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Abstract

We show that the theorems in Hansen (2021a) (the version accepted by Econometrica),

except for one, are not new as they coincide with classical theorems like the good old Gauss-

Markov or Aitken Theorem, respectively; the exceptional theorem is incorrect. Hansen

(2021b) corrects this theorem. As a result, all theorems in the latter version coincide with

the above mentioned classical theorems. Furthermore, we also show that the theorems in

Hansen (2022) (the version published in Econometrica) either coincide with the classical

theorems just mentioned, or contain extra assumptions that are alien to the Gauss-Markov

or Aitken Theorem.

1 Introduction

Hansen (2021a,b, 2022) contain several assertions from which he claims it would follow that the

linearity condition can be dropped from the Gauss-Markov Theorem or from the Aitken Theorem.

We show that this conclusion is unwarranted, as his assertions on which this conclusion rests

turn out to be only (intransparent) reformulations of the classical Gauss-Markov or the classical

Aitken Theorem, into which he has reintroduced linearity through the backdoor, or contain extra

assumptions alien to the Gauss-Markov or Aitken Theorem.

�We would like to thank Abram Kagan for answering an inquiry and pointing us to the reference Kagan
and Salaevskii (1969), and Peter Phillips for comments on the �rst version of the paper. We are also grateful
to Stephen Portnoy for sending us his paper, and to Bruce Hansen for making the page proofs available to us
after we had sent him the �rst version of our paper. An abridged version of the present paper has recently been
accepted by Econometrica. Address correspondence to Benedikt Pötscher, Department of Statistics, University
of Vienna, A-1090 Oskar-Morgenstern Platz 1. E-Mail: benedikt.poetscher@univie.ac.at.
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The present paper is mainly pedagogical in nature. In particular, the results will not come as

a surprise to anyone well-versed in the theory of linear models and familiar with basic concepts

of statistical decision theory, but �given the confusion introduced by Hansen (2021a,b, 2022) �

the paper will bene�t the econometrics community.

One important upshot of the present paper is that one should not follow Hansen�s plea to

drop the linearity condition in teaching the Gauss-Markov Theorem or the Aitken Theorem.

Depending on which formulation of the Gauss-Markov Theorem one starts with (Theorem 3.1

or 3.2 given below), dropping linearity from the formulation of that theorem at best leads to a

result equivalent to the usual Gauss-Markov Theorem, and at worst leads to an incorrect result.

The same goes for the Aitken Theorem. Unfortunately, in heeding his own advice Hansen has

included an incorrect formulation of the Gauss-Markov Theorem in the August 2021 version of

his forthcoming text-book (Theorem 4.4. in Hansen (2021c)) available on his webpage for an

extended time period.

Hansen (2021a) is the version accepted by Econometrica and which has been available on

Econometrica�s webpage of forthcoming papers. Hansen (2021b) is an updated version that

corrects an incorrect result in Hansen (2021a) (but otherwise is identical to the latter paper),

and is available from Hansen�s webpage. Hansen (2022) refers to the version �nally published in

Econometrica, which contains several nontrivial changes relative to Hansen (2021a,b) introduced

into the paper at the proof-reading stage. Because Hansen (2021a,b) have been widely circulated

and discussed, and because Hansen (2022) has been published in Econometrica, there is a need

to discuss all three versions. We shall start by �rst discussing Hansen (2021a,b) in Sections

3 and 4, a discussion that has considerable bearings also on Hansen (2022). We then move

on to discuss the changes introduced into Hansen (2022) at the proof-reading stage and their

rami�cations in Section 5. Section 6 discusses the situation when one restricts attention to

independent identically distributed errors.

After the �rst version of this paper had been circulated, Stephen Portnoy sent us a paper

of his (Portnoy (2022)) that has a result somewhat similar to our Theorem 3.4 with a di¤erent

proof. For a discussion see Section 3.

2 The Framework

As in Hansen (2021a,b) we consider throughout the paper the linear regression model

Y = X� + e (1)

where Y is of dimension n � 1 and X is a (non-random) n � k design matrix with full column
rank k satisfying 1 � k < n.1 It is assumed that

Ee = 0 (2)
1We make the assumption k < n in order to use exactly the same framework as in Hansen�s papers.
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and

Eee0 = �2�; (3)

where �2, 0 < �2 < 1, is unknown and � is a known symmetric and positive de�nite n � n
matrix (Ee0e <1). This model implies a distribution F for Y , which, for the given X, depends
on � and the distribution of e, in particular on �2 and �. Now de�ne F2(�) as the class of

all such distributions F when � varies through Rk and the distribution of e varies through all
distributions compatible with (2) and (3) for the given � (and arbitrary �2, 0 < �2 < 1). We
furthermore introduce the set F2 as the larger class where we also vary � through the set of all

symmetric and positive de�nite n� n matrices. In other words,

F2 =
S
�

F2(�);

where the union is taken over all symmetric and positive de�nite n � n matrices.2 [Of course,
F2(�) as well as F2 also depend on the given X, but this dependence is not shown in the

notation.] The set F02 de�ned in Hansen (2021a,b) is nothing else than F2(In), where In denotes

the n�n identity matrix.3 In the following EF (V arF , respectively) will denote the expectation
(variance-covariance matrix, respectively) taken under the distribution F . A word on notation:

Given F 2 F2, there is a unique �, denoted by �(F ), and a unique �2�, denoted by (�2�)(F ),
compatible with the distribution F .

Remark 2.1. (Ambiguity in the de�nition in Hansen (2021a,b)) Hansen (2021a,b) also de�ne
a set F2, unfortunately somewhat ambiguously: Taking the �rst sentence mentioning his set

F2 literally, his set would coincide with our F2(�). The two sentences following that sentence,

however, intimate that his set F2 was intended to coincide with our set F2. This is con�rmed

by an inspection of his proofs; furthermore, if one would interpret his set F2 to mean our F2(�),

then the relation F02 � F2 given below (4) in Hansen (2021a,b) (which in our notation would

become F2(In) � F2(�)) could not hold (except for � proportional to In). In the following we
hence interpret Hansen�s set F2 to coincide with our de�nition of F2. In a remark further below

we discuss what happens if one would adopt the interpretation of Hansen�s F2 as coinciding with

our F2(�).

3 The Gauss-Markov Case

To focus the discussion, we �rst treat the situation of a regression model with homoskedastic

and uncorrelated errors, i.e., we assume that in (3) we have

� = In: (4)
2Note that F2(�1)\F2(�2) = ; i¤ �1 and �2 are not proportional. And F2(�1) = F2(�2) i¤ �1 and �2 are

proportional.
3Note that in Hansen (2022) the symbol F02 is used to denote a di¤ erent set of distributions; see Section 5

below.
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Let �̂OLS = (X
0X)�1X 0Y denote the ordinary least-squares estimator. The classical Gauss-

Markov Theorem then reads as follows. Recall that a linear estimator is of the form AY , were

A is a (nonrandom) k � n matrix. Also recall that F02 = F2(In).

Theorem 3.1. If �̂ is a linear estimator that is unbiased under all F 2 F02 (meaning that

EF �̂ = �(F ) for every F 2 F02), then

V arF (�̂) � V arF (�̂OLS)

for every F 2 F02. [Here � denotes Loewner order.]

The theorem can equivalently be stated in the following more unusual form, which is the form

chosen by Hansen (see Theorem 1 in Hansen (2021a,b)).4

Theorem 3.2. If �̂ is a linear estimator that is unbiased under all F 2 F2 (meaning that

EF �̂ = �(F ) for every F 2 F2), then

V arF (�̂) � V arF (�̂OLS) (5)

for every F 2 F02.

In the latter theorem the unbiasedness is requested to hold over the larger class F2 of dis-

tributions rather than only over F02. Of course, this is immaterial here and the two theorems

are equivalent, because the estimators are required to be linear in both theorems and thus their

expectations depend only on the �rst moment of Y and not on the second moments at all.5 While

the di¤erence in the unbiasedness conditions is immaterial in the preceding theorems, it is worth

pointing out that the unbiasedness condition as given in Theorem 3.2 requires that an estimator

is not only unbiased in the underlying model with uncorrelated and homoskedastic errors one

is studying, but also requires unbiasedness under correlated and/or heteroskedastic errors (i.e.,

under structures that are �outside�of the model that is being considered). Why one would want

to impose such a requirement when the underlying model has uncorrelated and homoskedastic

errors is at least debatable. However, we stress once more that in the context of the preceding

two theorems this does not matter due to the assumed linearity of the estimators.

4As formulated in Hansen (2021a,b), his Theorem 1 has �2(X0X)�1 instead of V arF (�̂OLS) on the r.h.s. of the
inequality. Taken literally this leaves �2 unspeci�ed. To obtain a mathematically well-de�ned statement �2 needs
to be interpreted as �2(F ), the variance of the data under F , the distribution under which the variance-covariance
matrices of the estimators are computed.

5For linear estimators �̂ the condition EF �̂ = �(F ) for every F 2 F2 is, in fact also equivalent to EF �̂ = �(F )
for every F 2 G, whenever G � F2 holds and f�(F ) : F 2 Gg contains a basis of Rk. This is obvious since any of
these unbiasedness conditions are equivalent to AX = Ik, where A is the matrix representing the linear estimator
�̂, i.e., �̂ = AY . [For G = F2(In) we obtain the equivalence noted above in the main text; a similar equivalence
is obtained for G = F2(�).] Furthermore, if G is chosen to correspond to all distributions in F2(In) such that
e=� follows a given distribution (�parametric linear regression model�), the before noted equivalence applies, and
we thus can obtain a version of the Gauss-Markov Theorem for the parametric linear regression model. A similar
remark applies to the Aitken Theorem.
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We next discuss what happens if one eliminates the linearity condition in the two equivalent

theorems. Dropping the linearity conditions leads to the following assertions, which will turn

out to be no longer equivalent to each other:

Assertion 1: If �̂ is an estimator (i.e., a Borel-measurable function of Y ) that is unbiased
under all F 2 F02 (meaning that EF �̂ = �(F ) for every F 2 F02), then

V arF (�̂) � V arF (�̂OLS) (6)

for every F 2 F02.

Assertion 2: If �̂ is an estimator that is unbiased under all F 2 F2 (meaning that EF �̂ =
�(F ) for every F 2 F2), then

V arF (�̂) � V arF (�̂OLS)

for every F 2 F02.

Before discussing Assertions 1 and 2, we need to make a remark on the interpretation of

inequalities like (6).

Remark 3.3. (i) In Theorems 3.1 and 3.2 the objects V arF (�̂) as well as V arF (�̂OLS) are well-
de�ned as real matrices because all estimators considered are linear, and hence EF (k �̂ k2) <1,
EF (k �̂OLS k2) <1 holds for every F 2 F02 where k : k denotes the Euclidean norm. In contrast,
in Assertions 1 and 2 estimators �̂ with EF (k �̂ k2) =1 for some F 2 F02 are permissible. [Note
that EF (k �̂ k2) = 1 for some F 2 F02 and EF (k �̂ k2) < 1 for some other F 2 F02 may
occur.] This necessitates some discussion how Assertions 1 and 2 are then to be read. In the �rst

version of this paper we unfortunately had glossed over this issue, but an explicit discussion is

warranted. For the subsequent discussion note that in both assertions EF (�̂) is well-de�ned and

�nite for every F 2 F02 as a consequence of the respective unbiasedness assumption (and because
F02 � F2).
(ii) In the scalar case (i.e., k = 1), there is no problem as the object V arF (�̂) is well-de�ned

for every F 2 F02 as an element of the extended real line, regardless of whether EF (k �̂ k2) <1
or not. Hence, inequality (6) always makes sense in case k = 1.

(iii) For general k, in case the estimator �̂ satis�es EF (k �̂ k2) <1 for a given F 2 F02, the
object V arF (�̂) is well-de�ned as a real matrix. Note that the inequality (6) can then equivalently

be expressed as V arF (c0�̂) � V arF (c0�̂OLS) for every c 2 Rk.
(iv) In the case k > 1, the object V arF (�̂) is not well-de�ned if EF (k �̂ k2) =1 (F 2 F02), and

hence it is not immediately clear how (6) should then be understood. However, the inequalities

V arF (c
0�̂) � V arF (c

0�̂OLS) for every c 2 Rk still make sense in view of (ii) above. We hence
may and will interpret (6) (with F 2 F02) as a symbolic shorthand notation for V arF (c0�̂) �
V arF (c

0�̂OLS) for every c 2 Rk (which works both in the case EF (k �̂ k2) <1 and in the case

EF (k �̂ k2) = 1). We have chosen to write inequality (6) as given (abusing notation), rather
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than the more conventional and more precise V arF (c0�̂) � V arF (c
0�̂OLS) for every c 2 Rk,

in order for our discussion to be easily comparable with the presentation in Hansen�s papers;

his papers are silent on this issue. The same convention applies mutatis mutandis to similar

statements such as, e.g., Assertions 3 and 4, etc.

(v) The above discussion would become moot, if one would introduce the extra assumption

EF (k �̂ k2) < 1 for every F 2 F02 into Assertions 1 and 2. However, such an additional

assumption, which has little justi�cation, would (potentially) narrow down the class of estimators

competing with �̂OLS . As we shall see later on, such an extra assumption actually would have

no e¤ect on Assertion 2 (and thus on the corresponding theorems in Hansen�s papers) at all in

view of our Theorem 3.4. The e¤ect it would have on Assertion 1 (and some other results) is

discussed in Appendix B.

We now turn to discussing Assertions 1 and 2. Not unexpectedly, Assertion 1 is incorrect in

general.6 This is known. For the bene�t of the reader we provide some counterexamples and

attending discussion in Appendix A. In particular, we see that in the classical Gauss-Markov

Theorem as it is usually formulated (i.e., in Theorem 3.1) one can not eliminate the linearity

condition in general!

Concerning Assertion 2, note that it coincides with Theorem 5 in Hansen (2021a,b) (his

�modern Gauss-Markov Theorem�).7 Obvious questions now are (i) whether Assertion 2 (i.e.,

Theorem 5 in Hansen (2021a,b)) is correct, and (ii) if so, what is the reason for Assertion 2 to be

correct while Assertion 1 is incorrect in general although in both assertions the linearity condition

has been dropped. The answer to the latter question lies in the fact that Assertion 2 is requiring

a stricter unbiasedness condition, namely unbiasedness over F2 rather than only unbiasedness

over F02. While the two unbiasedness conditions e¤ectively coincide for linear estimators as

discussed before, this is no longer the case once we leave the realm of linear estimators. Hence, the

(potential) correctness of Assertion 2 (i.e., of Theorem 5 in Hansen (2021a,b)) must crucially rest

on imposing the stricter unbiasedness condition, which not only requires unbiasedness under the

model considered (regression with homoskedastic and uncorrelated errors), but oddly also under

structures �outside�of the maintained model (namely under heteroskedastic and/or correlated

errors). Note that the class of competitors to �̂OLS �guring in Assertion 1 is, in general, larger

than the class of competitors appearing in Assertion 2. Nevertheless, Hansen (2021a,b) (and also

Hansen (2022)) are quiet on the use of this stricter unbiasedness condition.

Having understood what distinguishes Assertion 2 (i.e., Theorem 5 in Hansen (2021a,b)) from

Assertion 1, the question remains whether the former is indeed correct, and if so, what its scope

is, i.e., how much larger than the class of linear (unbiased) estimators the class of estimators

covered by Assertion 2 (i.e., by Theorem 5 in Hansen (2021a,b)) is. We answer this now: As

we shall show in the subsequent theorem, the only estimators �̂ satisfying the unbiasedness

condition of Assertion 2 (i.e., of Theorem 5 in Hansen (2021a,b)) are linear estimators! In other

6 I.e., there exist design matrices X such that the assertion is false.
7The same caveat as expressed in Footnote 4 also applies to the formulation of Theorem 5 in Hansen (2021a,b).
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words, Theorem 5 in Hansen (2021a,b) (i.e., his �modern Gauss-Markov Theorem�) is nothing

else than the good old(fashioned) Gauss-Markov Theorem (i.e., Theorem 3.1 above), just stated

in a somewhat unusual and intransparent way! 8 [While the word �linear�does not appear in

the formulation of Theorem 5 in Hansen (2021a,b), linearity of the estimators is introduced

indirectly through a backdoor provided by the stricter unbiasedness condition.] While Theorem

5 in Hansen (2021a,b) thus turns out to be correct, it is certainly not new!9 Theorem 6 in

Hansen (2021b) is a special case of his Theorem 5 for the location model, and thus is also not

new; in contrast, Theorem 6 in Hansen (2021a) is a special case of Assertion 1. Example A.1 in

Appendix A shows that this theorem is false. What has been said so far also serves as a reminder

that one has to be careful with statements such as �best unbiased equals best linear unbiased�.

While this statement is incorrect in the context of Assertion 1 in general, it is trivially correct

in the context of Assertion 2 (i.e., of Theorem 5 in Hansen (2021a,b)) as a consequence of the

subsequent Theorem 3.4.

An upshot of the preceding discussion is that � despite a plea to the contrary in Hansen

(2021a,b, 2022) �one should not drop �linearity�from the pedagogy of the Gauss-Markov Theo-

rem. There is nothing to gain and a lot to lose: It will lead to an incorrect assertion, if one starts

from the usual formulation of the classical Gauss-Markov Theorem (i.e., from Theorem 3.1);

otherwise (i.e., if one starts from Theorem 3.2), it will lead to a correct, but rather intranspar-

ent, assertion that is in fact equivalent to the classical Gauss-Markov Theorem. Unfortunately,

Hansen has fallen victim to his own advice as the Gauss-Markov Theorem (Theorem 4.4) given

in the August 2021 version of his forthcoming text-book Hansen (2021c) is incorrect in general

(as it coincides with Assertion 1).

We now provide the theorem alluded to above. After the �rst version of this paper had been

circulated, we learned about Portnoy (2022), which establishes a related result using di¤erent

arguments than the ones we use; for more discussion see Remark 3.6 further below.

Theorem 3.4. If �̂ is an estimator (i.e., a Borel-measurable function of Y ) that is unbiased
under all F 2 F2 (meaning that EF �̂ = �(F ) for every F 2 F2), then �̂ is a linear estimator
(i.e., �̂ = AY for some k � n matrix A).10

We give a �rst "proof" based on Theorem 4.3 in Koopmann (1982) (also reported as Theorem

2.1 in Gnot et al. (1992)), but see the discussion immediately following this "proof" for a caveat.11

A �rst "proof": The unbiasedness assumption of the theorem obviously translates into

EF �̂ = �(F ) for every F 2 F2(�); (7)

for every symmetric and positive de�nite � of dimension n� n; specializing to the case � = In,
8Recall from before that for linear estimators the unbiasedness conditions in Theorems 3.1 and 3.2 are equiv-

alent.
9We have not checked whether the proofs in Hansen (2021a,b) are correct or not.
10By unbiasedness, such an A must then also satisfy AX = Ik.
11Curiously, the result by Koopmann (1982) in question is actually mentioned in Section 1 of Hansen (2021a,b,

2022).
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we, in particular, obtain12

EF �̂ = �(F ) for every F 2 F2(In): (8)

Condition (8), together with Theorem 4.3 in Koopmann (1982) (see also Theorem 2.1 in Gnot

et al. (1992)13 ,14), implies that �̂ is of the form

�̂ = A0Y + (Y 0H0
1Y; : : : ; Y

0H0
kY )

0; (9)

where A0 satis�es A0X = Ik and H0
i are matrices satisfying tr(H

0
i ) = 0 and X 0H0

iX = 0 for

i = 1; : : : ; k. It is easy to see that we may without loss of generality assume that the matrices

H0
i are symmetric (otherwise replace H

0
i by (H

0
i +H

00
i )=2). Inserting (9) into (7) yields

EF
�
A0Y + (Y 0H0

1Y; : : : ; Y
0H0

kY )
0� = �(F ) for every F 2 F2(�);

and this has to hold for every symmetric and positive de�nite �. Standard calculations involving

the trace operator and division by �2 now give

(tr(H0
1�); : : : ; tr(H

0
k�))

0 = 0 for every symmetric and positive de�nite �: (10)

For every j = 1; : : : ; n, choose now a sequence of symmetric and positive de�nite matrices �(j)m
(each of dimension n�n) that converges to ej(n)ej(n)0 as m!1, where ej(n) denotes the j-th
standard basis vector in Rn (such sequences obviously exist). Plugging this sequence into (10),
letting m go to in�nity, and exploiting properties of the trace-operator, we obtain

(ej(n)
0H0

1ej(n); : : : ; ej(n)
0H0

kej(n))
0 = 0 for every j = 1; : : : ; n.

In other words, all the diagonal elements of H0
i are zero for every i = 1; : : : ; k. Next, for every

j; l = 1; : : : ; n, j 6= l, choose a sequence of symmetric and positive de�nite matrices �fj;lgm (each

of dimension n� n) that converges to (ej(n) + el(n))(ej(n) + el(n))0 as m!1 (such sequences

obviously exist). Then exactly the same argument as before delivers

((ej(n) + el(n))
0H0

1 (ej(n) + el(n)); : : : ; (ej(n) + el(n))
0H0

k(ej(n) + el(n)))
0 = 0 for every j 6= l.

Recall that the matrices H0
i are symmetric. Together with the already established fact that the

diagonal elements are all zero, we obtain that also all the o¤-diagonal elements in any of the

12 Instead of In we could have chosen any other symmetric and positive de�nite n� n matrix �0 instead.
13Note that X� in that reference runs through all possible g-inverses of X.
14Gnot et al. (1992) assume �2 > 0 whereas Koopmann (1982) allows also �2 = 0. However, both theorems

are equivalent as unbiasedness under every F 2 F2(In) also implies unbiasedness under the point distributions
at X� (i.e., the distributions corresponding to �2 = 0). This is easily seen by considering those distributions in
F2(In) that correspond to X� + e with the components of e being independent identically distributed according
to "m(��1 + �1)=2 + (1� "m)�0. Here "m, 0 < "m < 1, converges to zero for m!1 and �x denotes point mass
at x 2 R. A similar argument applies in the case of F2(�).
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matrices H0
i are zero; i.e., H

0
i = 0 for every i = 1; : : : ; k. This completes the proof.

15 �
Theorem 4.3 in Koopmann (1982) is proved by reducing it to Theorem 3.1 (via Theorems

3.2, 4.1, and 4.2) in the same reference. Unfortunately, a full proof of Theorem 3.1 is not

provided in Koopmann (1982), only a very rough outline is given. Thus the status of Theorem

4.3 in Koopmann (1982) is not entirely clear. For this reason we next give a direct proof of our

Theorem 3.4 which does not rely on any result in Koopmann (1982).16

A direct proof: It su¢ ces to establish �̂(y + z) = �̂(y) + �̂(z) as well as �̂(cz) = c�̂(z) for
every y and z in Rn and every c 2 R. For every m 2 N with m � 2, every V = (v1; : : : ; vm) 2
Rn�m and � 2 (0; 1)m such that

Pm
i=1 �i = 1, de�ne a probability measure (distribution) via

�V;� :=
mX
i=1

�i�vi ;

where �z denotes unit point mass at z 2 Rn. The expectation of �V;� equals V �, and its variance-
covariance matrix equals V diag(�)V 0� (V �)(V �)0. Denote the expectation operator w.r.t. �V;�
by EV;�. Note that in case V � = 0 and rank(V ) = n the measure �V;� has expectation zero and

a positive de�nite variance-covariance matrix; thus, �V;� corresponds to an F 2 F2 which has
�(F ) = 0. From the unbiasedness assumption imposed on �̂ we obtain that

V � = 0 and rank(V ) = n implies 0 = EV;�(�̂) =
mX
i=1

�i�̂(vi): (11)

Step 1: Fix z 2 Rn and de�ne �(1) = 2�1(n�1; : : : ; n�1)0 2 R2n, �(2) = 2�1((n +

1)�1; : : : ; (n + 1)�1)0 2 R2(n+1), V1 = (In;�In) and V2 = (In;�In; z;�z). Clearly V1�(1) =
V2�

(2) = 0 and rank(V1) = rank(V2) = n. Furthermore,

�V2;�(2) =
n

n+ 1
�V1;�(1) +

1

2(n+ 1)
(�z + ��z); (12)

which implies

EV2;�(2)(�̂) =
n

n+ 1
EV1;�(1)(�̂) +

1

2(n+ 1)
(�̂(z) + �̂(�z)):

Applying (11) to EV2;�(2)(�̂) and EV1;�(1)(�̂) now yields 0 = �̂(z) + �̂(�z), i.e., we have shown
15A slightly di¤erent version of the �rst "proof" can be obtained as follows. Theorem 4.3 in Koopmann

(1982) (together with Footnote 14) shows for every given (�xed) � that any �̂ satisfying (7) is of the form
AY + (Y 0H1Y; : : : ; Y 0HkY )0 where AX = Ik, the Hi�s satisfy tr(Hi�) = 0, and X0HiX = 0 for i = 1; : : : ; k.
Again it is easy to see that we may assume the matrices Hi to be symmetric. Note that the matrices A and Hi
�owing from Theorem 4.3 in Koopmann (1982) in principle could depend on �. The following argument shows
that this is, however, not the case (after symmetrization of the Hi�s) in the present situation: If �̂ had two distinct
linear-quadratic representations with symmetric Hi�s, then the di¤erence of these two representations would be
a vector of multivariate polynomials (at least one of which is nontrivial) that would have to vanish everywhere,
which is impossible since the zero-set of a nontrivial multivariate polynomial is a Lebesgue null-set. Given now
the independence (from �) of the matrices Hi, one can then exploit the before mentioned relations tr(Hi�) = 0
in the same way as is done following (10) in the main text.
16Alternatively, one could try to provide a complete proof of the result in Koopmann (1982). We have not

pursued this, but have chosen the route via a direct proof of our Theorem 3.4.
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that

�̂(�z) = ��̂(z) for every z 2 Rn; (13)

in particular �̂(0) = 0 follows.

Step 2: Let y and z be elements of Rn. De�ne the matrix

A(y; z) = ((y1 + z1)e1(n); : : : ; (yn + zn)en(n));

where ei(n) denotes the i-th standard basis vector in Rn, and set

V = (A(y; z);�y;�z; In;�In) and � = (3n+ 2)�1(1; : : : ; 1)0 2 R3n+2:

Then, we obtain V � = 0 and rank(V ) = n. Using (11) and (13) it follows that

0 =
nX
i=1

�̂((yi + zi)ei(n)) + �̂(�y) + �̂(�z);

which by (13) is equivalent to

�̂(y) + �̂(z) =
nX
i=1

�̂((yi + zi)ei(n)): (14)

Using (14) with y replaced by y + z and z replaced by 0 yields

�̂(y + z) + �̂(0) =
nX
i=1

�̂((yi + zi)ei(n)):

Since �̂(0) = 0 as shown before, we obtain

�̂(y) + �̂(z) = �̂(y + z) for every y and z in Rn: (15)

That is, we have shown that �̂ is additive, i.e., is a group homomorphism between the additive

groups Rn and Rk. By assumption it is also Borel-measurable. It then follows by a result due to
Banach and Pettis (e.g., Theorem 2.2 in Rosendal (2009)) that �̂ is also continuous. Homogeneity

of �̂ now follows from a standard argument, dating back to Cauchy, so that �̂ is in fact linear.

We give the details for the convenience of the reader: Relation (15) (which contains (13) as a

special case) implies �̂(lz) = l�̂(z) for every integer l. Replacing z by z=l (l 6= 0) in the latter
relation gives �̂(z)=l = �̂(z=l) for integer l 6= 0. It immediately follows that �̂(pz=q) = (p=q)�̂(z)
for every pair of integers p and q (q 6= 0). Let c 2 R be arbitrary. Choose a sequence of rational
numbers cs that converges to c. Then by continuity of �̂

�̂(cz) = lim
s!1

�̂(csz) = lim
s!1

�
cs�̂(z)

�
=
�
lim
s!1

cs

�
�̂(z) = c�̂(z):

10



This concludes the proof. �

Remark 3.5. Inspection of the direct proof above shows that it does not make use of the
full force of the unbiasedness condition (EF �̂ = �(F ) for every F 2 F2), but only exploits

unbiasedness for certain strategically chosen discrete distributions F , each with �nite support

and satisfying �(F ) = 0.

Remark 3.6. (i) Portnoy (2022) uses a somewhat weaker unbiasedness condition than the
one used in our Theorem 3.4 (but see Remark 3.5), and then establishes only Lebesgue almost

everywhere linearity of the estimators rather than linearity. This is an important distinction for

the following reason: The results in Hansen (2021a,b, 2022) allow also for discrete distributions.

For such distributions positive probability mass can fall into the exceptional Lebesgue null set,

showing that any attempt to enforce linearity by appropriately rede�ning the estimator on the

exceptional null set will in general not preserve the statistical properties of the estimator. In

particular, the claim in Comment (a) in Section 3 of Portnoy (2022) that his result �implies

Hansen�s result�is not warranted. Furthermore, at several instances in the discussion in Portnoy

(2022) linearity is incorrectly claimed although only linearity Lebesgue almost everywhere is

actually established in his paper.

(ii) Portnoy (2022) emphasizes in his introduction as well as in Comment (b) in his Section

3 that his result allows for distributions that have no �nite second moment. The following

comment seems to be in order: The proof in Portnoy (2022) relies on requiring unbiasedness

over a certain class P, say, of distributions which have compact support, and thus have �nite

moments of all orders. Trivially, then Portnoy�s result holds a fortiori if one requires unbiasedness

to hold over a larger class P�� P of distributions, where P� may contain also distributions that
only have a �nite �rst moment, but no �nite second moment. The direct proof of our Theorem

3.4 e¤ectively relies only on unbiasedness over a family of discrete distributions, each having

�nite support (cf. Remark 3.5). Again, then our linearity result trivially holds a fortiori if

unbiasedness is required over any class of distributions containing the before mentioned family

of discrete distributions. Of course, such a class may then also contain distributions that only

have a �nite �rst, but no �nite second moment.

Remark 3.7. (Ambiguity in the de�nition in Hansen (2021a,b) continued) If Hansen�s F2 would
be interpreted as coinciding with our F2(�) (here with � = In because of (4)) then the formula-

tions of Theorems 3.1 and 3.2 as well as the formulations of Assertions 1 and 2 would coincide.

In particular, with such an interpretation of Hansen�s F2 his Theorem 5 in Hansen (2021a,b)

would be false.

4 The Aitken Case

In this section we drop the assumption (4), i.e., � in (3) need not be the identity matrix. We make

a preparatory remark: Similarly to observations made in Section 3 (see Footnote 4), the rendition
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of Aitken�s Theorem (for linear estimators) as given in Theorem 3 in Hansen (2021a,b) needs

some interpretation to convert it into a mathematically well-de�ned statement: The product

�2�, on which the r.h.s. of the inequality in that theorem depends (note that �2 and � enter the

expression only via the product), is unspeci�ed, and needs to be interpreted as (�2�)(F ), the

variance-covariance matrix of the data under the relevant F w.r.t. which the variance-covariances

in this inequality are taken. The same comment applies to Theorem 4 in Hansen (2021a,b).

Aitken�s Theorem as usually given in the literature reads as follows. Let �̂GLS = �̂GLS(�) =

(X 0��1X)�1X 0��1Y denote the generalized least-squares estimator using the known matrix �.

Linear estimators are of the form �̂ = AY where A is a (nonrandom) k � n matrix.

Theorem 4.1. Let � be an arbitrary known symmetric and positive de�nite n� n matrix. If �̂
is a linear estimator that is unbiased under all F 2 F2(�) (meaning that EF �̂ = �(F ) for every
F 2 F2(�)), then

V arF (�̂) � V arF (�̂GLS)

for every F 2 F2(�).

Similar as in Section 3, due to linearity of the estimators, an equivalent version of the theorem

is obtained if the unbiasedness requirement is extended to all of F2.17 This is precisely what

happens in Theorem 3 in Hansen (2021a,b), his rendition of the Aitken Theorem (for linear

estimators). Note that the subsequent theorem is obviously equivalent to Theorem 3 in Hansen

(2021a,b) and perhaps is more transparent. [To see the equivalence, note that the all-quantor over

� in Theorem 4.2 can be "absorbed" by replacing F2(�) in that theorem with F2, provided the

quantity �2� appearing in the expression V arF (�̂GLS) = �
2(X 0��1X)�1 = (X 0(�2�)�1X)�1 in

(16) below is understood as (�2�)(F ), as is necessary anyway for Theorem 3 in Hansen (2021a,b)

to formally make sense as noted earlier.]

Theorem 4.2. Let � be an arbitrary known symmetric and positive de�nite n � n matrix. If
�̂ is a linear estimator that is unbiased under all F 2 F2 (meaning that EF �̂ = �(F ) for every
F 2 F2), then

V arF (�̂) � V arF (�̂GLS) (16)

for every F 2 F2(�).

Dropping linearity in both theorems now leads to two assertions.

Assertion 3: Let � be an arbitrary known symmetric and positive de�nite n � n matrix.
If �̂ is an estimator that is unbiased under all F 2 F2(�) (meaning that EF �̂ = �(F ) for every
F 2 F2(�)), then

V arF (�̂) � V arF (�̂GLS)

for every F 2 F2(�).
17Cf. Footnote 5.
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Assertion 4: Let � be an arbitrary known symmetric and positive de�nite n � n matrix.
If �̂ is an estimator that is unbiased under all F 2 F2 (meaning that EF �̂ = �(F ) for every

F 2 F2), then
V arF (�̂) � V arF (�̂GLS)

for every F 2 F2(�).

Assertion 3 is again incorrect in general for reasons similar to the ones given for Assertion

1 in the previous section, cf. Appendix A. Assertion 4 is equivalent to Theorem 4 in Hansen

(2021a,b) (to which we shall refer as his �modern Aitken Theorem�); this is seen in the same

way as the equivalence of Theorem 4.2 above with Theorem 3 in Hansen (2021a,b). Assertion 4

is indeed correct, but again not new, as the class of estimators �guring in Assertion 4 consists

only of linear estimators as a consequence of Theorem 3.4 above.18 Furthermore, a comment like

Remark 3.7 also applies here. We conclude this section by noting that the rendition of Aitken�s

Theorem in the text-book Hansen (2021c) (Theorem 4.5) is ambiguously formulated, making it

di¢ cult to decide whether it coincides with the (incorrect) Assertion 3 or with Assertion 4, which

is (trivially) correct.

5 The Results in Hansen (2022)

In Hansen (2022) the same model given by (1), (2), and (3) as in Hansen (2021a,b) is considered

and F2 is de�ned in the same manner.19 A set F�2 representing the subset of F2 corresponding

to independent errors e1; : : : ; en is also de�ned; here ei denotes the i-th component of the error

vector e. Furthermore, the subset of F�2 corresponding to independent homoskedastic errors is

denoted by F02 in Hansen (2022). It should be noted that this set is not the same as the set F
0
2

in Hansen (2021a,b). To avoid any confusion we shall in the following write F0;new2 for the set

denoted by F02 in Hansen (2022).

We start with a discussion of the treatment of Aitken�s Theorem in Hansen (2022). Hansen

�rst gives a rendition of the classical Aitken Theorem (Theorem 3 in Hansen (2022)) which is

identical to Theorem 3 in Hansen (2021a,b), and thus to Theorem 4.2 in the preceding section.

He proceeds to provide his �modern Aitken Theorem�(Theorem 4 in Hansen (2022)), which is

identical to the corresponding Theorem 4 in Hansen (2021a,b) and which in turn is equivalent to

Assertion 4 as just discussed in Section 4 above.20 Consequently, the discussion given in Section

4 above applies. In particular, the estimators �guring in the �modern Aitken Theorem�in Hansen

18Adding the extra condition EF (k �̂ k2) <1 for every F 2 F2(�) would have no e¤ect on Assertion 4 in view
of our Theorem 3.4. The e¤ect this extra condition would have on Assertion 3 is discussed in Appendix B.
19The assumption in Hansen (2021a,b) that � is known and positive de�nite and that �2 is positive has been

dropped in Hansen (2022). Nevertheless positive de�niteness of � as well as �2 > 0 are frequently used in Hansen
(2022) (e.g., inverses of � are taken; the proof of Theorem 4 makes use of both properties). We hence will continue
to assume �2 > 0 and positive de�niteness of � in our discussion. We furthermore note that the ambiguity in
the de�nition of F2 in Hansen (2021a,b) is now being avoided in Hansen (2022) as � is no longer assumed to be
known. Of course, then �2 and � are no longer identi�able.
20The same caveat regarding the formulation of Hansen�s theorems as discussed in Section 4 applies here.
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(2022) are all automatically linear by our Theorem 3.4, and hence the �modern Aitken Theorem�

in Hansen (2022) is not new, but reduces to the classical Aitken Theorem.

Hansen then goes on to provide a further result (Theorem 5 in Hansen (2022)) which can

equivalently be stated as the following assertion (the equivalence is seen in the same way as the

equivalence between Theorem 3 in Hansen (2021a,b) and Theorem 4.2 in Section 4 above).21 For

� a diagonal n�n matrix with positive diagonal elements, de�ne F�2(�) = fF 2 F�2 : V arF (e) /
�g, where / denotes proportionality. Of course, then F�2 =

S
fF�2(�) : � diagonal with positive

diagonal elementsg and F�2(In) = F
0;new
2 . Recall that �̂GLS = �̂GLS(�) = (X

0��1X)�1X 0��1Y .

Assertion 5: Let � be an arbitrary known diagonal n � n matrix with positive diagonal
elements. If �̂ is an estimator that is unbiased under all F 2 F�2 (meaning that EF �̂ = �(F ) for
every F 2 F�2), then

V arF (�̂) � V arF (�̂GLS)

for every F 2 F�2(�).

This assertion is very much di¤erent from an Aitken Theorem:22 (i) The errors in the model

corresponding to F 2 F�2(�) (i.e., distributions F for which the variance inequality has to hold)
need to be independent, an assumption alien to Aitken�s Theorem (even if � is diagonal) as this

theorem relies only on �rst and second moment assumptions (as opposed to an independence

assumption). (ii) The unbiasedness assumption is �like in results discussed earlier �required to

hold under the wider class of distributions F�2, and not only under the distributions F describing

the data generating mechanism (i.e., F 2 F�2(�)).23 And (iii) an Aitken Theorem should allow for
general �. While in the context of Assertions 2 and 4 no nonlinear unbiased estimator exists, in

the context of Assertion 5 nonlinear unbiased estimators indeed exist (at least for some matrices

X), cf. Remark 5.1 below.

We next turn to the treatment of the Gauss-Markov Theorem in Hansen (2022): He starts with

Theorem 1 (for linear estimators), which despite given the label Gauss-Markov, is not the Gauss-

Markov Theorem, but a much weaker result relying on the unnecessarily restrictive assumption

that the errors in the model are independent (and homoskedastic).24 Such an independence

assumption is super�uous in the classical Gauss-Markov Theorem. [Note that as long as only

linear estimators are considered, requiring unbiasedness for all F 2 F�2, as is done in Theorem
21The same caveat regarding the formulation of Hansen�s theorems discussed in Section 4 applies also to Theorem

5 in Hansen (2022).
22Assertion 5 (equivalently, Theorem 5 in Hansen (2022)) seems to be correct. However, we have not checked

the correctness of the proofs in Section 6 of Hansen (2022) in any detail.
23Requiring unbiasedness over the wider class F�2 is crucial here: If in Assertion 5 unbiasedness is only required

to hold for F 2 F�2(�) rather than for F 2 F�2, the resulting statement is incorrect in general. This follows for
� = In from Example A.2 in Appendix A. [Note that the estimator constructed in this example is unbiased even
under every F 2 F2(In) = F02, and that the o¤ending distribution constructed in this example belongs to F�2(In),
in fact even corresponds to independent identically distributed errors with �nite second moments.] Another
counterexample is provided by Example A.1 in Appendix A, which covers the location case. Similar examples
can easily be constructed for any diagonal � with positive diagonal elements by a transformation argument.
24A similar caveat as in Footnote 4 also applies to Theorems 1, 6, and 7 in Hansen (2022).
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1 of Hansen (2022), is identical to requiring unbiasedness for all F 2 F0;new2 , or for all F 2
F02 = F2(In) for that matter; cf. the discussion following Theorem 3.2 in Section 3.] The

�modern Gauss-Markov Theorem� (Theorem 6 in Hansen (2022)) is now the special case of

Assertion 5 for � = In; note that this result is just Theorem 1 in Hansen (2022) with the

linearity requirement dropped.25 For reasons (i) and (ii) discussed in the preceding paragraph in

connection with Assertion 5, this result can not legitimately be called a (modern) Gauss-Markov

Theorem. Finally, Theorem 7 in Hansen (2022) just specializes Theorem 6 in the same reference

to the location model, hence the same remarks apply.

To sum up, Theorems 4-7 in Hansen (2022) are either an intransparent restatement of the

classical Aitken Theorem introducing linearity of the estimators through the backdoor (Theorem

4 in Hansen (2022)), or are results modelled on the Gauss-Markov or Aitken Theorem but

employing substantial extra conditions such as independence assumptions, etc. (Theorems 5-7

in Hansen (2022)). [The signi�cance and scope of the latter results is unclear for the reasons

discussed before.] As a consequence, the advertisements regarding dropping of the linearity

assumption made in Hansen (2022) are by no means justi�ed. In particular, the claim made in

the abstract and repeated at the end of Section 3 of Hansen (2022), that his theorems would

show that the label "linear estimator" can be dropped from the pedagogy of the Gauss-Markov

Theorem, is without any base. We thus repeat our warning against dropping the linearity

assumption from the Gauss-Markov or Aitken Theorem.

Remark 5.1. In the discussion following Theorem 5 in Hansen (2022), the author gives an

example of a nonlinear estimator that is unbiased under all F 2 F�2. The object ~� given there,
however, is not well-de�ned as it is the sum of two components that are of di¤erent dimension

(unless k = 1). This can be recti�ed by rede�ning ~� as �̂OLS + Yi(Yj �X 0
j �̂�i)a (i 6= j) for any

chosen k � 1 vector a 6= 0 (here Yj and X 0
j denote the j-th row of Y and X, respectively).26

This object is indeed unbiased under all F 2 F�2 (but, in general, not under all F 2 F2). The
claim in Hansen (2022) that this is a nonlinear estimator, however, is not generally true for any

design matrix X. For example, if n = k + 1, then any leave-one-out residual is zero, and hence
~� = �̂OLS is linear (for any choice of i and j). Another example where ~� = �̂OLS is when k = 1,

the regressor is the �rst standard basis vector, i 6= 1, and j = 1. Fortunately, there are examples
of design matrices for which ~� is indeed truly nonlinear.

25The �modern Gauss-Markov Theorem�as given in Theorem 5 of Hansen (2021a,b) is no longer presented,
but of course is an immediate consequence of Theorem 4 in Hansen (2022). Also Theorem 6 of Hansen (2021a,b)
is no longer given.
26There is an implicit assumption here, namely that the design matrix continues to have full column rank even

after the i-th row is deleted.
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6 Independent Identically Distributed Errors

We round-o¤ the discussion by brie�y considering in this section what happens if we add the

condition

e1; : : : ; en are i.i.d. (17)

to the model. Let F iid
2 be the subset of F 0

2 corresponding to distributions F that result from

(1), (2), (3), and (17). In particular, we ask what is the status of the following assertion which

is analogous to Assertion 1.

Assertion 6: If �̂ is an estimator that is unbiased under all F 2 Fiid2 (meaning that EF �̂ =

�(F ) for every F 2 Fiid2 ), then
V arF (�̂) � V arF (�̂OLS)

for every F 2 Fiid2 .

Note that Assertion 6 di¤ers from Assertion 1 in two respects: (i) the set of competitors to

�̂OLS , i.e., the set of unbiased estimators in Assertion 6 is potentially larger than the correspond-

ing set in Assertion 1, and (ii) the set of distributions F for which the variance inequality has

to hold has gotten smaller compared to Assertion 1. Hence, the truth-status of Assertion 1 does

not inform us about the corresponding status of Assertion 6.

Fortunately, Example A.2 in Appendix A comes to the rescue and shows that Assertion 6 is

incorrect in general (meaning that a design matrix can be found such that it is false). This is

so since the nonlinear estimator constructed in that example is a fortiori unbiased under Fiid2 ,

and since the o¤ending F found in that example in fact belongs to Fiid2 . However, in the special

case of the location model Assertion 6 is actually true. This follows directly from Theorem 5 in

Halmos (1946).27 [Recall that, in contrast, Assertion 1 is false in the case of a location model;

cf. Example A.1 in Appendix A.28 ]

For results in the location case pertaining to classes of absolutely continuous distributions

(without or with symmetry restrictions) see Example 4.2 in Section 2.4 of Lehmann and Casella

(1988) and the discussion following this example.

A nice result is due to Kagan and Salaevskii (1969): Suppose we restrict to i.i.d. errors in our

regression model, but where now the distribution of the errors, G say, is known (and has �nite

second moments). Suppose also that n � 2k+1 and that the design matrix has no rows of zeroes.
Then, if �̂OLS is best unbiased in this model, the distribution G must be Gaussian. [Kagan and

Salaevskii (1969) actually prove a more general result.] A related result for the location model

with independent (not necessarily identically distributed) errors is given in Theorem 7.4.1 of

Kagan et al. (1973). For more results in that direction see Sections 7.4-7.9 in the same reference.

27Halmos (1946) allows for �2 = 0. However, this is immaterial as a consequence of the discussion in Footnote
14.
28 It is perhaps interesting to note that the assertion one obtains from Assertion 6 by replacing Fiid2 by F�2(In)

at every occurrence in Assertion 6 is also incorrect in general, and even in the location case; see the discussion in
Footnote 23.
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There is probably more in the mathematical statistics literature we are not aware of, but this

is what a quick search has turned up.

A Appendix: Counterexamples

Here we provide various counterexamples to Assertion 1. They all rest on the following lemma

which certainly is not original as similar computations can be found in the literature, see, e.g.,

Gnot et al. (1992), Knautz (1993, 1999), and references therein. Counterexamples can also be

easily derived from results in the before mentioned papers. In this appendix we always maintain

the model from Section 2 and assume that (4) holds. For the case � 6= In, similar counterexamples
to Assertion 3 can be obtained by a standard transformation argument. We do not pursue this

any further.

Lemma A.1. Consider the model as in Section 2, additionally satisfying (4).
(a) De�ne estimators via

�̂� = �̂OLS + �(Y
0H1Y; : : : ; Y

0HkY )
0 (18)

where the Hi�s are symmetric n � n matrices and � is a real number. Suppose tr(Hi) = 0 and
X 0HiX = 0 for i = 1; : : : ; k. Then EF (�̂�) = �(F ) for all F 2 F02.
(b) Suppose the Hi�s are as in Part (a). If CovF (c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0) 6= 0 for

some c 2 Rk and for some F 2 F02 with �nite fourth moments, then there exists an � 2 R such
that

V arF (c
0�̂�) < V arF (c

0�̂OLS); (19)

in particular, �̂OLS then does not have smallest variance-covariance matrix (w.r.t. Loewner or-

der) over F02 in the class of all estimators that are unbiased under all F 2 F02.29

(c) Suppose the Hi�s are as in Part (a). For every c 2 Rk and for every F 2 F02 (with �nite
fourth moments) under which �(F ) = 0 we have

CovF

�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�
=

nP
j=1

nP
l=1

nP
m=1

dj

�
kP
i=1

cihlm(i)

�
EF (ejelem); (20)

where d = (d1; : : : ; dn)0 = X(X 0X)�1c and hlm(i) denotes the (l;m)-th element of Hi.

(d) Suppose the Hi�s are as in Part (a). For every c 2 Rk and for every F 2 F02 (with

�nite fourth moments) under which (i) �(F ) = 0 and under which (ii) the coordinates of Y are

independent (equivalently, the errors ei are independent)

CovF

�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�
=

nP
j=1

dj

�
kP
i=1

cihjj(i)

�
EF (e

3
j ): (21)

29Recall the convention discussed in Remark 3.3.
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Proof: The proof of Parts (a), (c), and (d) is by straightforward computation. Since

V arF (c
0�̂�) = V arF (c

0�̂OLS) + 2�CovF

�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�

+�2V arF (c
0(Y 0H1Y; : : : ; Y

0HkY )
0); (22)

the claim in (b) follows immediately as the �rst derivative of V arF (c0�̂�) w.r.t. � and evaluated

at � = 0 equals 2CovF
�
c0�̂OLS ; c

0(Y 0H1Y; : : : ; Y
0HkY )

0
�
. Note that all terms in (22) are well-

de�ned and �nite because of our fourth moment assumption. Hence, whenever this covariance

is non-zero, we may choose � 6= 0 small enough such that (19) holds. �
We now provide a few counterexamples that make use of the preceding lemma.

Example A.1. Consider the location model, i.e., the case where k = 1 and X = (1; : : : ; 1)0.

Choose H1 as the n � n matrix which has h11(1) = �h22(1) = 1 and hij(1) = 0 else. Then the
conditions on H1 in Part (a) of Lemma A.1 are satis�ed, and hence �̂� is unbiased under all

F 2 F02. Setting c = 1, we �nd for the covariance in (21)

n�1(EF (e
3
1)� EF (e32)) 6= 0

for every F 2 F02 (with �nite fourth moments) under which �(F ) = 0, the errors ei are inde-

pendent, and EF (e31) 6= EF (e32) hold. Such distributions F obviously exist.30 As a consequence,
�̂OLS is not best (over F

0
2) in the class of all estimators �̂ that are unbiased under all F 2 F02.

In particular, Assertion 1 is false for this design matrix.

For the argument underlying the preceding example it is key that the errors are not i.i.d. un-

der the relevant F . In fact, in the location model (i.e., X = (1; : : : ; 1)0) we have V arF (�̂OLS) �
V arF (�̂�) for every real �, for every choice of H1 as in Part (a) of Lemma A.1, and for

every F 2 F02 (with �nite fourth moments) under which the errors ei are i.i.d., since then

CovF (�̂OLS ; Y
0H1Y ) = 0 as is easily seen. [This is in line with the result of Halmos (1946)

discussed in Section 6.] For other design matrices X the argument, however, works even for

i.i.d. errors as we show in the subsequent example. Cf. Section 4.1 of Gnot et al. (1992) for

related results and more.

Example A.2. Consider the balanced one-way layout for k = 2 and n = 4. That is, X has

�rst column equal to (1; 1; 0; 0)0 and second column equal to (0; 0; 1; 1)0. Set c = (1; 0)0. Then

d = (1=2; 1=2; 0; 0)0. Choose, e.g., H1 = H2 as the 4� 4 matrix made up of 2� 2 blocks, where
the o¤-diagonal blocks are zero, the �rst and second diagonal block, respectively, are given by 

1 �1
�1 1

!
;

 
�1 1

1 �1

!
:

30E.g., choose e2; : : : ; en i.i.d. N(0; �2) and e1 independent from e2; : : : ; en with mean zero, variance �2, third
moment not equal to zero, and �nite fourth moment.
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Then the conditions on Hi in Part (a) of Lemma A.1 are satis�ed, and hence �̂� is unbiased

under all F 2 F02. For the covariance in (21) we �nd

(EF (e
3
1) + EF (e

3
2))=2

under any F 2 F02 (with �nite fourth moments) under which �(F ) = 0 and the errors ei are

independent. If F is chosen such that the errors are furthermore i.i.d. and asymmetrically

distributed, the expression in the preceding display reduces to EF (e31) 6= 0. Such distributions

F obviously exist. As a consequence, �̂OLS is not best (over F
0
2) in the class of all estimators �̂

that are unbiased under all F 2 F02. In particular, Assertion 1 is false for this design matrix.

Many more counterexamples can be generated with the help of Lemma A.1 as outlined in the

subsequent remark.

Remark A.2. (i) Suppose X admits a choice of Hi satisfying the conditions in Part (a) of

Lemma A.1 and a c 2 Rk such that
Pn

j=1 dj
Pk

i=1 cihjj(i) 6= 0. Then the covariance in (21) is
not zero if F in Part (d) of the lemma is chosen to correspond to asymmetrically distributed

i.i.d. errors. Part (b) of the lemma can then be applied. In case Hi = H for all i = 1; : : : ; k,

these conditions further reduce to
Pn

j=1 djhjj 6= 0 and
Pk

i=1 ci 6= 0.
(ii) Suppose X admits a choice of Hi satisfying the conditions in Part (a) of Lemma A.1 and

a c 2 Rk such that for an index j0 it holds that dj0
Pk

i=1 cihj0j0(i) 6= 0. Then the covariance in
(21) is not zero if F in Part (d) of the lemma is chosen to correspond to independent errors with

EF (e
3
j0
) 6= 0 and EF (e3j ) = 0 for j 6= j0. Again Part (b) of the lemma can then be applied. In

case Hi = H for all i = 1; : : : ; k, these conditions further reduce to dj0hj0j0 6= 0 and
Pk

i=1 ci 6= 0.
(iii) Part (c) of Lemma A.1 allows for further examples to be generated, where now the errors

need not be independently distributed under the relevant F .

One certainly could set out to characterize those design matrices X for which a counterex-

ample to Assertion 1 can be constructed with the help of Lemma A.1. We do not pursue this

here. In particular, we have not investigated whether for any n� k design matrix X with k < n

one can construct an estimator �̂� as in the lemma that satis�es (19) for some c 2 Rk and for
some F 2 F02.

B Appendix: Adding A Finite Second Moment Assump-

tion on the Estimators

We start by discussing the consequences of introducing the requirement EF (k �̂ k2) < 1 for

every F 2 F02 into Assertions 1 and 2. First, note that nothing changes for Assertion 2 (and for
the corresponding Theorem 5 in Hansen (2021a,b)), since the estimators �̂ allowed in Assertion

2 are all linear as a consequence of our Theorem 3.4 (and thus have �nite second moments even

for all F 2 F2). Turning to Assertion 1, we �rst give the following proposition.
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Proposition B.1. Consider estimators of the form

�̂ = AY + (Y 0H1Y; : : : ; Y
0HkY )

0

with AX = Ik and the n�n matrices Hj satisfying tr(Hj) = 0 and X 0HjX = 0 for j = 1; : : : ; k.

Suppose EF (k �̂ k2) <1 for every F 2 F02 holds. Then �̂ is a linear estimator.

Proof: First, observe that EF (�̂) = �(F ) for all F 2 F02 holds. Second, we may assume the
matrices Hj to be symmetric (if necessary we replace Hj by (Hj +H 0

j)=2). Since AY obviously

has �nite second moments under every F 2 F02, the �nite second moment assumption on �̂

implies that EF ((Y 0HjY )2) <1 has to hold for every F 2 F02 and every j = 1; : : : ; k. Let now
j (j = 1; : : : ; k) be arbitrary, but �xed. By symmetry of Hj , there exists an orthogonal matrix

U such that UHjU 0 = �j where �j is a diagonal matrix. Set Z = UY and let �ij denote the

elements on the diagonal of �j . Then

(Y 0HjY )
2 = (Z 0�jZ)

2 =

�
nP
i=1

�ijz
2
i

�2
=

nP
i=1

�2ijz
4
i +

nP
i;l=1;i 6=l

�ij�ljz
2
i z
2
l : (23)

Let F 2 F02 be such that �(F ) = 0 and such that the elements of Z are i.i.d. with mean zero,

�nite variance, and in�nite fourth moment. Such an F exists: Start with a distribution on Z

with the required properties just listed and work backwards, de�ning Y = U 0Z. Then clearly

the implied F has �(F ) = 0 and belongs to F02. Since the coordinates of Z are independent

and have a �nite second moment, the term
Pn

i;l=1;i 6=l �ij�ljz
2
i z
2
l has �nite expectation under F .

Since the l.h.s. of (23) has �nite expectation under F under our assumptions as noted before,

EF (
Pn

i=1 �
2
ijz

4
i ) has to be �nite. Since EF (z

4
i ) =1 for every i = 1; : : : ; n, we must have �ij = 0

for every i and the given j. This shows that Hj = 0. Since j was arbitrary, this holds for every

j, and thus �̂ = AY is linear. �
The signi�cance of the preceding proposition is the following. Suppose Theorem 4.3 in Koop-

mann (1982) is indeed correct (recall that no complete proof is given in Koopmann (1982)), and

thus only quadratic estimators as in the above proposition �gure in Assertion 1.31 Then intro-

ducing the extra condition of �nite second moments for the estimators �̂ (under every F 2 F02)
into Assertion 1 reduces the class of competitors to the class of linear unbiased estimators. The

resulting version of Assertion 1 is thus true and coincides with the classical Gauss-Markov The-

orem. [Recall that Assertion 1 is false in general.] Again, linearity is reintroduced indirectly

by adding the before mentioned extra condition. In case Theorem 4.3 in Koopmann (1982) is

incorrect, then other estimators than quadratic ones might �gure in this version of Assertion 1

and it is unclear whether this version of Assertion 1 is true or not, and if it is true what its scope

is.

Concerning Assertion 3, an analogous version of the preceding proposition can be given

and a similar discussion applies. Note that Assertion 4 and the corresponding theorems in

31Cf. also Footnote 14.
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Hansen�s papers are not a¤ected by introducing an extra �nite second moment assumption on

the estimators, because all estimators in Assertion 4 are automatically linear in view of our

Theorem 3.4 (and thus have �nite second moments under all F 2 F2).
Adding an extra �nite second moment assumption on the estimators to Assertion 5 leads to a

version that, a fortiori, is not an �Aitken Theorem�, for the same reasons as discussed in Section

5. [In case Assertion 5 is correct, this version is a fortiori also correct.] Whether or not Assertion

6, which is false in general, becomes a true statement after adding an extra �nite second moment

condition on the estimators, we have not investigated.
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