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Abstract 
This paper explores two areas of risk assessment modelling in economics and business: the 
Stress-Strength model and Bayesian techniques. The model assumes that the probability of 
stress exceeding strength is a measure of risk. The interpretation of stress and strength largely 
depends on the particular event or phenomenon being modelled. The use of the Stress-
Strength model is demonstrated through the Gaussian assumption of probability distributions 
for random model parameters, particularly in assessing the risk of not achieving a required 
margin value. The concept of the capability function, representing the difference between 
strength and stress, is introduced in the modelling process. The probability distribution for 
the capability function is initially determined based on the Gaussian distribution of the 
random variables used in the model, allowing for evaluating the risk metric. The Bayesian 
approach is then applied to generalise the problem statement when dealing with unknown 
parameters of probability distributions for the Stress and Strength models. The uncertainty 
of these parameters is modelled through uniform probability distributions, and equations for 
calculating prior and posterior estimates are consistently obtained. Since multidimensional 
integrals are involved in these calculations, and solutions cannot be obtained in closed 
analytical form, Monte Carlo simulation is used to solve this computation problem. 
Keywords: Stress-Strength model, capability function, Gaussian, Bayesian.  
 

1. Introduction 
Many approaches and definitions arise regarding which business should be recognised as 
effective and which should not. The first of the key factors determining a business's 
effectiveness is its financial performance. Another factor is customer satisfaction. A business 
that can meet the needs and expectations of its customers is likely to have a loyal customer 
base and generate repeat business. Employee productivity is also a crucial factor in 
determining a business's effectiveness. Finally, market share is another factor that 
determines the effectiveness of a business that can capture a significant portion of the market 
share in its industry and is likely to be successful and profitable. All these factors can be 
combined into one: a business can be defined as effective if it is able to achieve its strategic 
goals, which can be defined in terms of financial categories, customer satisfaction, market 
share, etc. The desire to deeply understand the reasons for not achieving the company's 
strategic goals involves building adequate models that effectively describe the conditions in 
which these goals occur.  

 
1 This work was supported in part by grant from “Researchers at Risk Fellowships Programme” led by the 
British Academy in partnership with the Academy of Medical Sciences, the Royal Academy of Engineering, the 
Royal Society and Cara. 
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It must be understood that there is always a risk of failure to achieve the set strategic one. To 
assess this risk before or during the execution of a strategic plan, a model must be developed. 
The purpose of the model is to quantify the risk to a decision-maker. The final decision will 
depend on his or her risk appetite. One way or another, the model must be constructed and 
consider most factors accompanying achieving the strategic goals. 
A special kind of modelling is considered in this paper, using a so-called Stress-Strength Model 
(SSM).  The model describes the solution to any economic problem, which reduces to a joint 
analysis of (i) the capabilities of the system (performance, power, and so on) and (ii) the 
impact on the system from the external and internal factors for the system. 
As a typical example, consider a case when needed to determine whether it would be 
provided with enough funds to fulfil an investment project, which must serve as a necessary 
condition for achieving a strategic goal. On the one hand, we are assessing the demand for 
funds for the project to be successful, and on the other hand, we need to model the 
availability of such funds. For this case, we define funds availability as a Strength, whereas 
demand can qualify as a Stress. In dead, the company evaluates its ability to allocate funds 
for the implementation, for example, of a marketing program, and this qualifies as its 
Strength.  At the same time, an assessment is made of the project's demand for financing to 
achieve the strategic goal. This can be interpreted as Stress for the business since the 
company could not provide the necessary financing.  The risk that the required financing will 
not be able to be provided casts doubt on the possibility of implementing the project and 
achieving the strategic goal.  
These models have widespread usage across various fields of knowledge and applications. 
Johnson N, Kotz S., and Balakrishnan N. (1994) discussed the different application areas for 
these models while using univariate probability distributions. Kotz S., Lumelskii Y., and Penski 
M. (2003) proposed a valid generalization of the Stress-Strength model. It is important to note 
that most applications of the SSM analyse the reliability of mechanical structures by 
comparing the load on the object with its tensile strength. If the load exceeds the strength, 
the object collapses; otherwise, it is considered workable, achieving the goal of the 
mechanical structure.  
Despite the apparent usefulness of interpreting the ratio in the context of Stress-Strength 
analysis for economic and business applications, the SSM is not given the attention it deserves 
when assessing economic risks. Within the framework of economics and business, the model 
suggests that stress, which can be defined as any external factor that creates a demand on an 
individual or organization, can be managed by building up strength. Strength refers to the 
internal resources and capabilities that enable an individual or organization to cope with 
stress.  An objective description of using models in the spirit of SSM can be found in Vose, D. 
(2000). 
It is worth dwelling on another feature of solving the problem under consideration. The fact 
is that the assessment of the risk of achieving a strategic goal is based on the model that is 
used for evaluation. As it’s well-known, there are no perfect models at all. Model 
imperfections can generally arise due to various factors, including simplifying assumptions 
made during model development, inaccuracies in measurement data used to develop the 
model, and limitations in the computational techniques used to solve the model equations. 
In some cases, model imperfections may be negligible and have little impact on the accuracy 
of the model predictions and following risk assessment.  However, in other cases, model 



 3 

imperfections can significantly affect conclusions and decision-making.  Savchuk V. (1995) 
suggested a generalization for SSM, which assumed an additive error. 
A model is always built based on some assumptions and fundamentally cannot consider all 
the factors involved. That is, it contains an error. In other words, here we are faced with two 
kinds of uncertainty. The model's parameters create the first uncertainty - we will never be 
able to unambiguously quantify all the factors acting on the process of achieving the goal. 
Therefore, we should simulate this uncertainty using random variables or fuzzy numbers.  At 
the same time, we do not have confidence in the flawlessness of the model itself, and we 
must also take this uncertainty into account and use it to assess the risk of achieving a 
strategic goal.   
How to cope with the uncertainty of the model used and the variables used in it. This is where 
the Bayesian approach comes to the rescue. Firstly, we must stress that “Bayesian” is used 
differently in different disciplines. In statistics and computer science, for instance, anything 
that updates a prior to a posterior based on evidence is called “Bayesian”. In economic 
application, by contrast, the term “Bayesian” refers to a more demanding methodological 
position, according to which anything and everything unknown should be modelled explicitly 
in a state-space model and subject to a prior probability. This position is sometimes referred 
to as “Bayesianism”. It has its roots in the beginning of the 20th century, and Bruno de Finetti 
(1970) is probably the most responsible for developing this viewpoint. Further development 
of the theory and application of the Bayesian approach can be found in Jeffreys, H. (1961), 
Lee, P.M. (1997), Savchuk V., Tsokos C. (2014).   
We will consider that the Bayesian approach to risk assessment and decision-making is a 
statistical method that involves updating prior information with new data to form posterior 
information. In more detail, the Bayesian approach consists of specifying a prior distribution 
for the parameters of interest, which reflects the decision-makers' prior beliefs about the 
values of those parameters. This prior distribution is then updated with new data using Bayes' 
rule to obtain the posterior distribution, which reflects the researcher's updated beliefs about 
the values of the parameters. The advantage of the Bayesian approach is that it allows 
decision-makers to incorporate prior knowledge into their modelling process, leading to more 
accurate estimates and predictions. As a rule, the choice of the prior distribution is subjective 
and may influence the resulting posterior distribution. As new data become available, 
subjective assessments lose their influence. However, the data is usually insufficient for the 
necessary assessments to make reliable decisions. And then, their role is performed by the 
prior subjective assumptions.  
The main purpose of the paper is to solve the problem of risk estimation based on the Stress-
Strength Model, taking care of the uncertainty of data used for decision-making. The solution 
is based on a Bayesian method, which is fundamental for decision-making while estimating a 
risk measure. All considerations in the paper use a Gaussian distribution for random variables 
of the SSM. This assumption is made for the sake of simplicity in obtaining final results. It 
should also be mentioned that this instance is widespread in the actual practice risk 
estimation. 
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2. Stress-Strength Model Risk Assessment 
 
The SSM’s concept is a basis for estimating risk metrics for any economic phenomenon or 
event. The model is based on combining strength, say Q, and stress, say S. An unfavourable 
event occurs if the stress exceeds the strength. For example, if the fund demand for a project 
exceeds available funds, as mentioned before.  
A similar consideration can be used in the enterprise's current activity. In this case, the role 
of strength G is played by an enterprise's total revenue over a given period, whereas the stress 
S is modelled by its total expenses. An unfavourable event occurs when the total expenses 
exceed the revenue. The probability of such a situation can be assigned as a risk of current 
business activity.  
First, we consider the SSM model in the latter case and demonstrate the risk assessment 
technique. We assume the model's variables are Gaussian random with known parameters of 
probability density function (pdf). In the next section, we will generalise the risk assessment 
procedure in the Bayesian sense, assuming the uncertainty of the pdf’s parameters.  
Here, we consider the case when both the strength and stress are assumed to be time-
invariant.  
The essential feature of the model concept is that the strength as well the stress are functions 
of some economic variables which form a vector 𝑿 = (𝑋!, 𝑋", … , 𝑋#). This vector is a 
formalised representation of economic indicators (product price, purchase price, etc.) 
included in the budget. The company's successful activity consists of the fact that the stress 
does not exceed the strength.  Since the economic variables of the budget are random, the 
model involves using a margin of safety Μ. One can understand the introduction of such a 
margin by considering the instance where the Stress is total expenses, and the Strength is the 
total revenue for the given period. Two cases are possible. The risk of the company's current 
activities is that the company should not be unprofitable. A more stringent requirement is 
that the company's current activities must provide it with a given profit value. In the first case, 
Μ = 0. In the second one, the Μ > 0, and its number meets the requirements of the owner or 
CEO.  
Thus, the company risk can be presented by the following expression 
 

𝑅 = 𝑃𝑟. {𝑆(𝑿) + Μ > 𝐺(𝑿)}, (2.1) 
 
Let’s now dwell on the case when SSM presents the continuous budgeting process and the 
goal of the enterprise's current activity is to provide a required value of operating profit, that 
is, earnings before interest and taxes (EBIT). Variable 𝜇 plays the role of the required EBIT.  
To simplify further reasoning, we introduce the denotation of the capability function, which 
is a difference between strength added by the margin of safety and stress: 
 

𝑈(𝑿) = 𝐺(𝑿) − 𝑆(𝑿) − Μ. (2.2) 
 
For this assumption eq. (2.1) can be presented as follows: 
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𝑅 = 𝑃𝑟. {𝑈(𝑿) = 𝐺(𝑿) − 𝑆(𝑿) − Μ < 0}. (2.3) 
 
The probability estimation problem (2.3) is easily solved for Gaussian stress and strength. In 
general, estimating this probability does not seem simple since the functions 𝑆(𝑿), 𝐺(𝑿), and 
hence the 𝑈(𝑿), are generally nonlinear. The assumption of Gaussian variables X also does 
not help since a nonlinear transformation of Gaussian variables does not lead to a Gaussian 
value. Therefore, only an approximate solution is possible. To obtain an approximate solution, 
we will make the following assumptions:  

• the variable vector 𝑿 = (𝑋!, 𝑋", … , 𝑋#) obeys the multidimensional Gaussian 
distribution, 

• function (2.2) is roughly represented as the linear part of the Taylor approximation, 
which is  

 

𝑈(𝑿) ≅ 𝑈(𝑚𝑿) +=
𝜕𝑈(𝑚𝑿)
𝜕𝑚%

#

%&!

(𝑋% −𝑚%), (2.4) 

 
where  𝒎𝑿 = (𝑚!, 𝑚", … ,𝑚#) is a vector of mean values of 𝑿 = (𝑋!, 𝑋", … , 𝑋#), that is 
𝑚% = 𝐸(𝑋%). 
Using the capability function approximation should not be alarming since, ultimately, we are 
estimating the magnitude of the risk with this approximation. It And this estimate is not an 
exact numerical value. A minor difference in estimates, such as 0.24 and 0.27, will be 
interpreted similarly by a decision-maker. 
Returning to the problem of assessing the risk of not obtaining a given EBIT value, consider 
the case when the company's product portfolio is represented by N items so that Strength 
(total revenue) and Stress (Total Costs) are presented as follows: 
 

𝐺 = =𝑝' ∙ 𝑄' ,							𝑆 = =𝑣' ∙ 𝑄' + 𝐹,
(

'&!

(

'&!

 

 
where 𝑝' is the price for the k-th item, 𝑣' is its per unit variable cost, 𝑄' denotes a 
projected sale volume of the k-th item, and 𝐹 is the total fixed costs.  
Then the final equation for the capability function can be presented as 
 

𝑈 = =(𝑝' − 𝑣') ∙ 𝑄' − 𝐹 −Μ.
(

'&!

(2.5) 

 
As we see from (2.5), there are three sets of variables 𝑸) = (𝑄!, 𝑄", … , 𝑄(),                              
𝒎) = (𝑝!, 𝑝", … , 𝑝(),	𝒎* = (𝑣, 𝑣", … , 𝑣(), which are assumed to be Gaussian random and 
can be fully denoted by their mean values, standard deviations and correlation matrix.  
We restrict the model by the case when the pairs of (𝑝' 	, 𝑣'), (𝑝' 	, 𝑄'),	(𝑣' 	, 𝑄') , 
(k=1,2,…N) are subject of correlation.  In other words, we assume that correlations are 
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subject to (i) the unit’s selling price and its variable cost, (ii) the unit’s selling price and its 
sale volume, (iii) the unit’s variable cost and its sale volume. This assumption corresponds to 
the situation when goods on the market are not interchangeable and promoted in the 
market independently.   
By substituting (2.5) into (2.4), determine the expected value of the capability function: 
 

𝑚+ ≅=J𝑚()! −𝑚(*!K ∙ 𝑚-! −𝑚. −Μ.
(

'&!

(2.6) 

 
This means that we approximated the expected value of the function of random variables by 
the function of the mean values of these random variables. Of course, we get an approximate 
value of the expected value and the error of such an approximation is less the smaller the 
standard deviations of random variables.  
Similarly, we can determine the capability function variance. First, we present its approximate 
value for the general case of (2.4), and then simplify it for the case (2.5). The first step gives 
us the following general expression:  
 

𝜎+" = 𝑉𝑎𝑟(𝑈) = 𝐸[(𝑈 −𝑚+)"] ===
𝜕𝑈(𝑚𝑿)
𝜕𝑚%

∙
𝜕𝑈(𝑚𝑿)
𝜕𝑚/

#

/&!

∙
#

%&!

𝜌%/ ∙ 𝜎% ∙ 𝜎/ , (2.7) 

where  𝜌%/ 	(𝑖, 𝑗 = 1,2, …𝑛) form a matrix of correlation coefficients ℝ.  
Let’s transfer (2.7) to the capability function (2.5). Assume that all the products in the 
company’s portfolio are selling independently, which corresponds to the situation when we 
take into account the correlation between the pairs (𝑝' , 𝑣'), (𝑝' , 𝑄'), (𝑣' , 𝑄'), 𝑘 = 1,2, …𝑁. 
In this case correlation matrix can be presented as follows: 
 

ℝ = Z
𝜌)"*" 𝜌)#*# 			… 𝜌)$*$
𝜌)"-" 𝜌)#-# 			… 𝜌)$-$
𝜌*"-" 𝜌*#-# 			… 𝜌*$-$

[. 

 
Under these assumptions (2.7) can be rewritten into the following closed-formed equation: 
 

𝜎+" = 𝑉𝑎𝑟(𝑈) ≅ =\𝑚-!
" 𝜎)!

" +𝑚-!
" 𝜎*!

" + J𝑚)! −𝑚*!K
"𝜎-!

" ] +
(

'&!

 

 	

+2=^𝑚-!J𝑚)! −𝑚*!K(𝜌)!-!𝜎)!𝜎-! − 𝜌*!-!𝜎*!𝜎-!) − 𝑚-!
" 𝜌)!*!𝜎)!𝜎*!_ +

(

'&!

𝜎." . (2.8) 

 
Since we found the expected value 𝑚+	and standard deviation	𝜎+ of the capability function 
U under the assumption of its Gaussian distribution, we can compute the risk metric (2.3): 
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𝑅 = 𝑃𝑟. {𝑈(𝑿) < 0} = Φb
𝑚+

𝜎+
c , (2.9) 

 
where 

Φ(𝑢) = !
√"1

∫ 𝑒2
%#

#
3
24 .	

 
Example 1. Consider a portfolio of three products with the following economic parameters  

Table 2.1. Products’ Portfolio (all monetary numbers are in $1000) 

 
 

Table 2.2. Correlation Matrix 

 
 
The Mean Value and Standard Deviation of the portfolio’s fixed costs are estimated to be 
$160K and $12K, respectively. Using (2.6) and (2.8), we can calculate the Mean Value and 
Standard Deviation of the Capability Function U: 𝑚+ = $75.50𝐾, 𝜎+ = $37.12𝐾. 
If the management requires EBIT value Μ = $45𝐾, using (2.9), we can finally find the risk 
estimate as 0.21.   
The risk assessments were made possible due to the known parameters listed in Tables 2.1 
and 2.2 for the product portfolio. However, in real-life situations, obtaining such precise 
information is often impossible. Decision makers must rely on educated assumptions about 
parameters' expected values and deviations, such as sales volumes and prices. As more 
information becomes available, these assumptions can be refined using the Bayesian 
approach to convert prior information into posterior information. In the following section, we 
will provide a brief description of the Bayesian approach and demonstrate how it is used to 
obtain risk assessments through the application of SSM 

 
3. General Bayesian Technique 
 

From a practical standpoint, the Bayesian approach combines the following three statements. 
Statement 1. The parameter of the system or model under study is assumed to be uncertain, 
and this uncertainty is modelled by means of a random variable. Before observation, the prior 
probability distribution of the parameter is assumed to be known. It should be noted that 

Product #1 Mean Value St. Dev.
Price per Unit 10.00    1.00    
Variable Cost per Unit 5.50       0.60    
Sale Volume 30.00    3.00    

Product #2 Mean Value St. Dev.
Price per Unit 8.50       0.70    
Variable Cost per Unit 4.60       0.44    
Sale Volume 20.00    2.40    

Product #3 Mean Value St. Dev.
Price per Unit 12.00    1.10    
Variable Cost per Unit 7.50       0.65    
Sale Volume 15.00    1.20    

Pair/Product product #1 product #2 product #3
Price/VC 0.35         0.40        0.60      
Price/Volume 0.40 -        0.45 -       0.30 -     
VC/Volume 0.30 -        0.35 -       0.30 -     
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here we are now considering secondary randomness. Primary randomness models a primary 
random variable that describes a process or model. In the considered SSM, the role of the 
main random variable is played by the capability function. At the same time, secondary 
randomness describes the uncertainty of the parameters of its probability distribution. 
Statement 2. A posterior distribution is obtained by combining the prior distribution of the 
parameter (describing secondary randomness) with the results of the observation of the main 
random variable. These observations are modelled by using the so-called likelihood function. 
This combining is made using the Bayes' rule.   
Statement 3. A final decision making is made by maximising the expected utility or minimising 
the losses associated with the application of this rule. In the most practical application, the 
squared-error loss function is used, which leads to the estimation of the parameters or any of 
its functions as a posterior mean value.  
Unlike classical decision theory, which assumes that the parameter of a probability 
distribution for the primary variable (the capability function in this case) is non-random, 
Bayesian theory assumes that the parameter is random. This randomness can be interpreted 
in a frequentist sense, where the parameter's value is generated by a stable and fundamental 
random mechanism whose properties are either known or can be obtained by analysing 
corresponding observations. For example, the parameter could be the price of a batch of a 
specific resource consumed continuously in the production process. In this case, observations 
of previous batches make it possible to estimate the prior distribution, provided that the 
initial technological process is sufficiently stable. For this situation, a frequency interpretation 
of the probability is appropriate, though it is as desirable as rare. 
The Bayesian theory's most challenging question is estimating subjective probabilities and 
quantifying subjective experiences. In the Bayesian methodology, the interpretation of 
judgments is always probabilistic and can be represented by means of:  
• a frequency (objective) interpretation of probability, which is extremely rare since it 

requires many past experiences.  
• rational degrees of certainty are mainly reduced to the mathematical expression of the 

absence of a priori knowledge.  
• subjective beliefs refer to the researcher's attitude towards the phenomenon or system 

under study. 
The areas of application of these methods practically do not intersect. In the first case, in the 
presence of many past observations, both rationalistic and subjectivist positions, the levels of 
belief inevitably coincide with relative frequencies. In the complete absence of knowledge, 
subjective levels of belief must coincide with rational ones, i.e. with the need to accept a 
uniform prior distribution. In all other situations, and they are the exclusive majority, 
subjective levels of belief are a unique way of presenting prior information. . 
The methodical basis of the process of transition from prior information, formalised in the 
form of a prior distribution, to a posterior one by adding observation is Bayes' rule. This 
process can be represented as a sequential accumulation of information. At the initial stages 
of studying a phenomenon, a decision maker with certain qualifications and experience of 
past similar works has some idea of the properties of the object under studying. This view, in 
addition to non-formalized experience, includes empirical data obtained earlier with similar 
studies. During observation, new information appears in the form of a set of data that changes 
the representation (probabilistic judgment) of the properties of the object. Thus, at the same 
time, there is a gradual revision and reassessment of the prior presentation. Moreover, at 
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each moment, we can give a complete description of the properties of the object, and this 
description will be exhaustive in the sense that we have used all the available information for 
it. This process does not stop – it continues with each new observed result. 
In their book, Savchuk V. and Tsokos C. (2014) present a mathematical formalization of the 
Bayesian decision-making scheme that consists of four components. 

I. The model, represented by the probability space (𝛺, ℒ	, 𝑃). Here 𝛺	 = 	 {𝑿} is the set 
of all possible data in some domain Π, which reflects random variables that contribute 
to profit. 𝑿 is the data of a random experiment, thus on 𝛺 it is determined some σ-
algebra ℒ of random events; 𝑃	 ∈ 	ℬ, where	ℬ is the family of probability measures on 
(𝛺, ℒ	). In the traditional Bayesian approach, the probability measure	𝑃 is defined by 
the representation of some parameter 𝜃 (vector or scalar), that is, ℬ	 = 	 {𝑃5 	; 	𝜃	 ∈ 	𝛩} 
is a parameterized family of probability measures. 

II. The probability space (𝛩, ℰ, 𝐻) for the parameter 𝜃 which is assumed to be random. 
Here ℰ is σ -algebra on (𝛩,𝐻) is a probability measure on (𝛩, ℰ	). The measure 𝐻 is 
called a prior probability measure of the parameter 𝜃 . The prior measure 𝐻	belongs 
to some given family of probability measures ℋ . 

III. The set of such possible decisions 𝐷 that each element 𝑑 from 𝐷 is a measurable 
function on 𝛺. The set of decisions 𝐷	contain all estimators of the parameter 𝜃 or 
some function 𝑅(𝜃)	measurable on 𝛺. 

IV. The loss functions 𝐿(𝜃, 𝑑) or 𝐿(𝑅(𝜃), 𝑑) determined on 𝛩 × 𝐷. This loss function 
determines the losses caused by the replacement of the parameter 𝜃 by the decision 
element 𝑑. 

Let’s denote probability density functions (pdf) 𝑓(𝑥|𝜃) and ℎ(𝜃), where 𝑥 ∈ Ω, 𝜃 ∈ Θ and 
assume the joint density of the probability distribution for the random variables 𝑋 and 𝜃 takes 
on the form 

𝑔(𝑥, 𝜃) 	= 	𝑓(𝑥|𝜃)ℎ(𝜃). 
 
In accordance with the Bayes theorem, the conditional density for	𝜃 given 𝑋	 = 	𝑥 is called 
the posterior pdf of the parameter θ and is written as 
 

ℏ(𝜃|𝑥)~ℎ(𝜃) ∙ 𝑓(𝑥|𝜃), (3.1) 
 
taking into account the fact that the normalising factor of the pdf  ℏ(𝜃|𝑥)  is found from the 
integral 

𝛽 = ��ℎ(𝜃)𝑓(𝑥|𝜃)𝑑𝜃�
2!
. (3.2) 

 
An extensive range of tasks for the Bayesian approach to risk assessment opens up economic 
and business applications. Since managers make many decisions based on subjective ideas 
and personal experience, it is often not economically feasible to perform expensive 
experiments that require diversifying resources and time. In this case, the manager needs a 
convenient and accurate methodology for assessing risk.  
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4. Bayesian Risk Estimations for Stress-Strength Model 
Section 3 discussed the classic solution to the problem involving risk assessment. We assumed 
that the parameters 𝜃	 ∈ 	𝛩 for pdf of the random variables that contribute to profit were 
unambiguously defined. However, in most real-life scenarios, we are unable to determine 
their exact values, which introduces uncertainty into the equations of Section 3. Instead, we 
can make some judgments based on our subjective initial information 𝐼6regarding uncertain 
parameters. Then we can formalise them by a prior distribution ℎ(𝜃|𝐼6). As we mentioned 
above, the essence of the Bayesian technique is in assembling a piece of prior information 
with observations of the main random variables that contribute to profit, denoted in Section 
3 as 𝑿.	 
Let’s 𝜔 = (𝑋!, 𝑋", … , 𝑋7) is a sample collected while observing 𝑿. Applying the Bayesian rule 
(3.1)–(3.2) we will use the so-called likelihood function 𝑙(𝜃|𝜔),which	represents the 
probability density function of the observations presented as a function of the parameter 𝜃. 
For such an interpretation of Bayes’ rule, we replace 𝑓(𝑥|𝜃) by 𝑙(𝜃|𝜔) in (3.1).  In this form, 
the Bayes formula is often used to solve applied problems. Finally, we arrive at the following 
expression of the Bayes’ rule: 
 

ℏ(𝜃|𝐼6 , 𝜔) =
ℎ(𝜃|𝐼6) ∙ 𝑙(𝜃|𝜔)

∫ ℎ(𝜃|𝐼6) ∙ 𝑙(𝜃|𝜔)𝑑𝜃
, (4.1) 

 
where ℏ(𝜃|𝐼6 , 𝜔) is conditional with respect to the initial information 𝐼6 ,	 and observations 
𝜔. 
Zellner's (1996) diagram for reconsidering probability, presented in Figure 4.1, illustrates the 
transformation from prior information to posterior information 
 
 
 
 
 
  
 

Fig. 4.1. Bayesian Technique 

 
It is crucial to notice that as sample information accumulates, it prevails in the posterior 
distribution, increasingly concentrated around the parameter's actual value. If two 
researchers had different prior distributions (due perhaps to different initial information), 
their posterior distributions would converge. 
Continue discussing Stress-Strength Model and return to the Risk Metric in the form of (2.3). 
Now, it is presented as a function of 𝜃 ∈ 𝛩: 

𝑅(𝜃) = � 𝑓(𝑥|𝜃)d𝑥
+(8):;

(4.2) 

Initial 
information 𝐼6   

Observation 𝜔	 

P𝑟𝑖𝑜𝑟	 
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛	ℎ(𝜃|𝐼6)	

Likelihood 
Function	𝑙(𝜃|𝜔)   

Bayes’ 
Theorem 

P𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟	 
𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛		
ℏ(𝜃|𝐼!, 𝜔)	
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The problem is to find the prior and posterior estimators for 𝑅(𝜃). These estimators depend 
on the choice of the loss function. As mentioned above, the squared-error loss function is 
used in the most practical application, leading to the estimator as an expected value. Thus, 
given the prior ℎ(𝜃|𝐼6) and posterior ℏ(𝜃|𝐼6 , 𝜔) probability distribution, we can obtain Prior 
Estimator of Risk metric 

𝑅< = � 𝑅(𝜃)	ℎ(𝜃|𝐼6)𝑑𝜃,
=

(4.3) 

as well as the Posterior one: 	

𝑅<> = � 𝑅(𝜃)	ℏ(𝜃|𝐼6 , 𝜔)𝑑𝜃.
=

(4.4) 

To illustrate this technique, return to the example of section 2 when estimating the risk of not 
achieving the required margin Μ. It is assumed that all random variables, namely, price, 
product volume, per unit variable costs, and total fixed costs, are Gaussian distributed with 
given amounts for all their parameters (means values, standard deviations, and correlation 
coefficients). We assume they are uncertain, and their prior distributions are given. To 
simplify the following discussion, we restrict the case by one product in the company portfolio 
and assume that the mean values are uncertain and the standard deviations are known 
precisely.  
According to these assumptions, 𝜃 = J𝜇), 𝜇* , 𝜇- , 𝜇.K, where we use 𝜇' instead 𝑚' to stress 
that the mean values are random. Now the considered risk metric is presented as  

𝑅(𝜃) = 𝑅J𝜇), 𝜇* , 𝜇- , 𝜇.K = 𝑃𝑟. {𝑈(𝑿) < 0} = Φb
𝜇+
𝜎+
c , (4.5) 

where  
𝜇+ = J𝜇) − 𝜇*K ∙ 𝜇- − 𝜇. , (4.6) 

 

𝜎+" = 𝜇-"(𝜎)" + 𝜎*") + J𝜇) − 𝜇*K
"𝜎-" + 𝜎.". (4.7) 

 
The general procedure of computation of the prior and posterior estimates can be presented 
by the following steps: 
Step 1. Based on initial information available or subjective judgments, assign the prior 
probability distribution of 𝜃 = J𝜇), 𝜇* , 𝜇- , 𝜇.K.  
Step 2. Combined (4.6) and (4.7) with (4.5) and then with (4.3), calculate the Prior estimate 
of risk metric 𝑅<. 
Step 3. Based on Bayes’ formula (4.1), given a sample of observation 𝜔, gain the posterior 
distribution ℏ(𝜃|𝐼6 , 𝜔). 
Step 4. Combined (4.6) and (4.7) with (4.5) and then with (4.4), calculate the Posterior 
estimate of risk metric 𝑅<>. 
Apply this procedure to the example started in Section 2. We consider a single-product 
portfolio with the values presented in Table 4.1. 
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Table 4.1. Products’ Portfolio (all monetary numbers are in $1000) 

 
Using (2.6) and (2.8), we can calculate the Mean Value and Standard Deviation of the 
Capability Function U: 𝑚+ = $85.00𝐾, 𝜎+ = $37.83𝐾. If the management requires EBIT 
value Μ = $70𝐾, using (2.9), we find the risk estimate as 0.35.   
We can now proceed to obtain Bayesian risk estimates. In order to do this, we first need to 
set the prior distributions of mean values for per-unit price, per-unit variable cost, sale 
volume, and total fixed costs. We will assume that these parameters follow a uniform 
distribution in the interval [𝜃?, 𝜃"]. This refers to a situation where it is possible to determine 
the range boundaries in which the parameter exists. Still, favouring any particular points 
within that range is impossible. Table 4.2 presents prior information for the discussed case.  
 

Table 4.2. Boundaries of the mean values 

  𝜇′ 𝜇" 
𝜇&         $8,000            $12,000       
𝜇' 25 35 

𝜇(        $3,000              $8,000       

𝜇)      $35,000            $65,000       

 
According to step 2, we must calculate the integral (4.3) in dimension four. Unfortunately, we 
cannot solve this problem using closed analytical methods for the chosen prior distributions. 
As a result, we must use a numerical solution. To do this, we employed Monte Carlo 
simulation, which involves sampling a large number of arguments for the integrable function 
and calculating the value of the function for each of these arguments. By summing up the 
calculated values of the function with high precision, we are able to determine the integral 
value. The accuracy of our results is directly proportional to the number of argument values 
we consider, denoted by N. The final equation for an approximate value of 𝑅< is presented as 
follows: 

𝑅< ≅
∑ ∏ ℎJ𝜃%'K𝑅J𝜃%'K@

%&!
(
'&!

∑ ∏ ℎJ𝜃%'K@
%&!

(
'&!

. (4.8) 

. 
We used a sample size 𝑁 = 1000	and finally obtained 𝑅< = 0.43. 
It is quite understandable that the risk score turned out to be higher, given that assuming 
ambiguity in the model parameters increases the degree of uncertainty, which inevitably 
leads to a higher risk assessment.  
To proceed to step 3, we must make observations and record the actual values of the primary 
parameters in the risk assessment model. These parameters included per-unit price, per-unit 
variable cost, sale volume, and total fixed costs and were denoted by 𝜔. A sample of observed 
values, which are the monthly statistics of the primary parameters, is presented in Table 4.3. 
 

Product #1 Mean Value St. Dev.
Price per Unit 10.00        1.00    
Variable Cost per Unit 5.50          0.60    
Sale Volume 30.00        3.00    
Total Fixed Costs 50.00        5.00    
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Table 4.3. Sample of primary variables (all monetary numbers are in $1000) 

Month 
Per-unit 

Price 
Sale  

Volume 
Per-unit 

Variable Cost 
Total Fixed 

Costs  

Jun       9.00              25     7.30           55.00       

Feb       8.50              23     7.20           46.00       

March       9.80              26     6.80           50.00       

Apr     10.10             28     6.90           54.00       

May     11.00             32     6.30           45.00       

June     12.00             35     5.60           56.00       

July     12.50             37     5.90           48.00       

Aug     11.50             35     5.20           51.00       

Sep     11.50             33     5.50           52.00       

Oct     13.00             38     4.50           46.00       

Nov     12.50             39     4.80           54.00       

Dec     12.80            36     3.70           50.00       
 
According to the assumption regarding the Gaussian probability distribution of the primary 
variables (4.1) can be rewritten as  

ℏ(𝜃|𝐼6 , 𝜔) = 𝛽�ℎ(𝜃%)𝑙(𝜃; 𝜔)
@

%&!

, (4.9) 

where the likelihood function can be expressed by the following equation 

𝑙(𝜃; 𝜔) =��𝜑(𝑥%
(');

@

%&!

#

'&!

𝜃% , 𝜎%), (4.10) 

and 𝜑(𝑥;𝑚, 𝜎) is a Gaussian probability density function.  
In equation (4.7), β represents the coefficient that yields a normalized posterior probability 
density function:  

𝛽 = �� ℎ(𝜃)	𝑙(𝜃; 𝜔)𝑑𝜃,
=

�

2!

. (4.11) 

The last fourth step allows us to obtain the posterior risk estimate. Here we will again have to 
use Monte Carlo simulation, for which we will apply formula (4.8), in which we will replace 
the prior distribution ℎ(𝜃) with the posterior one, which is obtained using (4.9) – (4.11). The 
estimate obtained as a result of the calculations was 𝑅<> = 0.48. The observations made 
increased the risk of achieving a given margin Μ = $70𝐾.  
The fourth and final step enables us to estimate the posterior risk. Once again, we need to 
apply Monte Carlo simulation using formula (4.8), but this time we will substitute the prior 
distribution ℎ(𝜃) with the posterior distribution obtained from (4.9) to (4.11). After the 
calculations, we obtained an estimate of 𝑅<> = 0.48. Furthermore, the observations have 
augmented the risk of achieving a specified margin of margin Μ = $70𝐾. 
An interesting pattern is observed if we compare the prior and the posterior estimates with 
increasing requirements regarding to the required margin M. The graph in Figure 4.1 shows 
that the posterior estimate has a higher growth rate as 𝑀 increases. For moderate values of 
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the required margin (from zero to $60K), the prior estimate is lower than the posterior 
estimate. However, when crossing the indifference point (around $60K), the posterior 
estimate is always higher. If the margin requirement increases significantly, both risk scores 
will eventually converge to one. 
 

Fig. 4.1. Risk Estimates vs margin 𝑀 

 
 
Conclusions 
 
The considered task involved comparing two risk assessment methodologies based on the 
Stress-Strength model: classical and Bayesian. The Bayesian method considers the 
parameters of the system to be random and takes into account subsequent experiments in 
the design process. Bayesian estimators can be seen as a generalization of classical 
techniques.  
The classical assessment offers simplicity and quick risk assessments but relies on prior 
knowledge of the parameters of the model's variables. This information is not always 
available in practice.  
The Bayesian approach removes this assumption and presents prior information about the 
variables less strictly and responsibly. However, the Bayesian approach allows decision-
makers to refine prior representation as values of primary variables are obtained. This comes 
at the cost of more complicated computational schemes. 
The proposed method is thoroughly illustrated using numerical examples, which enable a 
decision-maker to understand the general sequence of evaluation and apply it in specific 
practice. 
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