, q̄0

)
= ξi

(
rk0, C − C (nq̄0)

)
− ξi

(
rk−1
0 , C − C (nq̄0)

)
(105)
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for all i ∈ N . Summing up over all consumers, we find:

n∑
i=1

[
xi

(
qk, q̄0

)
− xi

(
qk−1, q̄0

)]
= C

(
Q̃k
)
− C

(
Q̃k−1

)
, (106)

where Q̃k−1 =
∑n

l=1 q
k−1
l =

∑k−1
l=1 ql +(n− k + 1) qk−1 and Q̃k =

∑n
l=1 q

k
l =

∑k
l=1 ql +

(n− k) qk.

Observe that if i < j then rk−1
0,i ≤ rk−1

0,j and rk0,i ≤ rk0,j. Moreover for all 1 ≤ i ≤
k − 1, qk−1

i = qk
i = qi, and rk−1

0,i = rk0,i = r (qi, q̄0). Therefore, by IHR,

xi

(
qk, q̄0

)
− xi

(
qk−1, q̄0

)
= 0, (107)

for all 1 ≤ i ≤ k − 1. It follows that the previous summation can truncated from

below:
n∑

i=k

[
xi

(
qk, q̄0

)
− xi

(
qk−1, q̄0

)]
= C

(
Q̃k
)
− C

(
Q̃k−1

)
. (108)

Moreover, for all i, j ≥ k, we have qk−1
i = qk−1

j = qk−1 and qki = qkj = qk. Therefore,

by anonymity,

xi

(
qk−1, q̄0

)
= xj

(
qk−1, q̄0

)
and xi

(
qk, q̄0

)
= xj

(
qk, q̄0

)
(109)

for all i, j ≥ k.

Hence,

xi

(
qk, q̄0

)
− xi

(
qk−1, q̄0

)
=

1

n− k + 1

[
C
(
Q̃k
)
− C

(
Q̃k−1

)]
(110)

for all i ≥ k, with the convention that Q̃0 = nq̄0.

Finally, upon observing that qn = q, it follows by summation that

xi (q, q̄0)− xi (q̄0, q̄0) =
i∑

k=1

1

n− k + 1

[
C
(
Q̃k
)
− C

(
Q̃k−1

)]
; (111)
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i.e., substituting according to Expression (99):

xi (q, q̄0) =
C (nq̄0)

n
+

i∑
k=1

1

n− k + 1

[
C
(
Q̃k
)
− C

(
Q̃k−1

)]
(112)

We now work along the needs dimension. Define q̄1
0 = (q̄1, q̄0, ..., q̄0). Applying

Solidarity between (q, q̄0) and (q, q̄1
0) yields, for all j ̸= 1:

u (q1, q̄1)− x1
1 − u (q1, q̄0) + x0

1 = u (qj, q̄0)− x1
j − u (qj, q̄0) + x0

j , (113)

where x0
j = xj (q, q̄0) and x1

j = xj (q, q̄
1
0) for all j ∈ N . This yields

x0
j − x1

j = u (q1, q̄1)− u (q1, q̄0) + x0
1 − x1

1. (114)

Since total consumption is unchanged, we have, by budget balance:

x1
1 − x0

1 =
n− 1

n
[u (q1, q̄1)− u (q1, q̄0)] , and (115)

x1
j − x0

j = − 1

n
[u (q1, q̄1)− u (q1, q̄0)] . (116)

for all j ̸= 1 (recall the proof of Theorem 1).

Iterating and applying Solidarity to profiles
(
q, q̄k

0

)
where q̄k

0 = (q̄1, q̄2, ..., q̄k, q̄0, ..., q̄0),

successively leads to the following expression, for all iterations, k = 1, ..., n, and all

1 ≤ i ≤ k ≤ j ≤ n:

u (qi, q̄i)− xk
i −

[
u (qi, q̄i)− xk−1

i

]
= u (qk, q̄k)− xk

k −
[
u (qk, q̄0)− xk−1

k

]
(117)

= u (qj, q̄0)− xk
j −

[
u (qj, q̄0)− xk−1

j

]
(118)

where xk−1
j = xj

(
q, q̄k−1

0

)
and xk

j = xj

(
q, q̄k

0

)
. Hence, for all k = 1, ..., n, and all

1 ≤ i ≤ k ≤ j ≤ n:

xk−1
i − xk

i = u (qk, q̄k)− u (qk, q̄0) + xk−1
k − xk

k (119)

= xk−1
j − xk

j (120)

Since total consumption does not change from
(
q, q̄k−1

0

)
to
(
q, q̄k

0

)
, but only needs,
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budget balance implies
∑

j

(
xk
j − xk−1

j

)
= 0. Therefore,

xk
j − xk−1

j = − 1

n
[u (qk, q̄k)− u (qk, q̄0)] for all j ̸= k, and (121)

xk
k − xk−1

k =
n− 1

n
[u (qk, q̄k)− u (qk, q̄0)] (122)

Summing up over all iterations k = 1, ..., n yields the following for Consumer 1:

xn
1 − x0

1 =
n∑

k>1

(
xk
1 − xk−1

1

)
+ x1

1 − x0
1 (123)

= − 1

n

n∑
k>1

[u (qk, q̄k)− u (qk, q̄0)] +
n− 1

n
[u (q1, q̄1)− u (q1, q̄0)] (124)

= [u (q1, q̄1)− u (q1, q̄0)]−
1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)] (125)

Similarly, for all i > 1:

xn
i − x0

i = [u (qi, q̄i)− u (qi, q̄0)]−
1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)] (126)

Finally, observing that q̄n
0 = q̄, Expressions (112) and (126) yield the following :

xi (q, q̄) = xi (q, q̄
n
0 ) =

C (nq̄0)

n
+

i∑
k=1

1

n− k + 1

[
C
(
Q̃k
)
− C

(
Q̃k−1

)]
(127)

+ [u (qi, q̄i)− u (qi, q̄0)]−
1

n

n∑
k=1

[u (qk, q̄k)− u (qk, q̄0)]

for all i ∈ N , where Q̃k =
∑k

l=1 ql + (n− k) qk for all k = 1, ..., n.

If. By construction, the above solution satisfies Solidarity, IHR and SRRN

with reference needs level q0 ≥ 0.

B.2 Proof of Proposition

Only If. The proof technique interweaves those of the proof of Theorem 2 and of the

proof of the main theorem in Moulin and Shenker (1992). Suppose x satisfies Shared

Responsibility, IHR and UWRR with reference responsibility level r0 ≥ 0. Let
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(q, q̄) ∈ R2n
+ and, without loss of generality, assume that r1 ≤ r2 ≤ ... ≤ rn. Define

q0 ∈ Rn
+ such that,

r
(
q0i , q̄i

)
= r0, for all i ∈ N. (128)

By UWRR,

ui

(
q0i , q̄i

)
− xi

(
q0, q̄

)
= uj

(
q0j , q̄j

)
− xj

(
q0, q̄

)
, for all i, j ∈ N. (129)

Hence, for all i ∈ N ,

xi

(
q0, q̄

)
= ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

[
uj

(
q0j , q̄j

)
− xj

(
q0, q̄

)]
, (130)

=
1

n
C
(
Q0
)
+ ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
, (131)

by budget balance, where Q0 ≡
∑

j∈N q0j .

Applying Shared Responsibility between profiles (q0, q̄) and (q̄, q̄) yields:

xi

(
q0, q̄

)
− xi (q̄, q̄) = ξi

(
r0, C − C(Q̄)

)
. (132)

Applying now Shared Responsibility between profiles (q̄, q̄) and (q, q̄) yields:

xi (q, q̄)− xi (q̄, q̄) = ξi
(
r, C − C(Q̄)

)
. (133)

Combining expressions (132) and (133) yields:

xi (q, q̄)− xi

(
q0, q̄

)
= ξi

(
r, C − C(Q̄)

)
− ξi

(
r0, C − C(Q̄)

)
(134)

Let fi : w 7→ r (w, q̄i) map consumption to individual responsibility for consumer

i. By construction, fi is strictly increasing. Its inverse, gi : v 7→ f−1
i (v), is well

defined and is also strictly increasing. In particular, gi (ri) = qi for all i ∈ N .

Define the following profile:

q1=(q1, g2 (r1) , ..., gi (r1) , ..., gn (r1)) . (135)

Note that, by construction, (q1, q̄) is such that r1i = r1 for all i ∈ N. By symmetry
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of ξ and because r1i = r1 for all i ∈ N , we have:

ξi
(
r1, C − C

(
Q̄
))

=
1

n

[
C
(
Q̂1
)
− C

(
Q̄
)]

, (136)

where

Q̂1 =
n∑

i=1

q1i =
n∑

i=1

gi (r1) . (137)

Similarly, let

q2=(q1, g2 (r2) , g3 (r2) , ..., gi (r2) , ..., gn (r2)) . (138)

Again, by construction (q2, q̄) is such that r2i = r2 for all i = 2, ..., n. Because r1 ≤ r2,

applying IHR between profiles (q1, q̄) and (q2, q̄) yields that Consumer 1’s contri-

bution is the same under both profiles:

ξ1
(
r2, C − C

(
Q̄
))

= ξ1
(
r1, C − C

(
Q̄
))

, (139)

=
1

n

[
C
(
Q̂1
)
− C

(
Q̄
)]

(140)

Thus, consumers 2, ..., n share the remaining cost equally:

ξi
(
r2, C − C

(
Q̄
))

− ξi
(
r1, C − C

(
Q̄
))

=
1

n− 1

[
C
(
Q̂2
)
− C

(
Q̂1
)]

, (141)

where

Q̂2 =
n∑

j=1

q2j = q1 +
n∑

j=2

gj (r2) ≥ Q̂1. (142)

More generally, let k ∈ {2, ..., n} and define

qk = (q1, q2, ..., qk−1, gk (rk) , ..., gn (rk)) . (143)

It follows from IHR and symmetry of ξ thatξi
(
rk, C − C

(
Q̄
))

− ξi
(
rk−1, C − C

(
Q̄
))

= 0 for all i < k, and

ξi
(
rk, C − C

(
Q̄
))

− ξi
(
rk−1, C − C

(
Q̄
))

= 1
n−k+1

[
C
(
Q̂k
)
− C

(
Q̂k−1

)]
for all i ≥ k,

(144)
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with

Q̂k =
n∑

j=1

qkj =
k−1∑
j=1

qj +
n∑

j=k

gj (rk) . (145)

Summing up over all iterations, we obtain for all i ∈ {1, ..., n}:

ξi
(
r, C − C(Q̄)

)
− ξi

(
r1, C − C(Q̄)

)
=

i∑
k=2

[
ξi
(
rk, C − C

(
Q̄
))

− ξi
(
rk−1, C − C

(
Q̄
))]

(146)

=
i∑

k=2

1

n− k + 1

[
C
(
Q̂k
)
− C

(
Q̂k−1

)]
.

(147)

so that, recalling Expression (136),

ξi
(
r, C − C(Q̄)

)
=

1

n

[
C
(
Q̂1
)
− C

(
Q̄
)]

+
i∑

k=2

1

n− k + 1

[
C
(
Q̂k
)
− C

(
Q̂k−1

)]
.

(148)

Putting everything together, and recalling Expression (133), the above expression
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becomes

xi (q, q̄) =
1

n

[
C
(
Q̂1
)
− C

(
Q̄
)]

+
i∑

k=2

1

n− k + 1

[
C
(
Q̂k
)
− C

(
Q̂k−1

)]
(149)

+ xi (q̄, q̄) (150)

=
1

n

[
C
(
Q̂1
)
− C

(
Q̄
)]

+
i∑

k=2

1

n− k + 1

[
C
(
Q̂k
)
− C

(
Q̂k−1

)]
(151)

− 1

n

[
C
(
Q0
)
− C

(
Q̄
)]

+ xi

(
q0, q̄

)
(152)

=
1

n

[
C
(
Q̂1
)
− C

(
Q̄
)]

+
i∑

k=2

1

n− k + 1

[
C
(
Q̂k
)
− C

(
Q̂k−1

)]
(153)

− 1

n

[
C
(
Q0
)
− C

(
Q̄
)]

+
1

n
C
(
Q0
)
+ ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
(154)

=
1

n
C
(
Q̂1
)
+

i∑
k=2

1

n− k + 1

[
C
(
Q̂k
)
− C

(
Q̂k−1

)]
(155)

+ ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
(156)

where the second and third equalities come from Expressions (132) and (131), respec-

tively.

If. By construction, the above solution satisfies Shared Responsibility, IHR

and UWRR with reference responsibility level r0 ≥ 0.

B.3 Proof of Proposition 6

The proof follows the structure of that of Theorem 3.

Only If. Suppose x satisfies Shared Responsibility, EWER and IHR. Be-

cause EWER is more demanding than UWRR, Proposition 5 applies, so that x

must be a Serial Conditional Equality solution:

xi (q, q̄) =
1

n
C
(
Q̂1
)
+

i∑
k=2

1

n− k + 1

[
C
(
Q̂i
)
− C

(
Q̂i−1

)]
(157)

+ ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
(158)
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for some reference level of responsibility, r0 ≥ 0.

Because EWER implies UWUR, Lemma 1 applies. Hence, there must exist

some common utility function, u, such that ui = u for all i, and the responsibility

function must reflect this common utility function: r = ρ◦u for some continuous and

increasing function ρ. Moreover, it follows from r = ρ ◦u that u (q0i , q̄i) = ρ−1 (r0) for

all i ∈ N .

Hence,

xi (q, q̄) =
1

n
C
(
Q̂1
)
+

i∑
k=2

1

n− k + 1

[
C
(
Q̂i
)
− C

(
Q̂i−1

)]
. (159)

If. We already know from Theorem 5 that xSUF satisfies Shared Responsibility.

Let (q, q̄) ∈ R2n
+ such that r (qi, q̄i) = r (qj, q̄j)for some i, j ∈ N . It follows from the

symmetry of ξ that

ξi
(
r, C − C(Q̄)

)
= ξj

(
r, C − C(Q̄)

)
. (160)

As a result,

xSUF
i (q, q̄) = xSUF

j (q, q̄) . (161)

Moreover, because r = ρ ◦ u for some continuous and increasing function ρ, we can

write u = ρ−1 ◦ r. Thus,

r (qi, q̄i) = r (qj, q̄j) =⇒ u (qi, q̄i) = u (qj, q̄j) , (162)

and ui = uj = u yields

ui (qi, q̄i)− xSUF
i (q, q̄) = uj (qj, q̄j)− xSUF

j (q, q̄) . (163)

Hence, xSUF satisfies EWER.
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C Supplementary material: Calculations not in-

tended for publication

For the upcoming calculations, recall the notations of Section 7.

C.1 Calculations of rate functions with a population distri-

bution

SEE

Recall the expression of xSEE in the discrete setting. Fix a reference level of needs,

q̄0. The corresponding xSEE rate function is, for all i ∈ N :

xEE
i (q, q̄) =

C (nq̄0)

n
+

i∑
k=1

1

n− k + 1

[
C
(
Q̃k
)
− C

(
Q̃k−1

)]
(164)

+ [ui (qi, q̄i)− ui (qi, q̄0)]−
1

n

n∑
k=1

[uk (qk, q̄k)− uk (qk, q̄0)] (165)

where Q̃k =
∑k

l=1 ql + (n− k) qk with the set of consumers ordered so as to have

q1 ≤ q2 ≤ ... ≤ qn.

When representing the population with distributions, one obtains that, for any

given consumption level q,

Q̃ (q) =

∫ ∞

0

inf{q, z}n (z) dz. (166)

Proceeding term for term, the translation from the discrete setting to the distribu-

tional one is rather straightforward. The only term that requires a few steps is the

second term of (164), which amounts to∫ q

z=0

1

N −N (q)
C ′
(
Q̃ (z)

) dQ̃ (z)

dz
dz. (167)

Notice that dQ̃ (q) = [N −N (q)] dq, because Q̃ (q) increases by dq for every consumer
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who consumes q or more. It follows that (167) simplifies into∫ q

z=0

C ′
(
Q̃ (z)

)
dz,

as was to be shown.

SCE

Recall the expression of xSCE in the discrete setting. Fix a reference responsibility

level, r0. The corresponding xSCE rate function is, for all i ∈ N :

xSCE
i (q, q̄) =

1

n
C
(
Q̂0
)
+

i∑
k=1

1

n− k

[
C
(
Q̂i
)
− C

(
Q̂i−1

)]
(168)

+ui

(
q0i , q̄i

)
− 1

n

∑
j∈N

uj

(
q0j , q̄j

)
(169)

where, Q̂0 ≡
∑

j∈N q0j and, for all k ∈ N , Q̂k =
∑k

j=1 qj +
∑n

j=k−1 gj (rk), with the

set of consumers ordered so as to have r1 ≤ r2 ≤ ... ≤ rn.

When representing the population with distributions, one obtains that, for any

given responsibility level ρ,

Q̂ (ρ) =
∑
s∈S

[∫ +∞

0

gs (inf{ρ, z})nr
s (z) dz

]
. (170)

Proceeding term for term, the translation from the discrete setting to the distribu-

tional one is rather straightforward. The only term that requires a few steps is the

second term of (168), which amounts to∫ ρ

z=0

1

N −N r (z)
C ′
(
Q̂ (z)

) dQ̂ (z)

dz
dz. (171)

Notice that dQ̂ (ρ) =
∑

s∈S [Ns −N r
s (ρ)] (dgs (ρ) /dρ) dρ because a variation in

responsbility, dρ, corresponds to a variation in consumption, dgs (ρ) /dρ, for every

consumer whose responsbility is ρ or more.
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C.2 Decreasing Returns to Scale: Quadratic Costs

SUF with absolute responsibility

Recall that

xSUF (ρ) =
C
(
Q̄
)

N
+

∫ ρ

z=0

1

N −N r (z)
C ′
(
Q̂ (z)

) dQ̂ (z)

dρ
dz, (172)

where

Q̂ (ρ) =
∑
s∈S

[∫ +∞

0

inf{gs (z) , gs (ρ)}nr
s (z) dz

]
(173)

=
∑
s∈S

[∫ ρ

0

gs (z)n
r
s (z) dz + gs (ρ)

∫ +∞

ρ

nr
s (z) dz

]
(174)

Under the absolute responsibility view,

dQ̂ (ρ)

dρ
=
∑
s∈S

{
gs (ρ)n

r
s (ρ)− gs (ρ)n

r
s (ρ) + g′s (ρ)

∫ +∞

ρ

nr
s (z) dz

}
,

=
∑
s∈S

g′s (ρ) [Ns −N r
s (ρ)]

= N −N r (ρ) ,

with the second and third equalities following from the fact that gs (ρ) ≡ q̄s + ρ.

Hence,

xSUF (ρ) =
C
(
Q̄
)

N
+

∫ ρ

z=0

C ′
(
Q̂ (z)

)
dz, (175)

with

Q̂s (ρ) =

∫ ρ

0

(q̄s + z)nr
s (z) dz + (Ns −N r

s (ρ)) (q̄s + ρ) (176)

= q̄sNs +

∫ ρ

0

znr
s (z) dz + (Ns −N r

s (ρ)) ρ (177)

= q̄sNs +

∫ +∞

0

min{z, ρ}nr
s (z) dz, (178)
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so that

Q̂ (ρ) = Q̄+

∫ +∞

0

min{z, ρ}nr (z) dz (179)

= Q̄+

∫ ρ

0

znr (z) dz + (N −N r (ρ)) ρ (180)

Consider the case where C (Q) = c
2
Q2. It follows that C ′ (Q) = cQ, so that

xSUF (ρ) =
cQ̄2

2N
+ c

∫ ρ

z=0

Q̂ (z) dz (181)

=
cQ̄2

2N
+ c

∫ ρ

z=0

[
Q̄+

∫ +∞

y=0

min{y, z}nr (y) dy

]
dz (182)

=
cQ̄2

2N
+ cQ̄ρ+ c

∫ +∞

y=0

nr (y)

∫ ρ

z=0

min{y, z}dzdy (183)

=
cQ̄2

2N
+ cQ̄ρ+ c

∫ +∞

y=0

nr (y)

[∫ y

z=0

zdz +

∫ ρ

z=y

ydz

]
dy (184)

=
cQ̄2

2N
+ cQ̄ρ+ c

∫ +∞

y=0

nr (y)

[
y2

2
+ y (ρ− y)

]
dy, (185)

=
cQ̄2

2N
+ cQ̄ρ+ c

∫ +∞

y=0

nr (y)

[
yρ− y2

2

]
dy. (186)

Upon noticing that, under absolute responsibility, the sum total of the population’s

responsibility writes
∫ +∞
y=0

nr (y) ydy = Q−Q̄, the above expression rewrites as follows:

xSUF (ρ) =
cQ̄2

2N
− c

∫ +∞

y=0

nr (y)
y2

2
dy + cQρ. (187)

By budget balance,

c
Q2

2
=

∫ +∞

z=0

xSUF (z)nr (z) dz (188)

= N

[
cQ̄2

2N
− c

∫ +∞

y=0

nr (y)
y2

2
dy

]
+ cQ

∫ +∞

z=0

znr (z) dz (189)

= N

[
cQ̄2

2N
− c

∫ +∞

y=0

nr (y)
y2

2
dy

]
+ cQ

(
Q− Q̄

)
. (190)
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Thus,
cQ̄2

2N
− c

∫ +∞

y=0

nr (y)
y2

2
dy =

1

N

(
cQ2

2
− cQ

(
Q− Q̄

))
. (191)

Finally, it follows that

xSUF (ρ) =
1

N

cQ2

2
+ cQ

(
ρ− Q− Q̄

N

)
(192)

Upon recalling that ρ = q − q̄s under absolute responsibility, we obtain the result:

xSUF (q, s) =
1

N

cQ2

2
+ cQ

(
q − q̄s −

Q− Q̄

N

)
. (193)

SUF with relative responsibility

Recall that

xSUF (ρ) =
C
(
Q̄
)

N
+

∫ ρ

z=0

1

N −N r (z)
C ′
(
Q̂ (z)

) dQ̂ (z)

dz
dz, (194)

where, from Expressions (179) and (180), we can write:

Q̂ (ρ) =
∑
s∈S

[∫ +∞

0

gs (inf{z, ρ})nr
s (z) dz

]
(195)

=
∑
s∈S

[∫ ρ

0

gs (z)n
r
s (z) dz + (Ns −N r

s (ρ)) gs (ρ)

]
(196)

Under relative responsibility, ρ = (q − q̄s) /q̄s so that gs (ρ) = q̄s (1 + ρ). It follows

that g′s (ρ) = q̄s and

dQ̂s (ρ)

dρ
= (Ns −N r

s (ρ)) g
′
s (ρ) = (Ns −N r

s (ρ)) q̄s. (197)

We now make an additional assumption. Namely, we posit that responsibility is

evenly spread across types, so that its distribution is independent of needs, q̄s:

N r
s (ρ) = α (ρ)Ns ∀s ∈ S, (198)

for some increasing function α : R+ → [0, 1] which we take to be differentiable. This
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yields:
dQ̂ (ρ)

dρ
= (1− α (ρ)) Q̄. (199)

Also, because N −N r (ρ) = (1− α (ρ))N , we have

1

N −N r (ρ)

dQ̂ (ρ)

dρ
=

Q̄

N
, (200)

so that xSUF (ρ) simplifies to

xSUF (ρ) =
C
(
Q̄
)

N
+

Q̄

N

∫ ρ

z=0

C ′
(
Q̂ (z)

)
dz. (201)

Upon noticing that nr
s (ρ) = α′ (ρ)Ns we get

Q̂ (ρ) =

∫ +∞

0

∑
s∈S

inf{gs (z) , gs (ρ)}Nsα
′ (z) dz (202)

=

∫ +∞

0

inf{
∑
s∈S

Nsgs (z) ,
∑
s∈S

Nsgs (ρ)}α′ (z) dz (203)

where the summation sign enters the minimum operator because, for any s ∈ S,

gs (z) ≤ gs (ρ) if and only if z ≤ ρ. Therefore,

Q̂ (ρ) =

∫ +∞

0

inf{
∑
s∈S

Nsq̄s (1 + z) ,
∑
s∈S

Nsq̄s (1 + ρ)}α′ (z) dz (204)

= Q̄

[
1 +

∫ +∞

0

inf{z, ρ}α′ (z) dz

]
. (205)
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Assuming C (Q) = 1
2
cQ2,

xSUF (ρ) =
cQ̄2

2N
+

Q̄c

N

∫ ρ

z=0

Q̂ (z) dz

=
cQ̄2

2N
+

Q̄c

N

∫ ρ

z=0

Q̄

[
1 +

∫ +∞

y=0

inf{y, z}α′ (y) dy

]
dz

=
cQ̄2

2N
+

Q̄2cρ

N
+

Q̄2c

N

∫ +∞

y=0

∫ r

z=0

inf{y, z}α′ (y) dydz

=
cQ̄2

2N
+

Q̄2cρ

N
+

Q̄2c

N

∫ +∞

y=0

α′ (y)

[∫ y

z=0

zdz + y

∫ ρ

z=y

dz

]
dy

=
cQ̄2

2N
+

Q̄2cρ

N
+

Q̄2c

N

∫ +∞

y=0

nr (y)

N

[
y2

2
+ y (ρ− y)

]
dy

=
cQ̄2

2N
+

cQ̄2

N
ρ+

cQ̄2

N2

∫ +∞

y=0

[(
ρ− y

2

)
ynr (y)

]
dy

=
cQ̄2

2N
− cQ̄2

2N2

∫ +∞

y=0

y2nr (y) dy +
cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

]
ρ.

For households of type s this writes:

xSUF (q, s) =
cQ̄2

2N
− cQ̄2

2N2

∫ +∞

y=0

y2nr (y) dy +
cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

](
q − q̄s
q̄s

)
=

{
cQ̄2

2N
− cQ̄2

2N2

∫ +∞

y=0

y2nr (y) dy − cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

]}
+
cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

]
q

q̄s
.
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Also, by budget balance,

cQ2

2
=
∑
s

∫ +∞

z=0

xSUF (z)nr
s (z) dz (206)

=
∑
s

∫ +∞

z=0

{
cQ̄2

2N
− cQ̄2

2N2

∫ +∞

y=0

y2nr (y) dy − cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

]}
nr
s (z) dz

(207)

+
∑
s

∫ +∞

z=0

cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

]
q

q̄s
nr
s (z) dz

=

{
cQ̄2

2N
− cQ̄2

2N2

∫ +∞

y=0

y2nr (y) dy − cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

]}∑
s

∫ +∞

z=0

nr
s (z) dz

(208)

+
cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

]∑
s

∫ +∞

z=0

(z + 1)nr
s (z) dz

=

{
cQ̄2

2N
− cQ̄2

2N2

∫ +∞

y=0

y2nr (y) dy − cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

]}
N (209)

+
cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

][∑
s

Qs

q̄s

]
.

because z+1 = gs (z) /q̄s and
∫
z
(z + 1)nr

s (z) dz =
∫
z
[gs (z) /q̄s]n

r
s (z) dz =

∫
q
(q/q̄s)ns (q) dq =

Qs/q̄s.

Therefore,

cQ̄2

2N
− cQ̄2

2N2

∫ +∞

y=0

y2nr (y) dy − cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

]
= (210)

1

N

{
cQ2

2
− cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

][∑
s

Qs

q̄s

]}
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Hence,

xSUF (q, s) =
1

N

{
cQ2

2
− cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

][∑
s

Qs

q̄s

]}
(211)

+
cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

]
q

q̄s
(212)

=
1

N

cQ2

2
+

cQ̄2

N

[
1 +

1

N

∫ +∞

y=0

ynr (y) dy

](
q

q̄s
− 1

N

∑
s

Qs

q̄s

)
. (213)

Observing that Ns(q) = N r
s

(
q−q̄s
q̄s

)
implies ns (q) dq = 1

q̄s
nr
s

(
q−q̄s
q̄s

)
dq = nr

s (y) dy.

Hence,

xSUF (q, s) =
1

N

cQ2

2
+

cQ̄2

N

[
1 +

1

N

∑
s

∫ +∞

q=q̄s

q − q̄s
q̄s

ns (q) dq

](
q

q̄s
− 1

N

∑
s

Qs

q̄s

)
(214)

=
1

N

cQ2

2
+

cQ̄2

N

[
1 +

1

N

∑
s

(
Qs

q̄s
−Ns

)](
q

q̄s
− 1

N

∑
s

Qs

q̄s

)
(215)

=
1

N

cQ2

2
+

cQ̄2

N

[
1

N

∑
s

Qs

q̄s

](
q

q̄s
− 1

N

∑
s

Qs

q̄s

)
. (216)

Moreover, the distributional assumption that N r
s (r) /Ns = α (ρ) for all s implies that:

Qs =

∫ +∞

q̄s

qns (q) dq (217)

=

∫ +∞

0

q̄s (1 + y)ns (y) dy (218)

= q̄s

∫ +∞

0

(1 + y)α′ (y)Nsdy (219)

= Q̄s

∫ +∞

0

(1 + y)α′ (y) dy (220)

This says that Qs/Q̄s =
∫ +∞
0

(1 + y)α′ (y) dy is independent of s. Hence, for all s,

Qs/Q̄s = Q/Q̄. (221)
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Finally,

xSUF (q, s) =
1

N

cQ2

2
+

cQ̄2

N

[
1

N

Q

Q̄

∑
s

Q̄s

q̄s

](
q

q̄s
− 1

N

Q

Q̄

∑
s

Q̄s

q̄s

)
(222)

=
1

N

cQ2

2
+

cQ̄2

N

[
Q

Q̄

1

N

∑
s

Ns

](
q

q̄s
− Q

Q̄

1

N

∑
s

Ns

)
(223)

=
1

N

cQ2

2
+

cQ̄2

N

[
Q

Q̄

](
q

q̄s
− Q

Q̄

)
(224)

=
1

N

cQ2

2
+ cQ

Q̄

N

(
q

q̄s
− Q

Q̄

)
(225)

=
1

N

cQ2

2
+ cQ

Q̄

N

(
q − q̄s
q̄s

− Q− Q̄

Q̄

)
. (226)

C.3 Affine costs

SUF with absolute responsibility

As we obtained in Section C.2 Recall that under the absolute responsibility view,

xSUF (ρ) =
C
(
Q̄
)

N
+

∫ ρ

z=0

C ′
(
Q̂ (z)

)
dz, (227)

where

Q̂ (ρ) = Q̄+

∫ +∞

0

min{z, ρ}nr (z) dz. (228)

Consider affine costs: C(Q) = F + cQ, with F, c ∈ R+. We simply have C ′ ≡ c

and, therefore:

xSUF (ρ) =
C
(
Q̄
)

N
+ cρ

=
F + cQ̄

N
+ c (q − q̄s) .

SUF with relative responsibility

As before, we posit that responsibility is evenly spread across types, so that its dis-

tribution is independent of needs, q̄s:

N r
s (ρ) = α (ρ)Ns ∀s ∈ S, (229)
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for some increasing function α : R+ → [0, 1] which we take to be differentiable. As

we obtained in Section C.2, recall that under the relative responsibility view,

xSUF (ρ) =
C
(
Q̄
)

N
+

Q̄

N

∫ ρ

z=0

C ′
(
Q̂ (z)

)
dz, (230)

where

Q̂ (ρ) = Q̄

[
1 +

∫ +∞

0

inf{z, ρ}α′ (z) dz

]
. (231)

Consider affine costs: C(Q) = F + cQ, with F, c ∈ R+. We simply have C ′ ≡ c

and, therefore:

xSUF (ρ) =
C
(
Q̄
)

N
+

cQ̄

N
ρ

=
F + cQ̄

N
+

cQ̄

N

q − q̄s
q̄s

=
F

N
+ c

1

q̄s/
(
Q̄/N

)q
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