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What can granular data on investor holdings tell us about stock price variation? I model
the growth rate of a portfolio manager’s holdings based on evolving asset fundamentals
by including demand for asset-specific characteristics in a portfolio optimisation function.
Alongside changes in asset characteristics, the manager re-allocates wealth according to
evolving preferences. This introduces memory into the portfolio management problem,
as past investments inform the choice for new allocations. Using the model, I decompose
the growth rate of mutual fund holdings by the effect of i) changing stock characteristics, ii)
new preferences, and iii) mean reversion in latent demand. I nest these estimated compo-
nents, by aggregating holding growth rates by the fund’s total net assets, into an expression
for stock price growth. I find that changing preferences explain at least as much variation
in stock prices as changes in fundamentals. This demonstrates the importance of studying
heterogeneity in investor preferences, and their evolution, in furthering our understanding
of stock market phenomena.
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1 Introduction

With data on the universe stock holdings, one could attribute a stock’s price growth to the
growth rate of investor-level holdings and the cross-section of investor wealth:

r = w−1 · g,

where r is the stock price growth rate, a cross-product of the vector of lagged market equity
shares by investor w−1, and the vector of growth rates g in each investor’s portfolio equity.
Given observed wealth w−1, can we predict g to forecast return r?

Variation in stock returns is typically modelled from the perspective of one represen-
tative investor, who evaluates commonly observed risk factors (Sharpe 1964, Lintner 1965,
Fama & French 1993, 2015). Certain avenues of research incorporate investor psychology
into financial models to capture a variety of reactions to financial news (De Long et al. 1990,
Hirshleifer 2015, Bordalo et al. 2020). Their predictions still focus on central tendencies in
investment decisions, typically among a few groups of investor types. Taking a data-focused
approach, Koijen & Yogo (2019) demonstrate the theoretical and empirical importance of
disaggregated data on investor holdings in reconstructing aggregate stock price dynamics.

This paper builds on the recent efforts of Koijen & Yogo (2019) to model holding growth
rates from portfolio re-allocations triggered by an evolving cross-section of asset fundamen-
tals. The core model in this paper highlights the trade-off between i) optimising a portfolio
according to fundamentals, and ii) the amount of re-balancing, which is constrained by a
fixed number of transactions. The first effect is the force that data on firms’ fundamental
values exert on the manager’s valuations. The second effect, expressed as square deviations
in holding growth rates, is an adjustment cost that introduces inertia to portfolio changes.1

This initial framework reproduces the aggregate dynamics of well-known factor mod-
els. For example, when the portfolio manager minimises exposure to systemic risk stem-
ming from stock returns’ covariances with the market return, the framework returns the
Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965). Introducing
more characteristics leads to a multi-factor model, such as the popular Fama-French Factor
(FFF) model using book-to-market values to measure liquidation risk and firm size (Fama &
French 1993).

Beyond reproducing standard models, this paper studies the inertia produced, not just
by adjustment costs, but by the portfolio manager’s preferences. I achieve this by incorpo-
rating the asset demand system studied by Koijen & Yogo (2019) into the portfolio manage-
ment problem. Koijen & Yogo (2019) use a demand system approach to capture the het-
erogeneity in investor-level investment decisions. In my approach, demand matters since
observed fundamental value can be surprising in a setting with noise, and perhaps unreli-
able. I introduce a new objective that regulates the portfolio manager’s exposure to surprises
in fundamental news is analogous to introducing diminishing returns to fundamental value
at the stock level, as in Koijen & Yogo’s (2019) demand system. A catch-all term for this

1This term sums to realised price volatility when aggregating over all investors, an interesting parallel to
the model-implied variances used in Markowitz’s (1952) mean-variance optimiser.
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objective is entropy production. In addition to preserving the possible heterogeneity in man-
agers’ preference, entropy production gauges the extent to which a portfolio’s exposure to
fundamental value remains diversified – and robust to surprises.

The prediction of this study is that portfolio re-allocations are informed by both funda-
mental values, as well as past allocations. This introduces variable level and change effects
of fundamental values onto the cross-section of holding growth rates for each manager. Ex-
plaining past allocations using past asset characteristics, which is the exercise in Koijen &
Yogo (2019), further decomposes variation in past allocations between the share explained
by observed fundamental values, versus the share attributed to latent demand. The main,
novel contribution of the paper is a decomposition of holding growth rates at the investor
level by three components: i) the effect of changing fundamental values, ii) the effect of
changing preferences, and iii) the effect of latent asset demand.

Application The model asserts a structure on stock returns, relying on disaggregated
holding growth rates by a cross-section of investors. I decompose the variation in returns
explained by investor-level i) changes in value derived from fundamentals, ii) changes in
preferences, iii) mean reversion in latent demand. To measure each component, I use quar-
terly data on mutual fund holdings from the Center for Research in Security Prices (CRSP).
While the data capture only a fraction of the investment universe, they provide valuable
insights into the role of varied investment mandates, classified by CRSP as, for example,
growth- versus income-focused mutual funds. I use firm data from Compustat and stock
price data from CRSP to construct variables for five fundamental characteristics, following
the five factor model of Fama & French (2015).

I construct a proxy for stock price growth by aggregating holding growth rates by mutual
funds, weighing their holdings by their reported total net assets. I find that this ‘aggregated’
proxy explains three quarters of variation in stock price growth, even though mutual fund
assets cover roughly 18% of stock market equity. Using the repeated cross-sections for port-
folio holdings at the mutual fund level, I first estimate the latent demands by adapting the
asset demand specification of Koijen & Yogo (2019). In the second step, I estimate the coef-
ficients to the dynamic asset demand model using estimated latent demands, as well as lags
and first differences in the stock characteristics. I find large heterogeneity in estimated co-
efficients, which remains difficult to disentangle when categorising funds by their reported
objectives.

The different components to holding growth rates open the doors to predicting stock re-
turns. Changes in fundamental characteristics explain up to 15.1% of stock price growth
variation through growth in mutual fund holdings, so predicting changes in firm funda-
mentals can help predict a similar fraction of stock price variation. Similarly, preferences
account for up to 24.3% of stock price variation, which exceeds the share of variation ex-
plained by changing fundamental characteristics. Explaining changes in strategies and pref-
erences constitutes an interesting avenue for novel research. Around half of variation in
stock returns stems from unexplained variation in holding growth rates, which highlights
the fact that funds likely follow a wide variety of signals, many of which may not be ob-
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served.

Related literature Different literatures lend a range of perspectives on the role of entropy
production in the cross-section of portfolio holdings. Since the portfolio manager’s asset
demand is reflected by the market equity of firms, the model produces a factor not dissim-
ilar from the FFF ‘Small-Minus-Big’ (SMB) portfolio.2 In this fashion, this paper integrates
recent advances in the study of asset demand into more traditional factor models (Koijen &
Yogo 2019, Gabaix & Koijen 2021).

Koijen & Yogo (2019) use holdings data at the investor level to reconstruct aggregate
stock price fluctuations as a function of heterogeneous demand for characteristics. The au-
thors detail the importance of mean reversion of latent asset demand at the investor level. In
a recent paper, Gabaix & Koijen (2021) demonstrate the distortions from mandates held by
large mutual funds on the share of capital invested in stocks, versus bonds. Their amplifying
mechanism produces significant impacts on overall valuations even when new capital flows
are relatively small. In contrast to the asset demand model of Koijen & Yogo (2019), this
paper proposes a dynamic asset demand model that predicts the growth rate of portfolio
holdings as a function of characteristics-based demand. In particular, investors are com-
pelled to decrease holdings in firms that reveal positive changes in fundamental value, so
that their portfolio’s exposure to fundamentals remains well diversified. The foundational
assumption that justifies this behavior is that investors exhibit a preference for variety in
their portfolio’s exposure to fundamentals, so that fundamentals from one asset to the an-
other are not perfect substitutes.

A literature in portfolio management studies the tradeoff between a portfolio’s depth –
its aggregate Sharpe ratio – against its breadth – the number of stocks held (Grinold 1989,
Ding & Martin 2017). Chien et al. (2012) study excess stock price volatility due to investors
re-balancing their portfolios infrequently. They emphasise the interaction such intermit-
tent re-balancing has with other market actors, who need to anticipate more aggregate risk
during downturns. Calvet et al. (2009) study administrative data on portfolios of Swedish
households, and document the strong heterogeneity with which individual households re-
balance their portfolios. This paper links portfolio re-balancing to the characteristics-based
approach of Koijen & Yogo (2019), using a utility function that compels the portfolio man-
ager to keep a diversify source of fundamental value through their exposure to different
assets.

Another angle enters from the learning literature, in that the portfolio manager bene-
fits from introducing some ‘shrinkage’ with which to estimate valuations from noisy data.
In this fashion, the model links to the literature on reinforcement learning (Camerer &
Ho 1999, Malmendier & Nagel 2011), as well as algorithmic trading (Cover 1991) This
behaviour is similar to the use of robustness in Hansen & Sargent (2008), who propose to
replace expected value in rational agents’ objectives with the entropy of value. In this way,

2A particularly desirable property of market capitalisation as a second factor is its role as ‘zero-covariance’
diversification; among a sequence of totally uncorrelated asset returns, optimal allocations tend to be uniform
(Samuelson 1967).
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they optimise for a distribution of possible outcomes, which is desirable when the agent
takes into account the likelihood their model is mis-specified. Their efforts are closely re-
lated to Sims’s (2003) use of rational inattention, which is motivated by the limited capacity
economic agents posses in processing data. Again, entropy is a natural way with which to
describe this channel capacity.

The key message of this paper is that asset demand introduces entropy production into
portfolio managers’ optimisation programme. The result is a preference for diversification,
which, on aggregate, results in a factor for price returns linked to their overall market value.
This size effect is documented first by Banz (1981), and included in the attempts by Fama &
French (1992, 1993) to isolate the few factors that maximally describe the cross-section of
stock returns. Interestingly, Pollet & Wilson (2008) study an intermediate results, and show
the improved performance achieved by funds that diversify more in response to growing
larger.

Structure The paper is structured as follows. Section 2 introduces the portfolio model that
links the evolution of asset demand to the growth rate of holdings. This model produces a
decomposition for variation in stock price growth, which I test empirically in Section 3.
Section 4 concludes.

2 Modelling a portfolio’s evolution

The motivation behind the model is to study market equities, and their changes, as a func-
tion characteristics-based demand at the portfolio level. The main output is a linear model
that expresses the growth rate of portfolio investments as a function of i) the characteris-
tics valued by the portfolio manager – the asset demand function of Koijen & Yogo (2019),
ii) the evolution of preferences and iii) latent demand. This evolution can be interpreted
via Hansen & Sargent’s (2008) use of robustness, so that the manager chooses allocations,
not only in accordance with characteristics, but also model mispecification. In this paper,
model mispecification arises from a change in the demand elasticities the manager exhibits
for the relevant characteristics.

I start with a simple version to demonstrate the foundational mechanisms using portfolio
management. This version is interesting on its own since it reproduces the CAPM as a
special case. I then introduce entropy production to study equilibrium changes in portfolio
shares as a function of changing asset demand. This behaviour manifests as a moment
condition in the cross-section of stock returns corresponding to the size factor.

Notation The model includes an initial period and final period, t − 1 and t, to describe a
cross-section of M stocks indexed by j. Since the focus is on choice between risky assets,
I do not include a risk-free security, although many of the results for holding growth rates
can be in excess of an arbitrary risk-free rate. While the model applies for a cross-section of
portfolio managers with possibly heterogeneous beliefs, I set it up from the perspective of
one manager only for notational ease.
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At any given time, the total portfolio equity in all M firms is Yt =
∑M
j=1Yj,t, where Yj,t

denotes the portfolio equity of firm j. The first variable of interest is the equity for firm
j as a fraction of total equity yj,t ≡ Yj,t/Yt, which is strictly positive under a short-selling
constraint faced by the manager. Portfolio equities evolve over time by a holding growth
rate gj,t ≡ ∆Yj,t/Yj,t−1, where ∆ denotes the difference operator ∆xt ≡ xt −xt−1. These holding
growth rates only reflect changes in equity, without any dividend payments.

A bar denotes the valuation-weighted average of a variable throughout the paper, x̄t ≡∑M
j yj,t−1xj,t, using past valuations to stay consistent when dealing with average growth

rates. Thus, the total growth rate ḡt ≡
∑M
j=1 yj,t−1gj,t = ∆Yt/Yt−1 is the holding growth rate

averaged across j. Since the model uses several permutations of variances and covariance, I
standardise their notation using

σ2(xt) ≡
M∑
j=1

yj,t−1

(
xj,t − x̄t

)2

for the variance of a vector xt of variables xj,t weighted by portfolio equities yj,t−1, and

σ (zt,xt) ≡
M∑
j=1

yj,t−1

(
zj,t − z̄t

)(
xj,t − x̄t

)
.

for covariances between values zj,t and xj,t weighted by market equities yj,t−1. As such, I
define holding growth variation as the weighted sum of squared holding growth rates.

Definition 1. Holding growth variation is

σ2(gt) =
M∑
j=1

yj,t−1

(
gj,t − ḡt

)2
,

the value-weighted, average squared deviation in return r.

It may help to treat the portfolio manager as a social planner in charge of the market
portfolio, in which case holding growth rates coincide with stock price returns, and holding
growth rate variation is the cross-sectional variance in stock price returns. Holding growth
variation, defined by Definition 1, is a measure of realised volatility I use instead of the
model-implied volatilities that are commonly used to compute portfolio tracking errors. I
later discuss how holding growth variation relates to the adjustment cost the manager faces
when re-balancing their portfolio.

Fundamental value Firms reveal news on their fundamental value dj,t. For now, I start
with a single characteristic used to gauge fundamental value. In practice, I use character-
istics from the five factor Fama-French Factor (FFF) model (Fama & French 2015). Same
as with holding statistics, the average fundamental value is weighted by market equities,
d̄t =

∑M
j=1 yj,t−1dj,t, and dispersion in fundamental value in the weighted cross-sectional vari-

ance in fundamental value dj,t is σ2(dt).
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Welfare A portfolio manager derives welfare from maximising the expected fundamental
value of their portfolio

Wt = E

[
f (dj,t)

]
,

where f (·) is a differentiable, monotonically increasing payoff function. The foundational
assumption is that the manager is required to liquidate an unknown portion of her portfolio
with some probability. In that event, she derives welfare

∑M
j=1Aj,tf (dj,t) where Aj,t ≤ Yj,t is

the required liquidation amount, of which each unit grants f (dj,t). For simplicity, I assume
that f (dj,t) is linear for now, so that welfare isWt =

∑M
j=1Yj,tdj,t.

The portfolio manager faces a decision on re-allocations ∆Yj,t, which the change her
welfare between t − 1 and t:

∆Wt = ∆

 M∑
j=1

Yj,tdj,t


=

M∑
j=1

∆Yj,tdj,t +
M∑
j=1

Yj,t−1∆dj,t. (1)

Note that the manager derives welfare from inflating holdings for all stocks uniformly by
some constant ∆Yj,t = ∆Yt/M. I address this issue by fixing the change in portfolio equity
to an exogenous value ∆Yt, so that improvements in welfare stem from the re-allocations of
capital between assets.

Competing investors This model naturally extends to a setting where multiple investors
with heterogeneous beliefs form a stock market. In particular, Yi,j,t would denote the port-
folio holding of an investor i in stock j, who re-allocates according to their – potentially
private – information di,j,t. Koijen & Yogo (2019) take this view by including a market clear-
ing constraint. In order to focus the attention to the key mechanism for this paper, I only
focus on the allocation decision of the manager in isolation.

2.1 Model with one factor

In this section, I gauge the change in portfolio equities ∆Yj,t between two periods driven by
the fundamental value revealed at the start of period t, dj,t. In this way, the fundamental
values for a cross-section of public firms trigger portfolio re-allocations.

This model yields what looks like the traditional factor structure of returns, expressed
for portfolio-level holding growth rates, where the factor driving the cross-section of returns
is the characteristic the manager seeks to target. If the characteristic is exposure to the
market return, the result is the classic CAPM of Sharpe (1964) and Lintner (1965).

Objective: fundamental value The portfolio manager is tasked with re-balancing their
portfolio allocations to incorporate information dj,t about their fundamental value. Given
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that the characteristic is constant, dj,t−1 = dj,t, substituting ∆dj,t = 0 into Eq. 1 isolates the
improvement in welfare due to better positioning:

P =
M∑
j=1

∆Yj,tdj,t. (2)

Quantity P is the projection of fundamental values dj,t onto portfolio re-allocations ∆Yj,t.
This total is analogous to some ‘price discovery’ on behalf of the manager, who re-allocates
wealth to maintain a level of exposure to the fundamental value of each stock. For simplicity,
I generally refer to P as fundamental ‘profit’, because it reflects the improvement in the
portfolio’s average fundamental value through better positioning.

Constraint: holding growth variation The manager is assumed to faced an adjustment
cost when changing portfolio allocations, which I represent as a constraint on the total
squared deviations of portfolio holding growth rates. The total adjustment between the
set of old an new valuations is thus the sum of squared distances:

V2 =
M∑
j=1

(
∆Yj,t

)2

Yj,t−1
=

M∑
j=1

Yj,t−1g
2
j,t. (3)

In this context, V2 is a measure for the non-dimensional distance between the market port-
folios at times t − 1 and t. This lends an intuitive perspective on holding growth variation
as the distance between the market portfolio at time t from the portfolio at time t − 1. The
potential profit from re-allocations can be high when old allocations Yj,t−1 are far from op-
timal. If the manager is compelled to re-allocate more aggressively to meet a given level of
profit P , she will raise holding growth variation as a by-product.

Constraint: liquidity A final constraint fixes the change in total portfolio equity to

∆Yt =
M∑
j

∆Yj,t, (4)

labelled as the portfolio’s liquidity. This constraint regulates the degree to which the portfo-
lio manager is able to make new investments without funding them out of other positions.
In the data, This variable corresponds to the change in total net assets of mutual fund port-
folios.

Solving the programme Figure 1 demonstrates the core mechanism of the simple model.
Initial valuations Yj,t−1 and fundamentals dj,t are given at the start of the period. The port-
folio manager has to choose new valuations Yj,t, which generate deviations ∆Yj,t. Fixing liq-
uidity ∆Yt and the sum of squared deviations, in the form of holding growth rate volatility
V2, constrains the manager’s ability to increase profit P by better positioning her portfolio
according to fundamentals.
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Y2,t−1
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YM,t−1



d1,t

d2,t
...

dM,t




∆Y1,t

∆Y2,t
...

∆YM,t



Initial
allocations

News Re-balancing

∑2
V 2

∑
∆Yt

∑
P

Figure 1: Visualising the relationship between profit P and holding growth rate volatility V2: this paper
models volatility as a by-product of portfolio re-allocations ∆Yj,t , triggered by the revelation of fundamental
values dj,t . Returns on holding fundamentals dj,t , P , are in equilibrium with liquidity ∆Yt and holding growth
rate volatility V2. Arrows indicate the chain of causality, and symbol

∑
indicates summation across vector

elements.

The system for portfolio re-allocations ∆Yj,t is in equilibrium when profit is maximised,
subject to the constraint on holding growth variation and liquidity. It amounts to solving
the Lagrangian

L =
M∑
j=1

∆Yj,tdj,t −
1

2κ

 M∑
j=1

Yj,t−1

(
∆Yj,t
Yj,t−1

)2

−V2

− ρ
 M∑
j=1

∆Yj,t −∆Yt

 , (5)

where the objective is profit P , with constraints on volatility V2 and liquidity ∆Yt. Param-
eters κ and ρ are the relevant multipliers. I state the solution to the maximisation problem
in Proposition 1.

Proposition 1 (Single factor model). Profit P is maximised when portfolio equity grows at rate

gj,t = ρ+ β(gt,dt)dj,t, (6)

where

β(gt,dt) =
σ (gt,dt)
σ2(dt)

, σ (gt,dt) = σ (gt)σ (dt), ρ = ḡt − β(gt,dt)d̄t,

σ2(dt) is the cross-sectional variance in fundamental news, and σ (gt,dt) is the weighted covari-
ance of fundamentals and returns.

Proof. See Appendix A.1

Eq. 6 in Proposition 1 is just a linear regression of stock holding growth rates on funda-
mental values at the portfolio level. The subtle difference is that the average overlap between
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holding growth rates and fundamentals – encapsulated by covariance term σ (gt,dt) – is re-
lated to quantity P the portfolio’s manager actively maximises by growing their allocations
at variable rate gj,t.

Since holding growth variation σ (gt) is set by V2, profit is ultimately constrained by the
triangle inequality

σ (gt,dt) ≤ σ (gt)σ (dt).

Therefore, the line of reasoning for the manager is that she should adjust her portfolio ac-
cording to i) overall dispersion in fundamental values and ii) her tolerance to adjustment
costs by incurring more variable re-allocations. She can subsequently use those aggregates
to determine how her portfolio can maximise exposure to fundamentals, by constructing
the slope coefficient β(gt,dt). The intercept ρ reflects changes in total portfolio equity.

This logic follows that of finance tradition, which asserts that stock holding growth rates
reflect the exposure to factor innovations that feature in the covariance of holding growth
rates (Ross 1976, Fama & French 1993). In this setting, the beta accompanying a given
characteristic is tied to each portfolio manager’s possibly varying preferences for portfolio
adjustments V2. This is the one source of heterogeneity on the condition that fundamentals
dj,t are common to all managers.

In the full version of the model, I introduce portfolio equities as a second characteris-
tic for the manager to optimise holding growth rates over, thus yielding a kind of ‘Small-
Minus-Big’ factor. In doing so, I integrate the characteristics-based approach of Koijen &
Yogo (2019) into what looks like a standard factor model. The discussion in Section 2.4
demonstrates how exposure to market risk as the measure for fundamental value yields the
CAPM as a special case.

2.2 Demand as a robustness criterion

In Proposition 1, allocations adjust according to data on fundamental values. I now extend
the framework to incorporate asset demand. I then discuss how asset demand acts as the
portfolio manager’s memory of past preferences, embedded in initial portfolio allocations,
so that the manager is skeptical of adjusting to new data. This use of demand is inspired
by Koijen & Yogo (2019), who model the cross-section of portfolio equities using a demand
system, but then models the evolution of this demand system in the manner of Hansen &
Sargent’s (2008) robustness criterion.

Demand and market equity Assume that the portfolio manager can liquidate portfolio
holdings, earning a payoff set according to an exponential utility function with fundamental
value as variable input:

U (dj,t) = 1− e−λdj,t ,

where λ is the relevant elasticity. Setting the equity share of stock j equal to the marginal
utility derived from exposure to fundamental value dj,t yields

yj,t = ke−λdj,t , (7)
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Yj,t−1

dj,t

Yj,t

(a)

Yj,t−1

yj,t
yj,t−1

dj,t

Yj,t

(b)

Figure 2: Re-pricing caused by (a) fundamentals vs. (b) demand for fundamentals.

where k is a constant, and λ the demand elasticity with respect to fundamental dj . Koijen &
Yogo (2019) estimate this system using time-varying parameters for each fund separately, in
order to investigate the heterogeneity and temporal variation in the characteristics sought
out by different types of investors – households, pension funds, mututal funds, banks etc. I
will refer to equity shares yj,t as the portfolio manager’s demand for asset j. The growth in
demand is

log
yj,t
yj,t−1

,

and reflects diverging marginal utilities in a cross-section of stocks, forced by fundamentals
dj,t. The portfolio manager is now tasked with re-allocating the market portfolio according
to changes in asset demand triggered by fundamental news. Welfare improves according to

∆W =
M∑
j=1

∆Yj,t log
yj,t
yj,t−1

. (8)

The significance of replacing fundamental values in Eq. 1 with demands is to add a layer
to the portfolio manager’s decision to re-allocate, which I demonstrate visually in Figure
2. Depending on the specific form of demand, allocations may be invariant with respect
to certain forms of the payoff function. The payoff function in Eq. 7 is one of the simpler
options, in which asset demands are invariant to a shift parameter, as well as a multiplier. I
discuss this in more detail after outlining the implication this has for the portfolio manager’s
programme.

Maximising welfare with entropy production To see the role of changing demand in the
model, substitute Eq. 7 into Eq. 8:

∆W =
M∑
j=1

∆Yj,t
(
logk −λdj,t

)
−

M∑
j=1

∆Yj,t logyj,t−1

= (∆Yt) logk −λP +∂E ,

∂E ≡ −
M∑
j=1

∆Yj,t logyj,t−1, (9)

where I define ∂E as ‘entropy production’. Re-allocations based on changes in demands now
incorporate entropy production in addition to profit from fundamentals P and liquidity
∆Yt. I contrast this mechanism to the simple one studied in the preceding section in Figure
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2. Welfare improvements are not just a function of better positioning to fundamentals,
but also the extent to which the portfolio managers has to change her mind regarding how
she derives utility from exposure to fundamentals. Profit P remains in the objective, and
encapsulates the direct impact of fundamentals in the same fashion as in the simple version
of the model.

Why entropy? In the same way that entropy governs model mispecification in Hansen
& Sargent (2008), entropy production in the present model is a natural measure for the
adjustment in the portfolio manager’ frame of reference by re-valuing the parameters to her
utility function. These parameter adjustments can change the manner in which the manager
allocates new wealth to stocks.

Whether this additional step in deciding allocations increases, or decreases the amount
of aggregate holding growth rate volatility will be seen to depend on aggregate outcomes as
well as the specific scaling of fundamental values dj,t. This scaling is incorporated by the
demand function in Eq. 7. For instance, if fundamentals improve uniformly for all stocks,
so that fundamental dj,t = a+ d′j,t∀j relative to some benchmark value d′j,t, there is no need
to re-allocate. Demand shares yj,t remain constant thanks to an adjustment in parameter
k, that ensures all demands sum to one. This was the case trivially in Proposition 1, which
depends on fundamental dispersion, since adding a constant to a random variable does not
increase its variance.

However, demands in Eq. 7 are also invariant with respect to a multiplier a, such that
dj,t = a × d′j,t, due to an adjustment in λ. This is not the case in the model without asset
demand, where fundamental dispersion would change by a factor a2. We therefore have a
situation where fundamental dispersion may well have increased, and yet asset demands
are the same, so no re-allocations take place.

Persistent asset demand Entropy measures inertia exhibited by asset demand in Eq. 7.
Figure 3 demonstrates how persistence in asset demand counteracts the impact of funda-
mental news on final valuations. Despite the higher fundamental value revealed on behalf
of the orange stock, the portfolio manager exhibits preference for smooth allocations – a
classic motivator for utility in economics. This preference compels them to re-balance the
allocations made with respect to fundamentals alone, selling off the orange stock and buy-
ing more of the green ones, so that the final portfolio is less concentrated in the orange stock.
Measured as entropy production, this inertia contributes volatility to holding growth rates
on top of dispersion in fundamental news.

There are practical reasons for persistence in asset demand, for example transaction
costs, but fundamentally the model requires the manager to change her preferences regarding
market equity as a function of incoming news on her targeted fundamental characteristic.
Gabaix & Koijen (2021) motivate persistent asset demand at the fund level by noting that
holdings are not perfectly responsive to news, and funds pursue fixed investment mandates.

However, it is clear that there are strong parallels to the field of robust control, and the
exercise in this paper mimics the implementation of robust control methods on behalf of
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Figure 3: Persistent asset demand contributes volatility to changes in asset prices driven by fundamental
news: in this cross-section of 10 hypothetical assets, which are uniformly values at the start of the period
(leftmost plot), the orange asset receives highly positive news on fundamental valuations (center-left plot).
Since the portfolio manager exhibits a preference for the demand system at the start of the period, she re-
balances the portfolio by removing a fraction of funds from the orange asset, and allocating those to the green
assets in the cross-section (center-right plot). The final distribution of valuations is therefore a combination of
changes driven by fundamental news, and asset demand.

rational agents explored in Hansen & Sargent (2008). In their setting, it is not enough for an
agent to incorporate relevant news, but they also make decisions that are least exposed to
model mispecification. I provide additional motivation for entropy as a measure of diversi-
fication in Appendix C.1, and discuss the role of asset demand as an additional SMB factor
in Section 2.4.

New programme Separating the manager’s welfare objective into three aggregates, namely
liquidity, profit and entropy production, outlines which quantities can be used for optimisa-
tion. In the programme, I set entropy production as the quantity to maximise, and set profits
P and liquidity ∆Yt as the corresponding constraints. The implication is that the manager
seeks to re-allocate based on past asset demand − logyj,t−1, but she cannot afford to deviate
from fundamental news. This effectively mimics Bayesian updating, whereby the managers
lends some weight to a prior distribution of demands yj,t−1, then adjusts according to new
data on fundamentals dj,t.

Instead of maximising profit from fundamentals P , the manager now seeks to maximise
entropy production ∂E to satisfy her asset demand. Note that this amounts to introducing
a second ‘size’ characteristic to the single-factor model in Proposition 1. Profit from funda-
mentals now act as a constraint, as the manager has to adjust her demand according to news
on fundamentals to the extent that her elasticity of demand λ is high. I solve the problem
via the Lagrangian

L = −
M∑
j=1

∆Yj,t logyj,t−1 −λ

 M∑
j=1

∆Yj,tdj,t −P

− 1
2κ

 M∑
j=1

Yj,t−1

(
∆Yj,t
Yj,t−1

)2

−V2

− ρ
 M∑
j=1

∆Yj,t −∆Yt

 ,
(10)
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where the objective is entropy production ∂E, with constraints on profit P , volatility V2 and
liquidity ∆Yt. Parameters λ, κ and ρ are the relevant multipliers. Proposition 2 gives the
solution to the factor model by including asset demand as a second characteristic.

Proposition 2 (Factor model with demand). Entropy production ∂E is maximised when

gj,t = ρ+ βddj,t − βy logyj,t−1, (11)

where

βd =
σ (dt,gt)σ

2(− logyt−1)− σ (dt,− logyt−1)σ (gt,− logyt−1)
σ2(− logyt−1)σ2(dt)− σ2(dt,− logyt−1)

,

βy =
σ (gt,− logyt−1)σ2(dt)− σ (dt,− logyt−1)σ (dt,gt)

σ2(− logyt−1)σ2(dt)− σ2(dt,− logyt−1)
,

ρ = ḡt − βd d̄t − βyEt−1,

Et−1 ≡ −
M∑
j=1

yj,t−1 logyj,t−1.

Proof. See Appendix A.2.

As opposed to Proposition 1, Proposition 2 includes initial portfolio equities − logyt−1

as an additional characteristic. The result effectively models holdings growth rate by a
weighted linear model, with fundamentals dt and log equity shares − logyt−1 as explana-
tory variables. The portfolio manager can solve this problem with knowledge of the covari-
ance between initial allocations and fundamentals values, which are both known and given
exogenously.

Eq. 11 is a two-factor model of holding growth rates, where a size-like characteristic
regulates the degree to which holding growth rates on large holdings are allowed to increase.
The size anomaly was first investigated by Banz (1981). Under the lens of Ross’s (1976)
Arbitrage Pricing Theory, this may be justified by the fact that small firms face different risks
than large firms. Here, no assumptions were made on risk as a function of holdings size. In
fact, to the degree that riskiness is incorporated in the arbitrary value dj,t, the covariance
between fundamental value and the size of portfolio shares is also arbitrary. There exists
a separate, robustness-like requirement for portfolio allocations to satisfy a smooth payoff
function in Eq. 7. This is interesting in its own right, but what can be said about investment
decisions at the individual level?

2.3 Dynamic asset demand

The role of robustness is for the portfolio manager to shield themselves against model mis-
pecification. In the present context, this can be introduced in the form of time-varying
demand elasticities βd,t. Entropy production is a useful tool to track the degree to which
changes in demand elasticities compel the portfolio manager to re-allocate.
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Proposition 2 reveals the interesting structure behind holding growth rates. Namely,
consider a hypothetical set of allocations that fail to trigger any re-allocation logy∗j = logyj,t−1 =
logyj,t. In that circumstance, holding growth rates on all stocks are equal, gj,t = ḡt, and

logy∗j = k +
βd,t
βy
dj,t, (12)

where k is a constant, and I allow elasticity βd,t to vary with time t. Initial allocations
logyj,t−1 can therefore be modelled as a function of variation in demands explained by char-
acteristics, plus some latent demand ej,t−1:

logyj,t−1 = k +
βd,t−1

βy
dj,t−1 + ej,t−1. (13)

Eq. 13 is similar to the asset demand function specified by Koijen & Yogo (2019), except that
they retain the non-linear form from Eq. 7. The authors subsequently use a large data set on
portfolio holdings to estimate the demand elasticities – βd,t−1/βy in Eq. 13 – with a repeated
cross-section of investor holdings. In the current context, substituting Eq. 13 into Eq. 11,
and introducing time subscripts to allow parameters to vary over time, yields an equation
for the dynamic evolution of portfolio investments:

gj,t = ρ̃t +Λtdj,t−1 + βd,t∆dj,t − βy,tej,t−1, (14)

where ρ̃t is a constant, and coefficient Λt = βy,t∆
(
βd,t/βy,t

)
reflects the holding growth rate

explained by a change in demand elasticities for a given level of fundamental value dj,t−1.
This equation is of particular interest when studying the growth rate of portfolio invest-
ments, and includes three key components.

Endogenous market movements The first is the effect of changing preferences, Λtdj,t−1.
It constitutes a level effect on holding growth rates due to a change in the responsiveness
of the manager’s allocations to the past level of fundamentals. An example of this is a
scenario where the value of one firm is unchanged, whereas those of other companies drop.
In this scenario, the demand elasticity is higher, since the resource is overall more scarce.
The manager sells off stock in the unchanged firm in order to keep a diversified portfolio.
Conversely, if other firms experience an increase in valuations, the holding growth rate on
the unchanged investment will also grow to keep up with the other allocations.

The second effect is the direct impact of improved fundamentals, βd,t∆dj,t. This term en-
capsulates the declining marginal utility of holding a stock that provides more fundamental
value. This change effect is distinct to the level effect that depends on changing preferences,
in that it regulates over-exposures into highly valuable companies by gradually penalising
the growth rate within a portfolio.

The third effect is the impact of Koijen & Yogo’s (2019) latent demand, βy,tej,t−1. This
term can be understood as a fixed effect revealed at the initial stage, in that it measures a
level of demand for the asset that is not justified by fundamental value. Without any ob-
servable change in latent demand, it penalises the holding growth rate on that stock within
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the portfolio. The reason is the same as before: large holdings are difficult to grow in excess
of smaller holdings as long as the manager prefers a diversified portfolio. The preference
for diversification is embodied in their asset demand function, taken from Eq. 7.

Key predictions The first desirable outcome is to gauge the degree to which each compo-
nent contributes to variation in holding growth rates, and, by extension, to holding growth
rates. Besides a variance decomposition, the model makes a prediction on the persistence of
latent demand, and by extension a window for return predictability. The dynamic asset de-
mand model suggests the presence of an indirect impact from fundamentals on investment
activity, through the re-balancing mechanism outlined in Eq. 14. While the direction in
which preferences change may go in one direction or the other, the requirement of positive
adjustment costs restricts elasticity βy,t > 0. I state this as a prediction.

Prediction: portfolio holding growth rates gj,t are negatively correlated with past latent
demand ej,t−1, so that βy,t > 0.

These predictions are consequential to our understanding of market volatility. In the
spirit of Gabaix & Koijen (2021), this model introduces extra factors into the return cross-
section stemming from a host of market participants re-adjusting their portfolios to meet
their investment mandates, in addition to the impact of fundamental news alone. I test
them in Section 3 using data on mutual fund holdings.

2.4 Discussion

I introduce the model for a portfolio holding M assets, held by a portfolio manager tasked
with maximising her exposure to firms’ fundamental value. The result is an equilibrium
condition on holding growth variation as a function of the manager’s ability to change al-
locations. Introducing a robustness-like effect by introducing an asset demand system pro-
duces extra factors for returns at the portfolio level, as she constantly re-balances alloca-
tions even in the absence of news for certain companies. The structural parameters that
govern the problem are aggregate risk aversion, with respect to penalising holding growth
variation, and the elasticity of demand with respect to fundamental value, which penalises
deviation of allocations from fundamentals.

Comparison to factor models and the CAPM I begin with a simple version of the model in
which the portfolio manager changes allocations, thus prices, to match data on fundamental
values alone. She acts as a dictator who derives welfare from allocating resources as closely
to fundamental values as possible. The only structural parameter is the degree to which the
portfolio manager produces price volatility to match fundamental news, which is analogous
to an aggregate risk aversion parameter.

This relationship is a factor model. Typically, βt(gt,dt) is measured as a time varying
return to holding a stock with fundamental value dj,t. Introducing additional factors will
reduce the contribution of each fundamental to its variation left unexplained, as is the case
in the full model. One important factor to consider is variation in market returns.
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Proposition 1 reproduces the CAPM when the relevant fundamental value is the covari-
ance of return rj,t with market return r̄t, dj,t = σt(rj , r̄)3. Setting a representative managers
holding growth rate to the stock’s return gj,t = rj,t, the average covariance

d̄t =
M∑
j=1

yj,t−1σt(rj , r̄) = σ2
t (m)

is the implicit variance of the market return (Fama & French 2004). Finally, the renowned
‘market beta’ is given by β(rj , r̄) ≡ σt(rj , r̄)/σ2

t (m) = dj,t/d̄t, the proportional risk each unit
invested in j contributes to the market portfolio. To see this, note that

σ (rt) = σ (dt)×
r̄t
d̄t

(15)

when substituting rj,t = (dj,t/d̄t)r̄t into Definition 1 for holding growth variation. Substitut-
ing Eq. 15 into Eq. 6 and re-arranging yields

rj,t = β(rj , r̄)× r̄t,

which is the CAPM of Sharpe (1964) and Lintner (1965) once adjusting for the risk free rate
and the expectation operator.4

In principle, the full model in Proposition 2 is just a two-factor model, and demand
logyj,t−1 can be treated as a size characteristic. Again setting holding growth rate to the
stock’s return gj,t = rj,t, the model reconstruct the returns to a portfolio with weights − logyj,t−1−
Et−1 in term σ (rt,− logyt−1). For the representative investor, this is no more that the return
on a SMB portfolio included by the FFF model, with the difference that weights are based
on the logarithm of size.

Other factors Fama & French (2004, 2015) review likely fundamental characteristics that
drive the cross section of asset returns. For example, firms with varying book value of assets
relative to their market value are differently affected by interest rates. This is the underlying
motivation behind their FFF model (Fama & French 1993, 2015). It would be interesting for
future research to incorporate these additional factors in the structural model for volatility
using alternative specifications for demand, for example by appealing to the term structure
of equity returns (van Binsbergen & Koijen 2017).

3 Decomposing price fluctuations

This section tests the key predictions of the model in Section 2 using data on mutual fund
holdings. The empirical framework can be summarised as a regression specification for
the growth rate of investor holdings, in nominal terms, in addition to the demand system

3The covariance must vary with time, as indicated by its subscript. Otherwise, the resulting ‘market beta’
of asset j will mechanically vary over time.

4It makes sense to take a forward-looking aggregate using an expectations operator when assuming that
the market beta is constant over time.
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estimated by Koijen & Yogo (2019). The purpose is to provide a framework under which
stock returns from price changes can be attributed to i) changing fundamentals, ii) changing
preferences and iii) latent demand by mutual funds.

3.1 Data

Mutual fund data I use the CRSP mutual fund database to extract a panel of portfolio
holdings for US mutual funds. These data are required by the Securities and Exchange
Commission (SEC) to be reported at a quarterly frequency. In case of duplicates, I only keep
the latest values reported in each quarter for a given fund’s holdings and total net assets. I
filter out any index and exchange traded funds. For each holding in quarter t, I impute its
value Yi,j,t by multiplying the portfolio share by the reported total net assets of the fund. I
then first-difference it with its value in the previous quarter, if it exists, and take a ratio to
compute the holdings value growth rate

gi,j,t = ∆Yi,j,t/Yi,j,t−1.

Finally, I drop funds which report 30 or fewer holdings in a given quarter.

Figure 4: Coverage of CRSP mutual fund data levels off in 2011: this paper uses mutual
fund data starting from 2011:Q1 in order to mitigate the sparse selection of funds in the
early periods of data coverage.

Figure 4 illustrates the coverage of the CRSP mutual fund data, in terms of the number
of portfolio observed, the total equity held as a fraction of total market equity, and the
number of quarters an average fund provides data for. There is a perceptible break in 2011,
even though the SEC presumably required disclosures of holdings starting in 2001. Overall,
the magnitude of the data is remarkable; even though it only includes a fraction of market
participants reported in Koijen & Yogo (2019), these data still account for about 18% of
the US stock market. At the stock level, coverage in terms of market equity held across
funds mostly varies between 10% and 40% for stocks with a market equity greater than one
billion USD, as seen in the Left of Figure 5. The average fund covered by the data reports
holdings for roughly 40 quarters. When removing all observations with incomplete data
on portfolio holdings and their corresponding characteristics, the resulting panel includes
1.48×107 stock-fund-quarter observations, 8,839 mutual funds, holding 9,483 stocks among
them. The number of holdings per fund-quarter, plotted on the Right of Figure 5, appears
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Figure 5: (Left) Mutual funds hold around 20% of market equity in modal large compa-
nies and (Right) their number of holdings follows an approximate power-law distribu-
tion: lag in coverage (Left), defined as the sum of observed mutual fund holdings as a share
of market equity for each stock, is used to construct proxy stock returns according to Eq. 17.
The number of holdings (Right) is a snapshot of the observation counts available to estimate
the holding growth rates, according to Eq. 19, at the fund-quarter level of disaggregation.

to follow a power-law. This indicates that the majority of funds will hold few stocks in their
portfolio, in the order of a few dozen, but some hold many hundreds of stocks in any given
quarter.

Stock data I use data from the CRSP for common stocks traded on the three major US
exchanges: the NYSE, the NYSE MKT (previously AMEX), and the NASDAQ. I build a panel
of observations for market equity by firm j at the end of quarter t using prices and out-
standing shares reported by CRSP, as detailed in Appendix B.1. Appendix B.1 also details
the construction of other variables and additional cleaning procedures. The main variable
of interest, besides stock returns and market equity, is the covariance of daily excess re-
turns with the daily excess market return – where the risk-free rate and market returns are
provided by Kenneth R. French’s data library.5 Importantly, I only include stock-quarter
observations where the stock is listed both in the first and last available trading days of that
quarter, in order to avoid the distortions caused by firms de-listing or joining an exchange.

Firm data I merge data from Compustat into the panel of stock returns. I use both quar-
terly as well as annual versions of Compustat, given that certain variables are reported at
different frequencies. I detail the cleaning procedure, as well as a list of variables used, in
Appendix B.2. For estimation, I use: i) the logarithm of book-to-market equity, using re-
ported liquidation values from Compustat and the corresponding stock’s market equity at
the end of quarter t, ii) the profit rate, as the fraction of quarterly operating income after
tax and interest payments over liquidation value, and iii) the investment rate, as the annual
growth rate of the logarithm of gross property, plant and equipment plus intangible capital

5https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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and inventories. For each stock, I lag and first difference each characteristic by reported
quarter – including the market covariance – to produce the required variables to estimate
Eq. 14.

3.2 Empirical framework

Stock prices from the bottom-up The link of mutual fund holdings to aggregate stock
price growth was introduced in Section 1, so I make it more tangible here. The price growth
on stock j in quarter t can be decomposed via

rj,t =
N∑
i=1

Yi,j,t−1

Yj,t−1
gi,j,t, (16)

where Yi,j,t−1/Yj,t−1 is the past market equity share in stock j held by investor i, and gi,j,t ≡
∆Yi,j,t/Yi,j,t their holding growth rate in stock j. Eq. 16 assumes that the entire universe of
N investors is observed. Notably, stock price growth excludes any dividends distributed to
shareholders, an important distinction from the usual stock returns in asset pricing.

In practice, I use data on N mutual funds, who hold a market equity share

Ŷj,t =
N∑
i=1

Yi,j,t ≤ Yj,t, N ≤N

in sum. Here, indices 1 ≤ i ≤ N refer to mutual funds only, whereas the remaining N < i ≤
N indicate unobserved investors. This does not cover the entire investment universe, and
coverage

Cj,t =
Ŷj,t
Yj,t

may vary by stock and time, a fact I document later in this section. However, I construct a
proxy for stock price growth r̂j,t, by adapting Eq. 16 to include only activity observed in the
mutual funds data:

r̂j,t =
N∑
i=1

Yi,j,t−1

Ŷj,t−1
gi,j,t. (17)

Roadmap In total, there are two stages to predicting stock price growth rj,t. The first stage
depends on the relationship between aggregate and proxied returns,

rj,t = δ+ψr̂j,t + εj,t, (18)

where δ is an intercept, ψ a slope coefficient, and εj,t returns unexplained by mutual fund
holding growth rates.

To motivate what follows, I test the relationship between stock returns and their proxy
constructed from the aggregated holdings growth at the mutual fund level, according to Eq.
18. Due to the sensitivity of the results for small-cap stocks, I restrict the data to stocks with
market equity exceeding one billion USD. Table 1 presents the OLS estimates to the slope ψ̂
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Table 1: Stock price and mutual fund holdings

Dependent variable:

rj,t

Unweighted
Weighted

by coverage

ψ̂ 0.76 (0.004) 0.87 (0.003)
δ̂ 0.01 (0.001) 0.02 (0.001)

Obs. 26,716 26,716
R2 0.63 0.72
Res. Std. Error 0.11 0.03

Notes: This table provides OLS estimates for the relationship between mutual fund holding growth rates in

stock j, weighed by that fund’s lagged holding size, and the actual returns of that stock in quarter t. This

relationship is seen in Eq. 18, where the slope coefficient is estimated to be ψ̂, and the intercept δ̂. The second

column weighs observations according to the lagged coverage ratio of observed mutual fund holdings as a

share of the stock’s total market equity, plotted in Figure 4. Standard errors are reported in brackets.

and intercept δ̂ in Table 1. In contrast to the first column, the second column uses a weighted
OLS scheme, where the weights are equal to coverage Cj,t−1. The weighted estimates ought
to be more reliable, because the relationship between the return proxy from mutual fund
holdings growth should hold more sway over the stock’s actual price return if funds hold a
larger share of the stock’s market equity. The remarkable result is not only that the slope
coefficient is close to one, but the R2 of the regression is 0.72, despite the fact that coverage
is rarely above 50%, as seen in Figure 5.

The second stage involves estimating holding growth rates using Eq. 14. This is the key
innovation of this paper. Holding growth rates are predicted to have a level and change rela-
tionship with respect to stock characteristics, but also depend on old latent demands ei,j,t−1.
In order to adapt Eq. 14 to the current empirical setting, I estimate weighted Ordinary Least
Squares (OLS) estimates for the coefficients of

gi,j,t = ρ̃i,t +
A∑
a=1

Λa,i,tda,j,t−1 +
A∑
a=1

βa,i,t∆da,j,t − βy,i,t êi,j,t−1 + vi,j,t, (19)

which requires estimated latent demands êi,j,t, plus an idiosyncratic error term vi,j,t. Lags
in characteristics da,j,t−1 and their changes ∆da,j,t are assumed to be observed by all funds in
period t.

I finalise the roadmap for this section before explaining the procedure used to estimate
latent demands. Coefficient estimates in Eq. 19 can then be used to construct the aggregate
components to proxied stock price growth in Eq. 17. In total, the components aggregate
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into stock price growth using Eq. 18, such that

rj,t = δ̃+
A∑
a=1

La,tda,j,t−1︸          ︷︷          ︸
Preferences

+
A∑
a=1

Ba,t∆da,j,t︸          ︷︷          ︸
Fundamentals

− Kt︸︷︷︸
Latent

Demand

+ε̃j,t, (20)

where La,t,Ba,t and Kt are the aggregated coefficients from the holdings growth rate estima-
tion:

La,j,t = ψ
N∑
i=1

Yi,j,t−1

Ŷj,t−1
Λ̂i,a,t,

Ba,j,t = ψ
N∑
i=1

Yi,j,t−1

Ŷj,t−1
β̂i,a,t, (21)

Kj,t = ψ
N∑
i=1

Yi,j,t−1

Ŷj,t−1
β̂y,i,t êi,j,t−1,

while intercept δ̃ and residual ε̃j,t are modified to account for the intercept and residuals
from the holdings growth rate equations. One note is that differences in funds’ equity shares
among available stocks introduce variation in aggregated coefficients La,j,t,Ba,j,t by stock j.
The notes under each term’s brace in Eq. 20 indicate the possible sources of stock price
growth variation, which include the effect of i) changing preferences, ii) changing funda-
mental characteristics, and iii) latent demand. Before delving into the data used to estimate
the coefficients for Eqs. 19 and 20, I detail the estimation of latent demands and holding
growth rates as a function of characteristics.

Estimating latent demands I estimate latent demands in a similar fashion to Koijen &
Yogo (2019), albeit using the logarithmic version of their preferred specification. While
they document that this leads to some inefficiency, and potential bias, I intend to implement
their full procedure in the near future. The static asset demand specification given by Eq.
13 includes A possible characteristics:

log
yi,j,t
yi,0,t

= ki,0,t logyj,t +
A∑
a=1

γi,a,tda,j,t + ei,j,t, (22)

where fundamental values da,j,t are assumed to be public knowledge, and j = 0 denotes an
arbitrary holding that serves as the benchmark for the estimation procedure. An important
detail is that all parameters are allowed to vary by time and fund, as per Koijen & Yogo
(2019). The main idea is that each portfolio is treated as a separate cross-section, and the
asset demand systems are estimated for each investor and quarter in isolation.

Log market equity share logyj,t = logYj,t/Yt features as a variable that determines the
intercept for the demand system. As a case scenario, elasticities γi,a,t should equal zero, and
intercept ki,0,t one, for an index fund with holdings that match market equity shares. The
characteristics to asses fundamental value with are the same as in Koijen & Yogo (2019),
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namely the five stock characteristics from Fama & French (2015), except for size which is
implicitly included in market equity shares: log book-to-market equity, investment growth
rate, profit rate, and market covariance.

Hypotheses Characteristics valued by fund managers, gauged by elasticities βa,i,t < 1, may
significantly contribute to variation in stock price growth. This speaks to a long-standing
issue regarding the excess volatility of stock returns relative to fundamentals. Here, dif-
ferent funds may compete more, or less, for the same assets, depending on the degree of
overlap in their preferences. Eq. 20 clarifies how changing fundamentals may be amplified
if aggregate demand elasticities happen to be high. This line of research is actively pursued
(Gabaix & Koijen 2021).

The case for diversification, which is central to this paper, is outlined by Prediction from
Section 2, which asserts a negative relationship between latent demand and holding growth
rate, βy,i,t > 0. Without an objective that compels the fund to increase the breadth of their
portfolio, there is no reason for the level of past holdings to drive growth in corresponding
holdings, beyond what is justified by changes in fundamentals. Moreover, mutual funds
may find themselves compelled to divest out of positions they are unable to justify. Koijen
& Yogo (2019) attribute this phenomenon to a mean-reversion in latent demands.

As discussed in Section 2, coefficient Λa,i,t captures changes in fund i’s sensitivity to
characteristic da,j,t−1. These preference changes can be understood as a level effect, because
they compel the fund to grow their holdings at variable rates despite the characteristic itself
remaining constant. This paper does not offer a prediction on the sign of these coefficients,
since preferences can evolve in different ways. However, it opens the door to interesting
research on the evolution of investment mandates under competition (Brock & Hommes
1997, Farmer 2002). Their estimated contribution to stock price growth via Eq. 20 would
be a valuable motivation to expand that line of research.

I first describe the available data on mutual fund holdings and stocks, then present es-
timates for Eqs. 18-22. Finally, I discuss the results in line with these three hypothetical
sources of stock price variation and predictability.

3.3 How do portfolios grow?

I first estimate Eq. 22 using OLS to retrieve fitted values for latent demands êi,j,t. Generally,
I only observe holdings held in two subsequent periods. This might raise concerns regarding
a selection effect, by which a fund opens or closes a new position in a manner not captured
by the model. For now, I estimate the coefficients to Eq. 19 using OLS, and lags of latent
demands êi,j,t−1.

23



Figure 6: Estimated demand coefficients for fundamentals β̂i,a,t display strong heterogeneity: OLS esti-
mates of the relationship between the change in characteristics and the holding growth rate of fund i in quarter
t for log book-to-market equity (Top left), the logarithm of market equity share (Top middle), market covari-
ance (Top right), profit rate (Bottom left) and investment rate (Bottom right). 99% of observations shown.

Figure 7: Estimated demand coefficients for changes Λ̂i,t : OLS estimates of the relationship between the
lag in characteristics and the holding growth rate of fund i in quarter t for log book-to-market equity (Top
left), the logarithm of market equity share (Top middle), market covariance (Top right), profit rate (Bottom
left) and investment rate (Bottom right). 99% of observations shown.
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Figure 6 plots the distributions of the coefficients estimated for changes in characteris-
tics, which are correspond to pseudo-demand elasticities βi,a,t in Eq. 19. These plots com-
municate considerable heterogeneity, with estimates taking large positive and negative val-
ues. It is difficult to discern what a mean estimate might be, which makes sense given that
mutual funds hold a variety of mandates and strategies. This heterogeneity also persists in
Figure 7, which plots estimated values for coefficients corresponding to the level effect in
the lag of a fundamental characteristic, Λi,a,t in Eq. 19. The variable that stands out for a
supposed change in preference is the coefficient for book-to-market value, which are typ-
ically much smaller than the change effects estimated in Figure 6. This may indicate that
funds target book-to-market values to different degrees, yet this preference does not change
much over time. Future research could shed some light on the manner in which mutual
fund investments may move over the state space of preference over time.

Figure 8: Estimated adjustment costs κ̂i,t are overwhelmingly positive: adjustment cost
βy,i,t reflects the average effect of a mutual fund’s latent demand for an asset in the previous
quarter, on its holding growth rate in the current quarter. 99% of observations shown.

Figure 8 plots the OLS estimates for the effect of lagged latent demand on the growth
rate of mutual fund holdings. In the model from Section 2, these parameters correspond to
the adjustment costs faced by portfolio managers, a constraint which can bind to varying
degrees. The data provide strong evidence that this parameter is indeed negative, although,
again, it demonstrated substantial heterogeneity among funds’ portfolios. Relating it back
to the model, a high value for estimate β̂y,i,t suggests that a fund aggressively divests out of
positions which are not justified by their fundamental values, as measured by the five FFF
characteristics, and the fund’s estimated preferences. In contrast, a lower value indicates
that the fund tends to sit on the outsized position.

Since the data offer a total of 47,260 portfolios to estimate Eq. 19 with, I summarise the
results in two ways. First, I plot distributions for all estimated coefficients, pooling them
together for all quarter-fund samples. To better highlight some of the interesting hetero-
geneity in mutual fund investment behaviour, I summarise the key results by reporting the
average coefficient for each quarter by type of fund, categorised by CRSP’s objective codes.
Specifically, I group coefficient estimates for funds categorised as i) growth funds (code
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EDYG), ii) income funds (code EDYI), iii) mixed funds (code EDYB) and iv) an ‘other’ category
of remaining funds.

Denoting each of the four fund types by subscript q, I aggregate coefficient estimates
weighed by the relevant fund’s reported holding value in the previous quarter, as a share of
the total reported in that quarter for the same fund type,

Λ̂q,a,t =
N∑
i=1

Yq,i,t−1∑N
i=1Yq,i,t−1

Λ̂q,i,a,t , β̂q,a,t =
N∑
i=1

Yq,i,t−1∑N
i=1Yq,i,t−1

β̂q,i,a,t , γ̂q,a,t =
N∑
i=1

Yq,i,t−1∑N
i=1Yq,i,t−1

γ̂q,i,a,t .

Combined, they convey the heterogeneity as well as the central tendency that describe the
holding growth rates of mutual funds.

Results Figure 9 presents the coefficients aggregated for each quarter and fund type, ac-
cording to weighed by funds’ holding values, using standard box plots. These help discern
certain patterns. The sign of the coefficients line up with fund types in some cases. For
example, growth funds grow holdings more in response to growth in market shares, com-
pared to income funds, as seen in estimates for β̂q,a,t in Figure 9a. Growth funds also allocate
a greater share of their holdings to stocks that move with the market in Figure 9c’s estimates
for γ̂q,a,t. Taken together, those estimates suggest that growth funds stand apart from other
funds in the degree to which they follow market and stock momentum. Their holding shares
also favour firms that display high investment growth rates, as seen in Figure 9d. Relative
to income funds, growth funds also display a tendency to hold fewer stocks which earn a
high rate of profit, as per Figure 9e. This speaks to their focus on companies seeking future
profits at the expense of running short-term losses.

As discussed earlier, it is hard to comment on the lag effect of characteristics on holding
growth rates – the component related to preference changes in Eq. 20. In Figure 9, esti-
mates for Λ̂q,a,t cluster around zero in all cases. This suggests that mutual fund investment
patterns are relatively stable over time with respect to their sensitivity to different stock
characteristics. For future research, it would be interesting to pin down exogenous varia-
tion in these coefficients to determine what might trigger funds to change their observed
responsiveness to these characteristics.

Figure 9f presents strong evidence that mutual funds penalise the holding growth rates
for firms in which they already hold elevated latent demand. The corresponding elasticity,
which relates to multiplier βy,i,t to adjustment costs, is always positive for quarterly aggre-
gates. These findings lend considerable support to the Prediction made in Section 2, which
attributes this relationship to a preference for a diversified portfolio. To accomplish this, the
mutual fund most grow their positions in small holdings faster than those of large holdings.
Koijen & Yogo (2019) present a similar finding, noting that latent demands exhibit strong
mean reversion in their repeated cross-sections.
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(a) Log equity share (b) Log book-to-market value

(c) Market covariance (d) Investment rate

(e) Profit rate (f) Latent demand

Figure 9: OLS coefficients for the average response of holdings and their growth rates by characteristic
and mutual fund type: these figures present box plots for the aggregated coefficient estimates across mutual
funds in each quarter. The averages were computed using the shares of funds’ total holding values reported
in the previous quarter, and are group by certain fund types q that correspond to the CRSP mutual fund
objective code (labelled CRSP OBJ CD). Each characteristic, labeled by the title, is accompanied by an estimated
coefficient from Eq. 19 for the effect of its lag (Λ̂q,t) and change (β̂q,t) on holding growth rates, as well as the
elasticity of holding shares in response to the characteristic (γ̂q,t) for Eq. 22. The bottom right panel includes
aggregated coefficients for latent demands (β̂y,q,t). Observations exceeding the 1st or 99th percentiles are not
included for visualisation purposes.
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Figure 10: Adjusted R2 values average between 0.2 and 0.3: this figure plots a histogram
for the the adjusted R2 of the holding growth rate model in Eq. 19, estimated separately for
49,796 quarterly mutual fund portfolios.

Summarising the uncertainty around these estimates is tricky, given the sheer amount of
coefficients estimates. The range of coefficients in Figure 9 go some of the way in describing
the possible realisations of these parameters between investors and over time. To get a better
idea of the overall fit of the model in Eq. 19, Figure 10 plots the distribution of all adjusted
R2 values estimated for all fund-quarter sub-samples. The model explains around 0.1 to 0.2
of the variation of holding growth rates, which is good considering the rather restricted set
of explanatory variables. One concern is that the number of explanatory variables may lead
to over-fit models, especially for certain funds that only report a few dozen holdings.

3.4 Aggregating stock returns

I re-constructed the proxied returns from Eq. 19 using the fitted values for all coefficients.
These fitted values result in a nested model for stock price growth using the proxy in Eq.
1, which I detail in Eq. 20. I re-estimated coefficients to Eq. 1, but substitute observations
for holding growth rates using the components to Eq. 20. Another difference is that I do
not filter out stock with market equity less than one billion USD, and instead compute the
coefficients using weighted OLS, where weights correspond to the market equity share in
the previous quarter, yj,t−1.

Table 2 presents weighted OLS estimates for slope coefficients to the components for
holding growth rates nested into the equation for stock price growth. To give a sense for
the degree of uncertainty, the first column presents estimated components to Eq. 20 using
the five FFF model, whereas the second column uses characteristics from the three FFF
model, which excludes profit rate and investment rate. Removing those two characteristics
significantly increases the number of observations, and while the results will not be directly
comparable to those from the five FFF version, that will lend some insights into the degree
of variability.

Given that proxied returns already matched stock returns closely in Table 1, it is unsur-
prising that the coefficients for both version of the model are close to one. The additional
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Table 2: Nesting models for mutual fund holdings to regress on stock prices

Dependent variable:

rj,t

(1) (2)

Intercept 0.85 (0.003) 0.95 (0.004)
Preferences 0.87 (0.003) 0.97 (0.004)
Fundamentals 0.86 (0.003) 0.96 (0.004)
Latent demand 0.76 (0.01) 0.86 (0.01)
Residual holdings 0.70 (0.004) 0.83 (0.003)
δ̂ 0.02 (0.0004) 0.02 (0.001)

Obs. 41,526 118,351
Adj. R2 0.75 0.57
Res. Std. Error 0.001 0.001

Notes: This table presents OLS estimates for the relationship between components to growth rates in mutual

fund holdings in stock j and the quarterly price growth in stock j. These components, outlined in Eq. 20,

include the effect of i) an intercept, by which all holdings grew by a uniform rate, ii) changing preferences,

whereby funds hold larger or smaller shares in stocks that exhibit higher values for certain characteristics

than other stocks, iii) changes in fundamentals, which compel the fund to increase or decrease a holding

as a function of changing values for characteristics, iv) latent demand, the holding share unexplained by

characteristics in the previous period, and v) a common intercept across all stocks. The characteristics used

to construct these components conform to the five factors from the FFF model, namely the market equity

share, the book-to-market value, the stock’s return covariance with the market return, the profit rate, and the

investment rate, in Column (1). Column two constructs these components using only the market equity share,

book-to-market value and stock return covariance with the market, which correspond to the three factor FFF

model. Standard errors are reported in brackets.

data from small cap stocks for the 5 FFF model does not seem to worsen the R2, although
this is largely attributed to the market equity weights. The coefficients are estimated to be
close to one when using characteristics to the 3 FFF model, although the overall fit, as judged
by an R2 of 0.57.

Variance decomposition These nested models do not give an accurate picture with re-
gards to stock price variation explained by either changes in fundamentals, preferences, or
latent demand. This is because variation in fundamental characteristics, even though they
map perfectly onto returns, display only a fraction of the variation in stock prices. To get a
better idea for the variation in stock prices explained by mutual fund preferences, changing
fundamentals or latent demand, I decompose the variance of stock price growth in Eq. 20
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by each component:

σ2(rt) = σ (ρt ,rt)︸   ︷︷   ︸
Intercept

+
A∑
a=1

σ (Ba,t∆da,t ,rt)︸                 ︷︷                 ︸
Fundamentals

+
A∑
a=1

σ (La,tda,t−1,rt)︸                 ︷︷                 ︸
Preferences

− σ (Kt ,rt)︸   ︷︷   ︸
Latent demand

+ σ (vt ,rt)︸   ︷︷   ︸
Holding residual

+ σ2(εt)︸︷︷︸
Stock residual

,

weighted by the stocks’ market equity shares in the previous quarter yt−1. The relevant
components include preferences, and fundamentals and latent demand, as per Eq. 20, as
well as the intercept estimated for mutual funds’ holding growth rates, plus the unexplained
residuals for holding growth rates and the residuals in stock price growth.

5 Factors 3 Factors

Fundamentals
Book-to-market 3.26 -2.82
Size 3.02 6.15
Market covariance 3.87 1.20
Profit rate 1.61
Investment rate 3.32
Total 15.08 4.53

Preferences
Book-to-market 3.87 2.31
Size 3.17 0.55
Market covariance 11.80 11.47
Profit rate 2.20
Investment rate 3.27
Total 24.30 14.34

Latent Demand 2.40 1.99
Intercept 1.97 6.30

Residual
Fund holdings 48.98 56.31
Stock returns 9.25 22.84
Total 58.22 79.15

Table 3: Contributions to stock price growth variation from growth in mutual fund hold-
ings: This table decomposes the cross-sectional variance of quarterly stock prices growth
by their covariance with different components to mutual fund holding growth rates. These
components are outline in Eq. 20.

Table 3 outlines the variance decomposition of stock price growth by component, sepa-
rately for the 5 FFF characterists and the 3 FFF characteristics. The individuals characteris-
tics, on their own, contribute rather small amounts to stock price variation. One interesting
feature is the large contribution stemming from mutual funds growing holdings that dis-
played high levels of covariance with the market return. This may speak to mutual funds’
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changing risk appetites over the course of the cycle. A second observation is that changes
in fundamentals contribute roughly the same, if not less, price variation relative to pref-
erences. Recall that fundamentals capture the change effect of characteristics on holdings,
whereas preferences capture the level effect; re-balancing according to given fundamentals
is therefore reflected in stock price variation, via the tendency of mutual funds to change
holding shares in stocks to match a new set of.

Importantly, a significant amount of price variation remains unexplained. However, this
is not because stock prices grow more erratically that mutual fund holdings. Rather, about
one half of stock price variation is tied to growth rate in mutual fund holdings unexplained
by either fundamentals or preferences for characteristics.

3.5 Discussion and limitations

These results do not provide causal evidence that mutual fund investment behaviour has
price impact. Importantly, market clearing features in the crudest way possible. Mutual
fund investments likely experience some interaction with other market participants. Rather,
the exercise is to describe the cross-section of returns from the perspective that a vast het-
erogeneity in investment mandates provides different sources with which to explain stock
returns, besides using fundamental characteristics alone. On that front, the framework is
promising, and opens the door to further research that leans into various predictive ele-
ments of mutual fund behaviour.

Certain aspects of the empirical exercise can be improved. The selection of stocks into
mutual fund portfolios likely biases the estimates for fund-level coefficients, and this ex-
tensive margin also provides more information with which to make these estimators more
efficient. Another important note is that the driving motivation behind disaggregating re-
turns is the equilibrium dynamics of portfolio shares. The application is currently missing
a similar treatment for mutual fund sizes.

Finally, mutual funds may not necessarily be an important driver of daily price fluctua-
tions, since they constitute the market’s ‘buy side’. Most price fluctuations would be driven
by ‘sell side’ participants, who do not hold inventory overnight, not to mention on the quar-
terly frequency. The impact of mutual fund investments may therefore be more pronounced
in certain liquidity-constrained situations, time scales beyond the quarterly frequency, or
through the extensive margin discussed above. Unexplained stock price variation is higher
when excluding profit rate and investment rate variables, however this is largely due to a
selection effect for small stock that are do not report their earnings with the same regularity
as larger companies.

4 Conclusion

The growth rates of mutual fund holdings are accurately modelled by a model that endo-
genises portfolio re-balancing in response to fundamentals, producing a level and change
effect from stock fundamentals. Although a portfolio is directly more valuable after the fun-
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damental value of one company increases, changes in preferences and an intent to remain
diversified triggers re-balancing to avoid being over-exposed to a few firms. Empirically,
a larger fraction of variation in stock price growth is explained by the level effect, which
reflects evolving preferences aggregated across mutual funds, compared to the change ef-
fect, which reflects changes in asset characteristics. While a majority of stock price variation
remains unexplained, it mostly stems from variation in holding growth rates that is not ex-
plained by fundamentals or preferences, as opposed to stock price variation. Therefore, the
main empirical limitation is the search for variables which better explain the evolution of
mutual fund holdings.

As demonstrated in the volume of recent research on the topic, investigating asset de-
mand is productive in the study of stock price volatility and their co-movements. In this
paper, latent asset demand compels mutual funds to re-balance aggressively in order to
meet their preferred allocations according to observable characteristics. In principle, it
amounts to no more than the inclusion of an additional characteristic in what is otherwise
a straightforward single-factor model. Indeed, the core theoretical framework reproduces
the Sharpe’s (1964) and Lintner’s (1965) CAPM as a special case, where demand adjusts to
meet preferences on the level of exposure to market risk. However, this simple framework
does not lend itself well to a scenario where changes in portfolio allocation create inertia, in
the form of adjustment costs faced by the manager of the market portfolio. This inertia is
closely related to uncertainty, or ‘surprises’ in Information Theory.

This research speaks to the great opportunities in using data on heterogeneous investors
to better understand intricate behaviours that are currently missed by the aggregate models
dominating finance. In particular, the manner in which investors adapt and change their
strategies is shown to contribute a significant amount of stock price fluctuations. This opens
the door to a host of novel questions regarding granular origins of large market events.
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A Proofs

A.1 Proof to Proposition 1

Solving the first order conditions of Eq. 5 with respect to re-allocations ∆Yj,t yield an ex-
pression for the excess holding growth rate for each stock j, as a percentage:

κ
(
gj,t − ḡt

)
= dj − d̄t, (23)

where values a bar denotes a value-weighted mean, x̄t ≡
∑M
j=1 yj,t−1xj,t. Squaring both sides,

and multiplying by yj,t−1 then summing across j yields:

κ =
σ (dt)
σ (gt)

. (24)

Alternatively, multiplying both sides of Eq. 23 by ∆Yj,t yields:

κ =
σ (dt,gt)
σ2(gt)

, (25)

which is the coefficient of a weighted regression of fundamentals on holding growth rates.
Setting the right-hand sides of Eq. 24 and Eq. 25 and re-arranging yields the solution.
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A.2 Proof to Proposition 2

For tractability, I re-write Eq. 10 as:

L =
M∑
j=1

Yj,t−1

(
∆Yj,t
Yj,t−1

)2

− 2κ

− M∑
j=1

∆Yj,t logyj,t−1 −∂E

− 2λ

 M∑
j=1

∆Yj,tdj,t −P

− 2ρ

 M∑
j=1

∆Yj,t −∆Yt

 ,
(26)

which yields the same solution at the maximum.
The first order conditions are

∆Yj,t
Yj,t−1

≡ gj,t = ρ −κ logyj,t−1 +λdj,t, (27)

and

P =
M∑
j=1

∆Yj,tdj , ∂E = −
M∑
j=1

Yj,t−1 logyj,t−1 ∆Yt =
M∑
j=1

∆Yj,t.

Multiplying Eq. 27 by Yj,t−1, and summing across j solves for

ρ = ḡt +κ
M∑
j=1

yj,t−1 logyj,t−1 −λd̄t,

using the fact that yj,t−1 = Yj,t/Yt−1 and ḡt = ∆Yt/Yt−1. Setting Et−1 ≡ −
∑M
j=1 yj,t−1 logyj,t−1

yields an expression for the excess holding growth rate for each stock j, as a percentage:

gj,t − ḡt = κ
(
− logyj,t−1 −Et−1

)
−λ

(
dj,t − d̄t

)
. (28)

The joint result for holding growth rate moments are derived from Eq. 28. Multiplying both
sides by Yj,t−1dj and dividing by Yt−1 yields

P
Yt−1

− ḡtd̄ = κ

− M∑
j=1

yj,t−1dj logyj,t−1 −Et−1d̄

+λ
M∑
j=1

yj,t−1dj,t
(
dj,t − d̄t

)
,

⇒ σ (dt,gt) = κσ (dt,− logyt−1) +λσ2(dt),

where σ (xt,zt) =
∑
j yj,t−1(xj,t − x̄t)(zj, t − z̄t) denotes the value-weighted covariance between

xt and zt. Multiplying both sides of Eq. 28 by ∆Yj,t and dividing by Yt−1 yields

V2

Yt−1
− ḡ2

t = κ

− M∑
j=1

yj,t−1gj,t logyj,t−1 −Et−1ḡt

+λ
M∑
j=1

yj,t−1gj,t
(
dj − d̄

)
,

⇒ σ2(gt) = κσ (gt,− logyt−1) +λσ (gt,dt).

Multiplying both sides of Eq. 28 by − logyj,t−1 and dividing by Yt−1 yields

∂E
Yt−1

−Et−1ḡt = κ

 M∑
j=1

yj,t−1

(
− logyj,t−1 −Et−1

)2

+λ
M∑
j=1

yj,t−1gj,t(− logyj,t−1)
(
dj − d̄

)
,

⇒ σ (gt,− logyt−1) = κσ2(− logyt−1) +λσ (dt,− logyt−1).
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Solving by substitution yields

λ =
σ (dt,gt)σ

2(− logyt−1)− σ (dt,− logyt−1)σ (gt,− logyt−1)
σ2(− logyt−1)σ2(dt)− σ2(dt,− logyt−1)

,

κ =
σ (gt,− logyt−1)σ2(dt)− σ (dt,− logyt−1)σ (dt,gt)

σ2(− logyt−1)σ2(dt)− σ2(dt,− logyt−1)
.

These are the coefficients to a weighted linear model with two dependent variables, where
the variables are lagged equity share − logyj,t and fundamentals dj,t.

B Data

B.1 CRSP stock variables

This paper uses the following variables from CRSP, with a set of accompanying filters:

• DATE: trading date. This corresponds to the calendar date indexed by subscript t in
which an observation is made.

Filter: I use observations spanning December 15th, 1973 to December 31st, 2020. This
is because coverage for firms listed on the NASDAQ begins December 14th, 1973.

• PERMNO: firm identification number. This identifier is issued by CRSP, and for the
purposes of this paper constitutes firm identifiers denoted by subscript j.

Filter: When two observations are available on the same trading day for one firm iden-
tifier, I keep the first line of observation and discard the rest to mitigate any duplicates.

• SHRCD: the share code.

Filter: This paper only includes common stock, which are labelled as 10 and 11.

• EXCHCD: exchange code.

Filter: This paper only includes data from the three US exchanges, namely the NYSE
(1), the NYSE MKT (2) and the NASDAQ (3).

• PRC: last available price. This value is used for the share price Pj,t to compute daily
market capitalisation of firm j.

Filter: I include observations led by a dash, which indicates an imputed value using
the average bid-ask spread.

• SHROUT: shares outstanding. This value is used for the number of sharesQj to compute
the market equity of firm j. This variable can vary due to stock splits, but this split
will also be reflected in the unadjusted price Pj,t so that the market capitalisation is
unaffected.

• RET: returns. This variable includes dividends. I remove values that are non-numeric,
which refer to different instances of missing observations.
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B.2 Compustat variables

This paper uses the following variables from Compustat, with a set of accompanying filters:

• DATADATE: reporting date. This variable reports the month and year corresponding to
company report.

Filter: I use observations reported on December 31st. These correspond to data on
company operations from the preceding fiscal year.

• FYEAR: fiscal year. I use this variable to assign financial variables to the corresponding
calendar year.

• GVKEY: firm identification number. This identifier is issued by Compustat.

• INDFMT: industry format. This identifier records the reporting standard used for the
corresponding financial variables, either as FS or INDL.

Filter: When two observations for financial variables are available for the same year
and company, I complete observations if any are missing under industry format INDL
using observations reported under industry format FS. I subsequently remove dupli-
cated entries by company-year, prioritizing observations under the INDL format.

• OIBDP: operating income before depreciation.

• TXT: total income taxes.

• XINT: interest and related expenses.

• PPEGT: property, plant and equipment gross of tax.

• INTAN: intangible assets.

• INVT: inventories.

Filter: I drop observations for which no value is reported for operating income, tax
and interest payments.

• CEQL: liquidation value of company assets. I use this variable to construct the book
value of firms.

C Additional results

C.1 Entropy as a measure of diversification

The measurement of entropy has found universal applications in any situation that involves
a frequency versus quantity trade-off: originally in thermodynamics, then biology and in-
formation theory, and even chemistry (Frank 2018). The scientific productivity in identify-
ing fluctuations of aggregates sourced from quantity, versus frequency, motivates Jaynes’s
(1978) Maximum Entropy Principle (MEP). Put bluntly, maximising entropy is desirable out
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of principle. In economics, entropy has been studied as a measure of statistical uncertainty
in financial markets, and as a theoretical under-pinning to welfare-improving trade in other
economic disciplines (Smith & Foley 2008).

Figure 11: Plotting entropy for two industries: Total entropy is maximal at the dotted line,
where the share of each industry is equal at 1/2.

The level of entropy E is often used as a measure for dispersion, taking larger values as
underlying quantities are more uniform. The number of possible arrangements for those
transactions is given by the multinomial coefficient:(

Y !
Y1!,Y2!, . . . ,YN !

)
=

Y !
Y1!Y2! . . .YN !

=
Y !

(Y y1)!(Y y2)! . . . (Y yN )!
,

where yi = Yi/Y . This is simplified, under large N , using the Stirling approximation for
factorials:

log
[

Y !
(Y y1)!(Y y2)! . . . (Y yN )!

]
≈ Y

N∑
i=1

yi log
(

1
yi

)
, (29)

which corresponds to Shannon’s (1948) entropy. To better interpret this term, assume that,
on a given day, $10 of fruit are traded on a market consisting of two types, apples and
coconuts. If spending is uniform, the number of possible allocations is

10!
5!5!

= 252.

On the other extreme, if all but one Euro is spent on one fruit alone, the number of possible
arrangements is

10!
9!1!

= 10.

This is why entropy is often described as a measure of uncertainty, or observational vari-
ety: from the consumer’s perspective, there are many more ways to spend an endowment
equally among options, rather than prioritising some ahead of others.6 An additional Dollar

6Two technical remarks: i) observational zeros do not appear (0log0 = 0), and ii) each Dollar is treated
equally.
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has many possible ways of being spent in a uniform economy, but fewer in a concentrated
economy.
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