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Abstract

Climate change should deteriorate the value of real estate, but studies are lacking for devel-

oping economies which may suffer the worst weather changes. We match an administrative

register of all the real estate properties’ transactions in Chile between 2002 and 2020 with a

high spatial resolution dataset of local temperatures and precipitation. Even after controlling

for a wide set of home characteristics or fixed-effects for each property, we find that fluctua-

tions in temperatures had an impact on the prices of residential homes and agricultural

properties.

Author summary

This work assesses the impact of climate change on real estate prices in Chile, analyzing

two key climate change dimensions: change in temperature and change in precipitation.

Chile presents a particular setting since it has a high climatic amplitude, allowing us to

exploit the impact of temperature and rainfall on real estate prices for both low and high

temperatures and more humid or dry regions. Our results show that hotter maximum

temperatures during the Summer, Fall, and Winter seasons lowered the prices of residen-

tial homes. This result is consistent with the desire of households to avoid extremely hot

days. Agriculture properties suffer an adverse effect from higher maximum and minimum

Winter temperatures while experiencing a positive impact from higher minimum temper-

atures in the Summer, Fall, and Spring seasons, evidencing a preference from owners to

avoid low temperatures except in Winter. Finally, from a prospective point of view, ex

expects that maximum temperatures will have a negligible effect on Agricultural property

prices in 2050. However, for the Residential Homes’ prices, the higher maximum temper-

atures in 2050 could represent a substantial negative effect between -10.0% and -12.3% for

the different possible scenarios.

Introduction

Climate change is predicted to affect negatively the economic growth of almost all the coun-

tries across the world during the 21st century [1, 2]. Climate change should also deteriorate
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more the value of long term assets such as real estate [3, 4] and increase mortgage interest rates

or securitization for the riskier homes [5–7]. Studies for the UK [4] and the United States have

found a negative effect of global warming (as measured by natural disasters, flood risk or the

risk of exposure to sea level rise) on housing prices [3, 4], although with heterogeneous reac-

tions according to the beliefs of owners about climate change [8, 9] or their sophistication [10].

However, climate change impact studies on real estate are lacking for developing countries,

despite these countries being predicted to suffer the worst economic effects due to their warm

weather, oceanic location, geography proximity to the Equator and a larger relevance of the

agriculture and fishing sectors [11, 12].

There is mounting evidence that the climate (i.e., long-term patterns of average of tempera-

ture, is being warmed and changed by human behavior). According to the 2021 International

Panel on Climate Change [13], averaged over the next 20 years, global temperature is expected

to reach or exceed 1.5˚C of warming. Every day, climate influences human activity, therefore

households spend considerable amounts on housing, energy, clothing, and travel to protect

themselves from extreme climates and to enjoy comfortable moderation. Geographically, cli-

mate affects the desirability of different locations and the quality of life they offer [14]. Given

the undeniable influence climate has on economic decisions and welfare, is relevant to estimate

the relationship between housing prices and changes in temperature, which is assumed to be

related with quality of life and get insights about the future urban mobility occasioned by cli-

mate change. Thus, knowledge of the current and projected future global climate conditions is

fundamental for the determination of vulnerabilities and the development of climate change

adaptation strategies [15].

This work estimates the impact of climate change on real estate prices in Chile, analyzing

two key climate change dimensions: change in temperature and change in precipitation [13].

Chile is an especially interesting case, because it is an example of a developing country that is

estimated to suffer less from some aspects of climate change such as heatwaves due to its dry

weather and its distance in latitude from the Equator [16]. Furthermore, it is a country that has

been recently hit by mass political unrest [17], with some of its major concerns being the pen-

sion system and economic inequality, two aspects that may be worsened by climate change

[18, 19]. Also, Chile has a high climatic amplitude which constitutes and interesting setting to

study, since it allows us to exploit the impact of temperature and rainfall on the price of real

estate for extreme climates, both low and high temperatures as well as more humid or dry

regions.

For this purpose we match an administrative register of all the real estate properties’ trans-

actions in Chile between 2002 and 2020 with the TerraClimate dataset of local temperatures

and precipitation. An exhaustive dataset for the real estate properties’ transactions and charac-

teristics is obtained from the Chilean Real Estate Properties Registry (in Spanish, Catastro de
Bienes Raíces, hence on CBR). TerraClimate is a dataset of monthly climate and climatic water

balance for global terrestrial surfaces, presenting a high spatial resolution of local temperatures

and precipitation.

We then estimate two hedonic models for the effect of seasonal weather temperatures and

precipitation on residential home and agricultural property prices. The first hedonic model

considers fixed-effects for county, quality of the construction, plus the size and age of the prop-

erty and its oldest appraisal value. The second hedonic model considers fixed-effects for each

property plus controls for the size and age of the property. All the models consider the total

precipitation, maximum and minimum temperatures for each property’s local geocode in

every season (Summer, Fall, Winter, Spring). We then apply these models to obtain an esti-

mate of the impact of climate change on the Chilean real estate prices for the horizon of 2050.
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There are other weather effects from climate change besides temperature and precipitation

fluctuations, which this work does not study. Our model of housing prices is limited to tem-

perature and precipitation, because these are the variables that are most consistently measured

across different counties and over a long period of time, while other climate risks such as

floods or fires are less consistently measured by weather databases [59]. Furthermore, most cli-

mate forecasts for the future are limited to temperature paths, since the frequency of other

types of natural disasters is difficult to predict, especially for the distant future [13], therefore

most counterfactual analysis in climate change economics are limited to temperature. Finally,

it is worth noticing that most of the economic growth and development analysis of the impact

of climate change is limited to either temperature-precipitation variables [20–24].

This works contributes to filling the gap in knowledge of the impact of climate change on

real estate prices, especially for a developing country, since other works are focused mainly on

the United States or other developed countries. Also, as far as we know, this is the first work to

establish a relationship between two key climate change characteristics (temperature and pre-

cipitation) with house prices. Prior work focused on extreme and isolated events such as wild-

fires [25] and sea level rises [3, 4, 8, 9], but little is known of the impact of increases of

temperature, which will be the most likely scenario in the future according to the IPCC 2021.

Finally, this work complements the analysis of climate change risks for Chile. Previous works

have shown a substantial uncertainty of the economic effects of climate change in Chile, with

past estimates for the costs of climate change in terms of GDP ranging between a loss of 11%

and a gain of 32% [26]. Recent work has shown that the Agriculture-Silviculture, Fishing and

Energy-Gas-Water sectors in Chile could be more susceptible towards negative climate change

shocks [16]. This work further complements the literature by showing that residential homes

and real estate properties are also susceptible to weather shocks.

This work is organized as follows. Section 2 describes the matched dataset of the Chilean

Real Estate Properties Registry with the TerraClimate weather measurements. We then sum-

marize the econometric methodology of the hedonic models of real estate prices. Section 3

presents the econometric results of the estimated hedonic models. Section 4 concludes with a

summary of the main results.

1 Climate change in Chile: Literature review

This section presents a brief literature review of the climate change literature in Chile. Climate

change refers to any change in climate over time, whether due to natural variability or as a

result of human activity [13]. According to the IPCC (2021) emissions of greenhouse gases

from human activities are responsible for approximately 1.1 C of warming since 1850-1900,

and finds that averaged over the next 20 years, global temperature is expected to reach or

exceed 1.5˚C of warming. Moreover, according to IPCC (2021) climate change is affecting

rainfall patterns. In high latitudes, precipitation is likely to increase, while it is projected to

decrease over large parts of the subtropics. Changes to monsoon precipitation are expected,

which will vary by region.

Chile’s climate encompasses a wide range of conditions across a large geographic scale that

spans almost 40 degrees latitude. Based on the Köppen-Geiger climate classification system,

the climates of continental Chile are essentially arid (B), temperate (C) and polar (E) [27]. The

north has a drier climate with relatively high temperatures, while the south has a cooler and

more humid climate. Temperatures become gradually cooler from north to south [28]. The

north weather corresponds to a cold desert climate with dry summer, where the temperature

frequently exceeds 35˚C. The dryness of these regions is always limited to the plains; however,

a cloudy coastal desert climate is observed towards the coast. The north center region
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experiences cold semi-arid climate with dry summers. A cold semi-arid climate with dry sum-

mer is observed in the valleys and the mountains are characterized by a tundra climate with

dry summers. The center-south regions experience Mediterranean climate. The south regions

the classification corresponds to a marine west coast climate, while the most austral region

experience tundra climate, with average temperatures below 0 C and a mean annual precipita-

tion of 3500 mm [27, 29].

Climate change is expected to change the magnitude, frequency, intensity, and exposure to

physical risks in Chile, especially due to changes in temperature and precipitation. Tempera-

tures are expected to rise 1.4˚C-1.7˚C by mid-century and 3˚C-3.5˚C by the end of the century

across all emission scenarios. The annual probability of heat waves in Chile could also increase

by 8% by the 2040s and 20% by the 2090s. Precipitation is projected to decrease by 1.5 mm to

9.3 mm per month by the 2050s, to 5.5 mm to 11 mm by the 2090s [30].

The Central Chile Megadrought (2010-2021) is one of the longest drought events recorded

over the last millennia, with a mean rainfall deficit of 20-40% [31]. A very emblematic case that

has caused terrible water scarcity problems is the Petorca basin drought, experiencing the dri-

est period over the last 700 years of streamflow reconstruction, where consumptive withdraw-

als reach up to 18% of the mean annual precipitation [32]. The Biobio basin in central south

Chile has also suffered from drought periods that have affected agriculture in the area in the

past two decades [33].

During the Megadrought in Central Chile, the number, area, simultaneity, and duration of

large fires increased significantly compared with the previous 10-year period [34]. The fires of

the 2016-2017 summer burned an area that was 14 times the mean for the period 1985-2016

and the highest on record till then [35]. This megafire was one of the severest ever recorded,

burning in three weeks an area close to 350,000 hectares in south-central Chile [36] and was

also associated with the prolonged drought and increase of heatwaves [37].

There’s also been a significant increase of heatwaves in the Central macrozone [38] and an

extreme sea level rise of 15-20 cm in Chile [39], with rainfall decreasing rapidly. Furthermore,

droughts in the Central Chilean Andes increase the freezing resistance of high-Andean plant

species, implying that warmer growing seasons due to climate change may threaten plant sur-

vival [40].

Water availability could change dramatically at some regions in Chile due to this changes in

temperature and precipitation, which leaves the water system particularly vulnerable [41].

Adaptation studies for the city of Santiago show that water supply performance without cli-

mate change adaptations is worse under climate scenarios with lower water availability, which

are likely to be associated with higher GHG emissions scenarios such as RCP 8.5 [42].

We also review the past studies for the impact of climate change on agricultural activity,

which are summarized in Table 1. Agricultural activity is relevant, because of its high exposure

to the weather and outdoors labor, therefore being subject to climate change. The OECD 2015

[1] estimates a positive impact of 0.30% of GDP for Agriculture and 0.40% of GDP for the

aggregated Agriculture, fisheries and forestry sector, with the positive impact coming from

stronger international demand for the Chilean products and from higher yields in rice, fruits

and vegetables, sugar-cane and beet. However, these agricultural impact results are highly

model dependent, with González and Velasco 2008 [34], Vergara et al. 2013 [11] and Bárcena

et al. 2019 [12] showing negative estimates of climate change for the Chilean agriculture sector.

The study of González and Velasco 2008, however, estimates that a warming of the globe by

2.5 degrees Celsius could result in a significant fall of 6.21% in the agricultural land value.

Furthermore, an extensive study of crops in Chile by Meza et al. 2021 [43] classified climate

risks for agriculture and cattle production in terms of 6 categories: Opportunity (positive

impact), No risk, Low risk, Moderate risk, High risk, Very high risk. Under this classification,
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they found No risk or Opportunity in most Chilean areas in terms of meat cattle raising, milk

cattle raising, ovines, and productivity of the prairies. The same authors found that most areas

in Chile show No risk or Low risk for the productivity of almonds, potatoes under irrigation,

potatoes without irrigation, wheat under irrigation and wheat without irrigation. However,

some areas—particularly, those in the central region of the country—show productivity risks

for some crops, including cherry trees (Moderate risk), beans (Moderate and High risk in

some areas), corn (Moderate, High, and Very High risk in some areas), red apples (Moderate,

High, and Very High risk in some areas), and nuts (Moderate, High, and Very High risk in

some areas).

2 Data description and econometric methodology

Our main dataset is the Chilean Real Estate Properties Registry (in Spanish, Catastro de Bienes
Raíces, hence on CBR). This administrative dataset from the Chilean tax authorities includes

all the real estate properties in Chile, whether for the purposes of Agriculture, Retail/Com-

merce, Offices, Residential, Storage/Cellar, Parking Space, or Empty Site/Undeveloped Ter-

rain. For the purposes of our climate change analysis, we will focus only on the Agriculture

and Residential properties. The CBR dataset contains the following information on each prop-

erty in Chile: address, county, date (day, month, year) and price in real monetary units of the

transaction, taxable value in real monetary units (implemented by tax authorities to prevent

owners from under-reporting the properties’ true transaction values), year and quality of the

construction (with 7 categories for quality), property surface of the land area (in square

meters), and property surface of the construction (in square meters). We use the available

property transactions data between 2002 and 2020.

We then obtain latitude and longitude geocoding references for each address of the CBR

data using the geospatial API of Google Maps and HERE developers, which have geographic

coordinates with a detailed spatial resolution between 240 to 460 meters. Both APIs provided

highly similar results and we used the average latitude-longitude location obtained from Goo-

gle Maps and HERE. With the detailed georeferences for all the CBR properties, we match

Table 1. Review of estimates for the climate change impact in Chile’s Agriculture sector (relative to no climate change scenario).

Authors Time horizon Outcome Estimated impact for Chile

Simulations of the impact on agriculture, health, energy, outdoors labor, flood damages
OECD 2015 2060 Agricultural GDP +0.30% in GDP

OECD 2015 2060 Agricultural GDP +0.25% in GDP (global factors)

OECD 2015 2060 Agricultural GDP +0.05% in GDP (domestic factors)

OECD 2015 2060 Agriculture, fisheries, forestry +0.40% in GDP

OECD 2015 2050 Change in crop yields +31% (rice),

+9% (fruits and vegetables),

+8% (sugar-cane and beet),

-7% (other grains), -13% (wheat),

-15% (plant fibres), -28% (oil seeds).

Vergara et al. 2013 2020 Change in crop yields -8% (Coarse grains), 18% (Wheat)

Vergara et al. 2013 2050 Change in crop yields -17% (Coarse grains), 19% (Wheat)

González and Velasco 2008 2100 Agricultural land value -6.21% (+2.5˚C, -10% precipitation)

Bárcena et al. 2019 2080 Agricultural GDP -27% (crop method)

Bárcena et al. 2019 2080 Agricultural GDP -22% (Ricardian method)

Bárcena et al. 2019 2080 Agricultural GDP -13% (with fertilization)

Bárcena et al. 2019 2080 Agricultural GDP -24% (without fertilization)

https://doi.org/10.1371/journal.pstr.0000035.t001
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each property to a grid square with a 1/24˚degree latitude x 1/24˚degree longitude (roughly, 4

square kilometers) from the TerraClimate weather dataset, which is publicly available from the

Climatology Lab of the University of Idaho [44].

TerraClimate is a dataset of high-spatial resolution that provides gridded (1/24˚,�4-km)

monthly climate and climatic water balance for global terrestrial surfaces since 1958 until the

current year. TerraClimate uses climatically aided interpolation, combining high-spatial reso-

lution climatological normals from the WorldClim dataset, with coarser resolution time vary-

ing (i.e., monthly) data from other sources to produce a monthly dataset of precipitation,

maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. Terra-

Climate datasets showed noted improvement in overall mean absolute error and increased

spatial realism relative to coarser resolution gridded datasets. The data covers the terrestrial

area of the globe with a grid size of 1/24˚degree latitude x 1/24˚degree longitude, which is

approximately 4 square kilometers at the equator. The grid squares intersect the area of Chile.

Using the TerraClimate dataset we obtain for each property-grid the maximum temperature,

minimum temperature, and total precipitation accumulation for the period between 2002 and

2020 with a monthly frequency.

We preferred the TerraClimate dataset over other alternatives such as the Berkeley Earth

Surface Temperature (BEST) and the University of Delaware Climate Dataset (UDEL) due to

its higher resolution, since the Berkeley Earth and the University of Delaware are only avail-

able, respectively, with a 1˚x1˚ and 0.5˚x0.5˚ resolution grids. This implies that TerraClimate

has a resolution that is 12 and 24 times higher than such alternatives. However, alternative

datasets can be better in other aspects relative to TerraClimate. For instance, the Berkeley

Earth is available with a daily frequency instead of just at the monthly level. Furthermore, the

Berkeley Earth and University of Delaware datasets are available since the years 1750 and

1900, respectively, therefore such datasets provide a longer time frame of analysis that would

not be possible in TerraClimate. Since our real estate registry is available only since 2002, we

opted for the TerraClimate weather dataset and our focus on real estate properties (which are

not traded daily, unlike bonds or stock market assets) as a more appropriate choice due to its

higher resolution.

Using this matched CBR-TerraClimate dataset, we then estimate a hedonic models for

house and agricultural properties’ transaction prices and its relationship with the standard

properties characteristics [45, 46] and augmented with measures of climate risks [3, 8].

We estimate this hedonic model for each property i in year t (located in geocode g(i) and

county c(i)) at time t:

lnðPi;tÞ ¼ acðiÞ þ b1Agei;t þ b2 lnðSi;tÞ þ b3Xi þ gCgðiÞ;t þ εi;t ð1Þ

lnðPi;tÞ ¼ ai þ b1Agei;t þ b2 lnðSi;tÞ þ gCgðiÞ;t þ εi;t ð2Þ

with Agei,t denoting dummies for the number of years of each construction (0-4 years of age,

5-10 years, . . ., until 80 years of age or more), Si,t denoting the surface area of the property in

square meters, Xi denoting fixed characteristics of the property such as quality of construction

fixed-effects or the first observed appraisal value for property i (ln(Pi,t=0), in log), Cg(i),t denot-

ing climate weather variables for the geocode g(i) at time t, and εi,t is an unobservable idiosyn-

cratic factor that affects the property prices but which is unobserved by the econometrician.

The vector Cg(i),t includes the total precipitation and the minimum-maximum temperatures

observed for all the season (summer, fall, winter, spring). The average for the monthly mini-

mum and maximum daily temperatures and total precipitation for each geocode g are

obtained from the Terra Climate dataset. The regressions include two different lags for the

PLOS SUSTAINABILITY AND TRANSFORMATION Climate change’s impact on real estate prices in Chile

PLOS Sustainability and Transformation | https://doi.org/10.1371/journal.pstr.0000035 November 22, 2022 6 / 17

https://doi.org/10.1371/journal.pstr.0000035


year of the temperature seasons, with a first set of regressions applying a lag of two years and a

second set of regressions applying a lag of three years. For the case of the precipitation, all the

regressions use the lag of one year. The reason why we found optimal to use a longer lag for

temperature is because the effects of temperature may require a longer trend of abnormal tem-

peratures before making a difference for the perceived quality of living, while the precipitation

may affect the agricultural productivity almost immediately.

There are many issues of whether a regression is linear or not in the covariates. Let us

define the vector of covariates Zi,t� {αi, αc(i), Agei,t, ln(Si,t), Xi, Cg(i),t}. Since the true model

for an endogenous variable Yi,t is unknown (in this case the endogenous variables is the log

price of the house), it makes sense that very likely the true model has additional covariates

in the Zi,t term such as quadratic or cubic terms of Zi,t, therefore there could be reason to

add Z2
i;t, Z

3
i;t and other variables to the regression model. Another way of estimating a non-lin-

ear model would be to consider a Kernel estimator, which would give local estimates

E Yi;t j Zi;t
� �

¼ 1

nh

Pn
i¼1
wiK

x� Zi;t
h

� �
, with h being optimized bandwidth and K(.) being a function

such as the normal density or Epanechnikov function. However, it is also true that models

with more variables and non-linear models are harder to interpret. Non-linear models such as

Kernel estimators are computationally hard to estimate with large datasets (our dataset

includes millions of real estate properties) and with several variables that must be optimized.

Models with quadratic and cubic terms can also suffer from a lack of precision due to many

variables. However, even if the true model is non-linear, our regression coefficients still satisfy

the property of being the best linear predictor of the variable Yi,t [47], satisfying the condition

β� = arg min E[(Yi,t − Zi,tβ)2]. It is worth noting that all the standard-errors in our regressions

are clustered by county and year, therefore the analysis takes into account the heterogeneity of

the data adequately.

These models consider as alternatives fixed-effects at the level of each county (Eq 1) and at

the level of each home (Eq 2). Both fixed-effects and random-effects models seek to account

for unobserved heterogeneity in the individual units (whether counties or homes, in the case

of our application) that is fixed over time. The advantage of using fixed-effects instead of ran-

dom-effects is that the fixed-effects account for any sort of correlation that is constant between

the individual units and the unobserved idiosyncratic terms or the independent variables [48,

49]. The random-effects models account for unobserved heterogeneity of the individual units,

but fail to account for correlation between these individual units and the unobserved idiosyn-

cratic terms [49, 50]. Furthermore, the random-effects models assume a specific parametric

distribution for the unobserved heterogeneity across individual units. This makes the random-

effects estimator a specific case of the fixed-effects estimator, therefore most empirical applica-

tions prefer fixed-effects unless there is a small number of observations. For the cases in which

the researchers are interested in the random-effects models, a Hausman test can show whether

the data rejects the null hypothesis that the random-effects model is valid [48, 49]. An advan-

tage of the random-effects models occurs in non-linear models, such as multi-category choice

models, where it is harder to estimate fixed-effects consistently due to the incidental parame-

ters problem [49] and with random-effects being useful to interpret the utility preference

parameters of the model [50].

In the case of our empirical application of house prices and climate change, it is possible that

counties or properties that are more exposed to the weather (such as temperature or precipitation

fluctuations) could also be located in areas with worse economic opportunities and therefore

worse expectations for future price appreciation. Since it is hard to account for all the possible

variables in which different counties or real estate properties can differ among themselves, then

it is relevant that the models estimated in this article use fixed-effects instead of random-effects

PLOS SUSTAINABILITY AND TRANSFORMATION Climate change’s impact on real estate prices in Chile

PLOS Sustainability and Transformation | https://doi.org/10.1371/journal.pstr.0000035 November 22, 2022 7 / 17

https://doi.org/10.1371/journal.pstr.0000035


[51]. Finally, it is relevant to note that many of the economic analysis of real estate markets use

fixed-effects to account for differences among geographical areas (this is the case, for instance,

of the Case-Shiller indexes, as seen in Shiller 2007 [51] and Case et al. 2012 [52]).

3 Results

3.1 Linear regressions with quality and age characteristics

Now Table 2 summarizes the results for the hedonic model with county fixed-effects, that is

the model in Eq 1), for Residential housing and Agricultural properties. For Residential hous-

ing, once we control for the first observed appraisal value of the property (ln(Pi,t=0)), the results

Table 2. Linear regressions (OLS) with fixed-effects for the county and quality of construction.

Temperature lag: k = 2 Temperature lag: k = 3

Residential Homes Agriculture Residential Homes Agriculture

ln(Areai,t) 0.0386��� -0.00583 0.0426��� -0.00722

(0.00645) (0.00519) (0.00662) (0.00689)

ln(Pi,t=0) 0.939��� 0.967��� 0.935��� 0.965���

(0.00897) (0.0121) (0.00929) (0.0125)

Precipitation Summert−1 -0.000287 -0.000203 -0.000182 -0.000154

(0.000209) (0.000194) (0.000187) (0.000149)

Precipitation Fallt−1 -0.000196 -0.000185� -0.000203 -0.000167

(0.000119) (9.47e-05) (0.000131) (9.81e-05)

Precipitation Wintert−1 -0.000161 -6.72e-05 -0.000177 -7.69e-05

(0.000148) (0.000116) (0.000139) (0.000110)

Precipitation Springt−1 0.000340 8.73e-05 0.000301 0.000114

(0.000262) (0.000153) (0.000262) (0.000192)

Max Temp. Summert−k 0.00767 0.00502 -0.000622 -0.00283

(0.00854) (0.00505) (0.00643) (0.00502)

Max Temp. Fallt−k -0.0116 -0.00394 -0.00201 0.00515

(0.0106) (0.00928) (0.0107) (0.00984)

Max Temp. Wintert−k -0.000663 -0.00594 0.000803 0.000741

(0.0105) (0.00778) (0.0108) (0.00997)

Max Temp. Springt−k -0.00217 -0.00318 0.00330 -9.40e-05

(0.00678) (0.00440) (0.00699) (0.00448)

Min Temp. Summert−k 0.0184 0.0174�� 0.0216�� 0.0147�

(0.0114) (0.00806) (0.00938) (0.00788)

Min Temp. Fallt−k 0.0154 0.00947 0.0173 0.00512

(0.0125) (0.00940) (0.0105) (0.00829)

Min Temp. Wintert−k -0.00907 -0.00997 -0.0129 -0.00562

(0.0123) (0.00777) (0.0109) (0.00748)

Min Temp. Springt−k -0.0136 -0.00769 -0.0233�� -0.0149

(0.00946) (0.00681) (0.00996) (0.00903)

Constant 0.163 0.209�� 0.156 0.210��

(0.0938) (0.0847) (0.0924) (0.0931)

Observations 2,489,439 153,573 2,357,867 144,062

R-squared 0.933 0.965 0.929 0.963

Notes: Other controls (residential housing): fixed-effects for county and construction county, age dummies.

Other controls (agricultural properties): fixed-effects for county. Standard-errors clustered by county and year in (),

���,��,� denote 1%, 5% and 10% statistical significance.

https://doi.org/10.1371/journal.pstr.0000035.t002
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show that precipitation does not have a statistically significant effect on housing prices. For

temperatures, the regression with a three year-lag shows that the minimum Summer tempera-

ture could have a positive effect on housing prices, while the minimum Spring temperature

could have a negative effect on housing prices. This result makes some sense, since households

would prefer cooler temperatures during the Summer but a somewhat warmer Spring weather.

The surface area in square meters is positively associated to residential housing prices, what-

ever the lag, showing that richer households prefer larger homes. For Agriculture properties, a

higher precipitation in the Fall season implies a lower property price that is significant at the

10% level, but this result is no longer significant with the 3-year lag specification for tempera-

ture. In a similar way as for Residential Housing, a higher minimum Summer temperature

decreases the Agricultural property prices, showing a preference of the owners for cooler

Summers.

3.2 Linear regressions with property fixed-effects

The regressions in Table 2 only controlled for the first observed price, county fixed-effects and

the quality of construction of each property. However, since each property is unique, it can be

relevant to control for a fixed-effect for each property. This would allow us to control for

whether in general lower priced properties are concentrated in warmer areas rather than being

affected by a trend in temperatures from global warming. Table 3 summarizes the results

obtained with the fixed-effects model that was suggested in Eq 2). The results now show that

higher precipitation in all seasons is associated with lower Residential Homes and Agriculture

Property prices, if one assumes the 3-year lag temperature model specification. However,

under the two-lag specification the Summer and the Spring precipitation effects are statistically

insignificant, respectively, for the Residential Homes and Agriculture Properties.

For Residential Homes, under the two year lag specification, we observe a negative effect on

prices from higher maximum Summer, Fall and Winter temperatures, which is consistent with

the desire of households to avoid extremely hot days. A higher minimum temperature for the

Summer, Fall and Spring seasons has the opposite effect of increasing home prices, showing

that households also wish to avoid extremely low temperatures. Results are somewhat similar

for the three-year lag specification, which also shows a negative effect of the maximum Sum-

mer temperature, but a positive effect for the minimum Summer and Fall temperatures. The

model with the two-year lag specification, however, provides a better fit to the data, as shown

by its higher R-squared.

Agriculture properties suffer a negative effect from higher maximum and minimum Winter

temperatures, while experiencing a positive effect from higher minimum temperatures in the

Summer, Fall and Spring seasons, which shows in general a preference from owners to avoid

extremely low temperatures except in Winter. Under the three-year lag specification, the

results show a positive effect from higher maximum temperatures in the Fall and higher mini-

mum temperatures in the Summer, while higher maximum temperatures in the Summer and

Spring and higher minimum temperatures in the Winter have a negative effect on the property

prices.

In summary, the results of Table 3 suggest that climate change is likely to impact both Resi-

dential Home and Agriculture Property prices through its effect on precipitation and global

temperature warming.

3.3 Calibrated projections of the climate change impact

Now we use the estimated coefficients from the fixed-effects model with two year lags (k = 2)

in Table 3 to implement a calibrated exercise using the global temperature projections of the
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IPCC (2021) [13] to project how a uniform temperature increase throughout the entire year

may affect housing prices. Climate studies consider several scenarios given by the Shared

Socioeconomic Pathways (SSP), published recently by the IPCC (2021), which represent an

update of the older Representative Concentration Pathways (RCP) scenarios, with the SSP1-

2.6 being the more optimist scenario, while the SSP2-4.5, SSP3-6.0, SSP4-7.0 and SSP5-8.5

denote increasingly pessimistic scenarios similar to the previous RCP paths. Table 4 considers

the impact of the scenarios SSP2-4.5 (which is considered by many academics as the more

likely scenario given the current policy compromises) and the worst scenario of “business as

usual” of SSP5-8.5 (which considers that countries will not implement mitigation measures to

attenuate climate change).

Table 3. Linear regressions (OLS) with fixed-effects for each property.

Temperature lag: k = 2 Temperature lag: k = 3

Residential Homes Agriculture Residential Homes Agriculture

ln(Areai,t) 0.409��� -0.0857�� 0.405��� -0.123���

(0.0304) (0.0339) (0.0311) (0.0357)

Precipitation Summert−1 4.58e-05 -0.00705��� 0.000716��� -0.00573���

(0.000217) (0.00109) (0.000227) (0.00118)

Precipitation Fallt−1 -0.000319��� -0.00408��� -0.000264��� -0.00311���

(6.49e-05) (0.000347) (5.76e-05) (0.000340)

Precipitation Wintert−1 -0.000296��� -0.00301��� -0.000305��� -0.00328���

(7.31e-05) (0.000385) (7.09e-05) (0.000371)

Precipitation Springt−1 0.00105��� -0.000169 0.000840��� -0.00176��

(0.000146) (0.000907) (0.000162) (0.000865)

Max Temp. Summert−k -0.0253��� -0.0372 -0.0353��� -0.0748��

(0.00414) (0.0326) (0.00426) (0.0353)

Max Temp. Fallt−k -0.0289��� -0.00758 -0.000560 0.114���

(0.00265) (0.0259) (0.00278) (0.0268)

Max Temp. Wintert−k -0.0165��� -0.112��� 0.00326 0.0181

(0.00400) (0.0317) (0.00375) (0.0322)

Max Temp. Springt−k -0.00623 -0.0362 0.00726�� -0.0429�

(0.00420) (0.0238) (0.00335) (0.0234)

Min Temp. Summert−k 0.0489��� 0.423��� 0.0648��� 0.372���

(0.00463) (0.0331) (0.00557) (0.0353)

Min Temp. Fallt−k 0.0651��� 0.104��� 0.0462��� 0.0599

(0.00359) (0.0323) (0.00409) (0.0391)

Min Temp. Wintert−k 0.00372 -0.0793�� -0.0163��� -0.0544�

(0.00413) (0.0333) (0.00383) (0.0310)

Min Temp. Springt−k 0.0110�� 0.147��� -0.0143��� 0.0333

(0.00453) (0.0304) (0.00498) (0.0341)

Constant 4.249��� 4.169��� 3.743��� 3.091���

(0.175) (0.875) (0.180) (0.865)

Observations 430,161 14,170 409,924 13,445

R-squared 0.112 0.062 0.106 0.066

Number of properties 213,605 6,986 211,766 6,858

Notes: Other controls: Residential housing regressions also control for age dummies. Standard-errors clustered by county and year in (),

���,��,� denote 1%, 5% and 10% statistical significance.

https://doi.org/10.1371/journal.pstr.0000035.t003
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We start by summing up the coefficients obtained by summing the coefficients of different

seasons (s = 1, 2, 3, 4, denoting Summer, Fall, Winter and Spring) and whether the maximum

and minimum temperatures are considered. Let us define the sum of the coefficients for all

seasons for, respectively, the maximum, minimum and sum of maximum and minimum tem-

peratures (γmax, γmin, γall) as:

gmax ¼
X4

s¼1

gmax
s ð3Þ

gmin ¼
X4

s¼1

gmin
s ð4Þ

gall ¼ gmin þ gmax ð5Þ

This allows us to analyze separately the overall impact of climate change and the isolated

impact from maximum and minimum temperatures only. Furthermore, we consider also the

separate impact of each season separately:

gSummer ¼ gmin
s¼1
þ gmax

s¼1 ð6Þ

Table 4. Impact of the climate change using the fixed-effects models with a temperature lag of two years as a percentage (%) of the property log-prices: Impact for

all seasons and each season separately, with the sum of the maximum and minimum temperature coefficients.

Total impact of each season All the estimated coefficients Only statistically significant coefficients

Residential Homes Agriculture Residential Homes Agriculture

Sum of the estimated model coefficients (Fixed-effects model, k = 2, Table 3)
All seasons: max+min 5.2 42.5 5.4 31.4

All seasons: max -7.7 1.4 -7.1 -0.4

All seasons: min 12.9 4rent1.1 12.5 31.8

Summer: max+min 2.4 29.7 2.4 29.7

Fall: max+min 3.6 17.4 3.6 11.4

Winter: max+min -1.3 -3.6 1.1 -5.4

Spring: max+min 0.5 -1.0 -1.7 -4.3

Change in prices in 2050 relative to a scenario with no additional climate change, according to the path SSP 4.5: +1.3°C
All seasons: max+min 6.7 55.3 7.1 40.8

All seasons: max -10.0 1.9 -9.2 -0.5

All seasons: min 16.7 53.4 16.3 41.3

Summer: max+min 3.1 38.6 3.1 38.6

Fall: max+min 4.7 22.6 4.7 14.8

Winter: max+min -1.7 -4.7 1.4 -7.1

Spring: max+min 0.6 -1.2 -2.1 -5.6

Change in prices in 2050 relative to a scenario with no additional climate change, according to the path SSP 8.5: +1.6°C
All seasons: max+min 8.3 68.0 8.7 50.2

All seasons: max -12.3 2.3 -11.3 -0.6

All seasons: min 20.6 65.7 20.0 50.8

Summer: max+min 3.8 47.6 3.8 47.6

Fall: max+min 5.8 27.8 5.8 18.2

Winter: max+min -2.0 -5.8 1.8 -8.7

Spring: max+min 0.8 -1.5 -2.6 -6.9

https://doi.org/10.1371/journal.pstr.0000035.t004
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gFall ¼ gmin
s¼2
þ gmax

s¼2
ð7Þ

gWinter ¼ gmin
s¼3
þ gmax

s¼3 ð8Þ

gSpring ¼ gmin
s¼4
þ gmax

s¼4 ð9Þ

The quantitative exercise considers the impact on the property prices in year t of a given

global temperature change in climate change, TSSP� xt , for each SSP − x path (with x = 2.6, 4.5,

6.0, 8.5): Ict ¼ g
cðTSSP� xt � T2020Þ, with c = max, min, all, Summer, Fall, Winter, Spring. For sim-

plicity, we only show the results for the horizon of the year 2050 (t = 2050) relative to the base-

line of the year 2020.

Table 4 summarizes the impact of the estimated fixed-effects model (with a two year lag for

temperatures, k = 2) from Table 3, which presents both the sum of all the model coefficients

and the sum of the statistically significant coefficients for both minimum and maximum tem-

peratures for all seasons of the year and each season separately. We find that higher maximum

temperatures have a negative impact on residential homes of 7.7% for each additional Celsius

degree, with a negative estimated impact of 7.1% if we just include the statistically significant

coefficients. However, the negative impact of maximum temperatures on Agricultural proper-

ties is negligible, being just -0.4% if we consider just the statistically significant coefficients. In

terms of each season, I find that higher temperatures in the Winter affect both Residential

Homes and Agricultural properties’ prices negatively by 1.3% and 3.6% (if considering all the

model coefficients), respectively. Agricultural properties are also negatively affected by 1% for

each additional Celsius degree during the Spring season. If one considers just the statistically

significant coefficients, then the Residential Homes are only affected negatively during the

Spring by 1.7% and for the sum of the maximum temperatures in all seasons by 7.1%, while

the Agriculture properties are negatively affected both during the Winter and Spring seasons

by 5.4% and 4.3% with each additional Celsius degree of higher temperature.

Table 4 also shows the impact on real estate property prices of the median estimated paths

for the average scenarios SSP2-4.5 and SSP5-8.5 for the year 2050, relative to a scenario in

which the climate remains similar to the year 2020. If one considers just the maximum temper-

atures, then there would be a very small effect on the Agricultural property prices (a small posi-

tive effect with all coefficients or a small negative effect with only the statistically significant

coefficients). However, for the Residential Homes’ prices, the higher maximum temperatures

in 2050 could represent a substantial negative effect of -10.0% and -12.3% for the SSP2-4.5 and

SSP5-8.5 paths, respectively. Even if one considers just the statistically significant coefficients,

then the effect of the maximum temperatures in 2050 on Residential Homes’ prices would be

-9.2% and -11.3% for the SSP2-4.5 and SSP5-8.5 paths, respectively.

3.4 Discussion

Our results show that there exists a negative relationship between real estate prices and tem-

perature. These findings are consistent with the hypothesis that higher temperatures affect

negatively the quality of life of the household. Albouy et al. 2016 [14] find that Americans most

prefer daily average temperatures near 65 degrees Fahrenheit (18˚C), agreeing with standard

degree-day models that predict little need for heating or cooling at this temperature, and that

households pay more to avoid a degree of excess heat than a degree of excess cold. In this line,

Gounopoulos et al. 2021 [53] also show that higher temperatures affect negatively the quality

of life in the United States. Then, we can establish a direct link between higher temperatures
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and lower quality of life due to the works of Absalon and Ślesak 2012 [54], and Mendes et al.

2017 [55]. Ultimately, to complete the channel that allows us to establish the relationship

between temperatures and house prices, McDonald 2012 [56] and Streimikiene 2015 [57]

show that quality of life is an important determinant of house pricing.

Regarding the positive impacts of higher minimum temperatures in the Summer, Fall, and

Spring seasons and precipitation on agricultural properties prices, our findings are consistent

with those in Deschenes and Greenstone 2007 [58], Mendelsohn et al. 1994 [59], who find that

climate may have a long-term positive impact on agricultural land due to increases of annual

profits due to higher expected yield. Finally, our results on the effects of extreme temperatures

on housing prices are consistent with the results showing that hotter summers and colder win-

ters increase residential electricity consumption, particularly during the summer [60]. This

could be one mechanism on why households prefer to live in areas with more stable tempera-

tures, which supports the analysis in this article. Furthermore, climate shocks are associated

with a higher probability change of intergroup conflict and interpersonal violence [61], which

provides another channel through which weather changes can affect real estate prices.

Finally, when considering the impact under the different prospective scenarios, we find that

for the Residential Home’s prices, the higher maximum temperatures in 2050 could represent

a decrease in 9.2% and 11.3% for the SSP2-4.5 and SSP5-8.5 paths, respectively. However, one

possible caveat of this estimation is that we are holding technology and preferences constant

and are therefore our estimates are best interpreted as a benchmark case. This assumption is

common to most estimates of climate change damages [14].

4 Conclusions

This work uses a matched dataset of the administrative register of all the real estate properties’

transactions in Chile between 2002 and 2020 with a high spatial resolution of local tempera-

tures and precipitation from TerraClimate. We then estimate two hedonic models for the

effect of seasonal weather temperatures and precipitation on residential home and agricultural

property prices. The first hedonic model considers fixed-effects for county, quality of the con-

struction, plus the size and age of the property and its oldest appraisal value. However, since

each property is unique, it can be relevant to control for a fixed-effect for each property. This

allows us to control for whether in general lower priced properties are concentrated in warmer

areas rather than being affected by a trend in temperatures from global warming. Therefore

the second hedonic model considers fixed-effects for each property plus controls for the size

and age of the property in each year.

The first model shows negligible effects of weather variables on the prices of residential

homes and agricultural properties. Controlling for fixed-effects for each property, we find that

hotter maximum temperatures during the Summer, Fall and Winter seasons had a negative

impact on the prices of residential homes. This result is consistent with the desire of house-

holds to avoid extremely hot days. Agriculture properties suffer a negative effect from higher

maximum and minimum Winter temperatures, while experiencing a positive effect from

higher minimum temperatures in the Summer, Fall and Spring seasons, which shows in gen-

eral a preference from owners to avoid low temperatures except in Winter.

We then use the fixed-effects model to estimate the impact on real estate property prices of

the median estimated paths for the scenarios SSP2-4.5 (which represents the most likely future

scenario, according to most climate experts) and SSP5-8.5 (which represents the worst climate

scenario) for the year 2050, relative to a scenario in which the climate remains similar to the

year 2020. If one considers just the maximum temperatures, then there would be a small effect

on the Agricultural property prices. However, for the Residential Homes’ prices, the higher
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maximum temperatures in 2050 could represent a substantial negative effect of -10.0% and

-12.3% for the SSP2-4.5 and SSP5-8.5 paths, respectively.

These results can lead to a policy implication related to financial systemic the first one, with

regulators and central banks increasingly worried about potential systemic risks from climate

change, it is crucial to answer whether loan market participants and banks are aware of and

price climate change risk [5]. Most residential real estate is purchased with a mortgage, and

then, climate risk will also affect the valuations of these mortgages. Consistent with this charac-

teristic of the housing market, recent research has shown that climate changes episodes lead to

increased mortgage default [62, 63] and areas affected by natural disasters attract less affluent

and less creditworthy home-buyers [64]. Similarly, Ouazad and Kahn 2021 [65] show that, in

the aftermath of natural disasters, lenders are more likely to approve mortgages that can be

securitized, thereby transferring climate risk and increasing real estate’s exposure to weather

risks above the optimal.

Regulations that improve air quality may become more important in warmer temperatures

since poor air quality has more adverse effects as temperatures rise [53], and hence, affecting

negatively the quality of life of households. Existing literature links environmental policies to

various dimensions of quality of life, raising the possibility that it may be a source of adaptation

to climate change. However, whether environmental regulations attenuate or exacerbate the

effects of temperature shocks on quality of life is a question that exceeds the scope of this

paper.

Future research should consider non-linear effects of climate change on real estate markets,

as well as spillovers to other sectors of the economy [16, 66].
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