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                                                              Abstract 

  

Regression discontinuity (RD) analysis of retirement durations and retiree death ages is 

conducted with the Finnish year 1947 birth cohort. Data consist of observations from the 

sample follow-up period in 1.1.2007 – 31.12.2019. For the year 1947 cohort the eligible 

retirement age with old-age pension is between the ages of 63 and 68 years. However, the 

observed pension ages are quite often less than 63 years although the statutory minimum 

retirement age regulates persons’ retirement times. This means that for some retirees age 

of 63 years constitutes a queuing age that is against their retirement intentions, and this 

affects their retirement spells. We find with RD methods that close after death age of 63 

years, the retirement spells discontinuously shortens although the higher death age should 

give room for the longer retirement spells. The point estimates for regression discontinuity 

effects on terminated retirement spells are in the range of from –1.09 to –0.56 in loss of 

year depending on the used sub-samples, covariates, and estimation methods. These 

findings are interpreted to conflict retirement intentions of retirees retiring at age of 63 

years. 
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1. Introduction  

In the dynamic life-cycle models focusing on retirement, the representative agent takes 

expected lifetime or some related estimate of it as a given parameter in his/her “optimal” 

retirement date decision (see e.g., Bloom et al., 2004; Kalemli-Ozcan and Weil, 2010).  The 

exact retirement time or age is quite seldom explicitly solved in the literature that gives 

different comparative static results with respect to retirement age. The papers on how expected 

survival time or time of death determine retirement timing are almost non-existing. This is 

understandable as the retiree faces the following relation when planning his/her length of 

retirement period 

                                               retDI = 
*

DAGE   – retT  >  0                             (1) 

 

where retDI is the intended or the planned retirement spell or duration, 
*

DAGE  is an estimate 

of the age of death, and retT is the chosen retirement age.  The importance of this equation 

must be stressed as we can argue that the person in the first place try to maximize his/her 

(expected) retirement duration and pension level sustained by the lifetime labour supply, and 

the retirement age is subordinate to this target. However, the above retirement spell calculation 

is a hard problem at the individual level because valuation mistakes and forecast biases on the 

age of death estimate are typically large. This means that retiree’s estimate of his/her remaining 

lifetime can differ greatly from his/her actual lifetime. Note that whatever is the person’s 

estimate for his/her life length it also affects his/her intended retirement age, i.e., the chosen 

retirement age is not independent of estimate of survival time.  

 

We try not to solve the evident stochastic maximization problem buried in the Eq. 1). Instead, 

we focus next on the relevant empirical literature in this context. Albeit the individuals can 

often determine their retirement entry within the eligible age limits, retirement decisions are 

influenced by factors over which individuals have no or little control such as institutional 

regulations, employment status or health (Coppola and Wilke, 2014).  However, the main result 

here is that retirement expectations are quite accurate regarding the actual retirement age (e.g., 

Chan and Stevens, 2008; Benitez-Silva and Dwyer, 2005; Cobb-Clark and Stillman, 2009). 

Part of this literature focus on changes in pension and statutory retirement ages showing that 

expectations are quite sensitive to changes in the institutional framework but there exists 
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heterogeneity in the adjustment of expectations (for more details, see Coppola and Wilke, 

2014).1) 

 

Some empirical papers have linked subjective survival estimates to retirement decisions. The 

results so far are quite mixed. Hurd et al. (2004) report that those with particularly low 

expectations of survival to age of 85 are more likely to retire earlier. Delavande et al. (2006) 

find no impact of subjective survival on the retirement probability over the subsequent two 

years for those not retired at age of 62 years. However, O’Donnell et al. 2008) show with data 

from the UK that individuals that are extremely pessimistic about their chances of survival are 

least likely to retire. For more positive expectations they find that after initially rising steeply 

the propensity to retire falls as survival expectations improve. When controlling for health, 

there is still a substantial and significant effect of survival expectations on retirement age.  

 

van Solinge and Henkens (2009) focus on subjective life expectations, retirement intentions, 

and actual retirement times with Dutch retirement data in two waves from years 2001 and 2007.  

They show that employees who expect to live longer, intend to retire later than those who 

expect a shorter life span. However, on average, older employees retired 1.6 years earlier than 

originally intended. The results suggest that particularly employees with a high perceived life 

expectancy and an intention to work longer don’t succeed in carrying their intentions into 

effect. Khan et al. (2014) focuses also on the actual retirement age and on the planned 

retirement age with the US data. They find that respondents who are more optimistic about 

their survival to age 75 or 85 years also expect to work five months longer on average, and the 

actual retirement behaviour increases also with subjective life expectancy.  

 

With the results above in background we analyse observed retirement durations among the 

retirees with the Finnish year 1947 birth cohort. In analysis we use regression discontinuity 

designs (RDD) methods. We propose the following research question “Has the death happening 

after retirement around the minimum eligible old age retirement age of 63 years an effect on 

the length of retirement spell”. We elucidate with a reduced approach that actual retirement 

durations for some retirees must be far from what they have planned. We find that close to age 

 
1)  Gustafsson (2023) proposes that another form of incomplete information, i.e. pension illiteracy, has effects on  

    life time labour supply and retirement.   
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of death after 63 years the retirement durations discontinuously shortens although the higher 

death age should allow for the longer retirement durations. 

 

The remainder of the paper is organized as follows. Our data and conceptual framework are 

introduced in Section 2. Section 3 focuses on RDD methods and gives our main graphical 

results. Section 4 provides RD regression model estimation results. Finally, Section 5 

concludes. 

 

2. Why is the minimum eligible old-age retirement age harmful for some person? 

2.1. Data  

Our data consists of sub-sample (58.165 persons) of the year 1947 birth cohort in Finland 

(108.168 persons) during the sample follow-up period of 1.1.2007 – 31.12.2019. Our focus is 

on the length of observed retirement durations when retirement has happened after the age of 

59 years. For the year 1947 birth cohort the eligible old-age pension age window is between 

ages of 63 and 68 years but quite many persons retire before age of 63 years for different 

reasons (for more details on data, see Appendix 1). As our data consists of retirement and death 

ages at birthday precision, we can do RD analysis very close to cut-off age of 63 years.  

 

2.2. Discontinuity at age of 63 years 

We argue that the lowest eligible old-age pension age of 63 years constitutes an important cut-

off age with respect to observed retirement durations. Our “causal story” here is the argument 

that if the persons have low expectations on the lengths of their remaining lifetimes, they try to 

retire early as possible, i.e., earlier than persons with high survival expectations. More 

precisely, we argue that persons with low subjective or objective life expectations face the 

“gate” of the lowest eligible old-pension age of 63 years too distant for them. They can and try 

to avoid it with alternative pensions arrangements before age of 63 years, e.g., they apply for 

and are allowed for disability, unemployment, part-time, and early retirement pensions that end 

by moving to permanent old-age pension (see Appendix 1, Tables 1B-1C).  Note that old age 

pension before age of 63 years also concerns some special job statuses like firemen, military 

and cost-guard officers, and persons having special individual elderly pension contracts (e.g., 

golden handshakes).  All in together this means that many persons retiree before age of 63 

years but for many this age constitutes a statutory waiting or queuing age that is against their 

retirement intentions and is not optimal for them.  
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In this context this means that for a given (low) retirement age, a high death age means a long 

retirement spell. Now, the death age  –  here taking place only after retirement –  plays an 

important role in the analysis.  We propose a novel RD model where death age acts as a running 

variable and the length of terminated retirement duration is the main outcome variable of 

interest.  Death age is a valid running variable as it is typically random and it can’t be easily 

manipulated by the RDD units, i.e., retirees. This also connects our RD model close to method 

of randomly controlled trials (RCT).  

 

3. RDD with retirement spells  

3.1. Regression discontinuity designs 

Regression discontinuity designs (RDD) have obtained large interest in economics along with 

the “credible revolution” in econometrics. With the latter we mean the different methods 

employed in the treatment effect literature trying to elucidate “causal effects” in the data 

mimicking the results of the RCT’s in medical and natural sciences.  Typical RD studies in 

economics have focused on the effects of educational achievement on later educational 

enrolments and career earnings, labour market program and policy effects on labour supply, 

and age depend care effects on health levels and care utilization (see e.g., Lee and Lemieux, 

2010). At this moment advances in statistical foundations of RD methods have lifted the 

analysis to new levels with robust testing approaches and solid methodological framework (see 

e.g., Cattaneo et al., 2020c). 

 

3.2. Discontinuity of outcome at treatment rule   

Age or time is quite natural assignment or running variable X that determines treatment by 

turning some policy or rule on at some specific age or time, say 1  when  D X c=  . Now after 

age c the person belongs to the treatment group and before age of c he/she belongs to the control 

group, i.e. 0  when  D X c=   . Note that at the threshold or at the cut-off age c nothing 

happens to this running variable X per se   – it is still a continuous function around this age.  

Instead, the outcome variable Y under study may respond discontinuously to the treatment 

turning on at the cut-off age c.  

 

In technical terms we have a treatment effect ( ) [ | ]x E X x = = , and we are interested in 

estimate of  0 1( ) ( ) ( )D Dx m x m x = == −  where  

 

                             0 0 1 1( ) [ | ]  and  ( ) [ | ]D Dm x E Y X x m x E Y X x= == = = = .          (2) 
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At the cut-off c we set that ( ) lim ( )  and  ( ) lim ( ).
x c x c

m c m x m c m x+ −

 
= =  Hahn et al. (2001) propose 

the following core identification theorem for RDD (see also Hansen 2021, Chapter 21).  

 

Assume that treatment is assigned as { }D X c= 1 . Suppose that 

0 1( )  and  ( )D Dm x m x= =  are continuous at x = c. Then ( ) ( ).m c m c + −= −   

 

The continuity assumption has a high importance here and it means that the conditional 

expectations functions (CEF) for untreated and treated outcomes of Y, 0 1( )  and  ( )D Dm x m x= = , 

are continuously affected by the running variable X. Thus, at the treatment cut-off, RD 

identifies the possible conditional local average treatment effect (LATE) as a limit result of 

endpoints of CEF’s. The rationale behind this comparison is that treated and control units in a 

small neighbourhood or window around the cut-off are comparable in the sense of having 

similar observed and unobserved characteristics, i.e., units’ characteristics do not change at the 

cutoff. The only remaining difference between units will be their treatment status, at least in 

terms of their potential outcome mean regression functions (Cattaneo et al. 2020b; 2020c, 

Section 2).  

 

In practice this means that CEF’s 0 1( )  and  ( )D Dm x m x= =  are continuous at the cut-off and the 

density of X must be also continuous at x = c. This is the non-manipulation assumption of RD 

model that is violated if the density of running variable X is discontinuous around x = c (or 

elsewhere) indicating that X is not independent in the presented RDD, e.g., it is manipulated 

by the design units.  Nice thing here is that this assumption is easily tested. More demanding 

task is to estimate the treatment effect ( ) ( )m c m c + −= −  effectively and unbiased under the 

continuity of 0 1( )  and  ( )D Dm x m x= = . Typically, linear OLS method is seldom suitable to 

support the approximate correct regression functions as estimates for CEF’s.  

 

3.3. Death age as the running variable  

To motive our RD model approach, we produce following Figure 1. Graphical methods are 

useful in the RDD context to show how cut-off point on the running variable is related to the 

possible outcome variable discontinuity. The potential discontinuity is estimated with binned 

data (NEFF = effective sample sizes on both sides of cut-off point), i.e., sample averages of 

nearby observations (x,y) –pairs, and with “optimal” order polynomial fits at both sides of cut-

off point (see Calonico et al. 2017).  
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In the Figure 1. the running variable is the age of retiree, and the retirement duration is the 

outcome variable. We see a discontinuity in retirement durations at the cut-off age of 63 years 

and the length of durations jump down in average at the cut-off age. Note that the values of 

AGE variable in Figure 1. refer to the death ages up-till age of 73 years during the sample 

follow-up time, and to the ages of still alive persons with age above of 73 years at the end of 

follow-up. This means that cut-off age of 63 years refers to the death age.  

 

                    

        Figure 1. Regression discontinuity at age of 63 years in retirement durations with  

                       (death) age as running variables (N = 58615) 

 

Figure 1. shows that durations shorten close after the death age of 63 years compared to death 

age close before it. How is this possible?  In the following we try to understand this interesting 

and novel result in details. Before the retirement duration RD model estimation for point 

effects, we check that the death age is continuous variable especially around the eligible 

minimum age of old age pensions of 63 years.  In other words, Figure 1. result is not an outcome 

of density discontinuities in death ages at the cut-off age of 63 years.  

 

3.4. Testing for density discontinuity in death ages  

In a local neighbourhood near the cut-off age, if the number of observations below the cut-off 

is surprisingly different from the number of observations above it, then the underlying 

assumption of absence of precise manipulation of running variable is violated.  If not violated, 
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random change would place roughly the same amounts of units on either side of the cut-off, 

leading to a continuous probability density function at the treatment cut-off point (see Catteneo 

et al., 2018; Catteneo et al., 2020c).  Figure 2. depicts the robust local polynomial density 

estimates of retiree death ages at both sides of cut-off age 63 years between death ages of 59 

and 68 years with 95% CI’s. Appendix 2 gives sub-sample results with alternative death age 

windows and local bandwidths (BW’s) approaching the eligible minimum old-age pension age.  

Irrespectively of used death age window or BW’s our density estimates show that the continuity 

assumption is valid for our running variable.  

 

                        

  Figure 2. Estimated density and histogram of death ages with cut-off death age of 63 years.  

 

Table 1. gives more formal test results for smoothness of death age densities around cut-off 

age of 63 years (see also, Appendix 2, Table 2A). The test is a robust approach based on the 

minimization MSE –criterion for local polynomial density estimate with respect to BW choices 

close to the cut-off (see Catteneo et al., 2018). The test balances optimally the trade-off between 

precision (variance) and bias of estimates with corrections for higher order approximations.  

 

All test results show that the null hypothesis  – density of the running variable is continuous at 

the cut-off –  is not rejected. In general terms, the obtained continuity results in the death age 

variable are expected because we can’t assume that persons can manipulate their (random) 

death ages, i.e., deaths happen with equal probabilities very close to cut-off age of 63 years. In 
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other words, death treats persons independently (i.e., randomly) of other factors at the close 

margin of cut-off age.  Next question is how this random death age assignment affects the 

length of terminated retirement spells and other variables that are related to retirement age 

decisions.  

 

Table 1. RD manipulation test using local polynomial density estimation. 

 
Running variable: ALL DEATH AGES (retT > 59) 
 

N = 6438, NEFF = 347 and 569, BWOPT = -1.48,1.48) 

----------------------------------------------- 

            Method |      T       p-value >|T| 

-------------------+--------------------------- 

            Robust |    0.7979      0.4249 

----------------------------------------------- 

 

        P-values of binomial tests. (H0: prob = 0.5) 

 --------------------------------------------------------- 

   Window Length/2 |  <cut-off    =>cut-off | p-value >|T| 

 ------------------+------------------------+------------- 

             0.042 |        9          11   |    0.8238 

             0.084 |       22          23   |    1.0000 

             0.126 |       36          41   |    0.6488 

             0.168 |       44          61   |    0.1180 

             0.211 |       56          73   |    0.1587 

             0.253 |       68          92   |    0.0687 

             0.295 |       83         108   |    0.0822 

             0.337 |       95         118   |    0.1315 

             0.379 |      108         134   |    0.1078 

             0.421 |      118         148   |    0.0752 

 --------------------------------------------------------- 

 

3.5.  Is it retirement age or death age that determines retirement durations?  

At the deeper level the above discontinuity results in Figure 1 can be understood with (ex-post) 

retirement duration counting equation corresponding to Eq. 1) above 

 

                                                   retD = AGED  – retT ≥ 0                     (3)  

 

where retD = observed retirement duration, AGED = observed death age, and retT = observed 

retirement age. The equation shows clearly, with the given value of retirement age retT, the 

higher death age means longer retirement duration retD.  However, we saw in Figure 1. that 

this not happens around the death age of 63 years. Why we see a break downwards in the 

smooth increasing relation between death age and retirement duration at the minimum eligible 

age for old-age pension?  

 

Here’s some answers in terms of summary statistics. Although AGED  is a random event   – 

also at age of 63 years as shown above  –  and retT depends on persons’ retirement  intentions 
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and plans, retirement takes place nevertheless very often at the minimum eligible old-age 

retirement. This means that large amount of retirement “packs” close to the age of 63 years 

making the sample average of  retirement durations short with death ages close after age of 63 

years. The counter argument to this is that the number dying retirees should be also large at age 

of 63 years because large number of persons are retiring at this age. This can be true, but here 

the things are different. Now, with reference to above counting equation and persons retirement 

behaviour, the number of retT’s is proportional larger than the number of (random) AGED’s is  

close after age of 63 years, and this makes the values of retD’s small (see Appendix 3).  

 

Some additional local RD plots with retirement durations, retirement ages, and death ages 

between ages of 59 and 68 years are illuminating here. We use first retirement age retT as  

 

  

       Figure 3. Regression discontinuities in retirement durations with retirement age (59 < 

                      retT < 68) and death age (59 < AGED < 68) as running variable (N = 2900). 

 

running variable with retirement duration retD as the outcome variable. Note here the diffe-

rence in sample size with Figure 1. above where the whole sample was used. Figure 3. (left 

panel)  shows clearly that there is no RD effect on retirement durations happening at retirement 

age of 63 years. Only very small kink in the regression function is detected at that age. In the 

right panel death age is the running variable. Retirement durations jump down once again 

discontinously at the death age of 63 years. The graphs in Figure 3. show, that persons, who 

died close before the minimum retirement age of 63 years,  have retired earlier than those who 

died close after with the age of 63 year. Alternatively, in terms of Eq. 3), at the death age of 63 

years, longer durations can happen only if retirement ages are lower.  
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All this means  –  quite trivially –  that when death ages, that are almost uniformly distributed 

close to age of 63 years, are scaled with quite differently distributed retirement ages, a jump 

downward in terminated retirement durations close after death age of 63 years is observed. In 

other words, our novel result indicates that retirees planned or “forced” to retire at age of 63 

years  – and unfortunately die close to this age  – have shorter retirement spells compared to 

those retired somewhat earlier. 

 

Following Table 2. gives means of death ages, retirement durations, and retirement ages for 

persons at both sides of the cut-off death age of 63 years. Rows in Table 2 focus on values 

above and below the cut-off age. In the first two rows, death ages and retirement durations are 

quite different but there is close to 10 month difference in retirement ages (61.63 – 60.32). 

Those who die after age of 63 years retire later if they retire before age of  63 years.  

 

      Table 2. Means of death ages, retirement durations, and retirement ages at  

                    the cut-off value of 63 years (SE of means in parethesis).  
                 

DEATH and RETIREMENT AGES                   |   AGED         retD         retT 

--------------------------------------------+---------------------------------------- 

AGED < 63 and retT < 63, N = 569            | 61.70 (0.04)  1.38 (0.04)  60.32 (0.03) 

AGED ≥ 63 and retT < 63, N = 5025           | 68.59 (0.04)  6.96 (0.05)  61.63 (0.02) 

62.5 < AGED < 63 and retT < 63, N = 143     | 62.74 (0.01)  1.94 (0.08)  60.80 (0.08)    

63 ≤ AGED < 63.5 and retT < 63.5, N = 191   | 63.27 (0.01)  1.67 (0.10)  61.40 (0.09)  

------------------------------------------------------------------------------------ 

 

When death age window is set close to cut-off age of 63 years (62.5 - 63.5, rows 3-4), retirement 

age difference is smaller (circa 6 months), but now the retirement duration is longer for those 

who die close before age of 63 years compared to ones who die close after this age. This 

replicates of our main results but now we see that retirement (age) behaviour differs among the 

person dying close to age of 63 years.  

 

4. RD treatment effect estimates on retirement spells   

4.1. Effect estimates  

Next, we use Calonico et al. (2017) robust nonparametric local polynomial method (R/Stata: 

rdrobust) to estimate the treatment effect with the above RD design. RD effect estimation is 

based on MSEMIN –optimal bandwidth selection approach with respect to bias-variance trade-

off problem in regression smoothing estimation. Note that (global) linear parametric OLS 

approach to estimation of treatment effect is in most RDD applications biased or not even 

suitable due the possible non-linearity of CEF’s around the cut-off. The robust methods correct 
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and adjust for estimation and inference biases in optimal way with respect to approximation 

errors in the derivatives of local polynomial fits (see Cattaneo et al. 2020c, Section 4).  

 

We estimate with rdrobust – module for the treatment effect at the cut-off death age of 63 

years with different death age windows. In Table 3. we observe that the RDROBUST estimate is 

–0.957 when we use the full sample. In other words, above the cut-off death age, the average 

(local) retirement duration is 0.96 years less than it is below the cut-off age. Precisely, those 

who survive close to above the age of 63 years have (in average) 11 months shorter retirement 

durations than those who survive close below age of 63 years. When running variable contains 

only the death persons with ages than less 68 years RDROBUST estimates are close to above full 

sample result. With window of 61 – 65 death ages, the effect estimates is  – 0.822.  

 

          TABLE 3. RDROBUST  EFFECTS ESTIMATION RESULTS WITH DIFFERENT DEATH AGE WINDOWS  

 

The rdrobust method loses its merits when the death age window is set to 62–64 years and 

62.5–63.5. This is an outcome of inefficiency of method as it needs large sample to let non-

parametric estimation produce reliable results with the efficient number of observations. We 

appended our RDROBUST estimations with the following standard linear OLS –estimation of 

model that is much used in RD analysis   

 

                           0 1 2 63 63( 63) ( 63)D DretD AGE AGE D D    = + − + −  + + .  

 

D63 is the treatment dummy-variable taking value of 1 after death age of 63 years and value of 

0 before it. OLS estimation gives significant estimates at 1% level, but the effect estimates are 

smaller than the large sample RDROBUST estimates. Surprisingly, OLS effect with the smallest 

OUTCOME 
VARIABLE 

RUNNING VARIABLE: 

AGE DEATH AGE 

retD > 59 ALL 59 - 68 61 - 65 62 – 64 62.5 – 63.5 

RDROBUST: LATE 

t-value (robust) 
-0.957 

(-2.92)*** 
-0.932 

(-2.77)*** 
-0.916 

(-2.76)** 
-0.822 

(-2.69)** 
-0.402 
(-0.82) 

-0.504 
(-0.88) 

MSE OPTIMAL 
BANDWITDH 

1.725 1.702 1.678 0.606 -0.273 
0.251 

-0.146 
0.188 

SAMPLE SIZE 58615 6483 2900 1200 656 104 

EFFECTIVE 
SAMPLE SIZE 

383, 671 374, 663 371, 657 168, 228 68, 96 51, 51 

ORDER OF EST. 
POLYNOMIAL 

3 3 3 1 1 1 

RDOLS: LATE 
t-value (robust) 

R2 

- - - -0.395 
(-3.15)*** 

0.167 

-0.555 
(-3.08)*** 

0.065 

-0.881 
(-3.47)*** 

0.035 
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age window gave estimate (-0.881) close to RDROBUST estimates. Adding 2nd order polynomial 

term (AGED – 63)2 into the OLS estimation did not make the results different. Thus, although 

OLS being somewhat biased in RDD’s it still can have a role with local small sample sizes. In 

Table 3., heteroscedasticity robust variance-covariance estimation is conducted with kernel 

smoothing weights (see Cattaneo et al., 2020a; Catteneo et al., 2020c; Calonico et al., 2017).  

 

4.2. External validity and stability 

Above RD estimates on retirement spells are local average treatment effect (LATE) estimates, 

i.e., the treatment effect identified by RD model applies to a small sub-population, persons 

having death age close around of 63 years. This problem of local can be approached in many 

ways to increase the external validity of RD estimates.  Above we estimated treatment effects 

for persons retiring after age of 59 years with different death age windows and RD estimation 

bandwidths.  This estimation strategy implies some external validity for RD effect estimates.  

 

Cerulli et al. (2017) propose an interesting stability test (TED) for RD estimates that also has 

external validity implications. The test is based on the idea that we examine the curvature 

stability properties of the LATE RD estimates with different death age values near of 63 years.  

If stability is not found, we would have serious doubts about the general usefulness and external 

validity of the RD estimates, since other contexts are likely to differ from the analysed here in 

even more substantial ways than a marginal change in death age at age 63 years (Cerulli et al. 

2017, p. 318).  

 

In technical terms, the sharp RD treatment effect is ( ) ( ) ( ),c m c m c + −= −  but now we estimate 

also '( ) '( ) '( )c m c m c + −= − , i.e., the derivates of estimated continuous regression functions on 

both sides of cut-off point. If the derivate values '( )  and  '( )m c m c+ −
 differ much, this means 

that slopes of treatment levels at c c c− +  are different, and RD estimate is instable and 

external validity is questionable. In contrast, having near-zero '( ) '( ) '( )c m c m c + −= −  

estimates with different bandwidths for continuous functions ( )  and  ( )m c m c+ −
 provides 

evidence supporting stability of RD estimates and external validity. 

 

Table 4. gives TED estimates with t-values based on OLS-estimation of RD effect observations 

with different bandwidth values. We don’t find any significant TED estimates with different 

bandwidths, i.e., RD effect estimates are stable, and they have some external validity with 

respect to the cut-off point. 
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                        TABLE 4. TED STABILITY TESTS WITH DIFFERENT BANDWITDH (BW) VALUES 
 
 
 
 
 
 
 
 
 
 
 
 

4. 3.  Covariates 

4.3.1. Background 

One approach to test the validity of conducted RD analysis is to use the robust RD treatment 

effect estimation method on potential covariates with the same running variable as in the main 

RD analysis of interest. If statistically significant effects are found (i.e. discontinuities) in 

covariates as outcomes, the validity of RD of interest is questioned because covariates may 

cause the main RD treatment outcome effects. However, if the validity is secured, then the 

covariates can have a role in canonical RD analysis. The case is however now different, say 

from standard multivariate OLS regression, and special care is needed here. Cattaneo et al. 

(2022) note that “When employed correctly, baseline covariates can be useful for the analysis 

and interpretation of RD designs. First and foremost, canonical RD designs do not necessitate 

covariate adjustments, and therefore researchers should always report unadjusted RD treatment 

effect estimates and associated unadjusted robust bias-corrected inference methods in those RD 

settings. When pre-intervention covariates are available, they can be used for two main 

purposes without affecting the main RD identification strategy: (i) to improve efficiency and 

power, and (ii) to define new parameters of interest” (2022, p. 24). 

 

4.3.2. Health, unemployment, and retirement 

Terminated retirement spells consist of two components: the age of retirement and the age of 

death.  Both are affected by person’s health and the labour market episodes nearing the old age 

pension age. There exists a vast literature on the relationship between retirement and health 

with mixed results   –  typically focusing on the effects of retirement on health (see eg., Pilipiec 

et al., 2021;  Scharn et el., 2018; Swedas et al., 2018). Much less is known in the details how 

health determines the timing of retirement (Kuhn, 2018; Ilmakunnas and Ilmakunnas, 2018; 

OUTCOME VARIABLE: 

RETIREMENT DURATION 

RUNNING VARIABLE:  

DEATH AGE 

BANDWITDH 63  3.00 63  2.00 63  1.00 63  0.50 

RDOLS: LATE 

t-value (robust) 

-0.641 

(-2.93)*** 

-0.596 

(-2.86)*** 

-0.824 

(-2.84)*** 

-0.679 

(-2.46)** 

TEDOLS 

t-value  

0.648  

(0.95) 

0.555 

(1.06) 

0.223 

(0.15) 

-0.586 

(-0.64) 

SAMPLE SIZE 1823 1200 656 104 

ORDER OF EST. POLYNOMIAL 3 2 2 1 
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Conley and Thompson, 2013). However, we know that poor health has negative effects on 

person’s work and survival prospects.  

 

The case of (long term) unemployment happening before retirement time is even more complex 

than the above health-retirement nexus. Typically, prolonged unemployment around and after 

of age 60 years ends with retirement as the probability of re-employment decreases rapidly at 

the age close to retirement (Marmora and Ritter, 2014; Nichols et al., 2013).  However, in 

countries like Finland where income adjusted unemployment allowances and unemployment 

social benefits form opportunity costs to pensions, postponing the retirement time can happen. 

Likewise, the level of allowances for job sickness leave can be higher than the pension level.  

These social security payments end in most of cases   –  but not necessarily always  –   when 

the person reaches the minimum eligible age of 63 years for old age pension.  

 

On the general level this means that these special labour market episodes (i.e., non-working 

periods) before retirement or death can have discontinuities close to age of 63 years. Now our 

main outcome variable of interest, the retirement spell length, is expected to be affected by 

these non-working outcomes. To avoid wrong cause and effect inferences, we next analyse 

separate RD’s for persons who have experienced sickness and unemployment periods before 

retirement.  

 

4.3.3. RD plots for retirement spells and non-working episodes with death ages 

Figure 4. depict RD outcome plots with retirement durations and composite number of non-

overlapping days of non-working periods. The non-working periods show a kink in function at 

death age of 63 years. However, the discontinuity in the smooth function for retirement 

durations widens when persons with pre-retirement non-working periods are excluded from the 

sample compared to result with persons having pre-retirement non-working periods. 

 

Table 5. reports the results of RD validation testing with different predetermined and non-

predetermined covariates having values before retirement and death (for summary statistics, 

see Appendix 4). We expect that the random character of our running variable makes  
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      Histogram:  Number of non-working days (N = 3777)            Outcome:  Number of non-working days (N = 3777)  

  

Outcome:  Retirement durations (non-working observations     Outcome: Retirement durations (non-working observations, 

                  excluded, N = 2706)                                                                   N = 3777)     

    
          Figure 4. Regression discontinuities in retirement durations and number of non- 

                         working days with age of death  (59 < AGED < 73) as running variable.   

 

discontinuities in covariates not to be present. Note that the sample sizes vary in validation 

testing because some of covariates were not fully recorded in the data. We used maximum 

sample sizes for the running variables in the analysis. All considered predetermined covariates 

pass the validation except the LANGUAGE variable. It is difficult to give interpretation to this 

result. It has only a minor importance because the share of Swedish speaking persons is only 5 

percent in the data.   

 

We mean by non-predetermined or non-fixed variables those that can take different pre-

intervention values that conditions the value of outcome variable, i.e., these can affect both the 

retirement age and age of death.  Here our interest is on the mean of yearly incomes before 

retirement in addition to the number of non-working days analysed above. Note, that pre-
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retirement incomes are of high importance in life-cycle labour supply models where conditions 

for the retirement age is derived (see e.g., Bloom et al., 2014; Fields and Mitchell, 1984). We 

expect that mortality is also sensitive to life cycle incomes as we known that wealth gives more 

years to live (see e.g., Glei et al., 2022; Benzeval et al., 2014; Smith, 1999). However, both 

these non-predetermined variables pass the validation test.  

 
                                          TABLE 5. RDROBUST VALIADATION TESTS FOR COVARIATES 

# NWD  = NUMBER OF NON-WORKING DAYS  

 

When the predetermined covariates are added to retirement duration RD model, the above RD 

effect results in Table 3. are still valid (see Table 6, RD1): the treatment effect has value of -

0.993 (t-value: -3.08). When the non-predetermined covariates are used the results are 

somewhat different.  When incomes are included in the model (Table 6, RD2) RD effects 

estimate is now -1.092 with t-value of -2.89. Using number of non-working days as covariate  

makes RD effect estimate smaller in absolute value (Table 6, RD3 and RD4). The result is 

expected when the Figure 4. results are considered. Note, that RD estimation for covariates and 

their augmentation in retirement spell outcome RD estimation can be seen as one form of 

external validity testing.   

 

                            TABLE 6.   RDROBUST  EFFECT ESTIMATES WITH COVARIATES 

COVARIATES: 
        RD1:   GENDER, CIVIL STATUS, LANGUAGE, EDUCATION  
        RD2:   GENDER, CIVIL STATUS, LANGUAGE, EDUCATION, INCOMES 
        RD3:   NUMBER OF NON-WORKING DAYS 
        RD4:   NUMBER OF NON-WORKING DAYS, GENDER, CIVIL STATUS, LANGUAGE, EDUCATION, INCOMES  
 

RUNNING VARIABLE OUTCOME VARIABLE 

DEATH AGE GENDER CIVIL STATUS LANGUAGE EDUCATION INCOMES # NWD1) 

RDROBUST: LATE 

t-value (robust) 
-0.162 
(-1.59) 

-0.045 
(-0.31) 

0.163 
(2.75)*** 

-0.137 
(-0.69) 

1.250 
(0.28) 

30.452 
(0.48) 

MSE OPTIMAL 
BANDWITDH 

1.212 -1.414, 5.159 0.929 1.544 1.516 1.643 

SAMPLE SIZE 6483 6482 6482 6483 4082 3777 

EFFECTIVE SAMPLE SIZE 306,  1398 341, 2342 261, 369 353, 597 144, 315 265, 395 

ORDER OF EST. 
POLYNOMIAL 

2 2 2 2 2 2 

 RUNNING VARIABLE:  DEATH AGES 

OUTCOME VARIABLE:  retD RD1 RD2 RD3 RD4 

RDROBUST: LATE 

t-value (robust) 
-0.933 

(-3.08)*** 
-1.092 

(-2.89)*** 
-0.638 

(-2.24)** 
-0.555 

(-2.13)* 

MSE OPTIMAL BANDWITDH 1.201 1.862 1.344 -0.824, 3.071 

SAMPLE SIZE 6482 4081 3777 2148 

EFFECTIVE SAMPLE SIZE 304, 459 165, 405 243, 331 71, 259 

ORDER OF EST. POLYNOMIAL 2 2 2 1 
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4.3.4. Alternative approaches 

Results so far lead to a question “Could we obtain comparable results with some other 

methods?” Used RD approach shows that retirement durations shorten local close after the 

death age of 63 years compared to the ages close before of 63 years. Now, if we underline the 

randomness of death at the age of 63 years, we can calculate means of retirement durations on 

both sides close to the age of 63 years as estimates for population means. This approach mimics 

RCT approach and should give corroboration to RD results if the results are not conflicting 

with RD estimates. Alternative we can stress the fact that our outcome variable, the terminated 

retirement spell, contains also other component, i.e., retirement age, that is affected by personal 

characteristics and labour supply factors. This means that we should control for these before 

we can analyse the age of death mean effects on retirement spells.  

 

Method of regression adjustment (RA) is suitable approach to make control and treatment 

groups comparable (e.g., see Imbens and Wooldridge 2009, Section 5.3). RA is based on a two-

step approach to estimating treatment effects.  First, we fit separate regression models of the 

outcome on a set of covariates before and after death age of 63 years (i.e. control and treatment 

groups). Second, we compute the averages of the predicted outcomes for each subject in both 

groups. The contrasts of these averages provide estimates of the average treatment effect (ATE). 

RA estimators are consistent if the treatment is independent of the potential outcomes after 

conditioning on the covariates. It is important to report summary statistics of the covariates by 

treatment status to secure that distributions of covariates are in balance on both sides of the 

treatment. Table 7. reports RA results along with sample differences in means with t-values in 

small death age bandwidths close to the death age of 63 years. Estimates in Table 7. are not 

conflicting the earlier RD estimates. The effect estimates are smaller in absolute values 

compared to RD estimates, but they tend to increase when the age window gets smaller.  

 
     TABLE 7. RA TREATMENT AND SAMPLE MEAN DIFFERENCE ESTIMATES WITH DIFFERENT  
                     DEATH AGE WINDOWS 

OUTCOME VARIABLE: retD  62 < AGED < 64 62.5 < AGED < 63.5 62.75 < AGED < 63.25 

RAATE
1) -0.509   (-2.60)*** -0.612  (-2.23)** -0.895 (-2.98)*** 

SAMPLE SIZE 85 47 32 

MEAN>63 – MEAN<63 -0.128  (-0.73) -0.597 (-2.08)* -0.843 (-2.38)** 

SAMPLE SIZE 204 742) 46 
1) Covariates: GENDER, CIVIL STATUS, LANGUAGE, EDUCATION, INCOMES 

2) 62.6 < AGED < 63.4 
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Appendix 5. gives some covariate balance statistics. They show that large non-balances are not 

present. Note, that number of non-working days is not included as a covariate in RA modelling 

because when added to analysis the sample sizes are too small for efficient estimation.  

 

4.3.5. Who are the persons having short retirement durations around the death age of 63 years? 

Above we showed that persons who die close before the eligible minimum old age pension age 

will experienced longer retirement spells in average than those who die close after this age 

albeit they have also retired in average before age of 63 years. We argued above in Section 2.2. 

that persons can avoid lowest eligible old-pension age with other forms of pension 

arrangements before age of 63 years, and then move later-on to the old-age pension system. 

We also showed with our RD validity and covariance balance testing that persons had at the 

cut-off point of age of 63 years equal personal and economic characteristics. This leads to the 

conclusions implied by our RD analysis that (death) age of 63 years treats persons in inequal 

way with respect to terminated retirement durations.   

 

With reference to the pension types at the cut-off age we observe (see Appendix 6, Tables 6A-

6B) that 87 percent of those retired after age of 63 years had old-age pension as their last form 

of pension, and 49 per cent of those who retired before age of 63 years had some other form 

of pension as their first pension type. The related pension type frequencies among those who 

not-survived and survived beyond the age of 63 are 92.1 and 95.6 per cent (Tables 6C-6D). 

These findings along with Table 2. and RD model results imply that persons having short 

terminated retirement durations close to death ages after age of 63 years are old age pension 

takers but those with somewhat longer durations but dying before age of 63 years have some 

other form of pensions as their first pensions. These are in most of cases persons that are 

allowed for (work) disability, part-time, and unemployment pensions. This leads to argument 

that the Finnish pension system produces with the statutory age limits undesirable outcomes 

for some retirees that must conflict their retirement intentions. In other words, some old age 

pension takers deceasing close after age of 63 years have experienced shorter retirement spells 

compared to persons that have allowed for other forms of pensions with earlier retirement ages.  

 

5. Conclusions  

RDD analysis with retirement duration as outcome variable and retirement death age as a 

running variable among Finnish retirees was conducted. Analysed data consisted of person data 

with year 1947 birth cohort during the follow-up period of 1.1.2007 – 31.12.2019. For the year 
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1947 cohort the eligible old-age pension age window is between ages of 63 and 68 years. 

However quite many persons retire before the minimum age of 63 years for different reasons. 

The age of 63 years as a limit is a natural cut-off age in this context, and we proposed a research 

question “Has the death happening around the retirement age of 63 years an effect on the length 

of retirement duration?” A positive  – but surprising – answer was obtained to the question 

with conducted RD analysis across the different sub-samples with respect to retirement spells, 

retirement ages, and death ages. 

 

On the general level the results show that retirees who survive close to above the age of 63 

years have shorter retirement spells than those who die close to below age of 63 years. This 

non-intuitive result depends on the retirement age behaviour difference between the groups: 

survivors close past the age of 63 years retire later than ones close before age of 63 years. 

Detailed analysis showed that other forms of retirement (e.g., disability and unemployment 

pensions) sustain the observed longer retirement durations compared to retirees having old-age 

pension starting at age of 63 years as their only pension arrangement. Our main result implies 

that the minimum age of eligible retirement age of 63 years has acted as an unfavourable limit 

in terms of retirement spells for some retirees among the Finnish year 1947 birth cohort. We 

can’t argue that this outcome corresponds to their retirement intentions and plans.  

   

The point estimates for robust RD effects were in the range from –1.09 to –0.56 of year in 

duration loss depending on the used sub-samples and RD regression estimation method. In 

addition, regression adjustment (RA) methods and raw differences in means testing provided 

supporting evidence for RD model estimates. Finally, some external validity test values and 

RD model alternatives with covariates indicated that results are robust and have external 

validity.   

 

Our RD model can be compared to local RCT’s as our running variable, the age of death, is a 

random variable. This does not put so big stress on RD estimates as local effects as the 

identification can be based also on randomness around the cut-off age, not as a limit result of 

potential outcomes.  Note that, the randomization-based RD approach (see Catteneo et al. 

2022d), not necessarily the continuity-based RD framework, is considered almost as credible 

as random experiments. However, Sehkon and Titunik (2016, 2017) show that it is hard to 

defend (local) RD estimates –  either based on randomization or continuity –   as genuine 

randomized treatment effects.   
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Appendix 1.  Data sources and variable summary statistics  

 

Person level register follow-up data. Starting 1.1.2007, ending 31.12.2019.  

Statistics of Finland: birthday in year 1947, date of death, gender, civil status,  

                                  language, education 

ETK (Finnish Centre for Pensions):  date of retirement, pensions, incomes   

KELA (The Social Insurance Institution of Finland):  number of days of unemployment, 

                                                                                      number of days of sickness leave 

Main variables of interest:  AGED = age of death,   

                                            retT = retirement age of 1st pension type ( ≥ 59 years) 

                                            retD = composite retirement duration of allowed pensions   

 

The number of births in year 1947 was 108.168. At the starting day of sample (1st of January 

2007) 80.003 persons were still alive and had a Finnish citizenship. 19.867 of these had retired 

before the 1st of January 2007. These survivors were not included in the study because the dates 

of deaths are observed only after 1st of January 2007. This means that including observations 

with retirement ages before of age of 59 years would give biased measures of terminated 

retirement durations. In addition, 1521 person had obscure retirement status after age of 59 

years. These cases were also dropped from the analysis. The analysed sample consist of 58.615 

persons. As our focus is on retirement behaviour around the age of 63 years, we use cases that 

are exposed to death risk close to age of 63 years.  

 

                    Table 1A. Number of death retirees 
 

            |      Freq.     Percent        Cum. 

------------+----------------------------------- 

    DEATH   |      6,483       11.06       11.06 

    ALIVE   |     52,132       88.94      100.00 

------------+----------------------------------- 

      Total |     58,615      100.00 

 

                     Table 1B. First pension type  
 

 1st PENSION |      Freq.     Percent        Cum. 

------------+----------------------------------- 

   OLD-AGE  |     35,879       61.21       61.21 

   OTHER    |     22,736       38.79      100.00 

------------+----------------------------------- 

      Total |     58,615      100.00 

 

                     Table 1C. Last pension type  
 

  LAST PENSION |      Freq.     Percent        Cum. 

---------------+----------------------------------- 

      OLD-AGE  |     56,236       95.94       95.94 

      OTHER    |      2,379        4.06      100.00 

---------------+----------------------------------- 

         Total |     58,615      100.00 

          

 

          Table 1D. Summary statistics of main variables with last pension 
------------------------------------------------------------------------- 

                     Obs        Mean      Std. Dev.    Min        Max 

------------------------------------------------------------------------- 

OLD-AGE PENSION 

        AGED |      56,236      68.75       2.92       59.72      73.62 

        retT |     56,236      62.55       2.06       59.00      72.38 

        retD |     56,236      10.27       2.56        0.08      14.68 
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OTHER PENSION 

        AGED |      2,379       63.06       3.08      59.06      73.39 

        retT |      2,379       61.58       1.03      59.00      64.68 

        retD |      2,379        8.58       4.28       0.00      14.52 

--------------------------------------------------------------------------- 

 

 

                 Appendix 2.  RD manipulation test with different sub-samples  

 

                   
            

              Figure A2-1. HISTOGRAM OF DEATH AGES (62.5 < AGE < 63.5, N = 334) 

 

 

                 

                   

                       Figure A2-2. MANIPULATION TEST PLOT (62.5 < AGE < 63.5, N = 334) 
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                TABLE A2.  RD MANIPULATION TEST USING POLYNOMIAL DENSITY ESTIMATION  

                                     (kernel = triangular,  VCE method = jackknife) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                  NEFF = effective (binned) sample sizes on the left and right side of the cut-off point 
                                  BW = bandwidths of estimation around the cut-off point with binned data  

     

 

                

Appendix 3.  Number retirees and deaths in different age groups 
 

      AGE   RETIREES  DEATHS  RETIREES/DEATHS 

61.00     167       31    5.38 

61.25    176       35        5.02 

61.50     145       36    4.02 

61.75    114       32        3.56 

62.00    300       49    6.12 

62.25    373       70    5.32 

62.50    117       57    2.05 

62.75    103       77    1.33 

63.00    613       66    9.28 

63.25     787       89    8.84 

63.50    151      102        1.48 

63.75    156       99    1.57 

64.00    113       96        1.17 

64.25    102       87    1.17 

64.50     69       98    0.70 

64.75     67      112    0.59 

      65.00    139       95    1.46_______ 

   

               

 

 

 

 AGED = 63 with retT > 59, N = 58615  
(Left of cut-off: 569, Right of cut-off: 58046) 

Order of polynomial = 2 

 BWOPT= -1.78, 1.33 BW = 2.00 

NEFF (395, 511) (422, 778) 

TEST VALUEROBUST 0.557 1.445 

P-VALUE 0.571 0.148 

 AGED = 63 with retT > 59, AGED < 72, N = 5537  
(Left of cut-off: 569, Right of cut-off: 4968) 

Order of polynomial = 2 

 BWOPT= -1.66, 1.41 BW =  0.50 

NEFF (388, 647) (143, 191) 

TEST VALUEROBUST 1.069 0.238 

P-VALUE 0.285 0.773 

 AGED = 63 with retT > 59, AGED  < 68,  N = 2900 
 (Left of cut-off: 569, Right of cut-off: 2331) 

Order of polynomial = 2 

 BWOPT= -1.37, 1.33 BW =  0.25 

NEFF (326, 525) (66, 89) 

TEST VALUEROBUST 0.524 -1.099 

P-VALUE 0.600 0.272 



23 
 

                      Appendix 4.  Pre-determined covariates (death retirees)  
 

GENDER 

            |      Freq.     Percent        Cum. 

------------+----------------------------------- 

    MALE    |      4,192       64.66       64.66 

   FEMALE   |      2,291       35.34      100.00 

------------+----------------------------------- 

      Total |      6,483      100.00 

 

        CIVIL STATUS 

              |      Freq.     Percent        Cum. 

--------------+----------------------------------- 

UNMARRIED     |      1,005       15.50       15.50 

MARRIED etc.  |      3,185       49.14       64.64 

DIVORCED      |      1,659       25.59       90.23 

WIDOW         |        633        9.77      100.00 

--------------+----------------------------------- 

        Total |      6,482      100.00 

 

LANGUAGE 
            |      Freq.     Percent        Cum. 

------------+----------------------------------- 

    FINNISH |      6,157       94.97       94.97 

    SWEDISH |        326        5.03      100.00 

------------+----------------------------------- 

      Total |      6,483      100.00 

 

  EDUCATION 
 

LEVEL OF EDUCATION |      Freq.     Percent        Cum. 

-------------------+----------------------------------- 

          BASIC    |     2,817       43.45        43.45 

         SECONDARY |     2,205       34.01        77.46 

       TERTIARY    |       762       11.75        89.22   

    LOWER ACADEMIC |       368        5.68        94.89 

   HIGHER ACADEMIC |       331        5.11       100.00 

-------------------+------------------------------------ 

             Total |      6,483      100.00 

 

Non pre-determined covariates (death retirees) 

 
MEAN YEARLY INCOMES BEFORE RETIMENT (1000 Euros) 
 

    Variable |        Obs        Mean    Std. dev.       Min        Max 

-------------+--------------------------------------------------------- 

    INCOMES  |      4,082       18.37     16.92          0       430.59 

 

NUMBER OF DAYS OF NON-WORKING DAYS (NWD)BEFORE RETIREMENT 
 

    Variable |        Obs        Mean    Std. dev.       Min        Max 

-------------+--------------------------------------------------------- 

      NWD    |      3,777       237.11     211.56        1         1170 

 

 

Appendix 5.  Covariate balance testing  (Austin, 2009) 

 
62 < DEATH AGE < 64 (N = 104) 
--------------------------------------------------------------------------------- 

                        |       Mean               |     t-test    |VAR(Treated)/ 

Variable                | Treated Control    %bias |    t    p>|t| |VAR(Control) 

------------------------+--------------------------+---------------+------------- 

GENDER                  | 1.2519   1.2754     -5.3 |  -0.36  0.719 |  0.94 

CIVIL STATUS            | 2.1926    2.058     16.0 |   1.07  0.284 |  1.10 

LANGUAGE                | 1.0667   1.1014    -12.5 |  -0.87  0.384 |  0.68* 

EDUCATION               | 2.1333   2.2029     -6.2 |  -0.42  0.672 |  0.88 

INCOMES                 | 18.669   16.659     14.1 |   0.65  0.518 |  1.14 

--------------------------------------------------------------------------------- 

* if variance ratio outside [0.71, 1.41] 
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62.5 < DEATH AGE < 63.5 (N = 47)  
--------------------------------------------------------------------------------- 

                        |       Mean               |     t-test    |VAR(Treated)/ 

Variable                | Treated Control    %bias |    t    p>|t| |VAR(Control) 

------------------------+--------------------------+---------------+------------- 

GENDER                  | 1.1897   1.3043    -26.6 |  -1.36  0.177 |  0.72 

CIVIL STATUS            | 2.1897   2.1304      7.0 |   0.35  0.726 |  1.21 

LANGUAGE                | 1.0517    1.087    -13.8 |  -0.71  0.481 |  0.61 

EDUCATION               | 2.1552    2.087      6.3 |   0.32  0.752 |  1.22 

INCOMES                 | 21.082   17.995     20.2 |   0.67  0.506 |  1.10 

--------------------------------------------------------------------------------- 

* if variance ratio outside [0.59, 1.69] 

 

62.75 < DEATH AGE < 63.75 (N = 32)  

--------------------------------------------------------------------------------- 

                        |       Mean               |     t-test    |VAR(Treated)/ 

Variable                | Treated Control    %bias |    t    p>|t| |VAR(Control) 

------------------------+--------------------------+---------------+------------- 

GENDER                  | 1.2143   1.2778    -14.4 |  -0.48  0.631 |  0.82 

CIVIL STATUS            | 2.2143   2.0556     18.4 |   0.60  0.551 |  1.31 

LANGUAGE                | 1.0714   1.0556      6.4 |   0.21  0.836 |  1.24 

EDUCATION               | 2.0012   1.7778     24.2 |   0.78  0.439 |  1.59 

INCOMES                 | 19.105   16.691     21.2 |   0.42  0.677 |  2.69* 

--------------------------------------------------------------------------------- 

* if variance ratio outside [0.46, 2.16] 

 

 

   Appendix 6.  Pension type summary statistics (death retirees)  
 

  Table 6A. First pension type at retirement age of 63 years (N = 6483)  
 

BEFORE AGE OF 63 YEARS 

 

1st PENSION TYPE  |      Freq.     Percent        Cum. 

------------------+----------------------------------- 

     OLD-AGE      |      3,165       48.82       48.82 

      OTHER       |      3,318       51.18      100.00 

------------------+----------------------------------- 

      Total       |      6,483      100.00 

 

   Table 6B. Last pension type at retirement age of 63 years (N = 6483)  

 
 AFTER AGE OF 63 YEARS 

 

 LAST PENSION TYPE  |      Freq.     Percent        Cum. 

--------------------+----------------------------------- 

     OLD-AGE        |      5,703       87.97       87.97 

      OTHER         |        780       12.03      100.00 

--------------------+----------------------------------- 

              Total |      6,483      100.00 

 

 Table 6C. First pension type at death age of 63 years (N = 6483)  
 

BEFORE AGE OF 63 YEARS 

 

1st PENSION TYPE  |      Freq.     Percent        Cum. 

------------------+----------------------------------- 

     OLD-AGE      |         45        7.91        7.91 

      OTHER       |        524       92.09      100.00 

------------------+----------------------------------- 

      Total       |        569      100.00 

 

   Table 6D. Last pension type at death age of 63 years  (N = 6483)  
 

AFTER AGE OF 63 YEARS 

 

 LAST PENSION TYPE  |      Freq.     Percent        Cum. 

--------------------+----------------------------------- 

     OLD-AGE        |      5,657       95.65       95.65 

      OTHER         |        257        4.35      100.00 

--------------------+----------------------------------- 

              Total |      5,914      100.00 
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