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Abstract

The Regional Greenhouse Gas Initiative (RGGI), as the largest cap-and-trade system in the
United States, conducts quarterly auctions to distribute emissions permits to firms. This study
examines the behaviour of firms and the performance of RGGI auctions from both theoretical
and empirical perspectives. We begin by providing a theoretical model that offers insights
regarding the optimal bidding behaviour of firms participating in RGGI auctions. We then
analyse data from 58 RGGI auctions to assess the relevant parameters, employing machine
learning and three different models. Our findings indicate that most significant policy changes
within RGGI, such as the Cost Containment Reserve, positively impacted the auction clearing
price. Furthermore, we identify critical parameters, including the number of bidders and the
extent of their demand in the auction, demonstrating their influence on the auction clearing
price. This paper offers valuable policy insights for all cap-and-trade systems that allocate
permits through auctions, as it substantiates the efficacy of policies and the importance of
specific parameters using data from an established market.

Keywords: Emissions permit; auctions; uniform-price; RGGI.

JEL Classification: D22; C5; Q5; D44.

∗Corresponding author: peyman.khezr@rmit.edu.au. Department of Economics, School of Economics, Finance
and Marketing, Royal Melbourne Institute of Technology (RMIT), Victoria, Australia.

†Department of Finance, School of Economics, Finance and Marketing, Royal Melbourne Institute of Technology
(RMIT), Victoria, Australia.

1



1 Introduction

Carbon neutrality represents a significant challenge of the current century. Governments worldwide
have tackled the issue of reducing carbon emissions by implementing caps through cap-and-trade
markets, such as Europe’s EU-ETS, the US’s Regional Greenhouse Gas Initiative, and Califor-
nia/Quebec’s AB-32. A cap-and-trade market is a system that restricts the total quantity of
pollutants that can be emitted, allowing firms to buy and sell allowances for those emissions. The
primary objective of a cap-and-trade market is to decrease overall pollution levels by establish-
ing a cap on emissions and fostering a market for companies to trade emission allowances. A
well-implemented cap-and-trade market yields substantial socio-economic benefits. Furthermore,
previous research demonstrates that an efficiently designed emissions market can accomplish the
goal of emissions reduction at the lowest possible cost (Coase, 2013; Montgomery, 1972; Lopomo
et al., 2011).

In a landmark move toward greenhouse gas regulation, the Regional Greenhouse Gas Initiative
(RGGI) stands out as a forerunner cap-and-trade program in the United States, specifically de-
signed to reduce carbon emissions.1 RGGI’s framework, detailed in Figure 1, involves a coalition of
twelve states in the Northeast and Mid-Atlantic regions, all committed to systematically lowering
greenhouse gas emissions. Each state has crafted a unique cap-and-invest strategy, under which
emissions caps are enforced and firms must acquire corresponding permits to produce CO2 emis-
sions. RGGI’s innovative model not only addresses climate change but also inspires other regions to
consider similar paths. According to Analysis Group’s independent evaluation, RGGI has notably
decreased carbon emissions by 46%, accrued $3.8 billion from the sale of emissions permits, and
ultimately delivered $5.7 billion in net economic benefits over a twelve-year period.2

Through the establishment of a cap on carbon dioxide emissions, RGGI has created a market-
based mechanism for reducing greenhouse gas emissions by initially allocating permits via uniform-
price auctions. The effectiveness of such auctions in achieving the policy goals of reducing emissions
and promoting energy efficiency depends on various factors, including the bidding behaviour of firms
and the design of auction parameters. Therefore, a theoretical and empirical study of auctions in
RGGI is crucial to better understand the mechanisms behind the auction outcomes and to identify
ways to improve the design of future auctions. By analyzing the bidding behaviour of firms and
testing the effectiveness of various auction parameters, such a study can provide important insights
and policy recommendations for not only RGGI but also other cap-and-trade systems that use
auctions to allocate permits.

This paper aims to investigate the auctions conducted by RGGI since the inception of the pro-
gram. It examines the effects of changes in auction rules and parameters on auction outcomes,
providing evidence of the effectiveness of various policies implemented by RGGI. Initially, we de-
velop a theoretical model that offers insights into the behaviour of polluting firms that bid in a
uniform-price auction to acquire emissions permits. Our analysis also explores the implications of
modifications made to RGGI auctions over time. Subsequently, we utilize data from RGGI auctions
to empirically test the hypotheses posited by our theoretical model. This research stands among
the few studies that employ both auction theory and empirical analysis to investigate auctions in
a cap-and-trade market.

1The first major market-based cap-and-trade program in the United States was the Acid Rain Program, which
was established by Title IV of the 1990 Clean Air Act Amendments. The program aimed to reduce sulfur dioxide
(SO2) emissions, which were a major contributor to acid rain. The Acid Rain Program was successful in reducing
SO2 emissions and laid the groundwork for subsequent cap-and-trade programs, such as RGGI.

2The Economic Impacts of the Regional Greenhouse Gas Initiative on Ten Northeast and Mid-Atlantic States,
White Paper, May 2023.
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Figure 1: The map of participating states in RGGI. Pennsylvania joined the program in 2022

Thus, the contribution of this paper is twofold. First, we present a theoretical model that
analyses the bidding behaviour of firms in RGGI’s auctions, considering a setup that reflects relevant
parameters in those auctions. Second, we provide empirical evidence based on available data
regarding the effectiveness of the implemented changes in auction parameters. Our theoretical
model contemplates a scenario where firms have private abatement costs and submit a schedule of
bids in a uniform-price auction. We show that one of major policies implemented in RGGI auctions,
called the Cost Containment Reserve (CCR),3 would reduce the extent of untruthful bidding in the
auction and could increase the auction clearing price, ceteris paribus. Furthermore, we demonstrate
that the scale of demand by bidders is a crucial parameter for the auction clearing price; with large-
scale bidders, we anticipate a decline in the auction clearing price due to an increase in bidders’
monopsony power.Our empirical approach employs diverse methods, including linear and nonlinear
regression models, as well as panel regression and machine learning models, to deeply analyse the
distinct effects of auction parameters and policy changes on RGGI. We introduced the concept of
the concentration of large-scale bidders (LSB) and investigated its effect on the auction clearing
price. Furthermore, we scrutinized the impact of various variables on the clearing price of auctions
using these methods.

We initiate our empirical analysis with a preliminary examination, evaluating key factors that
influence clearing prices and analyzing the effects of policy interventions on auction outcomes. In-
deed, we conduct a preliminary analysis to identify significant variables and their relationships
with clearing prices. This crucial step helps us determine whether these variables exert a linear or
nonlinear influence on clearing prices. Subsequently, utilizing machine learning models, specifically
the Random Forest and Gradient Boosted Trees (GB) algorithms, we investigate the relationships
between variables without making any prior assumptions about the linearity or nonlinearity of these
connections. The insights from the Random Forest model indicate that the most significant factors
affecting the auction clearing price include the trigger price, GDP, Emission Containment Reserve
(ECR), and the Cost Containment Reserve (CCR). We then use visualization techniques to pin-
point significant variables and to understand their impact on auction prices more clearly. Drawing

3Later, in Section 2, we explore into more detail regarding the CCR and its operation within RGGI auctions.
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insights from this wide ranging analysis, we then explore various methods to discern how different
factors influence auction clearing prices. Applying these diverse models allows us to investigate
their robustness across alternative analytical approaches.
Our findings indicate that irrespective of the use of nonlinear or linear models and whether the ap-
proach is policy-centered or variable-focused, the core results are consistent. Notably, key variables
identified in the machine learning analysis, consistently show significance and similar direction in
both model types, highlighting their substantial influence on auction clearing prices. The findings
of this study collectively validate the strength of the relationships we have identified and highlight
the consistency of our results across different analytical methods, thereby boosting the credibility
of our conclusions.

This paper is structured as follows: Section 2 provides a detailed explanation of the literature
review and background of the study. In Section 3, a theoretical model is presented, and four
distinct propositions are discussed. Section 4 examines the RGGI auction data and introduces
two new concepts, namely, large-scale bidders and concentration ratios. Section 5 commences with
preliminary analysis and visualization, proceeding to unveil the outcomes derived from employing
both (non)linear regression methods, as well as machine learning techniques. Then, provides some
further analysis and discussion of the results. Finally, Section 6 provides concluding remarks.

2 Background and previous literature

Since the introduction of cap-and-trade markets there has been a debate regarding the initial alloca-
tion of emissions permits. Cramton and Kerr (2002) were one of the first to discuss the advantages
of auctions for initially allocating licenses, as opposed to free allocations (also known as grandfa-
thering). They argue that, when designed appropriately, auctions are more effective at allocating
permits to firms that assign the highest value to them. Furthermore, auctions can generate revenue
for regulators, which can potentially be utilized to offset the adverse social externalities of pollu-
tion. Consequently, auctions have become the most prominent and widely employed mechanism in
nearly all cap-and-trade systems today.

The uniform-price auction is the most commonly used auction format in cap-and-trade markets
due to its desirable features such as price discovery and simplicity of rules (Khezr and MacKenzie,
2018b). However, it is well-established in the literature that this type of auction does not result in
truthful bidding, as bidders are incentivized to under-report their true values (Back and Zender,
1993; Ausubel et al., 2014; Khezr and Cumpston, 2022). This issue is referred to as demand
reduction (Ausubel et al., 2014). Some studies propose alternative supply strategies as a means of
reducing or eliminating demand reduction (Back and Zender, 2001; McAdams, 2007). For example,
McAdams (2007) suggests that not committing to a fixed supply at the ex-ante level could decrease
the likelihood of demand reduction.

RGGI commenced in 2008 with 10 participating states: Connecticut, Delaware, Maine, Mary-
land, Massachusetts, New Hampshire, New Jersey, New York, Rhode Island, and Vermont. Later
Virginia and Pennsylvania joined the program in 2020 and 2022, respectively.4 RGGI employs
quarterly uniform-price auctions to allocate emissions permits to firms. From its inception in 2008
through the first quarter of 2023, RGGI has conducted 58 quarterly auctions and distributed billions
of CO2 permits to firms in the US. Although all permits are initially allocated through auctions,
firms are allowed to trade these permits in the secondary market to address demand uncertainty.
Therefore the market has two main mechanisms for the allocation and reallocation of permits:

4Note that Pennsylvania was not formally added to RGGI for the data studied in this paper. Also, Virginia was
included in RGGI from auction 51.
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Figure 2: Three different supply schedules implemented by RGGI

auctions for the initial allocation, and trade of permits for the secondary market.
There have been several modifications to the RGGI auction rules since 2008 to accomplish

various policy objectives. The first major change was the introduction of the CCR during the third
compliance period, which began in January 2014. The CCR was devised to help regulate the cost
of allowances in RGGI’s quarterly auctions by making additional allowances available if the auction
clearing price surpassed a predetermined price threshold. This price threshold is referred to as the
trigger price, which was initially set at $4 in 2014 and has been adjusted over time to account for
inflation and alterations to the program.

Another significant alteration to the RGGI auction was the introduction of the ECR, which
stemmed from the 2017 program review and was implemented in 2021. According to the ECR
rules, participating states withhold a portion of allowances from the auction if the clearing price
falls below a specified threshold. The ECR aims to offer additional flexibility and control over
emissions by ensuring that the market price of allowances remains sufficiently high to incentivize
emission reductions.

The uniform-price auction is a critical component of RGGI’s permit allocation mechanism.
Numerous studies investigate the performance of uniform-price auctions within the context of cap-
and-trade markets (Kline and Menezes, 1999; Khezr and MacKenzie, 2018b,a). As some of the
most prominent policies implemented in RGGI are CCR and ECR, there are several papers that
investigate the effect of such price caps on equilibrium prices. These studies usually make distinct
modelling assumptions concerning firms’ values for permits, abatement costs, the timing of the
model and whether it is a multi period or a single shot game. Some papers focus on bidding
behaviour and strategic interactions in the auction and abstract from the multi stage game. For
example, Khezr and MacKenzie (2018b) presents a static setup that attempts to replicate the CCR
within a uniform-price auction using common values for permits. They show that, if the overall cap
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is fixed after the introduction of the reserve allowance, the CCR cannot lower the auction clearing
price, as in any new equilibrium of the auction with increasing supply, the price is at least as high
as the price with a vertical supply.5 Therefore, based on their conclusions one would expect CCR
to probably increase the auction clearing price and the cost of permits if the total cap remains
constant after the introduction of CCR.

Furthermore, there is another type of studies which abstract from bidding behaviour in the
auction and try to model the dynamics of the game. For instance, Salant et al. (2022) develop an
infinite-horizon model to study the effects of nonbinding price floors. They show that introducing a
price floor below the initial market value can lead to an increase in price under certain conditions.
They further noted that this increase is more significant when a rigid price floor is implemented,
as opposed to a flexible one. Based on their conclusions one would expect a policy like ECR would
increase the auction clearing price.

We note that due to the complexity that arises from the existence of multiple equilibria, there
are no studies that investigate both the bidding behaviour in the auctions and the dynamics of a
multi-stage game at the same time. In this paper, we took the former approach and study a single
shot auction game. Our theoretical model differs from the one in Khezr and MacKenzie (2018b) as
in our model we assume firms have private information regarding their abatement costs. As with
any other theoretical model, our model has limitations in addressing some realistic aspects of the
RGGI. However, we make sure to investigate these limitations in the theoretical section and further
discuss how they influence our results.

To our knowledge, there is no paper that empirically investigates the auction parameters and
the bidding behaviour in RGGI.6 However, there is a class of literature that study the uniform-price
auction empirically.7 For instance, Kastl (2011) studies the uniform-price auction’s performance
using a data from Czech Treasury auctions. Kastl (2011) suggests the uniform-price auction works
well both in terms of revenue generation and efficient allocation of units. He suggests bidding
in the uniform-price auction is closely related to oligopolistic behaviour. Given that most of the
papers that empirically study uniform-price auctions use data from treasury auctions, and there
are clear differences between treasury and emissions permit markets, there is an important gap in
the literature regarding the empirical analysis of uniform-price auctions employed in cap-and-trade
markets.

Finally there are several papers that use laboratory experiments to study uniform-price auctions
that are employed in cap-and-trade markets (Shobe et al., 2010, 2014; Holt and Shobe, 2016; Perkis
et al., 2016; Friesen et al., 2022; Salant et al., 2023). For example, Friesen et al. (2022) demonstrates
the existence of focal points where dual allowances are employed in a uniform-price auction. Their
model, which attempts to mirror both cost and emission containment reserves in RGGI, incorporates
a supply curve featuring two steps. They show that the two trigger prices responsible for releasing
the reserves play a pivotal role in determining the final auction clearing price. Salant et al. (2023)
study the theoretical findings of Salant et al. (2022) and support these finding. They show in a
laboratory experiment that prices respond to nonbinding price floors.

5The issue of cost containment has been identified as a challenge for regulatory bodies in cap-and-trade markets.
Traditionally, approaches used to address this issue involve implementing price caps on permits or establishing reserve
supply mechanisms to regulate price fluctuations (Murray et al., 2009; Fell et al., 2012; Kollenberg and Taschini, 2016).

6There are papers that empirically investigate other aspects of RGGI. For instance, see Fell and Maniloff (2018)
and Chan and Morrow (2019).

7See Khezr and Cumpston (2022) for a comprehensive review of these studies.
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3 Theoretical model

A regulator would like to allocate Q number of emission permits to n > 1 firms indexed by
I = 1, ..., n. Each firm i ∈ I has a non-decreasing and continuous abatement cost function A(ci).

8

We assume parameter ci is private information of firm i. However, it is common knowledge that
ci is distributed according to some distribution function F (.) on [c, c̄], which is continuous and
differentiable with density f < ∞. Moreover, suppose each firm has a capacity equal to λi, which
indicates the maximum number of permits they demand with no abatement cost. To avoid trivial
cases, we assume

∑
i
λi > Q. In our theoretical model we abstract from the secondary market

mainly for tractability reasons. If one assumes the expectation regarding the secondary market is
fixed and ex-ante identical for all firms, it is plausible to conclude that the secondary market cannot
influence the bidding behaviour of firms. We later show in the empirical analysis that auctions are
usually the mechanisms to provide price signals for the secondary market and not vice versa.9

In particular, we examine the mutual influence of auction clearing prices and secondary market
prices. The Granger causality test indicates no statistical significance for secondary market prices
predicting future clearing prices, while historical clearing price changes significantly forecast future
secondary market prices. We provide more explanation in Section 4.

The regulator uses a standard uniform-price auction to allocate the Q permits to firms. In
the auction, each bidder i submits a schedule of sealed bids for up to λi units.10 Denote bi as
the bid schedules submitted by firm i, which determines the maximum price they are willing to
pay for each permit. Without loss of generality, we assume bid schedules for all bidders are in
non-increasing orders. The regulator aggregates all the bids, sorting them from the highest to the
lowest, and clears the market by allocating all the quantity Q. The price for all the units is set
at the intersection of aggregate demand and supply, where the bids on the left-hand side of the
intersection are winning bids. If there are multiple bids with the same price at quantity Q (the
demand is flat), then the price is determined at the flat part of the aggregate demand curve with
a random marginal allocation rule.11

To be able to define each firm’s demand for permits we need to further specify the marginal
abatement cost (MAC) function. In particular, suppose the MAC function of each firm i is defined
as follows:

MAC(ci, e) = ci − αe (1)

where ci is firm i’s private information as described above, e is the level of emissions, and α is a
positive constant.12

8In our theoretical model, we assume that firms are compliance entities. Although the majority of firms in real-
world markets are polluting entities, there may also be other participants, such as speculators, active in these markets.
We abstract from these entities for simplicity.

9Moreover, in the empirical analysis we control for the trade in the secondary market by including the trade
volume and price in the secondary market.

10We assume that the size of λi is restricted so that it does not exceed a quarter of the total permits available.
Although this assumption does not meaningfully affect our results, it aims to align with RGGI’s rules, which prohibit
firms from submitting bids for more than 25% of the total available allowances.

11We note that in practice, there are multiple methods for randomly allocating excess demand. For instance, in
RGGI, each bidder is assigned a random number from 1 to n, where n represents the total number of bidders whose
bids are on the flat part of the aggregate demand curve. Allocation begins with bidder 1 and continues until the
supply is exhausted. Other rationing rules are also possible. For example, California employs a pro-rata rationing
rule to allocate the supply of allowances when there is excess demand at the margin.

12In a scenario where banking of permits is allowed, the banked permits would be subtracted from the total
emissions, with e representing the net level of emissions.
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We use Equation (1) to derive each firm’s demand for permits. First, note that the level of
emissions that makes the MAC equal to zero is equal to the firm’s capacity λi, that is, λi =

ci
α .

Further, note that at any price p < ci, the quantity demanded for permits is given by:

qi =
ci
α

− 1

α
p (2)

Therefore, each bidder i who wins xi units in the auction at a clearing price equal to p receives
the following surplus.13

πi =

xi∫
0

(ci − αx)dx− pxi (3)

Next, we are going to investigate the bidding strategies of firms in the auction. Firms submit
demand schedules to the auctioneer. The auctioneer computes the aggregate demand and clears the
market until the quantity Q is sold. As mentioned before, the price is determined at the intersection
of aggregate demand and Q. We define the bidding process as follows. Each firm i submits a bid
schedule bi(ci) which determines their maximum willingness to pay for permits. Denote the inverse
of bid schedule, xi(b) as the submitted demand schedule by firm i and X =

∑
i xi as the aggregate

submitted demand.
The following proposition shows firms have incentives to under-report the true value of ci in

every equilibrium.

Proposition 1. In any possible symmetric equilibrium, it is optimal for firms to under-report their
types ci.

Proof. See Appendix 6.

The above proposition suggests that firms have clear incentives to not reveal their true demand
in the auction. The result of this proposition is aligned with many other results in the literature
that show the uniform-price auction has the problem of demand reduction (Krishna, 2009). The
intuition behind this result is that firms know that their submitted demand influences the aggregate
demand and consequently the price for all the units. Therefore, lowering the submitted demand
schedule, at least partly, would reduce the expected clearing price of the auction and increase their
expected payoff. Moreover, there are papers that highlight possible equilibria with very low prices,
particularly where firms learn to lower their demand such that all units are sold at the lowest
possible price. For instance, Back and Zender (1993) suggests that the lowest price equilibrium is
Pareto dominant for buyers.

Based on the above result, as well as the support from the literature, we construct the following
claim.

Claim 1. We hypothesize that the initial implementation of a vertical supply of permits by RGGI
would result in low equilibrium prices within the auction framework.

There are several studies that investigate different design changes in the uniform-price auction
to reduce or eliminate the demand reduction problem (Back and Zender, 2001; McAdams, 2007;
Damianov and Becker, 2010; Khezr and Menezes, 2020). One suggested method, initially discussed

13Note that by incorporating a secondary market into the game, any surplus can only transfer from one bidder to
another. Therefore, maximizing the surplus in the auction becomes a more crucial objective.
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by McAdams (2007), is to use an increasing supply rather than a vertical supply. Since the intro-
duction of the CCR, RGGI essentially used this method and changed the supply of permits to an
increasing supply as a step function. Next, we would like to investigate how this simple change in
the supply would alter bidding behaviour.

Suppose the regulator uses the following supply schedule. For prices below p′, only δQ permits
are available, where 0 < δ < 1. If the auction clearing price is at or above p′, then all the Q units
will be available to potential buyers. In our model, p′ is equivalent to the trigger price that was
introduced in 2014 by RGGI. The following proposition shows how bidding behaviour by bidders
changes with the above change in the supply.

Proposition 2. With an increasing supply, the equilibrium demand schedules submitted by firms
are at least as high as the ones submitted with a vertical supply.

Proof. See Appendix 6.

The result of Proposition 2 suggests that an increasing supply would reduce firms’ incentives to
under-report their types relative to a vertical supply. The intuition behind this result is straight-
forward: when supply is increasing, larger quantities of supply would be available at higher prices
conditional on demand. This is in contrast with a vertical supply where all units are available even
if aggregate demand and supply intersect at the lowest possible price. Therefore, lower bids would
be punished by a lower quantity of supply. This simple adjustment would incentivize firms to bid
larger relative to the case with a vertical supply.

Based on this result, we can conclude that the implementation of CCR by RGGI was a proper
approach if the aim was to reduce or eliminate the demand reduction problem. Therefore, we expect
to see evidence of a price increase in our empirical investigation of auctions after the implementation
of CCR, ceteris paribus.

Claim 2. We hypothesize that the implementation of CCR increased the auction clearing prices in
RGGI, ceteris paribus.

There is a nuanced yet very crucial point regarding how we model the CCR and the result
mentioned above. In our model, we assume the total number of permits available (the cap) is fixed
at Q. So, if the CCR is implemented, the cap remains unchanged at Q, and at some quantity lower
than the cap, the supply of permits would decline for prices below the trigger price. An alternative
perspective on CCR exists. One can define a quantity of permits equal to ω > 0 and adjust the
total cap to Q + ω after the implementation of CCR, where the supply increases by ω for prices
above the trigger price. In the case of RGGI, it is not easily verifiable which of the two methods
was implemented in practice. The cap was reduced by 50% (from about 153 million tons to 72
million tons) at the same time the CCR was established. The CCR contains around 10 million tons
to be added to the cap should the price trigger be exceeded. Therefore the total number of permits
available, including the CCR is significantly below the amount before the policy was implemented.
While our empirical analysis accounts for these factors, in the theoretical model, we assume the
total number of permits to be distributed is fixed at Q, with CCR included in that quantity.

It is straightforward to assert that a similar claim is applicable to the ECR. In fact, technically
speaking, the ECR is akin to the CCR in the sense that it adds a step to a vertical step function.
Consequently, one can conclude that the implementation of the ECR would increase the auction
clearing prices in RGGI.

Another crucial variable influencing the auction outcome is the number of bidders. There are
two important points related to the number of bidders. First, it seems intuitive that when the
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number of bidders increases, we expect higher equilibrium prices, ceteris paribus. For instance,
one approach is to show that if one more bidder is added to the auction, the price in any new
equilibrium is at least as large as in the case with one fewer bidder. Second, keeping the total
demand fixed, the scale of each bidder’s demand could also alter the auction outcome. When one
or few bidders demand a larger amount of the total available units, they possess higher monopsony
power in the auction (Baisa and Burkett, 2018; Hortaçsu and Puller, 2008).

First we show increasing the number of bidders would have an upward effect on the auction
clearing price. Denote n′ > n as the new number of bidders. The following proposition summaries
the result.

Proposition 3. When the number of bidders increases the auction clearing price would also in-
crease, ceteris paribus.

Proof. See Appendix 6.

The above result is quite intuitive. With more bidders in an auction, assuming all else is equal,
the aggregate demand will increase, leading to an increase in the auction clearing price. In the
context of RGGI, this means that with more firms participating in the auction, we can expect to
see higher permit prices, all else being equal. The following claim summarizes this result.

Claim 3. We hypothesize that when the number of bidders in RGGI auctions increases the auction
clearing price increases, ceteris paribus.

Next, we introduce additional notations to consider the scale of bidders. To facilitate a reason-
able comparison with our basic model, suppose there exists a large bidder l that combines l < n
bidders from the original model into a single bidder. As a result, we now have n − l + 1 bidders
in the game, where l is a positive integer greater than one, and bidder l has a larger capacity than
other bidders given a specific type. The quantity of demand for bidder l is given by:

ql =
lcl
α

− l

α
p (4)

It is evident from the above equation that, given a fixed type, the large bidder has l times more
demand than a regular bidder. One conjecture is that higher monopsony power could increase
demand reduction and lower the auction price. The subsequent proposition demonstrates that, in
the presence of one large bidder, demand reduction could become more pronounced.

Proposition 4. With a large bidder the auction clearing price is less than the case without a large
bidder, ceteris paribus.

Proof. See Appendix 6.

The result of Proposition 4 suggests that when the scale of demand by a firm increases in
the auction, while keeping everything else constant, we expect the auction price to decline. The
intuition behind this result is closely related to the increased incentives for demand reduction.
When a firm has a larger demand relative to others, there is more room for manipulation of the
submitted demand schedule. Consequently, we expect a firm to reduce its demand below its actual
demand more extensively if it has a larger scale. The following statement encapsulates the findings
derived from the above result within the context of RGGI.

Claim 4. Large scale bidders in RGGI auctions could lower the auction clearing price, ceteris
paribus.
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The above four claims attempt to highlight the effects of some of the most important parameters
in RGGI auctions. In Section 5, we strive to present evidence supporting the above claims using
data from 58 RGGI auctions. It is important to note that, as with any theoretical model, the
one proposed here has some limitations. For instance, we abstain from considering the secondary
market for the sake of tractability. Incorporating a secondary market would undoubtedly have
implications for bidding behaviour in the auction. However, assuming fixed price expectations in
a secondary market, and with all other variables remaining constant, our results would still hold
true and maintain their validity.

One important aspect of allowance allocation in RGGI is the option of banking. It is crucial
to recognize that the game described in this section is a single-shot static game. In a one-shot
game, allowance banking could be considered merely a fixed endowment and would not significantly
influence the results. A more realistic approach would involve a scenario where firms bid in multiple
stages and bank extra allowances. With the introduction of banking, various motivations can arise.
For example, consider the primary motivation to be the uncertainty regarding future demand for
permits. If firms are assumed to have unbiased expectations about their future demand, it seems
reasonable to consider the banking of allowances as an endowment for the firm at any given auction.
It is important to acknowledge that there could be other motivations, such as inter-period price
trade-offs, and that simplifying the model to a single-shot game might overlook some significant
dynamic effects. However, as detailed in the background section, due to the presence of multiple
equilibria, extending the model to a multi-period setting is an exceedingly complex challenge and
beyond the aim of this research’s theoretical section. Our primary objective here is to construct
a theoretical model that can yield insights into the behaviour of firms in the auction, insights we
plan to later test using empirical methods.

In the next section, we provide additional details about the data available from the 58 auctions
and define two key variables that will enable us to test the theoretical claims.

4 Data description

In this section, a preliminary analysis will be conducted on the dataset gathered from 58 auctions
executed in the RGGI regions.14 The objective is to identify and establish two critical definitions
that would aid in understanding the data more accurately and would help testing important vari-
ables in the empirical model. These definitions are: first, the concept of large-scale bidders, which
refers to the scale of demand of participating firms in the auction; and second, the concentration of
bids, which describes the distribution of winning bids across the different bidders. These concepts
will be utilized in the next step, empirical modelling. By examining these two definitions, we can
gain a deeper understanding of the auction dynamics, which would be valuable for policymakers
and stakeholders in carbon trading markets.

Figure 3 depicts the carbon allowance prices in RGGI auctions from 2008 to 2022, alongside the
weighted prices of carbon allowances traded in the secondary market. It also depicts the auctions
in which CCR and ECR where introduced. Between 2008 and 2013, the carbon allowance prices
remained relatively low, fluctuating between $1.86 and $3.21 per allowance. In fact, in the majority
of auctions, the clearing price was equal or very close to the reserve price. During this period, neither
the CCR nor ECR policies were in place. In 2014, the CCR policy was implemented. The CCR
Trigger prices are as follows: $4 in 2014, $6 in 2015, $8 in 2016, and $10 in 2017. Starting from
2018, the CCR trigger price increased 2.5% annually until the end of 2020. Then in 2021, in the

14The data we used for this paper is publicly available on RGGI’s website: https://www.rggi.org/Auctions/Au
ction-Results/Prices-Volumes.
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new compliance period the CCR trigger price increased to $ 13 with an annual increase of 7%
for future years. Since the implementation of CCR from auction 23 to auction 30, we observe a
sharp increase in prices. However, after auction 31, there is a sharp decline in the auction clearing
price until auction 36, where we observe a price equal to $2.53. Since then, the prices have mainly
increased, particularly from auction 51 when the ECR was implemented. From this point on, the
carbon allowance prices experienced a significant increase, reaching a peak of $13.50 per allowance
in Q1 of 2022. Moreover, the ECR trigger price was initially established at $6.00 in 2021, and it
increased with an annual increment of 7 percent for subsequent years.
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Figure 3: Clearing price in RGGI auctions.

We statistically examine the impact of auction clearing prices on future secondary market
weighted prices to gain insights into their relationship. The Granger causality results show that
auction clearing prices can significantly influence secondary market prices, evidenced by a very low
p-value (0.0008). This indicates that historical changes in auction clearing prices offer meaningful
insights for forecasting future prices in the secondary market. This initial test is conducted to
demonstrate that auctions provide statistically significant price signals for the secondary market.

As identified in the theoretical section, there are two important variables that influence auction
prices, namely the number of bidders and the number of Large Scale Bidders (LSB). The number
of bidders is observed in every auction. However, to identify the number of LSB, we need further
analysis. The relationship between the number of large bidders and the auction clearing price in
uniform-price auctions is not necessarily straightforward. It is widely known that if there are one
or just a few bidders with significant demand, they could exercise monopsony power and drive
down the auction clearing price (Kagel and Levin, 2016). However, if there are many large bidders,
they may engage in intense competition that prevents the price from decreasing. In fact, beyond a
certain threshold, the presence of more large bidders can trigger a bidding war that pushes the final
price upwards. The effect of large bidders on auction prices is a complex, nonlinear, and nuanced
issue that can depend on a variety of factors (Kagel and Levin, 2016).

In our data, we observe the total permits won by each firm in every auction. As identified in
our theoretical model, the number of permits won in the auction has a positive and monotonic
relationship with the actual demand for permits. Therefore, it is reasonable to use the number
of permits allocated to each firm in the auction as a variable that represents the scale of bidders.

12



Thus, we define LSB as follows:

Definition 1. LSB is generated by a cutoff rule with (B1,B2, · · · ,Bn) ∈ Rn if D(Bi) > 0 for
i = 1, · · · , n where

D(Bi) =
n∑

j=1

(Bi −Bj) , (5)

where Bi is the total permits won by firm i and n is the total number of bidders in an auction.

To understand the concept of the above definition, let us consider an example with three bidders
denoted by B1 = 5 ,B2 = 7, and B3 = 2. For each bidder, we calculate the sum of the differences
between their winning bids and the winning bids of the other two bidders which gives, D(B1) = 1,
D(B2) = 7 and, D(B3) = −8. According to Definition 1, when the sum is positive, we consider
that bidder as an LSB bidder. Thus in this example, bidder 1 and 2 are defined as LSB. Note
that the computation of LSB is not symmetric, and by definition, the bidder that won the highest
number of permits is always an LSB. Of course, LSB by itself is not the best measurement of the
scale of a bidder relative to the other bidders. Therefore, in the next definition, we introduce a
concentration ratio to address these shortcomings.

Definition 2. Suppose the number of LSB in an action is represented by n′ < n. We define the
concentration of LSB based on the following formula:

C =

∑n′

k=1Bk∑n
j=1Bj

, (6)

For the above example the concentration ratio is equal to 12
14 which demonstrates a high monop-

sony power of the two bidders.
Figure 4 depicts the total number of bidders and the number of large scale bidders based on

Definition 1 in all 58 auctions held in the RGGI. As shown in the figure, the number of large-scale
bidders ranges from a minimum of 5 to a maximum of 22, while the number of bidders ranges from
a minimum of 20 to a maximum of 75. Furthermore, there seems to be some correlation between
the number of large-scale bidders and the number of bidders, as auctions with a higher number
of large bidders also tend to have a higher number of bidders in general. The data presented in
this plot is important for understanding the dynamics of RGGI auctions and the behaviour of
market participants. The number of large-scale bidders in an auction is a good indicator of the
level of competition for carbon allowances, as large-scale bidders typically have a significant impact
on auction outcomes. In addition, the number of bidders can also provide insight into market
participation and the overall demand for carbon allowances.

Figure 5 shows the histogram and kernel density estimation of the concentration of large-scale
bidders in all 58 RGGI auctions. The average concentration is approximately 80%, indicating a
high concentration of demand for large-scale bidders. Therefore, we expect the concentration of
large-scale bidders to be an essential variable in our empirical analysis in the next section.

5 Empirical approach

In this section, we present the empirical methodology employed to evaluate the key factors influ-
encing clearing prices and to analyse the effects of policy interventions on auction outcomes. We
begin by conducting a preliminary analysis to identify significant variables and their relationship
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Figure 4: Number of Bidders and Large-scale Bidders in RGGI Auctions (Auctions 1-58).

with clearing prices. Subsequently, we employ a range of analytical approaches, including nonlin-
ear modelling, linear regression, and panel regression models, to investigate the specific impacts of
auction parameters and the policies implemented within the RGGI framework. In particular, in
the main empirical analysis, we examine six distinct models. In Models 1, 3, and 5, we investigate
the impact of various essential variables including two main policy variables of interest ‘CCR’ and
‘ECR’ which we later define in subsection 5.2. In Models 2, 4, and 6 we use similar essential vari-
ables except that we substitute ‘CCR’ and ‘ECR’ with the trigger prices. Following this, we will
explore the intricacies of these relevant models in the subsequent subsections. The main reason for
not concurrently considering policy variables with trigger prices is rooted in statistical concerns,
primarily the potential for collinearity. In particular, the simultaneous inclusion of these variables
in one model may result in collinearity issues, as evidenced by statistical tests such as the Variance
Inflation Factor (VIF).

5.1 Preliminary machine learning analysis

Our empirical analysis begins with an essential preliminary step: examining the data structure.
This foundational process is critical for both machine learning and traditional statistical models.
To identify the most significant variables influencing the dependent variable, namely the clearing
price, we utilize the Random Forest model. Known for its ability to handle nonlinearity and
mitigate multicollinearity, the Random Forest model employs bootstrap sampling techniques. This
approach systematically explores various combinations of variables, treating each as a distinct
model and assigning them unique sets of data points. For more information, see (Mullainathan and
Spiess, 2017). Through this method, we aim to uncover and highlight the key variables that drive
the clearing price.

The results of the Random Forest algorithm are shown in Figure 6 for different variables. The
left plot in Figure 6 illustrates the stabilization of the mean of squared residuals at approximately
0.4731 after roughly 400 iterations, while the right plot showcases the weights of variables and their
proportional impact on MSE. As expected, the variables that are most critical to this method are
weighted price, GDP, Year as a proxy for trend, CCR trigger price, the number of bidders, policy

14



LSB concentrations

ratio

De
ns

ity

0.70 0.75 0.80 0.85 0.90 0.95

0
2

4
6

8
10

Figure 5: Distribution of concentration of LSB among 58 auctions in RGGI.

and Quantity sold (QS).15

Apart from ‘GDP’ as an exogenous variable and variable ‘Year’ which acts as a proxy for trend,
‘weighted price’, the ‘trigger price’, the ‘number of bidders’, ‘CCR’ and ‘ECR’ emerge as the most
critical factors in shaping auction clearing prices. This is supportive of our claims and the analysis of
the theoretical section as we suggested the supply change and the number of bidders are important
determinants of the auction clearing price in a uniform-price auction.

15Note that the Random forest regression models do not provide coefficients in a similar way as simple regression
models. Unlike simple linear regression models, where the coefficients of the linear equation that links the response
variable to the predictors are estimated, random forest regression models are made up of a collection of decision
trees. Each tree is constructed utilizing a random subset of the predictors. Hence, instead of estimating a single set
of coefficients, random forest regression models estimate a set of weights that correspond to the significance of each
predictor in the model. It is worth mentioning that Random Forest is associated with a lower risk of overfitting and
is less sensitive to outliers.
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Figure 7 illustrates the most significant variables determined by node purity, corroborating our
earlier findings in the Random Forest analysis. In this method, Weighted Price, GDP, CCR Trigger,
and Trend emerge as the most influential variables, while ConLSB and STAT exhibit comparatively
lower significance.16

Weighted Price
          log(GDP)
     CCR Trigger

Trend
     ECR Trigger

ECR Av
ECR

           #Bidders
CCR
GAS

QS
            ConLSB

STAT

0 20 40 60 80 100 120

Variable Importance Plot

IncNodePurity

Figure 7: Variable importance in the model is determined by estimating node purity using the
random forest algorithm.

16Node purity is a measure of how well the samples in a node belong to a single class, and it is used as a stopping
criterion in decision trees, including those used in Random Forest.
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We note that there are other machine learning approaches for the verification of the consistency
of the results, such as Extra Trees,17 AdaBoost methods,18 and Gradient Boosted Trees. We
report findings derived from the Gradient Boosted Trees algorithm (GB), a widely utilized ensemble
method renowned for its effectiveness in both classification and regression tasks. This algorithm
adeptly amalgamates numerous weak models to form a robust and powerful model.19 The learning
rate and the number of trees are controlled by hyperparameters, with a learning rate of λ = 0.01,
10,000 trees, and a depth of 8 for each tree, although the results are not highly sensitive to these
parameters. Similar to the Random Forest model, the first four important variables are ‘weighted
price’, ‘CCR’, ‘GDP’, and ‘Year’ which exhibit the greatest impact on our model. The summary
of this model fitting is presented in Figure 8.

Relative influence
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CCR
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#Bidders
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LSB Con

ECR

CCR Trigger

ECR Trigger

QS

ECR Av

Weighted Price

Figure 8: The importance of variables in the model based on GB algorithm.

In the subsequent phase of our analysis, building upon insights gained from the machine learning
analysis, we show the relationships between crucial factors such as ‘weighted price’, ‘log(GDP)’,
‘Year’, and ‘# Bidders’ with the dependent variable ‘clearing price’. This visualisation provides a
deeper understanding of model fitting and address the question of whether nonlinear models offer
superior suitability for our modelling endeavours.

We present a series of scatterplots in Figures 9a to 9d to give a visual reference as to how
these key variables and auction clearing prices are linked with each other. Figure 9a showcases the
scatterplot depicting the relationship between the ‘Year’ of auctions as a proxy for temporal trends
and the ‘clearing price’. Notably, this plot does not exhibit a linear relationship with the dependent
variable, ‘price’. Instead, it reveals two distinct peaks in the middle of the dataset, occurring in 2015

17Extra Trees (or Extremely Randomized Trees) - This model is similar to Random Forest, but the selection of the
split point is done randomly, without considering the optimal threshold value for each feature. For more details, see
Bonaccorso (2017).

18AdaBoost - This model is an iterative algorithm that combines multiple weak classifiers into a single strong
classifier. The weak classifiers are usually decision trees with a single split. More detail is available in Bonaccorso
(2017).

19For more details see Natekin and Knoll (2013).
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Figure 9: Univariate scatter plots: Auction clearing price and regressors

and the final year of our study, 2022. A similar pattern is also observed in Figure 9c. Conversely,
Figure 9b displays a different pattern, with the primary concentration of data points occurring in
the middle range. Finally, Figure 9d demonstrates a relatively linear relationship between weighted
price and clearing price. This finding aligns with our prior expectations, as we anticipated that
the most influential factor in determining the weighted price in the secondary market would be the
auction clearing price. This highlights the notion that purchasers of carbon emission allowances
typically submit their bids closely aligned with the previous auction’s clearing price, with minimal
deviation.

Through our preliminary analysis, we show a nonlinear and intricate relationship between the
clearing price and other variables. To effectively capture this complexity, we have chosen the
GAM as a main modelling approach. While recognizing the appeal of Linear Regression models
in the literature, we include them in our analysis to offer comparative insights, acknowledging the
simplicity they bring to understanding the relationships in the data.

5.2 Nonlinear analysis: Generalised Additive Model (GAM)

We used Generalized Additive Models (GAMs) as nonlinear models for their versatility in capturing
intricate relationships, managing nonlinearity, interactions, and non-parametric elements. GAMs
are adept at adapting to shifting trends and capturing time-varying effects.20

20GAMs outperform OLS models in two ways. Firstly, they excel at adapting to changing trends and capturing
time-varying effects, unlike OLS models reliant on fixed linear relationships. Secondly, GAMs exhibit robustness
against outliers, making them suitable for real-world datasets with anomalies or extreme values, adapting without
strict data distribution assumptions. For more details about the application of GAM, see Wood (2017).
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The nonlinear analysis aims to conduct a thorough investigation into the impact of a variety of vari-
ables, which we categorise into three distinct groups: auction-related variables including ‘Weighted
Price’, ‘#Bidders’, ‘CCR’, ‘ECR’, and ‘ConLSB’; economic variables (essential exogenous factors)
encompassing ‘GDP’, ‘Gas price’ and a trend.21 Importantly, to account for the impact of the
secondary market in the auction, we introduce two variables: ‘Weighted Price’ and ‘Sum Total Al-
lowances Transacted, (STAT)’. We calculate the Weighted Price for time step t based on the average
weighted price of STAT in the secondary market from the previous auction at time t−1 up to one day
before the new auction at a time t. Additionally, we define two variables, CCR = log(QS)×DCCR

and ECR = log(QS)×DECR where both DECR and DECR are dummy variables representing the
introduction of two policies, CCR and ECR, within the RGGI framework.

Model 1: In the first model, non-periodic splines are employed to capture the nonlinear rela-
tionship between the auction clearing price and the following independent variables: CCR, ECR,
Gas price, GDP, LSB concentration, #Bidders (number of bidders), STAT, and Weighted price.

Pt = α1CCRt + α2ECRt + α3Weighted Pricet + α4STATt + f1(log(GDPt)) (7)

+ f2(GASt) + f3(Trendt) + f4(#Bidderst) + f5(ConLSBt) + +α5,

where Pt represents the clearing price, in time t. The functions f1, f2, · · · , f5 are assumed
to be smooth and will be estimated using a cubic regression spline. The coefficients α1, ..., α5 are
unknown parameters.

Estimate Std.Error tvalue Pr(> |t|)
(Intercept) 0.656 0.072 9.090 0.000 ***
CCR 0.086 0.017 5.151 0.000 ***
ECR 0.023 0.028 0.806 0.425
Weighted Price 0.746 0.048 15.648 0.000 ***
STAT 0.000 0.000 -2.146 0.037 *

Approximate significance of smooth terms:
edf Ref.df F p-value

f1(log(GDP )) 1.961 6.000 2.193 0.000 ***
f2(GAS) 0.963 0.969 0.236 0.635
f3(Trend) 1.725 2.030 45.062 0.000 ***
f4(#Bidders) 1.275 1.625 15.594 0.000 ***
f5(ConLSB) 2.244 2.315 5.308 0.005 **

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R2(adj) = 0.976, Deviance explained = 98.1%
GCV = 0.3181, Scale est. = 0.2477, n =58

Table 1: Parameter estimation for nonlinear Model 1, Equation 7.

The results from our nonlinear regression model (GAM model), presented in Table 1, offer
valuable insights into the factors that significantly influence auction clearing prices. We bring
forward some important variable discussion. First, ‘Weighted Price’ emerges as a highly significant

21It is worth noting that we opt for the log transformation of GDP rather than using GDP directly for several
reasons. Firstly, this logarithmic transformation helps in mitigating heteroscedasticity, stabilizing the variance of the
error term. Moreover, it contributes to normalizing the distribution of residuals, a crucial assumption for hypothesis
testing and constructing confidence intervals.
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determinant with a substantial positive effect on clearing prices (Estimate = 0.746, p-value <
0.001). This implies that there is a positive relationship between the weighted price of allowances
in the secondary market clearing prices during auctions. Next, the logarithm of GDP is revealed to
have a statistically significant impact on clearing prices, (p-value < 0.001), where its dynamic value
is depicted in 10a. This nonlinear relationship suggests that changes in GDP do not have a uniform
linear effect on clearing prices. Instead, they exhibit a complex association, where variations in
GDP can approximately positively affect clearing prices.

Moreover, the variable ‘Trend’ demonstrates a statistically significant impact on clearing prices
(p-value < 0.001). This nonlinear pattern highlights the importance of temporal trends in auction
outcomes, as shown in Figure 10b. The auction trend exerts a significant influence on clearing
prices, with notable fluctuations observed in the middle years of the dataset, notably in 2015 and
2022. Additionally, the number of bidders, represented as ‘#Bidders’ is found to be a substantial
and statistically significant factor affecting clearing prices (p-value < 0.001). This positive linear
relationship, as can be seen in Figure 10c suggests that an increase in the number of bidders in
the auction leads to higher clearing prices. Notably, the complex nonlinear dynamics of ‘LSB Con’
with respect to the ‘Clearing price’ are revealed in 10d. The graph indicates a positive trend at
lower concentrations, approximately around 75%, but interestingly transitions to a negative trend
at higher concentrations, ranging from 90% to 95%. This finding reflects the competitive dynamics
of the auction process.
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Model 2: This model is structured to encompass the nonlinear relationship among the depen-
dent variables: CCR Trigger, ECR Trigger, GDP, Quantity sold, STAT, the number of bidders,
Trend, and weighted price. The equation, emphasizing RGGI policy analysis, is given by the
following equation:

Pt = α1CCR Triggert + α2ECR Triggert + α3Weighted Pricet + α4STATt (8)

+ f1(QS) + f2(Trendt) + f3(log(GDPt)) + f4(#Bidderst).

Results of Model 2, Equation 8, are reported in Table 2. As anticipated, the CCR Trigger has
a coefficient of 0.011 with a p-value of less than 0.001, indicating a statistically significant positive
impact on the dependent variable. Similarly, the ECR Trigger exhibits a coefficient of 0.010,
and it, too, has a statistically significant positive effect on the dependent variable. In summary,
both CCR and ECR triggers positively impact the dependent variable, with CCR Trigger showing a
slightly stronger influence, as evidenced by its higher coefficient and lower p-value, signifying greater
statistical significance. This indicates that both ECR or CCR trigger prices have a significant
positive effect on the auction clearing price. In other words, keeping everything constant, a higher
ECR or CCR trigger price would increase the auction clearing price one average. These results
demonstrate the importance of CCR and ECR triggers, as well as the weighted price, in explaining
the variations in the dependent variable in RGGI auctions. The adjusted R-squared value of 0.981
indicates that the model explains a substantial amount (98.5%) of the variance in the dependent
variable, making it a good fit for the data. Further, we can see the consistency of results compared
with results in Table 1. Next, we consider Equation 7 in the linear format as follows.

Estimate Std.Error tvalue Pr(> |t|)
(Intercept) 0.609 0.052 11.787 0.000 ***
CCR Trigger 0.011 0.001 7.500 0.000 ***
ECR Trigger 0.010 0.003 3.357 0.002 **
Weighted Price 0.698 0.039 18.104 0.000 ***
STAT 0.000 0.000 -2.374 0.022 *

Approximate significance of smooth terms:
edf Ref.df F p-value

f1(QS) 3.947 10.000 3.064 0.000 ***
f2(Trend) 0.597 0.598 276.118 0.000 ***
f3(log(GDP )) 2.437 6.000 1.859 0.000 ***
f4(#Bidders) 0.873 0.873 24.275 0.000 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R sq.(adj) = 0.981 Deviance explained = 98.5%
GCV = 0.2418 Scale est. = 0.1909 n =58

Table 2: Parameter estimation for nonlinear Model 2, Equation 8.

The GAM models 1 and 2 yield promising results that align well with theoretical expectations,
affirming their suitability for examining relationships in RGGI auctions. Nevertheless, in the follow-
ing subsection, we broaden our analysis to enhance the robustness of our findings by incorporating
linear regression models. This additional exploration aims to validate the consistency of our results
and provide a comprehensive understanding of the dynamics at play in the next subsection, where
we introduce two linear regression models.
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5.3 Linear analysis

In this stage, we conduct an empirical analysis using linear regression Models 3 and 4. These models
are evaluated by comparing their fit against the previously obtained results. Model 3: This model
is a linear representation derived from the first nonlinear model using a linear Regression approach.
The corresponding equation is as follows:

Pt = β1CCRt + β2ECRt + β3(log(GDPt)) + β4(Trendt) + β5(#Bidderst) (9)

+ β6(ConLSBt) + β7Weighted Pricet + β8STATt + β9GASt + β10,

where the coefficients β1, ..., β10 are unknown parameters.

Estimate Std.Error tvalue Pr(> |t|)
(Intercept) 0.000 0.000 -6.017 0.000 ***
CCR 0.024 0.019 1.238 0.222
ECR 0.064 0.030 2.167 0.035 *
Trend -0.001 0.000 -3.368 0.001 **
Weighted Price 0.663 0.064 10.333 0.000 ***
STAT -0.000 0.000 -1.457 0.151
#Bidders 0.051 0.011 4.795 0.000 ***
log(GDP) 0.013 0.001 10.090 0.000 ***
GAS 0.132 0.080 1.655 0.104
ConLSB -0.001 0.000 -3.822 0.000 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R sq.(adj) = 0.95 Deviance explained = 96.2 %
GCV = 0.49652 Scale est. = 0.43659 n =58

Table 3: Parameter estimation for linear Model 3, Equation 9.

The results obtained from our linear regression model, as presented in Table 3, offer valuable
insights into the determinants of auction clearing prices. Several critical variables stand out as
significant contributors to these prices. Notably, ‘Weighted Price’ exhibits a highly significant
positive impact on clearing prices (Estimate = 0.663, p-value < 0.001). Furthermore, ‘log(GDP)’
displays a statistically significant positive effect (Estimate = 0.013, p-value < 0.001), emphasizing
that changes in the logarithm of GDP positively affect clearing prices. Additionally, the number
of bidders, represented as ‘#Bidders’, significantly affects clearing prices with a positive coefficient
(Estimate = 0.051, p-value < 0.001).

It is worth noting that in both (non)linear models, ‘Weighted Price’ consistently shows a highly
significant and positively associated variable with clearing prices. Furthermore, ‘log(GDP)’ con-
sistently shows a significant positive impact, suggesting that economic growth, as represented by
GDP, positively influences clearing prices, while in both models ‘GAS’ price is not statistically
significant. Moreover, the number of bidders, denoted as ‘#Bidders’, consistently displays a signif-
icant positive association with clearing prices in both models, highlighting the competitive nature
of auctions and how increased bidder participation tends to drive up prices. Finally, the consistent
treatment of policy variables, ‘CCR’ and ‘ECR’ in the nonlinear and linear models, demonstrates
their respective impacts on clearing prices, underscoring the importance of regulatory policies in
shaping auction dynamics.
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Estimate Std.Error tvalue Pr(> |t|)
(Intercept) -0.001 0.000 -2.540 0.014 *
CCR Trigger 0.385 0.183 2.104 0.040 *
ECR Trigger 0.128 0.055 2.309 0.025 *
Quantity Sold -0.020 0.011 -1.843 0.071 .
Trend -0.000 0.000 -5.128 0.000 ***
log(GDP) 0.049 0.018 2.748 0.008 **
#Bidders 0.064 0.009 7.020 0.000 ***
Weighted Price 0.659 0.063 10.440 0.000 ***
STAT -0.000 0.000 -1.670 0.101

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

R sq.(adj) = 0.95 Deviance explained = 95.5 %
GCV = 0.500 Scale est. = 0.457 n =58

Table 4: Parameter estimation for linear model Model 4, Equation 10.

Model 4: In this model, we explore the linear relationship between the following dependent
variables: CCR Trigger, ECR Trigger, GDP, Number of bidders, QS, STAT, Trend, and Weighted
price. The model is specified as follows:

Pt = β1CCR Triggert + β2ECR Triggert + β3QSt + β4(#Bidderst) (10)

+ β5Weighted Pricet + β6STATt + β7(log(GDPt)) + β8(Trendt) + β9.

Table 4 shows results for linear regression model 10. In the analysis, both the CCR Trigger and
ECR Trigger demonstrate statistically significant positive impacts on the dependent variable, with
coefficients of 0.385 and 0.128, and corresponding p-values of 0.040 and 0.025, respectively. While
the CCR Trigger exhibits a stronger effect, both contribute positively to the outcome, underscoring
their importance in the model. In terms of the Quantity Sold, it has a coefficient of -0.020 with a
p-value of 0.071. Although the p-value is slightly above 0.05, denoted by ‘.’, suggesting marginal
statistical significance, the negative coefficient suggests that the Quantity Sold has a somewhat
negative effect on the dependent variable, as we normally expected.

5.4 Further analysis and discussion

In this subsection, we continue our empirical investigation by applying panel regression analysis.
Panel data analysis provides a valuable framework for capturing time specific effects and trends,
which is crucial for accommodating changes and developments over time. Secondly, it offers a
robust solution for addressing unobserved or time invariant heterogeneity by incorporating fixed
effects or random effects tailored to individual entities, effectively controlling for variations in the
data. Lastly, when dealing with individuals or entities exhibiting evolving characteristics and be-
haviours over time, panel data models excel at accounting for this dynamic individual heterogeneity.
Therefore, we adopt the assumption of grouping auctions by year within the RGGI context and
implementing panel regression models. This choice is underpinned by two primary rationales.
Firstly, temporal dynamics and time dependent patterns. The relevance of grouping auctions by
year is contingent upon the existence of temporal dynamics or time-dependent patterns within the
data. Factors such as seasonal variations, cyclical trends, or recurring events may exert distinct
influences on auction dynamics in each year. Further, the chosen grouping strategy establishes a
framework conducive to capturing and accommodating these time-specific influences on auction
outcomes. Secondly, the economic fluctuations. Economic conditions are subject to change over
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time, with periods of growth or recession potentially impacting the demand for emission allowances
and, by extension, influencing auction prices. Moreover, grouping auctions by year facilitates the
recognition and examination of shifts in economic conditions, allowing the panel regression model
to account for these temporal variations in the determination of auction outcomes. Thus this
assumption ensures a comprehensive framework for capturing and addressing these time-specific
influences on the observed auction outcomes.

The following panel formula is used to explain the dependent variables by using independent
ones across all auctions:

Yit =
∑
j∈J

αiX
j
it + ui + γt + ϵit, (11)

where

Yit: the dependent variable, which is the clearing price in the first model, and the logarithm
of the clearing price in the next two models;

Xj
it: the jth independent variable, with i representing the ith auction and t representing time

from September 2008 to December 2022;

αi: the coefficient for the respective independent variable;

ui: captures the individual-specific random effects of ith auctions;

γt: captures the time-specific random effects;

ϵit: the error term.

In the subsequent two models, we examine the validity of grouping auctions by year and em-
ploying panel regression models. This methodological approach is grounded in an awareness of the
varying temporal dynamics, time-dependent patterns, and economic fluctuations that might exert
disparate influences on auction dynamics across different periods.
Model 5: In this model similar to models 1 and 3, we consider a dynamic model to assess how the
policy affects on auction clearing prices over time. The regression model is as follows:

Pit = η1CCRit + η2ECRit + η3(GDPit) + η4(Trendit) + η5(#Biddersit) (12)

+ η6Weighted Priceit + η7STATit + ui + γt + ϵit,

where the coefficients η1, ..., η7 are unknown parameters. Moreover, ui captures the individual-
specific random effects, γt captures the time-specific random effects. Finally, ϵ denotes the error
terms. The reason that we do not consider log(GDP ) instead of GDP in Equation (12) despite our
use of the former in previous models lies in computational considerations. Specifically, the inclusion
of log(GDP ) results in singular outcomes, rendering the model unable to parameter estimations.
We incorporate time as one of the random effects, accounting for unobserved, time-specific factors
that may influence the dependent variable. By treating time as a random effect, we recognize
the presence of time-specific characteristics or trends that affect the outcome variable but are not
captured by fixed effects or observed covariates. Estimating time as a random effect enables us
to identify unique time-specific variations and control for unobserved time-specific factors. This
approach helps distinguish the impact of fixed effects from the random effects associated with each
specific year, thereby providing a more comprehensive analysis of the relationship between the
variables and the dependent variable over time.
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After fitting the model based on different approaches, the random effects model was chosen as
the most appropriate model (Table 5). According to Table 5 the coefficients represent the estimated
effects of each variable on the outcome variable, clearing price. The estimate column provides the
point estimates for each coefficient, which represents the average change in the outcome variable
for a one-unit increase in the predictor variable, holding all other variables constant. For example,
ECR has a coefficient of 0.118, indicating that a one-unit increase in ECR is associated with an
average increase of 0.118 units in the dependent variable. Its p-value of 0.021 suggests statistical
significance. CCR also has a positive coefficient of 0.086, signifying that a one-unit increase in
CCR corresponds to an average increase of 0.086 units in the dependent variable, with a significant
p-value of 0.017. In contrast, Trend has a negative coefficient of -0.601, implying that a one-unit
increase in Trend is linked to an average decrease of 0.601 units in the dependent variable. Its p-
value of 0.019 indicates statistical significance. These results suggest that ECR and CCR positively
influence the dependent variable, while Trend exerts a negative influence, and all three variables are
statistically significant in explaining the variation in the dependent variable. The p-values column
in the table indicates the statistical significance of each coefficient.

Coefficients: Estimate Std.error z-value Pr(> |z|)
(Intercept) 1189.600 514.410 2.313 0.021 *
CCR 0.086 0.036 2.385 0.017 *
ECR 0.118 0.051 2.313 0.021 *
#Bidders 0.058 0.016 3.569 0.000 ***
Trend -0.601 0.257 -2.341 0.019 *
GDP 0.001 0.000 3.364 0.001 ***
STAT 0.000 0.000 -0.344 0.731

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 578.89
Residual Sum of Squares: 51.03
R-Squared: 0.91185
Adj. R-Squared: 0.90148
Chisq: 527.555 on 48 DF, p−value: < 2.22e-16

Table 5: Parameter estimation based on Model 5, Equation 12.

Further, to understand which of the random effects regression and a simple OLS regression is
suitable we use a statistical test of Breusch-Pagan Lagrange Multiplier (LM).22 The results of this
test reveal that the null hypothesis is rejected, and it can be concluded that the random effects
method is a more appropriate model for the analysis. It is important to note that in macro panels
with long time series, serial correlation in panel models is a major concern, as it can lead to bias
in the test results (Baltagi and Baltagi, 2008). We utilized the Breusch-Godfrey/Wooldridge test
to examine the presence of serial correlation within the dataset. The results of the test indicate
that the null hypothesis concerning the non-existence of serial correlation cannot be rejected, with
a corresponding p-value of 0.0667.

Moreover, we used the Mann-Whitney U non-parametric test to determine if the auction prices
for auctions 1 to 22 are statistically the same as the reserve prices. The results indicated that there
is a significant difference between the two sample distributions, and the prices are not statistically

22The null hypothesis LM test posits that the variances across entities are equal to zero, indicating an absence of
significant differences across units, and thus, no panel effect.
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the same as the reserve prices. However, this result could partly be the outcome of a low number
of observations. As shown in Figure 3, in most auctions before CCR, the price is either identical
or marginally above the reserve price, which indicates that a vertical supply scheme could result in
the lowest possible equilibrium price.

Model 6: In this policy focused analysis, we explore the relationship between the following
dependent variables: CCR Trigger, ECR Trigger, GDP, Quantity sold, STAT, Trend, and Weighted
price. The model is specified as follows:

Pit = η1CCR Triggerit + η2ECR Triggerit + η3 log(QSit) + η4Weighted Priceit (13)

+ η5STATit + η6(GDPit) + η7(Trendit) + ui + γt + ϵit,

Coefficients: Estimate Std.error z-value Pr(> |z|)
CCR Trigger 0.011 0.005 2.025 0.049 *
ECR Trigger 0.006 0.008 0.755 0.454
log(Quantity Sold) 0.237 0.399 0.595 0.554
Trend -0.659 0.197 -3.349 0.002 **
GDP 0.001 0.000 2.275 0.028 *
Weighted Price 0.731 0.089 8.186 0.000 ***
STAT 0.000 0.000 -0.863 0.393

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Total Sum of Squares: 578.89
Residual Sum of Squares: 31.167
R2: 0.94616
Adj. R2: 0.93471
Chisq: 136.56 on 6 DF, p-value: < 2.22e-16

Table 6: parameter estimation based on the Model 6, Equation 13.

Table 6 shows the estimation results of the Equation 13. Trend exhibits a significant negative
impact with a coefficient of -0.659, indicating that for each unit increase in Trend, the dependent
variable is expected to decrease by 0.659 units on average. The associated p-value is 0.002, signifying
its statistical significance. CCR Trigger has a positive coefficient of 0.011, suggesting that a one-
unit increase in CCR Trigger corresponds to an average increase of 0.011 units in the dependent
variable, with a marginally significant p-value of 0.049. On the other hand, EER Trigger, with
a coefficient of 0.006 and a p-value of 0.454, does not appear to have a statistically significant
influence on the dependent variable. These findings indicate that Trend is a significant predictor,
exerting a negative effect, while CCR Trigger has a positive, albeit marginally significant, influence
on the dependent variable.
In addition, the Breusch-Godfrey test was employed to test for serial correlation in the dataset
which produced a p-value of 0.0973. These results suggest that the null hypothesis of the absence
of serial correlation can be accepted.

The robustness and consistency of the results among the different models provide strong support
for the reliability of the findings in this analysis. Despite employing various modelling techniques,
including nonlinear (GAM) and linear (OLS) models, the main findings remain consistent. Specifi-
cally, the consistent significance and direction of key variables, such as ‘Weighted Price’, ‘log(GDP)’,
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‘Trend’ and the number of bidders, in both nonlinear and linear models reinforce their substantial
impact on auction clearing prices. Moreover, the consistent treatment of policy variables, ‘CCR’
and ‘ECR’, in the different models underscores their importance in shaping auction dynamics. For
instance, the alignment in the treatment of policy variables, ‘CCR’ and ‘ECR’, is another notewor-
thy aspect of consistency. As per our preliminary analysis the nonlinear GAM analysis is the most
suitable fit for the current data structure. Based on GAM results ‘CCR’ has resulted in an increase
of the auction clearing price with a high level significance. The robustness of this result is evidenced
by the significant coefficient of ‘CCR’ in the panel random effect regression. In all Models 2, 4 and
6, the CCR trigger price has a positive and statistically significant coefficient. This demonstrates
the importance of the CCR trigger price in determining the auction clearing price. Moreover, the
coefficient of ‘ECR’ despite being positive is not significant in the GAM model. However, in both
linear and random panel regressions this variable has a positive and significant coefficient.

According to Claims 1 and 2, we expect that auction prices, ceteris paribus, were higher after
the implementation of ‘CCR’. Given that the coefficient of ‘CCR’ is both positive and significant
(see Table 1), the evidence supports this claim. It is important to note that this result accounts for
a significant reduction in the cap that occurred in the new compliance period starting with ‘CCR’.
In fact, our analysis demonstrates that, once we control for other important variables, auction
prices on average increase after the implementation of ‘CCR’.

Moreover, our empirical results support Claim 3, as the number of bidders is shown to have
a positive and significant effect on the auction’s clearing price (Tables 1-2). Finally, the results
of Model 1 show a complex relationship between the concentration of LSB and the clearing price
(Figure 10d). This supports our claim 4 where the intuition suggests that with a few number of
large scale bidders, the auction clearing price declines due to high monopsony power. The result
shown in Figure 10d supports this intuition as when the ratio is close to one (to the right of the
figure) the value is at the lowest and negative. However, when the number of large scale bidders
becomes larger their monopsony power declines as the function’s value increases demonstrating
higher auction clearing prices. The variation of the value declines for some lower ratios but with
small variations and mostly positive. This indicates that when the concentration of bidders de-
clines, the auction clearing price would mostly increase as the competition increases. These results
collectively demonstrate the robustness of the identified relationships and highlight the stability
of the findings across various analytical approaches, reinforcing the credibility of the conclusions
drawn from the analysis. The agreement between results further strengthens the reliability of the
insights gained in this study, providing a comprehensive and cohesive understanding of the factors
influencing auction clearing prices.

6 Conclusive remarks and policy recommendations

In this paper, we studied RGGI auctions both theoretically and empirically. We constructed a
theoretical model that mirrors the auctions in RGGI and provided a set of claims regarding the
auction characteristics and the clearing prices. In our empirical analysis, we employed various
models to test the hypotheses provided. In particular, we use nonlinear, linear, and panel regression
approaches, with two variations of models incorporating different variables. In most of our models,
CCR had a positive and significant influence on the auction clearing price, robustly indicating that
the CCR policy was indeed successful in lowering demand reduction. This finding aligns with our
Claim 2 and some previous theoretical and experimental claims (Khezr and MacKenzie, 2018b;
Friesen et al., 2022). Note that although there was a significant reduction in the cap at the time
CCR was introduced, the auction clearing price declined significantly after auction 30. Therefore, it
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is not straightforward to conclude that the increase in auction clearing price after the introduction
of CCR is solely due to cap reduction. Furthermore, in our models, we also control for the reduction
in the cap, and therefore, based on our results, it is evident that the introduction of CCR increased
the auction clearing price on average.

There are significant policy implications regarding the above result. First, note that as suggested
by its name, CCR was intended to contain costs for firms. Our evidence indicates that CCR, and
similar ex-ante increasing supply schedules, do not reduce the auction clearing price. Second,
despite CCR not being successful in reducing the auction price, there are still substantial benefits
from such policies, including the elimination or alleviation of demand reduction in the auction,
which could improve auction revenue and possibly efficiency.

Overall the outcomes indicate that our theoretical predictions align with the empirical results.
In particular, CCR and the number of bidders are among the most important determinants of
the auction clearing price. Additionally, when the concentration of bidders’ demand increases to
a few bidders, the auction clearing price is expected to decrease due to the monopsony power of
bidders. We further identified other important variables that influence the price of auctions in
RGGI auctions.

Understanding firm behaviour in strategic settings such as multi-unit auctions is crucial for
achieving an effective and efficient allocation of goods or services. For instance, in cap-and-trade
markets, understanding firm behaviour is pivotal for the effectiveness of policies implemented by
regulators. Without a clear understanding of these behaviours and what motivates firms to act in a
particular way, a policy could have unintended consequences, which usually come at significant costs
for taxpayers. Therefore, policy lessons learned based on both theoretical insights and empirical
evidence could play a unique role in addressing issues related to firm behaviour.

This paper offers several important policy lessons for cap-and-trade systems that use uniform-
price auctions for the initial allocation of emissions permits. The evidence suggests that bidders
can easily learn to collude and reduce their demands if the regulator provides a vertical supply of
permits. Consequently, most of the current cap-and-trade systems use various supply adjustment
methods to ensure there is less room for bid manipulations. For instance, a simple increasing supply
such as CCR can significantly increase bids and alleviate the demand reduction problem. Our
results show that the trigger price is a significant variable influencing the auction clearing price.
Therefore, regulators must carefully adjust such prices as they are some of the most important
policy variables that determine the auction clearing price. Moreover, regulators must be aware
of the concentration of bidders in the auction, as greater concentration can enhance monopsony
power, which consequently reduces the auction clearing price. Some existing policies in RGGI are
in place to address this issue. For instance, as state before a bidder cannot bid for more than a
percentage of the total available allowances in each RGGI auction.
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Appendices

Appendix 1: Additional tables

The tables 7 and 8 show data related to 58 auctions for the sale of carbon allowances that took
place from September 2008 to Dec 2022. The auctions were organized by the RGGI, a cooperative
effort among twelve US Northeastern and Mid-Atlantic states to reduce greenhouse gas emissions
from the power sector. The auctions took place approximately every three months, with some
variations. The table contains information about a series of auctions for CCR and ECR allowances.
The auction number and date are listed for each auction. The CCR and ECR Allowances Sold
columns represent the number of allowances sold at each auction for each type of allowance. The
Quantity Sold column shows the total number of allowances sold, regardless of type, at each auction.
Looking at the data, we can see that there were no CCR or ECR allowances sold or available for
most of the dates listed. However, on March 5th, 2014, 5,000,000 CCR allowances were sold, and
on September 9th, 2015, 10,000,000 CCR allowances were sold. On December 1st, 2021, 3,919,482
CCR allowances were sold. Finally, in the most recent data point on March 3rd, 2021, there were
11,307,333 ECR allowances available. Finally, the Clearing Price column shows the price at which
the allowances were sold.

Further the table 7 and 8 demonstrate that the number of allowances sold varied greatly from
one auction to another, ranging from as little as 7,487,000 to as much as 40,685,585. We can also
see that the clearing price varied over time, with the highest price being $7.50 per allowance in
auction 30 and the lowest being $1.86 per allowance in auctions 9 and 10. In summary, this table
provides a snapshot of a series of auctions for CCR and ECR allowances. It shows the number of
allowances sold at each auction, the clearing price for each auction, and the date of each auction.
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Now comparing the above with the first-order condition in the proof of Proposition 1, the first
term on the right hand side, which is the positive term, is less for a large bidder l compared to the
previous case while the second term on the right hand side is the same as before. Therefore the bl
that solves the above equation has to be lower than bi.

Variable Min. 1st.Q Median Mean 3rd.Q Max std

Clearing Price 1.86 2.57 4.19 4.89 5.62 13.90 3.19
GDP 14371 16098 18354 18782 20877 26246 3248.84
inflation 210.20 229.40 238.20 243.00 255.70 296.80 21.39
Gas 2.72 3.76 4.45 4.82 5.47 9.92 1.55
LTW 0.73 0.79 0.82 0.82 0.85 0.90 0.04
Number Of Bidders 20.00 40.25 45.50 46.34 51.00 75.00 12.09
ECR Available 0 0 0 1535810 0 11307333 3873596
CCR Available 0 0 10000000 5802625 10000000 11976778 5367435
Quantity Sold 7487000 14713820 18986342 21673774 26624324 41995813 8860635
Weighted Price 0.00 1.94 4.26 4.56 5.54 13.68 3.43
Allowances Transfer 0 993250 5045500 11044511 10976500 84395000 17172945

Table 9: Descriptive Statistics

In Table 9, the clearing Price represents the price at which carbon allowances were cleared
in an auction. It has a median value of 4.19 and a mean of 4.89, indicating that, on average,
allowances cleared at a price close to 4.89 units. The maximum clearing price observed was 13.90,
while the minimum was 1.86. Further Weighted Price, on the other hand, represents the price of
allowances in the secondary market, with a median of 4.26 and a mean of 4.56. This suggests that,
on average, allowances in the secondary market had a similar price to those cleared in auctions.
Further, the comparison between ‘Clearing Price’ and ‘Weighted Price’ indicates that, on average,
prices in the secondary market are relatively close to clearing prices. Regarding the quantity of
allowances, ‘Quantity Sold’ represents the total quantity of allowances successfully sold in auctions,
with a median of 18,986,342 units and a mean of 21,673,774 units. On the other hand, ‘Total
Allowances Transferred’ has a median of 5,045,500 units and a mean of 11,044,511 units. This data
suggests that approximately 25% of the total allowances initially sold in auctions are subsequently
transferred in the secondary market.”
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Appendix 2: Proof of Propositions

Proof of Proposition 1:
Focusing on symmetric equilibria b(ci), we show that firms would always be better off by

submitting types lower than ci. First, suppose firm i with ci submits a type bi > ci. Then, firm i’s
submitted demand schedule becomes,

x(bi) =
bi
α

− 1

α
p (14)

Fix any auction clearing price p∗. At any p∗, the firm wins an extra quantity of permits equal to
x′i =

bi−ci
α , where the maximum willingness to pay for these permits is strictly below p∗ according

to the true demand function in Equation (2). Therefore, firm i’s payoff is strictly larger when
submitting their true type ci compared to any bi > ci.

Next suppose firm i submits a type bi ≤ ci. If all other firms except i submit their true types,
then the auction clearing price is given by,

c−i + bi − np∗ = αQ (15)

where c−i is the sum of all other types except for i. This gives the following equilibrium quantity
for bidder i.

x∗i =
bi
α

− c−i + bi − αQ

nα
(16)

Now one can rewrite Equation (3) as follows.

πi =

x∗
i∫

0

(ci − αx)dx− 1

n
(c−i + bi − αQ)x∗i (17)

Differentiate the above with respect to bi. We have,

∂πi
∂bi

=
dx∗i
dbi

(ci − αx∗i )−
1

n
x∗i −

1

n
(c−i + bi − αQ)

dx∗i
dbi

(18)

Substituting x∗i from Equation 16 gives,

∂πi
∂bi

= (
1

α
− 1

nα
)(ci − bi + p∗)− 1

n

bi
α

+
1

n

p∗

α
− (

1

α
− 1

nα
)p∗ (19)

After some cancellations we have,

∂πi
∂bi

= (
1

α
− 1

nα
)ci −

1

α
bi +

1

n

p∗

α
= 0 (20)

It is routine to check that the above equation is negative at bi = ci for any price lower than ci.
This concludes the proof.

Proof of Proposition 2:
We show in any new equilibia with increasing supply bidders would submit weakly larger bids

compared to the case with vertical supply. Denote b(ci) as any equilibrium submitted bid by bidder
i in the auction with vertical supply. We want to show when the supply changes to an increasing
one, the new equilibrium bid b′(ci) is at least as large as b(ci). Denote the new supply schedule
formally as,
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Supply =

{
δQ if p∗ < p′

Q if p∗ ≥ p′
(21)

Suppose bidder i follows a symmetric equilibrium bidding strategy b(ci) as previously defined. In
this case there are two possibilities regarding the equilibrium clearing price. If the equilibrium
clearing price p∗ ≥ p′ then the total available supply is the same as the previous case and b(ci)
remains as the best response of i. However, if p∗ < p′ the supply would reduce to δQ. This results
to a reduction of x∗i equal to (1−δ)Q

n and an increase in price equal to α(1−δ)
n . Therefore b(ci) is not

necessarily a best response of i in this situation. Next we show if b(ci) is no longer a best response,
and the only possibility for a new best response b′(ci) is to be larger than b(ci). First, we show
reducing the bid cannot be a best response. Rewrite Equation 19 as follows.

∂πi
∂bi

= (
1

α
− 1

nα
)ci −

1

α
bi +

1

n

p∗

α
(22)

It is clear from the above first-order condition that when price increases bi can only increase to
remain a best response. Second, there is an extra incentive to increase b(ci) as the payoff function
now has a kink at p′ and more unit will be available if the price goes above p′. In particular, if
the price is arbitrary close to p′, firms would have incentives to increase the price marginally and
obtain further (1−δ)Q

n units as all the Q units become available and increase their overall payoff.
Proof of Proposition 3:

Rewrite the first-order condition for n′ bidders.

∂πi
∂bi

= (
1

α
− 1

n′α
)ci −

1

α
bi +

1

n′
p∗

α
= 0 (23)

After some manipulations we have,

1

α
(ci − bi)−

1

n′α
(ci − p∗) = 0 (24)

since n′ > n, the bi that solves the above equation must be strictly greater than the one that
solves the original first-order condition with n bidders.

Proof of Proposition 4:
Following a similar analysis to the proof of Proposition 1 fixing the bidding strategy of all other

bidders except l, when bidder l submits a bid bl the market clearing rule gives,

c−l + lbl − np∗ = αQ (25)

where c−l is the sum of all other types except for l which gives the following equilibrium quantity
for bidder l.

x∗l =
lbl
α

− l(c−l + lbl − αQ)

nα
(26)

Now we can write the expected payoff of bidder l as follows.

πl =

x∗
l∫

0

(cl −
α

l
x)dx− 1

n
(c−l + lbl − αQ)x∗l (27)

Differentiating the above equation with respect to bl and after some cancellations we have,
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∂πl
∂bl

= l(
1

α
− l

αn
)(cl − bl) + l(

1

n

p∗

α
− 1

n

bl
α
) = 0 (28)

Appendix 3: Arc elasticity analysis

Interpreting the results of panel regression and machine learning models is generally straightforward
and intuitive. As with any statistical model, we can easily analyse the sign, magnitude, and statisti-
cal significance of the model coefficients. However, these models also provide a unique opportunity
to conduct more nuanced analyses, such as calculating marginal effects and elasticities. These
analyses allow us to compare the effects of different variables on the dependent variable, account-
ing for the complex dependencies and interactions that may be present in the data. Importantly,
these analyses are based on explicit mathematical formulations and derivations, which ensure the
transparency and rigour of the findings. By conducting these types of analyses, researchers can
gain a deeper understanding of the factors driving the outcomes observed in their data and make
informed decisions based on their findings.

In this subsection, we take into account the exogeneity of the variables to estimate the price
elasticities. Despite being distant from a formal price estimation analysis, we posit that this
approach could enhance the comparability of the outcomes to prior research and thereby prove
advantageous for policy assessment and guidance.

In the first step of analyzing price elasticity, we examine the impact of the concentration ratio
of LSB on price. We assume that the vector of all variables in the main model remains constant,
and only the ConLSB variable in Model 1 varies from 33% less than the current value to 33%
higher. The coefficients of this variable in the model are reported on the left side of Figure 11. It
can be observed that as the concentration ratio increases, the coefficient value decreases, indicating
a negative effect on the clearing price, as expected and explained in Proposition 4. Furthermore,
we illustrate the significance of this variable on the right side of Figure 11.
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Figure 11: Left plot shows coefficient for clearing price ∼ concentration ratio and right plot shows
the corresponding p-value.

To compute the elasticity we consider the following steps. Firstly, the average values of the
variables of interest are computed. Then, based on the estimated coefficients from Model 1, the
elasticity of the clearing price (yavg) with respect to the main variables (e.g., number of bidders,
NoB) is computed using the formula: elasticity = α4 ∗ (NoBavg/yavg).
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According to results in Table 5, the analysis of Elasticity and the marginal effect of the number
of bidders on the clearing price reveals that the elasticity of the clearing price with respect to the
number of bidders is estimated as 0.4879. This implies that a 1% increase in the number of bidders
is associated with a mere 0.4879% increase in the clearing price.23 Similarly, elasticities of clearing
price with respect to GDP and gas price are 1.4532% and 0.2354% respectively. As hypothesized
and confirmed by the machine learning implementation, the empirical results reveal that GDP has
a statistically significant impact on the clearing price as an exogenous variable. Specifically, a one
percent increase in GDP is associated with a 1.4532 percent increase in the clearing price. Finally,
in terms of Trigger price which is one of the most significant and important variables among all
others, based on both RF and GB models, elasticity is equal to 0.4741%.

23Elasticity greater than 1 indicates high responsiveness of y to changes in x, while elasticity less than 1 indicates
low responsiveness. An elasticity of 1 indicates unitary responsiveness.
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