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Abstract：The neoclassical Euler equation provides the necessary conditions for 

households to maximize lifetime utility by allocating income between consumption and 

investment, and is the core equation for solving the steady-state of the neoclassical 

growth model. The existing textbooks (Barro and Sala-i-Martin, 2004, ch6.3; Acemoglu, 

2009, ch13.2, ch15.6; Aghion and Howitt, 2009, ch3.2.2) ignore the premise of this 

equation and directly apply it to solve the steady state of other growth models, which 

not only leads to incorrect results but also limits the ability of growth models to analyze 

the steady-state technological progress direction. This note first points out and 

rigorously verifies the errors in existing textbooks; Then, by replacing the capital 

accumulation function with exogenous growth rate with the generalized capital 

accumulation function considering adjustment costs of investment in the Acemoglu 

(2009, ch15.6) model, the note put forward the generalized Euler equation and steady-

state equilibrium including capital-augmenting technological progress, which reveals 

the necessary conditions for the neoclassical Euler equation and Uzawa’s (1961) steady-

state theorem; Finally, it is pointed out that the possible reasons for the misuse of the 

neoclassical Euler equation in existing textbooks maybe confuse the rental price of 

capital and the interest rate of investment. 
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0 Introduction 

Uzawa’s (1961) steady-state theorem says that a neoclassical growth model 

requires technological progress to be purely labor-augmenting in steady state, unless 

the production function is Cobb-Douglas. However, as Acemoglu (2009, ch2, p59) 

pointed out, there is no compelling reasons for why technological progress should take 

this form, leading to the Uzawa’s steady-state theorem becoming a puzzle in economic 

growth theory (Jones and Scrimgeour, 2008). Acemoglu (2009, ch15.6) intended to 

provide a micro foundation for this theorem within the framework of directed technical 

change (Acemoglu,2002), but came up with an incorrect Proposition 15.12 (Li, 2016).3 

Peters and Simsek (2010) provided supplementary proof for this proposition, but did 

not find this simple error. 

Why did Acemoglu come up with this simple and clearly incorrect proposition, 

and as a well-known textbook widely used worldwide, why has the error not been 

pointed out and corrected for so long time? This is indeed confusing. We think that the 

possible reason may be the proof process of Acemoglu (2009, ch15.6). Acemoglu 

provided a detailed derivation of the equation of capital return, but directly applied the 

neoclassical Euler equation 
𝑐̇(𝑡)

𝑐(𝑡)
=

1

𝜃
(𝑟(𝑡) − 𝜌) without any derivation based on the 

assumptions of Acemoglu’s (2009, ch15.6) model. Perhaps the existing growth theory 

implicitly argues that the neoclassical Euler equation can be applied to all growth 

models, so there is no need to re-derive it. As a result, no one doubts the validness of 

Proposition 15.12. However, verifying that Proposition 15.12 is not valid is also very 

simple, which shows that the neoclassical Euler equation does not hold true in all 

environment, but has strict premises.  

If only Acemoglu (2009, ch15.6) directly applies the neoclassical Euler equation 

to lead to incorrect results, it may be due to Acemoglu’s negligence in order to simplify 

the derivation. However, it is not only Acemoglu (2009, ch15.6), existing famous 

textbooks (Barro and Sala-i-Martin, 2004, ch6.3; Acemoglu, 2009, ch13.2; Aghion and 

Howitt, 2009, ch3.2.2) also directly apply it to solve the steady-state of endogenous 

technological progress growth models with knowledge spillovers innovation function, 

which also leads to incorrect results. And as the best of our knowledge, there is still no 

literature that has pointed them out. Therefore, the first purpose of this note is to clearly 

identify and strictly verify these errors in order to push these textbooks to correct them. 

If directly applying the neoclassical Euler equation only leads to mathematic 

solving errors, but it does not affect the core conclusions of the model, then it does not 

 
3 This article will prove that this proposition is not valid again. 
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seriously impact on the development of economic growth theory. However, the implicit 

error that neoclassical Euler equation holds true in any growth model, seriously 

hindering to resolve the puzzle of Uzawa’s steady-state theorem and severely limiting 

the ability of growth model to analyze the determinants of the direction of technological 

progress. On the one hand, if the neoclassical Euler equation holds, for any growth 

model as long as with a neoclassical production, then the steady-state technological 

progress can only be purely labor-augmenting; However, on the other hand, from the 

concepts of technological progress and steady-state, there is no compelling reason to 

accept that the steady state is incompatible with other types of technological progress. 

If the Uzawa’s steady-state theorem holds for any model, the economic growth model 

cannot actually analyze the determinants of the direction of technological progress, and 

there is no need for analysis, because other types of technological progress cannot exist 

in steady-state at all. However, this is not in line with the facts. 

If income can be used for both consumption and investment, consumption 

generates current utility, while investment decreases current consumption but increases 

it in future. Therefore, in order to maximize household’s lifetime utility, it is necessary 

to appropriately allocate his income between consumption and investment. However, 

this allocation depends not only on the utility function and time discount factor, but also 

on the form of investment function. The neoclassical Euler equation is a necessary 

condition for the optimal allocation of income between consumption and investment 

under the investment function assumed by the neoclassical growth model. Why cannot 

the neoclassical Euler equation be applied under Acemoglu (2009, ch15.6)? Because 

this model assumes that capital is not accumulated through investment, but rather 

through exogenous growth, household’s income can only be used for consumption, and 

there is no problem of allocating income between consumption and investment. All 

income is consumed that is the optimal choice for household, and naturally there is no 

Euler equation. Why cannot the neoclassical Euler equation be applied to the 

endogenous technological progress model with a knowledge spillover innovation 

function? Because these models assume that production does not require capital, 

income can only be consumed, and consuming all income is the optimal choice for 

household. However, unlike Acemoglu’s (2009,15.6) model, household need to allocate 

labor appropriately, as labor can be used not only to produce the final product consumed 

in current, but also for research and development to increase output and consumption 

in the future. Therefore, there exists a Euler equation for how household allocates labor, 

but it is different from the neoclassical Euler equation for optimal allocation of income 
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between consumption and investment. 

Why do existing textbooks implicitly argue that the neoclassical Euler equation 

holds true in any growth models? This is indeed a mystery! It is likely because existing 

textbooks implicitly treat the rental price of capital and the return on investment (i.e. 

interest rate) as the same variable. In a competitive market, the rental price of capital is 

equal to the market value of the marginal output of capital, and the interest rate of 

investment reflects the opportunity cost of income used for investment relative to 

consumption. Whether the two variables are equal depends on the specific environment 

of a model. When the model assumes that income cannot be used for investment but 

can only be used for consumption, the opportunity cost of consumption is zero, and the 

return on investment is also zero. At this point, if there is capital input in production, 

the value of marginal output of capital cannot be zero. If investment can accumulate 

capital, the return on investment should be the amount of capital converted from 

investment multiplied by the value of marginal output of capital, rather than directly 

equal to the value of marginal output of capital. When the adjustment cost of investment 

is marginal increasing, then capital accumulation for investment is marginal decreasing. 

At this point, the marginal output of capital must continue to rise to maintain the 

marginal return on investment to be constant. By clearly pointing out the difference 

between the interest rate of investment and the market rental price of capital, it can 

reveal that the neoclassical Euler equation does not hold true in all environment, and 

that ignoring its prerequisites and directly applying it will lead to incorrect results. 

Pointing out and verifying this error in existing textbooks is not only beneficial for 

correcting the errors in these textbooks, but more importantly, it is beneficial for 

understanding the Uzawa’s steady-state theorem, and improving the analysis of the 

direction of technological progress in growth model. 

Although the neoclassical Euler equation is a fundamental equation that almost 

everyone who has learned economic growth theory or macroeconomics is familiar with 

it, so far, only Li (2016) has explicitly pointed out and verified the error of Proposition 

15.12 in Acemoglu (2009, Ch15.6), but he has not pointed out that this incorrect 

proposition is the result of directly applying the neoclassical Euler equation. Li and 

Bental (2022) pointed out that the neoclassical Euler equation is only a special result 

under a special capital accumulation function, but they did not indicate whether there 

were errors caused by directly applying the neoclassical Euler equation in existing 

literature. 

The remainder of this note is arranged as follows: Section 1 introduces the 
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derivation process and necessary conditions of the neoclassical Euler equation; Section 

2 points out and verifies the error of Proposition 15.12 in Acemoglu (2009, Ch15.6); 

The section 3 pointed out and verified the errors in the steady-state solution of the 

growth model with knowledge spillovers innovation function in the existing textbooks 

(Barro and Sala-i-Martin, 2004, ch6.3; Acemoglu, 2009, ch13.2; Aghion and Howitt, 

2009, ch3.2.2); In Section 4, the Acemoglu (2009, ch15.6) model, which replaces the 

capital accumulation function of exogenous growth with a capital accumulation 

function that includes investment adjustment costs, provides a generalized Euler 

equation and a steady-state equilibrium that includes capital-augmenting technological 

progress, revealing the conditions under which the neoclassical Euler equation and 

Uzawa’s (1961) steady-state theorem are applicable; Section 5 points out that if the 

neoclassical Euler equation is valid for any growth model, it will inevitably lead to a 

dilemma of Uzawa’s steady-state theorem; Section 6 speculates the possible reasons for 

the widespread misuse of Euler equations in existing literature. Section 7 is concluding 

remarks. 

 

1. The Euler Equation of the Neoclassical Growth Model 

The neoclassical growth model (Ramsey, 1928; Cass, 1965; Koopmans, 1965) is 

the foundation of modern economic growth theory. Compared to the Solow (1956) 

model, it points out the necessary conditions for households to allocate their income 

between consumption and investment to maximize their lifetime utility, that is, the 

Euler equation, later referred to as the neoclassical Euler equation. This section first 

provides the derivation process of the equation and points out its prerequisite conditions.  

1.1 Setup of the Neoclassical Growth Model4 

Population within each household grows at the rate n, starting with 𝐿(0) = 1, so 

that total population in the economy is 

𝐿(𝑡) = 𝐿(0) exp(𝑛𝑡)                                                      (1.1) 

All members of the household supply their one unit of labor inelastically. 

Each household wishes to maximize overall utility, U, as given by 

𝑈 = ∫ exp(−(𝜌 − 𝑛)𝑡) 𝑢(𝑐(𝑡))𝑑𝑡
∞

0

                                    (1.2) 

where c(t) is consumption per capita at time t; 𝜌 is the subjective discount rate; 

and the effective discount rate is 𝜌 − 𝑛 > 0 . The function 𝑢(𝑐(𝑡))  is the felicity 

 
4 The derivation of the neoclassical Euler equation is the basic content in economic growth theory, and the derivation 

process in this note is based on Acemoglu (2009, ch8).  
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function which is increasing in 𝑐(𝑡)  and concave, that is, 𝑢′(𝑐(𝑡)) > 0  and 

𝑢′′(𝑐(𝑡)) < 0. 

In existing literature, it is usually assumed that the per capita asset of a household 

is 𝑎(𝑡), and each member has one unit of labor. The return on assets 𝑟(𝑡) and wage 

rate 𝑤(𝑡) are both determined by market competition. The household income is the 

sum of asset income and labor income. Income can be used for consumption or to 

accumulate assets, so the dynamic equation for per capita household assets is 

�̇�(𝑡) = (𝑟(𝑡) − 𝑛)𝑎(𝑡) + 𝑤(𝑡) − 𝑐(𝑡)                               (1.3) 

To rule out chain-letter possibilities, the appropriate restriction is that the present 

value of assets must be asymptotically nonnegative, that is, 

lim
𝑡→∞

[𝑎(𝑡)𝑒𝑥𝑝 (−∫ (𝑟(𝑠) − 𝑛)𝑑𝑠
𝑡

0

)] ≥ 0                         (1.4) 

1.2 Household Optimization and Euler Equation 

The optimization problem is to solve the following maximization problem under 

the constraints of equation (1.3), 

max
𝑐(𝑡)

∫ exp(−(𝜌 − 𝑛)𝑡) 𝑢(𝑐(𝑡))𝑑𝑡
∞

0

                                 (1.5) 

Using optimal control technology to solve equation (1.5) and construct the present 

value Hamilton equation as following 

𝐻(𝑡, 𝑎, 𝑐, 𝜇) = exp(−(𝜌 − 𝑛)𝑡) 𝑢(𝑐(𝑡))

+ 𝜇(𝑡)[𝑤(𝑡) + (𝑟(𝑡) − 𝑛)𝑎(𝑡) − 𝑐(𝑡)]                                                (1.6) 

First-Order Conditions are as following 

{
𝐻𝑐(𝑡, 𝑎, 𝑐, 𝜇) = exp(−(𝜌 − 𝑛)𝑡) 𝑢′(𝑐(𝑡)) − 𝜇(𝑡) = 0

𝐻𝑎(𝑡, 𝑎, 𝑐, 𝜇) = 𝜇(𝑡)(𝑟(𝑡) − 𝑛) = −�̇�(𝑡)                       
          (1.7) 

The Euler equation obtained from (1.7) is as following 

�̇�(𝑡)

𝑐(𝑡)
=

1

𝜀𝑢(𝑐(𝑡))
(𝑟(𝑡) − 𝜌)                                              (1.8) 

Where 𝜀𝑢(𝑐(𝑡)) is the elasticity of the marginal utility 𝑢′(𝑐(𝑡)) as follows, 

𝜀𝑢(𝑐(𝑡)) ≡ −
𝑢′′(𝑐(𝑡))𝑐(𝑡)

𝑢′(𝑐(𝑡))
                                           (1.9) 

When the felicity function is as following  

𝑢(𝑐(𝑡)) =
𝑐(𝑡)1−𝜃 − 1

1 − 𝜃
, 0 < 𝜃 < 1                           (1.10) 
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then 𝜀𝑢(𝑐(𝑡)) = 𝜃, substituting it into the equation (1.8) to obtain the familiar 

neoclassical Euler equation as following 

�̇�(𝑡)

𝑐(𝑡)
=
1

𝜃
(𝑟(𝑡) − 𝜌)                                                    (1.11) 

An important characteristic of equations (1.8) and (1.11) is that when the 

consumption growth rate remains unchanged, the interest rate also remains unchanged. 

This is a core result of the neoclassical growth model, which is consistent with the fact 

that interest rate is no trend in reality, and is consistent with the famous Kaldor (1961) 

stylized facts in economic growth theory.  

1.3 Necessary Conditions for the Neoclassical Euler Equation 

The process of solving the Euler equation above seems to be only related to 

household preferences and budget constraints, and is not related to the model’s factor 

accumulation and production function. Therefore, it seems to be applicable for any 

growth model with the same household preference. Perhaps it is precisely for this 

reason that existing textbooks (Barro and Sala-i Martin, 2004, ch6.3; Acemoglu, 2009, 

ch13.2, ch15.6; Aghion and Howitt, 2009, ch3.2.2) directly apply the neoclassical Euler 

equation in almost all growth models. However, this led to a clearly incorrect 

Proposition 15.12 in Acemoglu (2009, ch15.6), indicating that the neoclassical Euler 

equation depends not only on household preference but also on other prerequisites and 

cannot be used in all growth models. One crucial prerequisite is that household income, 

in addition to consumption, must also be used to accumulate assets (capital or patented 

technology) to increase future consumption. Otherwise, the household’s income can 

only be used for consumption, and consuming all income is the household’s optimal 

choice, as a result there is no neoclassical Euler equation. For the neoclassical growth 

model, the assets that households can accumulate are the capital K(t) used for final 

product production, and the per capita assets are the per capita capital 𝑎(𝑡) = 𝑘(𝑡) ≡

𝐾(𝑡)

𝐿(𝑡)
. The accumulation equation of per capita capital is also the accumulation equation 

of per capita assets as following 

�̇�(𝑡) = �̇�(𝑡) = (𝑟(𝑡) − 𝑛)𝑘(𝑡) + 𝑤(𝑡) − 𝑐(𝑡)              (1.12) 

However, the later models indicate that not all growth models allow households’ 

income to accumulate assets. 

 

2 Proposition 15.12 of Acemoglu (2009, Ch15.6) 

Acemoglu (2009, Ch15.6) proposed a growth model with endogenous direction of 

technological progress, and the core result of this model is the Proposition 15.12, as 
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follows:  

“Proposition 15.12: Consider the baseline model of directed technological 

change with the two factors corresponding to labor and capital. Suppose that the 

innovation possibilities frontier is given by the knowledge spillovers specification with 

extreme state dependence, that is, δ=1, and that capital accumulates according to 

(15.45) (i.e., �̇�(𝑡) 𝐾(𝑡)⁄ = 𝑠𝐾). Then there exists a unique BGP allocation in which 

there is only labor-augmenting technological change, the interest rate is constant and 

consumption and output grow at constant rates.” (Acemoglu, 2009, Ch15.6, p521) 

 

This proposition suggests that the model exists a steady-state equilibrium where 

interest rates remain constant and technological progress is purely labor-augmenting. 

We first prove that the proposition is incorrect based on Li (2016), and then point out 

how Acemoglu (2009, Ch15.6) applied the neoclassical Euler equation to obtain this 

erroneous conclusion. 

2.1 Setup of the Model 

The aggregate production function combining the outputs of two intermediate 

sectors with a constant elasticity of substitution: 

𝑌(𝑡) = [𝛾𝐿𝑌𝐿(𝑡)
𝜀−1
𝜀 + 𝛾𝐾𝑌𝐾(𝑡)

𝜀−1
𝜀 ]

𝜀
𝜀−1

                                   (2.1) 

Where 𝑌(𝑡) is the final output. Where 𝑌𝐿(𝑡) and 𝑌𝐾(𝑡) denote the outputs of 

two intermediate goods. As the indices indicate, the first is L-intensive, while the 

second is K-intensive. The parameter ε∈[0,∞) is the elasticity of substitution between 

these two intermediate goods. 

The two intermediate goods are produced competitively with the following 

production functions:： 

{
 
 

 
 𝑌𝐿(𝑡) =

1

1 − 𝛽
(∫ 𝑥𝐿(𝑣, 𝑡)

1−𝛽𝑑𝑣
𝑁𝐿(𝑡)

0

)𝐿𝛽

𝑌𝐾(𝑡) =
1

1 − 𝛽
(∫ 𝑥𝐾(𝑣, 𝑡)

1−𝛽𝑑𝑣
𝑁𝐾(𝑡)

0

)𝐾𝛽
                       (2.2) 

where 𝑥𝐿(𝑣, 𝑡)  and 𝑥𝐾(𝑣, 𝑡)  denote the quantities of the different machine 

varieties (used in the production of one or the other intermediate good) and β∈(0, 1). 

These machines are again assumed to depreciate after use. The range of machines 

complementing labor, L, is [0, 𝑁𝐿(𝑡)], while the range of machines complementing 

factor K is [0, 𝑁𝐾(𝑡) ]. Once invented, each machine can be produced at the fixed 

marginal cost ψ>0 in terms of the final good, which is normalized to ψ≡1−β. Thus, total 

resources devoted to machine production at time t are 
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𝑋(𝑡) = (1 − 𝛽) (∫ 𝑥𝐿(𝑣, 𝑡)𝑑𝑣
𝑁𝐿(𝑡)

0

+∫ 𝑥𝐾(𝑣, 𝑡)𝑑𝑣
𝑁𝐾(𝑡)

0

)    (2.3) 

The innovation possibilities frontier (written in terms of labor- and capital-

augmenting technologies) takes the form 

{

�̇�𝐿(𝑡) = 𝜂𝐿𝑁𝐿(𝑡)𝑆𝐿(𝑡)

�̇�𝐾(𝑡) = 𝜂𝐾𝑁𝐾(𝑡)𝑆𝐾(𝑡)
𝑆𝐿 + 𝑆𝐾 = 𝑆                  

                                                       (2.4) 

The total amount of scientists S is given exogenously. 

Labor supply L is given exogenously. 

Capital accumulates at an exogenous rate, that is, 

�̇�(𝑡)

𝐾(𝑡)
= 𝑠𝐾                                                                   (2.5) 

𝑠𝐾  is given exogenously. We will prove that equation (2.5) is the crucial 

assumption that led to the failure of Proposition 15.12. However, Acemoglu (2009, 

ch15.6) obviously did not recognize the importance of the capital accumulation 

function for the steady-state direction of technological progress in growth model. 

Instead, he emphasized the importance of state dependent parameters in the innovation 

function. Therefore, he argued that for the sake of simplifying the analysis, the capital 

accumulation function could be set in this form without affecting his desired 

conclusion.5  

2.2. Proposal 15.12 is incorrect 

The following is the proof process for the proposition to be invalid. 

Let the final good as the numeraire, maximizing the profits of the final good 

enterprise to obtain 

{
 
 
 

 
 
 

𝑝𝐾(𝑡) =
𝜕𝑌(𝑡)

𝜕𝑌𝐾(𝑡)
= [𝛾𝐿 (

𝑌𝐿(𝑡)

𝑌𝐾(𝑡)
)

𝜀−1
𝜀

+ 𝛾𝐾]

1
𝜀−1

𝛾𝐾

𝑝𝐿(𝑡) =
𝜕𝑌(𝑡)

𝜕𝑌𝐿(𝑡)
= [𝛾𝐿 + 𝛾𝐾 (

𝑌𝐾(𝑡)

𝑌𝐿(𝑡)
)

𝜀−1
𝜀

]

1
𝜀−1

𝛾𝐿

                  (2.6) 

𝑝𝐿(𝑡) and 𝑝𝐾(𝑡) denote the prices of 𝑌𝐿(𝑡) and 𝑌𝐾(𝑡) respectively. 

Since 𝑌𝐿(𝑡)  and 𝑌𝐾(𝑡)  are produced by firms in competitive market, which 

employ labor at wage 𝑤(𝑡) and capital at the rental price 𝑟(𝑡), and use the machine 

 
5 As he say “To state this result in the simplest possible way and to facilitate the analysis in the rest of this section, 

let us simplify the analysis and suppose that capital accumulates at an exogenous rate,…” (Acemoglu (2009, 

ch15.6,p520). 
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as intermediates input which prices are 𝑝𝑥𝐾(𝑣, 𝑡)  and 𝑝𝑥𝐿(𝑣, 𝑡) , respectively. The 

profit maximization of enterprises producing 𝑌𝐾(𝑡)  and 𝑌𝐿(𝑡)  yields 𝑟(𝑡) , 𝑤(𝑡) , 

𝑝𝑥𝐿(𝑣, 𝑡) and 𝑝𝑥𝐾(𝑣, 𝑡), respectively, as follows 

{
 
 

 
 𝑟(𝑡) = 𝑝𝐾(𝑡)

𝜕𝑌𝐾(𝑡)

𝜕𝐾(𝑡)
= 𝑝𝐾(𝑡)

𝛽

1 − 𝛽
(∫ 𝑥𝐾(𝑣, 𝑡)

1−𝛽𝑑𝑣
𝑁𝐾(𝑡)

0

)𝐾𝛽−1

𝑤(𝑡) = 𝑝𝐿(𝑡)
𝜕𝑌𝐿(𝑡)

𝜕𝐿
= 𝑝𝐿(𝑡)

𝛽

1 − 𝛽
(∫ 𝑥𝐿(𝑣, 𝑡)

1−𝛽𝑑𝑣
𝑁𝐿(𝑡)

0

) 𝐿𝛽−1  

   (2.7) 

{
𝑝𝑥𝐾(𝑣, 𝑡) = 𝑝𝐾(𝑡)𝑥𝐾(𝑣, 𝑡)

−𝛽𝐾𝛽

𝑝𝑥𝐿(𝑣, 𝑡) = 𝑝𝐿(𝑡)𝑥𝐿(𝑣, 𝑡)
−𝛽𝐿𝛽

                                                                  (2.8) 

Each machine 𝑥𝐿(𝑣, 𝑡) and 𝑥𝐾(𝑣, 𝑡) are exclusively produced by a monopolist 

with patent rights. Profit maximization implies that each monopolist sets the quantity 

of each machine and obtains the monopoly profit from each machine as follows, 

{
𝑥𝐾 = 𝑝𝐾(𝑡)

1
𝛽𝐾

𝑥𝐿 = 𝑝𝐿(𝑡)
1
𝛽𝐿

                                                                         (2.9) 

{
𝜋𝑥𝐾 = 𝑝𝐾(𝑡)

1
𝛽𝐾(1 − 𝜓) = 𝛽𝑝𝐾(𝑡)

1
𝛽𝐾

𝜋𝑥𝐿 = 𝑝𝐿(𝑡)
1
𝛽𝐿(1 − 𝜓) = 𝛽𝑝𝐿(𝑡)

1
𝛽𝐿   

                             (2.10) 

Substituting equation (2.9) into equation (2.2) yields 

{
 
 

 
 𝑌𝐿(𝑡) =

1

1 − 𝛽
𝑝𝐿(𝑡)

1−𝛽
𝛽 𝑁𝐿(𝑡)𝐿        

𝑌𝐾(𝑡) =
1

1 − 𝛽
𝑝𝐾(𝑡)

1−𝛽
𝛽 𝑁𝐾(𝑡)𝐾(𝑡)

                                 (2.11) 

Substituting equation (2.9) into equation (2.7) yields 

{
 
 

 
 𝑟(𝑡) =

𝛽

1 − 𝛽
𝑝𝐾(𝑡)

1
𝛽𝑁𝐾(𝑡)

𝑤(𝑡) =
𝛽

1 − 𝛽
𝑝𝐿(𝑡)

1
𝛽𝑁𝐿(𝑡)

                                                (2.12) 

Substituting equation (2.9) into equation (2.6) yields 



11 

 

{
 
 
 
 
 

 
 
 
 
 

𝑝𝐾(𝑡) =

[
 
 
 
 

𝛾𝐿 (
𝑝𝐿(𝑡)

1−𝛽
𝛽 𝑁𝐿(𝑡)𝐿

𝑝𝐾(𝑡)
1−𝛽
𝛽 𝑁𝐾(𝑡)𝐾(𝑡)

)

𝜀−1
𝜀

+ 𝛾𝐾

]
 
 
 
 

1
𝜀−1

𝛾𝐾

𝑝𝐿(𝑡) =

[
 
 
 
 

𝛾𝐿 + 𝛾𝐾 (
𝑝𝐾(𝑡)

1−𝛽
𝛽 𝑁𝐾(𝑡)𝐾(𝑡)

𝑝𝐿(𝑡)
1−𝛽
𝛽 𝑁𝐿(𝑡)𝐿

)

𝜀−1
𝜀

]
 
 
 
 

1
𝜀−1

𝛾𝐿

     (2.13) 

From equation (2.12), the following equation (2.14) can be obtained 

𝑟(𝑡)

𝑤(𝑡)
= (

𝑝𝐾(𝑡)

𝑝𝐿(𝑡)
)

1
𝛽 𝑁𝐾(𝑡)

𝑁𝐿(𝑡)
= 𝑝(𝑡)

1
𝛽
𝑁𝐾(𝑡)

𝑁𝐿(𝑡)
                         (2.14) 

The relative prices 𝑝(𝑡)  of 𝑌𝐾(𝑡)  and 𝑌𝐿(𝑡)  can be obtained from equation 

(2.13) as following 

𝑝(𝑡) ≡
𝑝𝐾(𝑡)

𝑝𝐿(𝑡)
=
𝛾𝐾
𝛾𝐿
(
𝑌𝐾(𝑡)

𝑌𝐿(𝑡)
)

−1
𝜀

= (
𝛾𝐾
𝛾𝐿
)

𝜀𝛽
𝜎
(
𝑁𝐾(𝑡)𝐾

𝑁𝐿(𝑡)𝐿
)

−𝛽
𝜎

      (2.15) 

The salary of scientist is equal to the market value of their marginal output of 

innovation. It can be obtained from the function of innovation possibilities frontier 

and the monopoly profit of each machine patent as follows, 

{
𝑤𝑆𝑁(𝑡) = 𝜂𝐿𝑁𝐿(𝑡)𝜋𝑥𝐿 = 𝛽𝜂𝐿𝑝𝐿(𝑡)

1
𝛽𝑁𝐿(𝑡)𝐿     

𝑤𝑆𝑀(𝑡) = 𝜂𝐾𝑁𝐾(𝑡)𝜋𝑥𝐾 = 𝛽𝜂𝐾𝑝𝐾(𝑡)
1
𝛽𝑁𝐾(𝑡)𝐾

             (2.16) 

The following discussion will be divided into two situations: 

The first case, assuming that the wage rates of scientists 𝑤𝑆𝑁(𝑡) and 𝑤𝑆𝑀(𝑡) 

for innovation in both sectors are equal in the steady-state, it can be obtained that 

1 =
𝜂𝐾
𝜂𝐿
(
𝑝𝐾(𝑡)

𝑝𝐿(𝑡)
)

1
𝛽 𝑁𝐾(𝑡)𝐾

𝑁𝐿(𝑡)𝐿
                                                    (2.17) 

Substituting equation (2.15) into equation (2.17) yields 

𝑁𝐾(𝑡)𝐾(𝑡)

𝑁𝐿(𝑡)𝐿
= [(

𝜂𝐾
𝜂𝐿
)
−1

(
𝛾𝐾
𝛾𝐿
)
−
𝜀
𝜎
]

𝜎
𝜎−1

                                 (2.18) 

From equation (2.18) the following equation can be obtained. 

�̇�𝐿(𝑡)

𝑁𝐿(𝑡)
+
�̇�

𝐿
=
�̇�𝐾(𝑡)

𝑁𝐾(𝑡)
+
�̇�

𝐾
                                                 (2.19) 

Given L a constant and substituting equations (2.4) and (2.5) into equation (2.19) 
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yields 

𝜂𝐿[𝑆 − 𝑆𝐾(𝑡)] − 𝑠𝐾 = 𝜂𝐾𝑆𝐾(𝑡)                                   (2.20) 

According to equation (2.20), the allocation of scientist at steady state is as 

follows, 

{
 

 𝑆𝐾
∗ =

𝜂𝐿𝑆 − 𝑠𝐾
𝜂𝐿 + 𝜂𝐾

𝑆𝐿
∗ =

𝜂𝐾𝑆 + 𝑠𝐾
𝜂𝐿 + 𝜂𝐾

                                                            (2.21) 

Substituting equation (2.21) into the functions of innovation possibility frontier 

(2.4), the technological progress in steady state is obtained as follows, 

{
 
 

 
 �̇�𝐾
𝑁𝐾

= 𝜂𝐾𝑆𝐾
∗ = 𝜂𝐾

𝜂𝐿𝑆 − 𝑠𝐾
𝜂𝐿 + 𝜂𝐾

�̇�𝐿
𝑁𝐿

= 𝜂𝐿𝑆𝐿
∗ = 𝜂𝐿

𝜂𝐾𝑆 + 𝑠𝐾
𝜂𝐿 + 𝜂𝐾

                                        (2.22) 

Equations (2.22) provide the steady-state technical progress in the Acemoglu 

(2009, ch15.6) model. Obviously, under the reasonable assumptions about of 

parameters 𝜂𝐾, 𝜂𝐿, 𝑠𝐾 and S, the steady-state technological progress of this model 

can include capital augmentation rather than pure labor-augmentation. Therefore, 

Proposition 15.12 does not hold. 

The second case. Assuming that the wage rate of scientists in the innovation sector 

with labor complementary machine is always higher than the potential wage that can 

be provided by the innovation sector with capital complementary machine, i.e. 

𝑤𝑆𝑁(𝑡) > 𝑤𝑆𝑀(𝑡). At this time, all scientists are concentrated in the innovation sector 

with labor complementary machine, namely, there are 𝑆𝐿(𝑡) = 𝑆， 𝑆𝐾 = 0 , but 

scientists will no longer move. At this point, technological progress is indeed purely 

labor-augmenting, but equation (2.18) is no longer valid under reasonable assumptions 

about parameters. Only when there happens to be the total of scientists 𝑆 =
𝑠𝐾

𝜂𝐿
, then 

𝑁𝐾(𝑡)𝐾(𝑡)

𝑁𝐿(𝑡)𝐿
  be constant. That is to say, although technological progress at this time is 

purely labor-augmenting, the model has not arrived at a steady state under reasonable 

assumptions about parameters. Therefore, at this point, Proposition 15.12 also does not 

hold. 

In summary, under the assumptions given by Acemoglu (2009, ch15.6), the 

Proposal 15.12 is incorrect. 

2.3. Proposal 15.12 is the result of incorrect application of the neoclassical 

Euler equation. 
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How did Acemoglu come up with the incorrect Proposition 15.12? The following 

is an introduction to Acemoglu’s proof process to prove that Acemoglu (2009, ch15.6) 

caused this result owing to directly apply the neoclassical Euler equation. 

Substituting (2.13) into equation (2.12) yields 

𝑟(𝑡) =
𝛽

1 − 𝛽
(𝛾𝐾)

𝜀
𝜎𝑁𝐾(𝑡) [((𝛾𝐿)

𝜀
𝜎 (

𝑁𝐿(𝑡)𝐿

𝑁𝐾(𝑡)𝐾(𝑡)
)

𝜎−1
𝜎

+ (𝛾𝐾)
𝜀
𝜎)]

1
𝜎−1

    (2.23) 

Substituting (2.18) into equation (2.23) yields 

𝑟(𝑡) = [(𝛾𝐾)
𝜀 (
𝜂𝐾
𝜂𝐿
+ 1)]

1
𝜎−1

𝑁𝐾(𝑡)                                       (2.24) 

Equation (2.24) indicates that the rental price of capital in the Acemoglu model is 

a function of 𝑁𝐾(𝑡) . Until this step, Acemoglu’s proof process was correct. Next, 

however, he did not provide any derivation process and directly applied the neoclassical 

Euler equation 
𝑐̇(𝑡)

𝑐(𝑡)
=

1

𝜃
(𝑟(𝑡) − 𝜌), and from this equation obtained that 𝑟(𝑡) must be 

a constant in steady state, and then from equation (2.24) to obtain 
�̇�𝐾(𝑡)

𝑁𝐾(𝑡)
= 0, finally 

resulting in Proposition 15.12. On the contrary, it can be inferred from equations (2.22) 

and (2.24) that 𝑟(𝑡) cannot be a constant in the steady state of the Acemoglu model, 

indicating that the neoclassical Euler equation does not hold under the assumptions of 

this model.  

Why is the neoclassical Euler equation no longer valid in Acemoglu's (2009, 

ch15.6) model? This is because in this model, households’ income can only be used for 

consumption, cannot accumulate assets (material capital or technological patents) to 

increase future consumption. Therefore, for a given time discount rate ρ, consuming all 

income is the only option for households to maximize lifetime utility. As a result, not 

only does the neoclassical Euler equation not hold, but also the model does not have 

the usual Euler equation at all. In fact, in this model, households do not need to make 

intertemporal choices at all! 

 

3. Solving the Steady State of Knowledge Spillover Models 

This section we prove that it will lead incorrect result in the knowledge spillover 

model to solve the steady state equilibrium if directly applying the neoclassical Euler 

equation. If only Acemoglu (2009, ch15.6) directly applies the neoclassical Euler 

equation and leads to incorrect results, it may be just an Acemoglu’s oversight in order 

to simplify the derivation process. However, existing textbooks (Barro and Sala-i 
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Martin, 2004, ch6.3; Acemoglu, 2009, ch13.2; Aghion and Howitt, 2009, ch3.2.2) also 

directly apply neoclassical Euler equation to solve the steady-state equilibrium in the 

knowledge spillover models and also leads incorrect results, indicating that it may be 

an implicit common error in existing literature that believing the neoclassical Euler 

equation is valid in all growth models. Therefore, it is necessary to clearly point out this 

error and correct it.6  

In the endogenous technological progress model with knowledge spillover 

innovation function, households do need to tradeoff between higher current 

consumption and higher future consumption. However, what affects the current and 

future consumption of households is not the allocation of income between consumption 

and investment, is the allocation of labor between the production of final output and 

research and development. Therefore, the neoclassical Euler equation still does not hold. 

We first give the correct process for solving the steady-state equilibrium of the model, 

followed by the solving process in Acemoglu (2009, ch13.2), and verify its results are 

not optimal.  

3.1 Setup of the Model 

𝑌(𝑡) =
1

1 − 𝛽
(∫ 𝑥(𝑣, 𝑡)1−𝛽𝑑𝑣

𝑁(𝑡)

0

) 𝐿𝐸(𝑡)
𝛽                  (3.1) 

Innovation function 

�̇�(𝑡) = 𝜂𝑁(𝑡)𝐿𝑅(𝑡)                                                             (3.2) 

Total labor is given exogenously, therefore  

𝐿𝐸(𝑡) + 𝐿𝑅(𝑡) = 𝐿                                                            (3.3) 

Utility function of representative household is  

𝑢(𝑐(𝑡)) =
𝑐(𝑡)1−𝜃 − 1

1 − 𝜃
, 0 < 𝜃 < 1                           (3.4) 

The goal of a household is to maximize lifetime utility 

max
𝑐(𝑡)

∫ exp(−(𝜌 − 𝑛)𝑡) 𝑢(𝑐(𝑡))𝑑𝑡
∞

0

                                    (3.5) 

Labor can produce the final good to current consumption, as well as research and 

development to improve production technology and increase future consumption. The 

more labor used for the production of the final good, the higher the current consumption, 

but the less labor used for research and development, and the lower the future 

 
6 Due to the subtle differences in the assumptions of the final product production function in these models, there are 

slight differences in the results of the same model in these three textbooks. This section of the note is based on 

Acemoglu (2009, ch13.2). In Barro and Sala-i-Martin (2004, ch6.3), the parameter 𝛼 is the (1 − 𝛽), 𝜆𝐿 is the 𝐿𝐸, 
(1 − 𝜆)𝐿 is the 𝐿𝑅 in this note, in Aghion and Howitt (2009, ch3.2.2), the parameter 𝛼 is the (1 − 𝛽), 𝜀 is the 

𝜃 in this note. 



15 

 

consumption. Households need to allocate labor to maximize lifetime utility. This is the 

crucial issue in knowledge spillover models. 

The households’ constraints are 

𝑤(𝑡)[𝐿 − 𝐿𝑅(𝑡)] + 𝑝(𝑡)𝑁(𝑡) = 𝐿𝑐(𝑡)                                          (3.6) 

𝑝(𝑡) is the licensing fee for each patent in each period. The wage rates 𝑤(𝑡) and 

𝑝(𝑡) are determined by the market. 

3.2. Correct processes for solving steady state 

The Hamilton equation is 

𝐻(𝑁, 𝑐, 𝐿𝑅 , 𝜈, 𝜆) = exp(−𝜌𝑡)
𝑐(𝑡)1−𝜃 − 1

1 − 𝜃
+ 𝜈(𝑡)𝜂𝑁(𝑡)𝐿𝑅(𝑡) 

+𝜆(𝑡){𝑤(𝑡)[𝐿 − 𝐿𝑅(𝑡)] + 𝑝𝑁(𝑡) − 𝑐(𝑡)}                                           (3.7) 

The first order conditions are 

{
 
 

 
 
𝜕𝐻

𝜕𝑐
= exp(−𝜌𝑡) 𝑐(𝑡)−𝜃 − 𝜆(𝑡) = 0      

𝜕𝐻

𝜕𝐿𝑅
= 𝜈(𝑡)𝜂𝑁(𝑡) − 𝜆(𝑡)𝑤(𝑡) = 0        

𝜕𝐻

𝜕𝑁
= 𝜈(𝑡)𝜂𝐿𝑅(𝑡) + 𝜆(𝑡)𝑝(𝑡) = −�̇�(𝑡)

                              (3.8) 

From equations (3.8) to yield 

{
 
 

 
 −𝜌 − 𝜃

�̇�(𝑡)

𝑐(𝑡)
=
�̇�(𝑡)

𝜆(𝑡)
                

𝜈(𝑡)𝜂𝑁(𝑡) = 𝜆(𝑡)𝑤(𝑡)          

𝜂𝐿𝑅(𝑡) +
𝜆(𝑡)

𝜈(𝑡)
𝑝(𝑡) = −

�̇�(𝑡)

𝜈(𝑡)

                                (3.9) 

Substitute equation (3.2) into equation (3.9), and by simple calculations to obtain 

𝜃
�̇�(𝑡)

𝑐(𝑡)
=
�̇�(𝑡)

𝑤(𝑡)
+
𝜂𝑁(𝑡)𝑝(𝑡)

𝑤(𝑡)
− 𝜌                                 (3.10) 

From the profit maximization of the final goods enterprise to obtain following 

equation 

w(t) =
𝛽

1 − 𝛽
𝑁(𝑡)                                                       (3.11) 

From equation (3.11) to yield 

�̇�(𝑡)

𝑤(𝑡)
=
�̇�(𝑡)

𝑁(𝑡)
                                                                 (3.12) 

Substituting equation (3.11) and (3.12) into equation (3.10) and using equation 

(3.2) to obtain  

𝜃
�̇�(𝑡)

𝑐(𝑡)
=
(1 − 𝛽)𝜂𝑝(𝑡)

𝛽
+ 𝜂𝐿𝑅(𝑡) − 𝜌                         (3.13) 
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In the case of free competition, the licensing fee 𝑝(𝑡)  of a patent should be 

exactly equal to the monopoly profit of for producing a machine.  

𝑝(𝑡) = 𝛽[𝐿 − 𝐿𝑅(𝑡)]                                                  (3.14) 

Substituting equation (3.14) into equation (3.13) yields 

𝜃
�̇�(𝑡)

𝑐(𝑡)
= (1 − 𝛽)𝜂𝐿 + 𝛽𝜂𝐿𝑅(𝑡) − 𝜌                           (3.15) 

Equation (3.15) is the Euler equation for allocating households’ labor in the 

knowledge spillover model. 

Substituting 𝑤(𝑡) and 𝑝(𝑡) into the household constraint equation (3.6) yields 

𝛽 (
2 − 𝛽

1 − 𝛽
) [𝐿 − 𝐿𝑅(𝑡)]𝑁(𝑡) = 𝐿𝑐(𝑡)                                    (3.16) 

Since 𝐿𝑅(𝑡) is a constant in steady state, from equation (3.16) to yield  

�̇�(𝑡)

𝑁(𝑡)
=
�̇�(𝑡)

𝑐(𝑡)
= 𝜂𝐿𝑅(𝑡)                                                     (3.17) 

By combining equations (3.15) and (3.17), the optimal labor allocation in steady 

state can be obtained as following 

{
 
 

 
 𝐿𝑅

∗ =
(1 − 𝛽)𝜂𝐿 − 𝜌

𝜂(𝜃 − 𝛽)
    

𝐿𝐸
∗ =

𝜃𝜂𝐿 + 𝜌 − 𝜂𝐿

(𝜃 − 𝛽)𝜂
     

                                                (3.18) 

Substituting (3.18) into equation (3.15), the growth rate of consumption in the 

steady-state is 

�̇�(𝑡)

𝑐(𝑡)
=
(1 − 𝛽)𝜂𝐿 − 𝜌

𝜃 − 𝛽
                                                     (3.19) 

Equation (3.19) is the consumption growth rate of the knowledge spillover model 

solved by normal optimal control techniques in steady-state. 

3.3. Process of Solving Steady State in Textbooks 

The process of solving steady-state equilibrium in the textbook includes two steps. 

The first step applies that market equilibrium require wage rates for labor engaged in 

research and development and production of final good to be equal; The second step 

directly applies the neoclassical Euler equation. The first step is correct, but the latter 

step is incorrect. 

The output of labor engaged in research and development is new patents, and their 

wage rates are equal to the market value of the patents of marginal output of innovation, 

i.e 

𝑤𝑅(𝑡) =
𝑝(𝑡)𝜂𝑁(𝑡)

𝑟(𝑡)
                                                      (3.20) 
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𝜂𝑁(𝑡) is the marginal output of innovation，𝑝(𝑡) is the licensing fees of patent 

in competition market. The present value of 𝑝(𝑡)𝜂𝑁(𝑡) by discounting in interest rate 

𝑟(𝑡) is the market value of the marginal output of R&D labor, which should be equal 

to the wage rate. This is the economic intuition of equation (3.20). 

Since homogeneous labor can also produce the final good, the wage rates for 

different labor should be equal in equilibrium, i.e  

𝑤𝑅(𝑡) =
𝑝(𝑡)𝜂𝑁(𝑡)

𝑟(𝑡)
= 𝑤(𝑡) =

𝛽

1 − 𝛽
𝑁(𝑡)                          (3.21) 

The licensing fee for a patent should be exactly equal to the monopolistic profit 

that can be obtained from monopolizing production of a machine by owning the patent. 

Substituting (3.14) into equation (3.21) yields 

𝑟(𝑡) = (1 − 𝛽)𝜂𝐿𝐸(𝑡)                                                         (3.22) 

Until now, the derivation process is correct. However, in the following, the 

textbook directly applies the neoclassical Euler equation 
𝑐̇(𝑡)

𝑐(𝑡)
=

1

𝜃
(𝑟(𝑡) − 𝜌) without 

any derivation process, and substituting equation (3.22) into it to obtain  

�̇�(𝑡)

𝑐(𝑡)
=
1

𝜃
((1 − 𝛽)𝜂𝐿𝐸(𝑡) − 𝜌)                                          (3.23) 

Then substituting equation (3.17) into equation (3.23) yields  

(1 − 𝛽)𝜂𝐿 − 𝜌 = (1 + 𝜃 − 𝛽)𝜂𝐿𝑅(𝑡)                            (3.24) 

Solved 𝐿𝑅
∗∗ from equation (3.24) as following  

𝐿𝑅
∗∗ =

(1 − 𝛽)𝜂𝐿 − 𝜌

(1 + 𝜃 − 𝛽)𝜂
                                                       (3.25) 

Substituting equation (3.25) into 
𝑐̇(𝑡)

𝑐(𝑡)
= 𝜂𝐿𝑅(𝑡) yields 

�̇�(𝑡)

𝑐(𝑡)
=
(1 − 𝛽)𝜂𝐿 − 𝜌

1 + 𝜃 − 𝛽
                                               (3.26) 

Equations (3.25) and (3.26) are the steady-state results given in the textbook.  

By comparing equations (3.18) and (3.24), as well as equations (3.19) and (3.26), 

the following conclusions can be drawn. Since (1 + 𝜃 − 𝛽) > (𝜃 − 𝛽), there is 𝐿𝑅
∗∗ <

𝐿𝑅
∗ . Therefore, the consumption growth rate given by equation (3.26) is also smaller 

than the rate given by equation (3.19). Under the same time discount rate ρ, a higher 

consumption growth rate represents a greater lifetime utility, so the consumption 

growth rate in equation (3.26) does not maximize lifetime utility. This proves that the 

results obtained in these textbooks are not optimal and incorrect. This is because under 

the assumption of the knowledge spillover model, household income can only be 

consumed and cannot be used for asset accumulation, the neoclassical Euler equation 

is also not valid. 
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4. Adjustment Costs of Investment and Generalized Euler Equation 

The preceding two sections demonstrate through specific examples that directly 

applying the neoclassical Euler equation in existing textbooks lead to incorrect results. 

However, more importantly, this error leads to existing economic growth theory not 

being able to correctly understand Uzawa’s (1961) steady-state theorem and cannot 

reveal the crucial determinants of the direction of technological progress in steady state. 

In fact, why technological progress after the Industrial Revolution is purely labor-

augmenting in long-run is one of the main questions that Acemoglu (2002) plans to 

answer when establishing a framework with endogenous direction of technological 

progress. Acemoglu (2003) successfully obtained the steady state that technological 

progress is purely labor-augmenting under this framework. However, the Proposition 

15.12 in Acemoglu (2009, ch15.6) indicates that he does not reveal the key determinants 

of direction of technological progress, and does not point out the prerequisite for purely 

labor-augmenting technical change in steady state. 

This section plans to replace the capital accumulation function of exogenous 

growth in Acemoglu (2009, ch15.6) with a capital accumulation function that considers 

adjustment cost of investment. This in order to not only further reveals the close 

relationship between the neoclassical Euler equation and the capital accumulation 

function, but also clearly reveals under what circumstances technological progress will 

be purely labor-augmenting, providing a clear explanation for Uzawa’s (1961) steady-

state theorem, answering the question that Acemoglu (2002, 2003, 2009) attempted to 

answer but did not successfully do. 

Keep other assumptions of the Acemoglu (2009, ch15.6) model unchanged, but 

replace the capital accumulation function with the form proposed by Irmen (2013) that 

includes adjustment cost of investment, as follows: 

�̇�(𝑡) = 𝐼(𝑡)𝛼                                                          (4.1) 

𝐼(𝑡)  denotes total investment, 0 < 𝛼 ≤ 1 . When 𝛼 < 1 , it indicates that the 

adjustment cost of investment is marginal increasing, when 𝛼 = 1 , it indicates no 

adjustment cost of investment. 

Households are the owners of corporate capital. The budget constraints of 

households are 

𝐼(𝑡) + 𝐶(𝑡) = 𝑤(𝑡)𝐿(𝑡) + 𝑟(𝑡)𝐾(𝑡)                                  (4.2) 

Equation (4.2) indicates that household income includes wages of labor and 

interest of capital, while household expenses include consumption and investment. 
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The optimization problem of household is to maximize the lifetime utility under 

the constraints of equations (4.1) and (4.2). The Hamilton equation for this problem is  

𝐻(𝑡, 𝐾, 𝐶, 𝐼, 𝜇) = exp(−𝜌𝑡)
𝐶(𝑡)1−𝜃 − 1

1 − 𝜃
+ 𝜇(𝑡)𝐼(𝑡)𝛼

+ 𝜆(𝑡)[𝑤(𝑡)𝐿(𝑡) + 𝑟(𝑡)𝐾(𝑡) − 𝐼(𝑡) − 𝐶(𝑡)]                                     (4.3) 

From equation (4.3) to obtain the Euler equation as following  

𝜃
�̇�(𝑡)

𝐶(𝑡)
= 𝛼𝐼(𝑡)𝛼−1𝑟(𝑡) + (1 − 𝛼)

𝐼(̇𝑡)

𝐼(𝑡)
− 𝜌                 (4.4) 

Equation (4.4) is a generalized Euler equation based on the capital accumulation 

function (4.1). When 𝛼 = 1 , equation (4.1) indicates that the investment has no 

adjustment cost. At this point, the Euler equation degenerates into the usual neoclassical 

Euler equation  

𝜃
�̇�(𝑡)

𝐶(𝑡)
= 𝑟(𝑡) − 𝜌                                                             (4.5) 

Equations (4.5) and (4.4) indicate that the neoclassical Euler equation (4.5) is only 

a special case of equation (4.4), as the capital accumulation function in the neoclassical 

growth model is a special case of equation (4.1). Equation (4.4) indicates that the Euler 

equation is closely related to the capital accumulation function. When the capital 

accumulation function changes, the form of the Euler equation must be also changed. 

Ignoring this change and still directly applying the neoclassical Euler equation 

inevitably leads to incorrect results. 

The following is to solve the steady-state technical progress of the Acemoglu 

(2009, ch15.6) model when the capital accumulation equation is equation (4.1) instead 

of �̇�(𝑡) = 𝑠𝐾𝐾(𝑡) in original textbook, in order to answer the question that Acemoglu 

(2002, 2003, 2009, ch15) attempted to answer. 

Substituting the market equilibrium 𝑤(𝑡)  and 𝑟(𝑡)  in Section 2, i.e. equation 

(2.12), into the household budget constraint equation (4.2), we can obtain 

𝐼(𝑡) + 𝐶(𝑡) =
𝛽

1 − 𝛽
𝑁𝐿(𝑡)𝐿𝑝𝐿(𝑡)

1
𝛽 (1 + (

𝑝𝐾(𝑡)

𝑝𝐿(𝑡)
)

1
𝛽 𝑁𝐾(𝑡)𝐾

𝑁𝐿(𝑡)𝐿
)       (4.6) 

Since 
𝑁𝐾(𝑡)𝐾

𝑁𝐿(𝑡)𝐿
 , 𝑝𝐿(𝑡)  and 

𝑝𝐾(𝑡)

𝑝𝐿(𝑡)
  all are constants in steady state, from equation 

(4.6) to yield the results in steady state as follows,  

�̇�𝐿(𝑡)

𝑁𝐿(𝑡)
=
𝐼̇(𝑡)

𝐼(𝑡)
=
�̇�(𝑡)

𝐶(𝑡)
                                                           (4.7) 
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According to equation (4.1) of the capital accumulation function, it can be 

obtained as following 

�̇�(𝑡)

𝐾(𝑡)
= 𝛼

𝐼(̇𝑡)

𝐼(𝑡)
                                                                         (4.8) 

Substituting equation (4.7) into equation (4.8) yields 

�̇�(𝑡)

𝐾(𝑡)
= 𝛼

�̇�𝐿(𝑡)

𝑁𝐿(𝑡)
                                                                       (4.9) 

Substituting equation (4.9) into equation (2.19) yields 

�̇�𝐿(𝑡)

𝑁𝐿(𝑡)
=
�̇�𝐾(𝑡)

𝑁𝐾(𝑡)
+ 𝛼

�̇�𝐿(𝑡)

𝑁𝐿(𝑡)
                                                       (4.10) 

Substituting the innovation functions (2.4) into equation (4.10) yields 

(1 − 𝛼)𝜂𝐿[𝑆 − 𝑆𝐾(𝑡)] = 𝜂𝐾𝑆𝐾(𝑡)                                         (4.11) 

From equation (4.11) the steady-state allocation of scientists can be obtained as 

follows,  

{
 
 

 
 𝑆𝐾

∗ =
(1 − 𝛼)𝜂𝐿𝑆

𝜂𝐾 + (1 − 𝛼)𝜂𝐿
                    

𝑆𝐿
∗ = 𝑆 − 𝑆𝐾

∗ =
𝜂𝐾𝑆

𝜂𝐾 + (1 − 𝛼)𝜂𝐿

                                       (4.12) 

Substituting equations (4.12) into the innovation functions (2.4) yields the steady-

state technological progress of this model are as follows, 

{
 
 

 
 �̇�𝐾
𝑁𝐾

=
(1 − 𝛼)𝜂𝐿𝜂𝐾𝑆

𝜂𝐾 + (1 − 𝛼)𝜂𝐿
    

�̇�𝐿
𝑁𝐿

=
𝜂𝐿𝜂𝐾𝑆

𝜂𝐾 + (1 − 𝛼)𝜂𝐿
     

                                                      (4.13) 

Equations (4.13) provide that if the capital accumulation function is equation (4.1) 

but not �̇�(𝑡) = 𝑠𝐾𝐾(𝑡) the technological progress of Acemoglu (2009, ch15.6) model 

in steady-state. When 𝛼 < 1 , for the reasonable parameter assumptions, capital-

augmenting technological progress 
�̇�𝐾

𝑁𝐾
> 0 , which indicates that technological 

progress is not purely labor-augmenting under all circumstances. However, when 𝛼 =

1, the capital accumulation function is �̇�(𝑡) = 𝐼(𝑡)，which is the capital accumulation 

function in the Acemoglu (2003) model, where 
�̇�𝐾

𝑁𝐾
= 0, which means technological 

progress is purely labor-augmenting. Therefore, the capital accumulation function 
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�̇�(𝑡) = 𝐼(𝑡)  or 𝛼 = 1  in equation (4.1), is a crucial condition for pure labor-

augmenting technological progress in steady state. Although Acemoglu (2003) obtained 

the result that steady-state equilibrium with purely labor-augmenting technological 

progress, he did not recognize �̇�(𝑡) = 𝐼(𝑡) is the key condition that leads to this result. 

On the contrary, Acemoglu (2003) argues that the asymmetry between capital and labor 

accumulation is the key condition. Due to L is constant, 
�̇�(𝑡)

𝐾(𝑡)
= 𝑠𝐾 > 0  keep the 

asymmetry between labor and capital accumulation. So, to simplify the analysis process, 

he replaced �̇�(𝑡) = 𝐼(𝑡)  with �̇�(𝑡) = 𝑠𝐾𝐾(𝑡)  in Acemoglu (2009, ch15.6) and 

thought the core result that technological progress is pure labor augmentation in steady 

state could still be obtained. However, unfortunately, this replacement changes the key 

assumptions and leads to the incorrect Proposition 15.12. This not only indicates that 

the neoclassical Euler equation cannot be directly applied to other situations, but also 

indicates that the asymmetry of capital and labor accumulation is not a sufficient 

condition for steady state technological progress to be purely labor-augmenting. 

Why is �̇�(𝑡) = 𝐼(𝑡) a key condition for purely labor-augmenting technological 

progress in steady-state? According to Li and Bental (2022), for a neoclassical 

production function with constant returns to scale, the direction of technological 

progress in steady state depends on the relative size of factor supply elasticities. When 

capital has infinite supply elasticity, steady-state technological progress is pure labor 

augmentation. The key function determining the elasticity of capital supply is the 

capital accumulation function, and the key parameter determining the magnitude of 

supply elasticity is 𝛼. When 𝛼 < 1, capital accumulation has only limited elasticity, 

so there can be capital augmentation in steady state. When 𝛼 = 1, capital accumulation 

has infinite elasticity, and steady-state technological progress cannot include capital 

augmentation. This is also the condition for the Uzawa’s steady-state theorem to hold. 

Although the capital accumulation function �̇�(𝑡) = 𝑠𝐾𝐾(𝑡) indicates that capital can 

accumulate indefinitely, the supply elasticity is not infinite. 

 

5. The Neoclassical Euler Equation and the Puzzle of Uzawa's Theorem 

This section proves that the neoclassical Euler equation cannot be unconditionally 

true by contradiction. If the neoclassical Euler equation is valid for any growth model, 

it will inevitably lead to a dilemma of Uzawa’s steady-state theorem.  

Firstly, assume a neoclassical production function as follows 

𝑌(𝑡) = 𝐹[𝐵(𝑡)𝐾(𝑡), 𝐴(𝑡)𝐿(𝑡)]                                      (5.1) 

𝐵(𝑡) and 𝐴(𝑡) represent capital-augmenting and labor-augmenting technologies, 
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respectively. Define 𝑘 ≡
𝐵(𝑡)𝐾(𝑡)

𝐴(𝑡)𝐿(𝑡)
, from the properties of the neoclassical production 

function it can be obtained as follow, 

𝑌(𝑡) = 𝐴(𝑡)𝐿(𝑡)𝐹[𝑘, 1]                                               (5.2) 

In a competitive market, the market rental price 𝑟(𝑡) of capital is equal to the 

marginal return of capital, which can be obtained from equation (5.2) as follows,  

𝑟(𝑡) =
𝜕𝑌(𝑡)

𝜕𝐾(𝑡)
= 𝐵(𝑡)

𝜕𝐹

𝜕𝑘
                                           (5.3) 

Since 𝑘 ≡
𝐵(𝑡)𝐾(𝑡)

𝐴(𝑡)𝐿(𝑡)
 must be a constant, as 

𝜕𝐹

𝜕𝑘
 also be unchanged in steady-state, 

from equation (5.3) we can obtain the following equation  

�̇�(𝑡)

𝑟(𝑡)
=
�̇�(𝑡)

𝐵(𝑡)
                                                                (5.4) 

It is worth noting that equation (5.4) is only derived from the neoclassical 

properties of the production function and the competitive market condition where the 

rental price of capital equals the value of marginal output of capital, and is not related 

to the accumulation function of capital and labor. If the neoclassical Euler equation 

𝜃
�̇�(𝑡)

𝐶(𝑡)
= 𝑟(𝑡) − 𝜌 is valid for all growth models, then according to it, there must be 

�̇�(𝑡)

𝑟(𝑡)
=

�̇�(𝑡)

𝐵(𝑡)
= 0, that is, technological progress cannot include capital augmentation, but 

only be pure labor augmentation. However, as Acemoglu (2009, ch2, p59) pointed out, 

there is no compelling reasons that technological progress can only be purely labor-

augmenting, and it also has been proven that Acemoglu (2009, ch15.6)’s model can 

include capital augmentation in the steady state. This is the dilemma of Uzawa’s steady-

state theorem. However, the analysis process above shows that this dilemma is led from 

the incorrect opinion that the neoclassical Euler equation is the unconditional valid for 

any model. 

 

6. Rental prices of capital and interest rates of investments 

The previous analysis indicates that some famous textbooks directly apply the 

neoclassical Euler equation ignoring the specific environment of the model to lead to 

incorrect results. Why do these famous textbooks make such errors that are not difficult 

to be verified and have not been pointed out and corrected for a long time? This is 

indeed confusing. This note argues that the possible reason is that existing literature 

overlooks the difference between market interest rates for investments and market 

rental prices for capital. If income can be used for both current consumption and 
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investment to increase future consumption, then investment must have sufficient returns 

to attract households to sacrifice current consumption. In a competitive market, this 

return is the market interest rate of the investment. As a factor of production, the rental 

price of capital in a competitive market must be equal to the market value of the 

marginal output of capital. This indicates that the interest rate of investment and the 

rental price of capital are not exactly the same. Since 𝑟(𝑡) represents the market rental 

price of capital, to distinguish them, we define 𝑖(𝑡) as the market interest rate of the 

investment. 

When capital is accumulated by household’s investment, the market rental price 

of capital is closely related to the market interest rate of investment. If one unit of 

investment is converted into one unit of capital, then the market interest rate of the 

investment must be equal to the marginal output value of capital in equilibrium, so the 

market interest rate is equal to the rental price of capital. If the capital accumulation 

through investment decreases marginally due to adjustment cost, in order to keep 

interest rate to be stable, the value of the marginal output of capital must continue to 

rise, and as a result the rental price of capital must also continue to rise. For a specific 

model such as Acemoglu (2009, ch15.6), owing to capital accumulation rate is given 

exogenously, income cannot be invested to increase future consumption, which means 

that consuming all income is the optical choice to maximize their lifetime utility, then 

investment no return, that is, 𝑖(𝑡) = 0. However, 𝑟(𝑡) = [(𝛾𝐾)
𝜀 (

𝜂𝐾

𝜂𝐿
+ 1)]

1

𝜎−1
𝑁𝐾(𝑡)，

as the capital-augmenting technological progress, 𝑟(𝑡) will continue to rise. 

 

7 Concluding Remarks 

The Euler equation is one of the core equations of economic growth models, but 

the neoclassical Euler equation is only a special result of the special capital 

accumulation function in the neoclassical growth model and cannot directly be applied 

to other growth models. This note points out and verifies that the existing well-known 

textbooks all make the common mistakes that directly apply the neoclassical Euler 

equation in other models and lead wrong results. This note further proves that if the 

neoclassical Euler equation holds unconditionally for any growth model will inevitably 

lead to the dilemma that any economic growth model exhibits a steady state to require 

technological progress to be purely labor-augmenting, even in fact the model can 

include capital labor-augmentation.  

 

 



24 

 

 

References： 

1. Acemoglu, Daron, 2002, “Directed Technical Change”, Review of Economic 

Studies 69, pp. 781–809. 

2. ______________, 2003, “Labor- and Capital-Augmenting Technical Change”, 

Journal of European Economic Association, Vol.1 (1), pp. 1-37.  

3. ______________, 2009, Introduction to Modern Economic Growth, Princeton 

University Press, Princeton, New Jersey. 

4. Aghion, Philippe, and Peter Howitt, 2009, Cambridge, Mass.: MIT Press. 

5. Barro, Robert J. and Xavier Sala-i-Martin, 2004, Economic Growth. Cambridge, 

Mass.: MIT Press. 

6. Cass, David, 1965, “Optimum Growth in an Aggregate Model of Capital 

Accumulation.” Review of Economic Studies 32: 233–240. 

7. Irmen, Andreas, 2013, “Adjustment Costs in a Variant of Uzawa's Steady-state 

Growth Theorem”, Economics Bulletin, Vol. 33 No.4, pp. 2860-2873. 

8. Jones, Charles I., and Dean Scrimgeour, 2008, “A New Proof of Uzawa’s 

Steady-State Growth Theorem”, Review of Economics and Statistics, Vol. 90(1), 

pp. 180-182. 

9. Kaldor, N., 1961, “Capital Accumulation and Economic Growth”, in The 

Theory of Capital, ed. by F. A.Lutz, and D. C. Hague, pp. 177–222. Macmillan 

& Co. LTD., New York: St. Martin’s Press. 

10. Koopmans, Tjalling C., 1965, “On the Concept of Optimal Economic Growth.” 

In The Econometric Approach to Development Planning, Amsterdam: North-

Holland, pp. 225–295. 

11. Li, Defu, 2016,“A Proof of the Invalidity of Proposition 15.12 in 

Acemoglu(2009)”, https://mpra.ub.uni-muenchen.de/75329/. 

12. Li, Defu and Benjamin Bental,2022, “What Determines the Direction of 

Technological Progress?”, Tongji University Working Paper. 

13. Peters, M. , & Simsek, A., 2010. Solutions manual for introduction to modern 

economic growth. Princeton University Press. 

14. Ramsey, Frank,1928. “A Mathematical Theory of Saving.” Economic Journal, 

38, December, 543–559. 

15. Rivera-Batiz, L. A. and P. M. Romer, 1991, “Economic Integration and 

Endogenous Growth”, Quarterly Journal of Economics, 106, pp.531-555. 

16. Solow, Robert M., 1956, “A Contribution to the Theory of Economic Growth.” 

Quarterly Journal of Economics 70: 65–94. 

17. Uzawa, H., 1961, “Neutral Inventions and the Stability of Growth Equilibrium”, 

Review of Economic Studies, Vol. 28, February, pp. 117-124. 

https://mpra.ub.uni-muenchen.de/75329/


25 

 

 


