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Abstract

Does wealth inequality a¤ect optimal patent policy? This study develops a Schum-
peterian growth model with heterogeneous households to explore this question. Our model
features a general innovation speci�cation that nests two common speci�cations: (a) the
knowledge-driven speci�cation that uses R&D labor, and (b) the lab-equipment speci-
�cation that uses �nal output for R&D. Under the knowledge-driven speci�cation, all
households prefer the same level of patent protection. However, under the lab-equipment
speci�cation, less wealthy households prefer weaker patent protection, so wealth inequal-
ity reduces optimal patent protection and economic growth. Under the general innovation
speci�cation, strengthening patent protection has an inverted-U e¤ect on innovation, in
contrast to the positive e¤ect under the two special cases. More importantly, wealth
inequality also reduces optimal patent protection. Therefore, the wealth distribution
generally a¤ects optimal patent policy. Calibrating the model to US data, we �nd that
eliminating wealth inequality raises economic growth signi�cantly via stronger patent pro-
tection.
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1 Introduction

The seminal study by Solow (1956) shows that economic growth is ultimately driven by techno-
logical progress. Therefore, innovation policies, such as R&D subsidies and patent protection,
are crucial for stimulating economic growth and technological progress. For example, according
to the Royal Swedish Academy of Sciences (2018), "Romer showed that unregulated markets
will produce technological change, but tend to underprovide R&D and the new goods created
by it. Addressing this under-provision requires well-designed government interventions, such
as R&D subsidies and patent regulation. His analysis says that such policies are vital to long-
run growth". However, most growth-theoretic studies on optimal patent policy are based on
growth models that feature a representative household without considering wealth inequality.
Therefore, this study asks the following question: does the wealth distribution a¤ect the optimal
design of patent policy?
To explore the above question, we develop a Schumpeterian growth model with heteroge-

neous households. Interestingly, we �nd that whether the wealth distribution a¤ects optimal
patent policy depends on the underlying innovation speci�cation. A novelty of our Schum-
peterian growth model is that it features a general innovation speci�cation that captures two
commonly used innovation speci�cations as special cases: (a) the knowledge-driven innovation
speci�cation that uses labor as R&D input, and (b) the lab-equipment innovation speci�cation
that uses �nal output as R&D input. Within this growth-theoretic framework, we obtain the
following results.
Under our general innovation speci�cation, strengthening patent protection has an inverted-

U e¤ect on innovation, whereas the e¤ect of patent protection on innovation is positive under
the two special cases. Intuitively, stronger patent protection reallocates labor from production
to R&D and leads to a reduction in production, which in turn decreases the amount of �nal
output for R&D whenever R&D requires both labor and �nal output as inputs under our general
innovation speci�cation. Under the knowledge-driven innovation speci�cation, the e¤ect of
patent protection on innovation (which requires only R&D labor) is positive, and all households
prefer the same level of patent protection. Therefore, in this special case, the optimal level of
patent protection does not depend on the wealth distribution.
Under the lab-equipment innovation speci�cation, the e¤ect of patent protection on inno-

vation (which requires only �nal output for R&D) is also positive, but wealthier households
prefer a higher level of patent protection in this case. Therefore, the wealth distribution a¤ects
optimal patent policy. Given that less wealthy households prefer weaker patent protection,
wealth inequality reduces the optimal level of patent protection and economic growth. Our
general innovation speci�cation nests the two special cases and shows that the surprising result
under the knowledge-driven speci�cation (i.e., all households prefer the same level of patent
protection) is due to a knife-edge parameter condition. In other words, the wealth distribution
generally a¤ects the optimal design of patent policy, and wealth inequality tends to reduce the
optimal level of patent protection.
The intuition of the above �nding can be explained as follows. The optimal level of patent

protection is determined by a tradeo¤ between innovation and monopolistic distortion. In our
general-equilibrium setting, the monopolistic distortionary e¤ect is represented by a reduction
in the level of consumption. Whether this e¤ect a¤ects all households equally depends on the
aggregate consumption-asset ratio. If this ratio decreases, then less wealthy households su¤er a
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larger reduction in consumption relative to wealthier households; in this case, less wealthy house-
holds prefer a lower level of patent protection than wealthier households. So, does the aggregate
consumption-asset ratio depend on the level of patent protection? Under the knowledge-driven
speci�cation, it does not because innovation uses only labor as R&D input. However, whenever
innovation uses also �nal output as R&D input (under both the general and lab-equipment
speci�cations), an increase in the level of patent protection reallocates some �nal output from
consumption to R&D and reduces the aggregate consumption-asset ratio, which in turn a¤ects
the optimal level of patent protection for heterogeneous households. Finally, calibrating the
model to data for a quantitative analysis, we �nd that eliminating wealth inequality in the US
raises the optimal level of patent protection and leads to a quantitatively signi�cant increase
in economic growth.
This study relates to the literature on innovation and economic growth. In this literature,

the seminal study by Romer (1990) develops the �rst R&D-based growth model, in which
innovation is driven by the creation of new products. Then, Aghion and Howitt (1992) develop
the Schumpeterian growth model, in which innovation is driven by the development of higher-
quality products; see also Grossman and Helpman (1991) and Segerstrom et al. (1990) for other
early studies. Subsequent studies apply the Schumpeterian growth model to explore the e¤ects
of innovation policies, such as R&D subsidies and patent protection. This study provides a
contribution to this literature by exploring optimal patent policy in a Schumpeterian growth
model with heterogeneous households and a general innovation speci�cation.
Therefore, this study also relates to the literature on patent policy and innovation-driven

growth. The seminal study on optimal patent protection is by Nordhaus (1969), who uses a
partial-equilibrium model. Judd (1985) is the �rst study that explores optimal patent protec-
tion in a dynamic general-equilibrium model. Since the development of the innovation-driven
growth model by Romer (1990) and Aghion and Howitt (1992), subsequent studies have used
the innovation-driven growth model to explore the e¤ects of patent policy; see Cozzi (2001), Li
(2001), Goh and Olivier (2002) and Iwaisako and Futagami (2003) for early studies and Chu
(2022) for a recent survey of the subsequent theoretical and empirical studies in this litera-
ture.1 Unlike previous studies, we consider a general innovation speci�cation and show that an
inverted-U e¤ect of patent protection on innovation emerges via a novel mechanism;2 see Lerner
(2009) and Qian (2007) for empirical evidence for this inverted-U e¤ect. Recent studies explore
the e¤ects of patent policy on income inequality and innovation in the presence of heterogeneous
households; see for example, Chu (2010), Chu and Cozzi (2018), Chu et al. (2021, 2023) and
Kiedaisch (2021). This study contributes to this branch of the literature by showing that the
innovation speci�cation and heterogeneous households have the following implication: whether
the wealth distribution a¤ects optimal patent policy depends on the underlying innovation
speci�cation.
The rest of this study is organized as follows. Section 2 presents the Schumpeterian growth

model with heterogeneous households. Section 3 explores the e¤ects of wealth inequality on
optimal patent policy under di¤erent innovation speci�cations. Section 4 presents an extension
of the model. Section 5 concludes.

1For more recent studies, see Klein (2022), Klein and Yang (2023), Ohki (2023) and Xi (2023).
2See Horii and Iwaisako (2007), Furukawa (2007), Chu et al. (2012) and Chu and Pan (2013) for earlier

studies that also identify an inverted-U e¤ect via other mechanisms.
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2 A Schumpeterian model with wealth inequality

The seminal study by Aghion and Howitt (1992) develops the Schumpeterian growth model. As
in Romer (1990), they assume that R&D uses labor as input, which is known as the knowledge-
driven innovation speci�cation in the literature. Rivera-Batiz and Romer (1991) instead assume
that R&D uses �nal output as input, which is known as the lab-equipment innovation speci�ca-
tion. We consider a general innovation process that uses both labor and �nal output as factor
inputs and captures these two commonly used speci�cations as special cases. Furthermore, we
introduce heterogeneous households to the Schumpeterian model as in Chu (2010) and Chu and
Cozzi (2018).

2.1 Heterogeneous households

There is a unit continuum of households i 2 [0; 1]. They have identical preferences but di¤er in
their levels of wealth. Household h has the following utility function:

u(h) =

Z 1

0

e��t ln ct(h)dt, (1)

where the parameter � > 0 is the subjective discount rate and ct(h) is the consumption of house-
hold h at time t. The household maximizes utility subject to the following asset-accumulation
equation:

_at(h) = rtat(h) + wt � ct(h), (2)

where at(h) is the value of assets owned by household h and rt is the real interest rate. Each
household supplies one unit of labor to earn wage income wt.
From standard dynamic optimization, household h�s consumption path is given by

_ct(h)

ct(h)
= rt � �, (3)

which shows that the growth rate of consumption is the same across all households such that
_ct(h)=ct(h) = _ct=ct for all h 2 [0; 1], where ct �

R 1
0
ct(h)dh denotes aggregate consumption.

Therefore, the growth rate of aggregate consumption is also given by

_ct
ct
= rt � �. (4)

2.2 Final output

Final output yt is produced by competitive �rms using the following production function that
aggregates a unit continuum of intermediate goods into the �nal good:

yt = exp

�Z 1

0

lnxt(i)di

�
, (5)
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where xt(i) denotes intermediate good i 2 [0; 1]. From pro�t maximization, the conditional
demand function for xt(i) is

xt(i) =
yt
pt(i)

; (6)

where pt(i) is the price of xt(i).

2.3 Intermediate goods

Each intermediate good i is produced by an industry leader, who acts as a monopolist. The
production function of the leader in industry i is

xt(i) = z
nt(i)lx;t(i), (7)

where the parameter z > 1 is the step size of each quality improvement and nt(i) is the number
of quality improvements that have occurred in industry i as of time t. Given the productivity
level znt(i), the industry leader employs production labor lx;t(i) and faces the marginal cost
function wt=znt(i). From Bertrand competition between the current industry leader and the
previous industry leader, the pro�t-maximizing price for the current industry leader is:

pt(i) = �
wt
znt(i)

, (8)

where the markup ratio � > 1 is a patent policy parameter as in Li (2001).3 The amount of
monopolistic pro�t in industry i is

�t(i) = pt(i)xt(i)� wtlx;t(i) =
�� 1
�

yt, (9)

and the wage payment in industry i is

wtlx;t(i) =
1

�
pt(i)xt(i) =

1

�
yt. (10)

2.4 R&D

From (9), we see that �t(i) = �t. Therefore, in a symmetric equilibrium, the value of inventions
is also equal across industries such that vt(i) = vt for i 2 [0; 1].4 The no-arbitrage condition
that determines vt is

rt =
�t + _vt � �tvt

vt
, (11)

where �t is the arrival rate of innovation. Intuitively, (11) equates the interest rate rt to the
rate of return on vt for which the latter is given by the sum of monopolistic pro�t �t, capital

3Here we follow Dinopoulos and Segerstrom (2010) to assume that new industry leaders are able to charge the
markup � (even when it is above the quality step size z) because the closest competitors choose to immediately
exit the market in equilibrium; see Dinopoulos and Segerstrom (2010) for a detailed discussion.

4See Cozzi et al. (2007) for a justi�cation for the symmetric equilibrium in the Schumpeterian model.
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gain _vt and expected capital loss �tvt. The last term captures the situation in which the current
technology becomes obsolete when the next innovation arrives.5

Competitive entrepreneurs devote Rt units of �nal output and employ lr;t units of labor to
conduct innovation. The arrival rate of innovation �t is given by the following speci�cation:

�t = '

�
Rt
Zt

��
(lr;t)

1�� , (12)

where ' > 0 is a productivity parameter and Zt is the aggregate level of technology, which cap-
tures an increasing-di¢ culty e¤ect of R&D. The parameter � 2 (0; 1) determines the intensity
of �nal output Rt in the R&D process relative to R&D labor lr;t and nests the knowledge-driven
speci�cation (� ! 0) and the lab-equipment speci�cation (� ! 1) in the literature as special
cases. The pro�t-maximizing conditions of R&D are as follows:

��tvt = Rt, (13)

(1� �)�tvt = wtlr;t. (14)

2.5 Decentralized equilibrium

The equilibrium is a time path of allocations fct(h); at(h); yt; xt(i); lx;t(i); lr;t; Rtg and a time
path of prices fwt; rt; pt(i); vtg. Also, at each instance of time, the following conditions hold:

� households h 2 [0; 1] maximize utility taking fwt; rtg as given;

� competitive �rms produce �nal good yt to maximize pro�t taking pt(i) as given;

� monopolistic �rm i produces intermediate good xt(i) and chooses flx;t(i); pt(i)g to maxi-
mize pro�t taking wt as given;

� competitive R&D entrepreneurs choose Rt and lr;t to maximize expected pro�t taking
fwt; vtg as given;

� the market-clearing condition for labor holds such that lr;t +
R 1
0
lx;t(i)di = 1;

� the market-clearing condition for the �nal good holds such that
R 1
0
ct(h)dh+Rt = yt;

� the total value of household assets equals the value of all monopolistic �rms such thatR 1
0
at(h)dh =

R 1
0
vt(i)di.

5See Cozzi (2007) for a discussion on this Arrow replacement e¤ect.
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2.6 Aggregate economy

We de�ne aggregate technology Zt as follows:

Zt � exp
�Z 1

0

nt(i)di ln z

�
= exp

�Z t

0

�!d! ln z

�
, (15)

which uses the law of large numbers. Di¤erentiating the log of Zt in (15) with respect to time
yields the growth rate of technology given by

gt �
_Zt
Zt
= �t ln z. (16)

Substituting (7) into (5) yields the aggregate production function as follows:

yt = Ztlx;t, (17)

where lx;t = lx;t(i) for all i 2 [0; 1]. Lemma 1 shows that the aggregate economy jumps to a
balanced growth path with a constant growth rate g and a stationary allocation of labor flx; lrg.

Lemma 1 The aggregate economy always jumps a unique and stable balanced growth path.

Proof. See Appendix A.

2.7 Economic growth

Combining (13) and (14) yields

�

1� � =
Rt
wtlr;t

. (18)

Then, substituting wt = Zt=� from (10) and (17) into (18) yields

Rt
Zt
=

�

1� �
lr;t
�
, (19)

which can then be substituted into (12) and (16) to derive the growth rate of technology as

gt = �t ln z = '

�
1

�

�

1� �

��
lr;t ln z. (20)

Lemma 2 shows that the steady-state equilibrium R&D labor lr is increasing in the level of
patent protection �.
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Lemma 2 The steady-state equilibrium level of R&D labor lr is increasing in �.

Proof. See Appendix A.

This result originates from Li (2001), who however focuses on the knowledge-driven spec-
i�cation captured by � ! 0 in (20), which then implies a positive e¤ect of � on g. Here, we
consider a general innovation speci�cation with � 2 (0; 1) under which the steady-state equi-
librium growth rate g depends on both R&D labor lr and �nal output R. In this case, (20)
shows that the level of patent protection � has both positive and negative e¤ects on the steady-
state equilibrium growth rate g. Intuitively, stronger patent protection increases R&D labor lr
and decreases production labor lx, which in turn decreases the amount of output available for
R&D. These positive and negative e¤ects together generate an inverted-U e¤ect on innovation.
Proposition 1 summarizes this result; see also Figure 1.

Proposition 1 The steady-state equilibrium growth rate g is an inverted-U function in �.

Proof. See Appendix A.

Figure 1: E¤ects of patent protection on growth

2.8 Wealth distribution

From (2), the law of motion for the aggregate value of assets is given by

_at = rtat + wt � ct, (21)

where at =
R 1
0
at(h)dh. We de�ne the initial share of wealth owned by household h as �a;0(h) �

a0(h)=a0, which is exogenously given at time 0. We consider a general distribution function of
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initial wealth share with a mean of one and a standard deviation of �a > 0. Taking the log
of wealth share �a;t(h) � at(h)=at at time t and di¤erentiating the resulting expression with
respect to time yield

_�a;t(h)

�a;t(h)
=
_at(h)

at(h)
� _at
at
=
ct � wt
at

� ct(h)� wt
at(h)

, (22)

which uses (2) and (21). Then, (22) can be re-expressed as

_�a;t(h) =
ct � wt
at

�a;t(h)�
�c;t(h)ct � wt

at
, (23)

where �c;t(h) � ct(h)=ct is the share of consumption by household h at time t. Taking the log
of �c;t(h) and di¤erentiating the resulting expression with respect to time yield

_�c;t(h)

�c;t(h)
=
_ct(h)

ct(h)
� _ct
ct
. (24)

Given that (3) and (4) imply _ct(h)=ct(h) = _ct=ct, (24) becomes _�c;t(h) = 0 for all t, which in
turn implies �c;t(h) must jump to its steady-state value �c(h) at any time t.
Balanced growth of the aggregate economy implies that

_at
at
=
_ct
ct
= rt � �, (25)

which also uses (4). Substituting (25) into (21) yields

ct � wt
at

= �. (26)

Substituting �c;t(h) = �c(h) and (26) into (23) yields

_�a;t(h) = � [�a;t(h)� 1]� [�c(h)� 1]
ct
at
, (27)

where the aggregate consumption-asset ratio can be derived as6

ct
at
=
c

a
=

1

�� 1

�
�� �

1� �
lr

1� lr

��
�+ '

�
1

�

�

1� �

��
lr

�
(28)

for all t. Equation (27) implies that the only solution that is consistent with the long-run
stability of the state variable �a;t(h) is _�a;t(h) = 0 for all t. Therefore, the wealth distribution
is stationary and exogenously given at time 0 (i.e., �a;t(h) = �a;0(h) for all t). Finally, imposing
_�a;t(h) = 0 on (27) yields the steady-state value of the consumption share �c;t(h):

�c;t(h) = �c(h) = 1�
� [1� �a;0(h)]

c=a
, (29)

which changes whenever the consumption-asset ratio c=a changes.

6See the proof of Lemma 4 in Appendix A.
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3 Optimal patent policy

We impose balanced growth on (1) to derive the welfare function of household h as

u (h) =
1

�

�
ln c0 (h) +

g

�

�
, (30)

where c0 (h) is the level of household h�s consumption at time 0. Substituting c0 (h) = �c (h) c0
into (30) yields

u (h) =
1

�

�
ln �c (h) + ln c0 +

g

�

�
, (31)

where the initial level of aggregate consumption c0 can be derived as7

c0 =
�+ (1� �)'

�
1
�

�
1��

��
'� (1� �)

�
1
�

�
1��

�� . (32)

Lemma 3 shows that the initial level of aggregate consumption c0 is decreasing in the level of
patent protection �.

Lemma 3 The initial level of aggregate consumption c0 is decreasing in �.

Proof. See Appendix A.

Therefore, the condition that determines the utility-maximizing level of patent protection
for household h is, in general, given by

�
@u (h)

@�
=
@ ln �c (h)

@�| {z }
?

+
@ ln c0
@�| {z }
�

+
1

�

@g

@�|{z}
+=�

, (33)

where @g=@� is given by the inverted-U e¤ect of patent protection on innovation from Propo-
sition 1, whereas @ ln c0=@� < 0 from Lemma 3 captures the negative distortionary e¤ect of
patent protection on aggregate consumption. Whether the optimal level of patent protection
is the same or di¤erent across households depends on �c (h), which in turn depends on the
aggregate consumption-asset ratio c=a as shown in (29). Before we discuss the general case, we
�rst consider the two commonly used special cases in the literature.

7See the proof of Lemma 3 in Appendix A.
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3.1 Knowledge-driven innovation speci�cation

We �rst consider the knowledge-driven innovation speci�cation, which is given by �! 0 in (12).
Under the knowledge-driven speci�cation, the arrival rate of innovation simpli�es to �t = 'lr;t,
which originates from the seminal study by Aghion and Howitt (1992) and is commonly used
in the literature. In this case, the steady-state equilibrium growth rate g is given by

g =

�
'

�
�� 1
�

�
� �

�

�
ln z,

which becomes increasing in patent protection � under the knowledge-driven speci�cation.
More importantly, the resource constraint on the �nal good becomes yt = ct, and the aggregate
consumption-asset ratio simpli�es to c=a = � + ', which is independent of the level of patent
protection. Therefore, the optimal level of patent protection is the same across all households h
because (29) implies that �c (h) is independent of � (i.e., @ ln �c (h) =@� = 0 in (33)). Proposition
2 derives the optimal level of patent protection, which is the same across all households h.
However, in the next sections, we will show that this result is due to the knife-edge parameter
condition � = 0 and does not hold whenever � > 0.

Proposition 2 Under the knowledge-driven innovation speci�cation, the optimal level of patent
protection is given by

�� =

�
1 +

'

�

�
ln z. (34)

Proof. See Appendix A.

3.2 Lab-equipment innovation speci�cation

We now consider the lab-equipment innovation speci�cation, which is given by � ! 1 in (12).
Under the lab-equipment speci�cation, the arrival rate of innovation simpli�es to �t = 'Rt=Zt,
which uses �nal output instead of labor as R&D input and is also often used in the literature.
In this case, the steady-state equilibrium growth rate g is given by

g =

�
'

�
�� 1
�

�
� �
�
ln z,

which is also increasing in patent protection � under the lab-equipment speci�cation. The
resource constraint on the �nal good becomes yt = ct +Rt. As for the aggregate consumption-
asset ratio, it simpli�es to c=a = � + '=�, which is now decreasing in the level of patent
protection. Therefore, the optimal level of patent protection is di¤erent across households
because (29) implies that �c (h) is decreasing (increasing) in � for less wealthy (wealthier)
households; i.e., @ ln �c (h) =@� < 0 for �a;0(h) < 1 (@ ln �c (h) =@� > 0 for �a;0(h) > 1) in
(33). Proposition 3 derives the utility-maximizing level of patent protection for household h
and shows that it is increasing in the household�s wealth share �a;0(h). Therefore, wealthier
households prefer a higher level of patent protection than less wealthy households.
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Proposition 3 Under the lab-equipment innovation speci�cation, the utility-maximizing level
of patent protection for household h is increasing in its wealth share �a;0(h) and given by8

��(h) =
'

�

ln z

1� �a;0(h) ln z
. (35)

Proof. See Appendix A.

Given that di¤erent households prefer di¤erent levels of patent protection, we need to specify
a social welfare function in order to derive the optimal level of patent protection. For simplicity,
we consider a linear aggregate of households�utility functions given by

U �
Z 1

0

u (h) dh =
1

�

�Z 1

0

ln �c (h) dh+ ln c0 +
g

�

�
. (36)

Then, the condition that determines the optimal level of patent protection � is given by

�
@U

@�
=

Z 1

0

@ ln �c (h)

@�| {z } dh
�=+

+
@ ln c0
@�| {z }
�

+
1

�

@g

@�|{z}
+

. (37)

The �rst term on the right-hand side of (37) is given by

Z 1

0

@ ln �c (h)

@�
dh = ��@a=c

@�| {z }
+

Z 1

0

1� �a;0(h)
�c (h)

dh = ��@a=c
@�| {z }
+

Z 1

0

�
1

1� �a;0(h)
� �

�+ '=�

��1
dh,

(38)
where �c (h) is given by (29) and a=c = (�+'=�)�1 is increasing in �. From Jensen�s inequality,
we have9 Z 1

0

�
1

1� �a;0(h)
� �

�+ '=�

��1
dh >

"
1R 1

0
[1� �a;0(h)] dh

� �

�+ '=�

#�1
= 0, (39)

which together with (38) ensures thatZ 1

0

@ ln �c (h)

@�
dh < 0. (40)

Therefore, the presence of wealth inequality (i.e., �a;0(h) 6= 1 for some h) reduces the optimal
level of patent protection. Proposition 4 summarizes this result. Intuitively, the lower con-
sumption share �c (h) of the less wealthy households implies that the stronger negative e¤ect
of patent protection on their consumption carries more weight (due to their higher marginal
utility of consumption) in the social welfare function than the weaker negative e¤ect on the
wealthier households.

8Here we assume �a;0(h) < 1= ln z for all h 2 [0; 1] to ensure an interior solution for ��(h).
9Recall that

R 1
0
�a;0(h)dh = 1.
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Proposition 4 Under the lab-equipment innovation speci�cation, wealth inequality reduces the
optimal level of patent protection.

Proof. Proven in text.

Suppose we consider the following simple parametric example: �a;0(h) = 1�" for h 2 [0; 0:5]
and �a;0(h) = 1+" for h 2 [0:5; 1], where the parameter " 2 (0; 1) measures the degree of wealth
inequality. In this case, (38) becomes

Z 1

0

@ ln �c (h)

@�
dh = �@a=c

@�| {z }
+

("�)2

�+'=�

1�
�

"�
�+'=�

�2 < 0, (41)

which is strictly negative (unless " = 0) and decreasing in ". Therefore, a higher degree of wealth
inequality (i.e., a larger ") strengthens the negative e¤ect of patent protection. Proposition 5
derives the condition for the optimal level of patent protection and shows that it is decreasing
in the degree of wealth inequality.

Proposition 5 Under the lab-equipment innovation speci�cation and the parametric example
in which �a;0(h) = 1� " for h 2 [0; 0:5] and �a;0(h) = 1 + " for h 2 [0:5; 1], the optimal level of
patent protection �� is determined by10

1

�2

"�
'

��
+ �

�2
� �

ln z

�
'

��
+ �

�#
= "2, (42)

and it is decreasing in the degree of wealth inequality ".

Proof. See Appendix A.

3.3 General innovation speci�cation

Finally, we consider our general innovation speci�cation given by � 2 (0; 1) in (12). In this case,
the optimal level of patent protection is determined by the condition in (33), in which �c (h) is
given in (29) and depends on c=a. Lemma 4 shows that the aggregate consumption-asset ratio
c=a in (28) is decreasing in the level of patent protection �.

10Note that (42) simpli�es to �� = '
�

ln z
1�ln z under " = 0 as in �a;0(h) = 1 for all h 2 [0; 1] in (35).
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Lemma 4 Under the general innovation speci�cation, c=a in (28) is decreasing in �.

Proof. See Appendix A.

Therefore, the optimal level of patent protection under the general innovation speci�cation
is di¤erent across households because �c (h) is once again decreasing (increasing) in � for less
wealthy (wealthier) households; i.e., @ ln �c (h) =@� < 0 for �a;0(h) < 1 (@ ln �c (h) =@� > 0 for
�a;0(h) > 1) in (33). Proposition 6 shows that wealthier households prefer a higher level of
patent protection than less wealthy households and that wealth inequality reduces the optimal
level of patent protection. These implications are the same as in the lab-equipment speci�cation
but di¤er from the knowledge-driven speci�cation, under which patent policy does not a¤ect
the aggregate consumption-asset ratio c=a because innovation uses only labor. However, when
innovation uses also �nal output for R&D under the general innovation speci�cation (and also
under the lab-equipment speci�cation), an increase in the level of patent protection reallocates
some �nal output from consumption to R&D and reduces the aggregate consumption-asset ratio,
which in turn a¤ects the negative e¤ect of patent protection on consumption di¤erently across
heterogeneous households. As a result, an unequal distribution of wealth across households
reduces the optimal level of patent protection under the general innovation speci�cation.

Proposition 6 Under the general innovation speci�cation, the utility-maximizing level of patent
protection for household h is increasing in the household�s wealth share �a;0(h). Furthermore,
wealth inequality reduces the optimal level of patent protection.

Proof. See Appendix A.

3.4 Quantitative analysis

In this section, we calibrate the model to see if an unequal distribution of wealth has a quan-
titatively signi�cant e¤ect on the optimal level of patent protection. In order to perform a
more realistic quantitative analysis, we generalize the utility function to an isoelastic form as
follows:11

u(h) =

Z 1

0

e��t
[ct(h)]

1�� � 1
1� � dt, (43)

which captures the log utility function in (1) as a special case when � ! 1. In this case,
the model features the following set of parameters f�; �; �; �; z; 'g. We follow the empirical
estimate in Cashin and Unayama (2016) to set the intertemporal elasticity of substitution to 0.2
(i.e., � = 5). We set the discount rate � to a conventional value of 0.05 and the degree of labor
intensity 1 � � in the R&D process to an empirical value of 0.184 (i.e., � = 0:816) computed
by Chu and Cozzi (2019). Then, we follow Jones and Williams (2000) to set the markup
parameter � to an empirical value of 1.25. Finally, we calibrate the remaining parameters
fz; 'g by targeting a long-run annual GDP growth rate g of 3% in the US and an arrival rate
of innovation of 1/3 as in Acemoglu and Akcigit (2012). Table 1 summarizes the calibrated
parameter values.
11See Appendix B for the detailed derivations under this generalized utility function.
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Table 1: Calibration
� � � � z '
5.00 0.050 0.816 1.250 1.095 3.989

Given the parameter values in Table 1, we simulate the optimal markup level �� under
di¤erent degrees of wealth inequality. Once again, we consider the following simple parametric
example: �a;0(h) = 1 � " for h 2 [0; 0:5] and �a;0(h) = 1 + " for h 2 [0:5; 1]. In the US, the
bottom 50% of population owns roughly 3% of total wealth, which corresponds to a value of
0.94 for " (i.e., (1 � ")=2 = 0:03). We consider the entire range of values " 2 [0; 1] to explore
how the degree of wealth inequality a¤ects optimal patent protection. Figure 2a presents the
simulation results. In the case of a completely equal wealth distribution (i.e., " = 0), the
optimal markup level is ��"=0 = 1:292. As " increases, the optimal markup level decreases.
At " = 0:94, the optimal markup level decreases to ��"=0:94 = 1:250, which corresponds to the
empirical markup in Table 1. Figure 2b presents the equilibrium growth rate g under di¤erent
values for the markup and shows a signi�cant decrease in the equilibrium growth rate of 0.44%
from ��"=0 = 1:292 to �

�
"=0:94 = 1:250. In other words, moving from the current degree of wealth

inequality in the US to a completely equal society would lead to an increase in the growth rate
of almost 0.5%. Therefore, this simple numerical exercise shows that wealth inequality can
have a quantitatively signi�cant e¤ect on optimal patent protection, innovation and economic
growth.

Figure 2a: Markup and inequality Figure 2b: Growth and inequality

3.4.1 Robustness check: intertemporal elasticity of substitution

This section performs a robustness check by considering a range of the intertemporal elasticity of
substitution f0:1; 0:3g (i.e., � 2 f3:33; 10g). We recalibrate the model to aggregate data of the
US economy to see if wealth inequality has a quantitatively signi�cant e¤ect on optimal patent
protect the optimal level of patent protection. Table 2 summarizes the calibrated parameter
values.

Table 2: Calibration (� = 3:33 and � = 10)
� � � � z '
3.33 0.050 0.816 1.339 1.095 2.840
10.00 0.050 0.816 1.136 1.095 8.655
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Figure 3 simulates the optimal markup level �� and the equilibrium growth rate g under
di¤erent markup values for the case of � = 3:33. Figure 4 simulates the optimal markup level
�� and the equilibrium growth rate g under di¤erent markup values for the case of � = 10.
They show that the e¤ects of wealth inequality follow the same pattern as before. In Figure
3b, the equilibrium growth rate g decreases by 0.2% from ��"=0 = 1:367 to ��"=0:94 = 1:339.
Figure 4b shows that wealth inequality has a larger e¤ect on the equilibrium growth rate under
di¤erent values for the markup. The equilibrium rate g decreases by 1.34% from ��"=0 = 1:203
to ��"=0:94 = 1:136. The results show that wealth inequality still have a quantitatively signi�cant
e¤ect on optimal patent protection and economic growth as before.

Figure 3a: Markup and inequality (� = 3:33) Figure 3b: Growth and inequality (� = 3:33)

Figure 4a: Markup and inequality (� = 10) Figure 4b: Growth and inequality (� = 10)

3.4.2 Robustness check: R&D labor intensity

This section performs another robustness check by considering a larger range of R&D labor
intensity f0:284; 0:384g (i.e., � 2 f0:716; 0:616g)12 and recalibrate the model to aggregate data
of the US economy. Table 3 summarizes the calibrated parameter values.
12The value of 0.384 exceeds twice the benchmark value and is close to the maximum value computed by Chu

and Cozzi (2019).
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Table 3: Calibration (�= 0:716 and �= 0:616)
� � � � z '
5.00 0.050 0.716 1.249 1.095 4.480
5.00 0.050 0.616 1.248 1.095 4.780

Figure 5 and Figure 6 simulate the optimal markup level �� and the equilibrium growth rate
g under di¤erent markup values for the cases of � = 0:716 and � = 0:616, respectively. They
show that the e¤ects of wealth inequality follow the same pattern as before. In Figure 5b, the
equilibrium growth rate g decreases by 0.4% from ��"=0 = 1:287 to �

�
"=0:94 = 1:249. Figure 6b

shows that the equilibrium rate g still decreases by 0.4% from ��"=0 = 1:283 to �
�
"=0:94 = 1:248.

The results show that wealth inequality continues to have a quantitatively signi�cant e¤ect on
optimal patent protection and economic growth as before.

Figure 5a: Markup and inequality (� = 0:716) Figure 5b: Growth and inequality (� = 0:716)

Figure 6a: Markup and inequality (� = 0:616) Figure 6b: Growth and inequality (� = 0:616)
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4 Extension: variety expansion

In this section, we consider a variety-expanding growth model to examine the robustness of our
results. To begin, we replace the Cobb-Douglas production function of �nal good in (5) by the
following CES production function:

yt =

�Z Nt

0

x�t (i)

�1=�
, (44)

where the parameter � 2 (0; 1) determines the elasticity 1=(1 � �) of substitution between in-
termediate goods xt(i) for i 2 [0; Nt]. Then, we replace the production function of intermediate
goods in (7) by a simple one-to-one production function xt(i) = lx;t(i). In this case, the familiar
pro�t-maximizing price of xt(i) is given by pt(i) = wt=�. As before, we introduce a patent
policy parameter � 2 (1; 1=�) such that pt(i) = �wt. It can be shown that the equilibrium
features symmetry, such that lx;t(i) = lx;t=Nt for all i 2 [0; Nt]. In this case, the production
function in (44) simpli�es to

yt = N
1=�
t xt(i) = N

(1��)=�
t lx;t, (45)

which implies that the steady-state equilibrium growth rate of output is gy = gN (1� �) =�.
As in Section 2.4, we consider a general innovation speci�cation under which R&D uses

both �nal output and labor such that

_Nt = 'Nt

"
Rt

N
(1��)=�
t

#�
(lr;t)

1�� , (46)

where the scaling by N (1��)=�
t in Rt=N

(1��)=�
t is to ensure a steady-state equilibrium growth

rate gN of varieties. Performing similar derivations as in Section 2.7 and using the steady-state
output growth rate gy = gN (1� �) =� yield

gy =
1� �
�
'

�
1

�

�

1� �

��
lr. (47)

Comparing (20) and (47), it can be shown that the e¤ect of patent protection � on economic
growth remains the same as before. In other words, the steady-state output growth rate is an
inverted-U function in the level of patent protection � under the general innovation speci�cation
but an increasing function in � under the knowledge-driven speci�cation (i.e., �! 0) and the
lab-equipment speci�cation (i.e., �! 1). Furthermore, it can also be shown that all our results
on the wealth distribution and optimal patent policy continue to hold in our variety-expanding
growth model.13

5 Conclusion

In this study, we have developed a Schumpeterian growth model with heterogeneous households
to explore the conditions under which wealth inequality a¤ects the optimal level of patent pro-

13Derivations are relegated to an unpublished appendix that is available upon request.
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tection. Our results can be summarized as follows. Under the knowledge-driven speci�cation,
all households prefer the same level of patent protection. In contrast, under the lab-equipment
speci�cation, we �nd that wealthier households prefer stronger patent protection than less
wealthy households and that higher wealth inequality reduces the optimal level of patent pro-
tection. To explore which of these two results are more robust, we also consider a general
innovation speci�cation that captures the two speci�cations as special cases. In this case, we
continue to �nd that wealthier households prefer stronger patent protection and that wealth
inequality reduces optimal patent protection. Therefore, wealth inequality having no e¤ect on
optimal patent policy under the knowledge-driven speci�cation is due to a knife-edge parameter
condition. In general, wealth inequality sti�es innovation and economic growth by reducing the
optimal level of patent protection.
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Appendix A: Proofs

Proof of Lemma 1. Taking the log of the pro�t-maximizing condition of R&D (1��)�tvt =
wtlr;t and then di¤erentiating it with respect to time yields

_�t
�t
+
_vt
vt
=
_wt
wt
+
_lr;t
lr;t
. (A1)

Using (10) and (17) yields wt = Zt=�. Then, we combine �= (1� �) = Rt=(wtlr;t) from (13)
and (14) to obtain Rt=Zt = �lr;t=[� (1� �)] as shown in (19). Substituting (19) into (12) yields

�t = '

�
1

�

�

1� �

��
lr;t. (A2)

Taking the log of (A2) and then di¤erentiating it with respect to time yields _�t=�t = _lr;t=lr;t.
Substituting this condition into (A1), we obtain

_vt
vt
=
_wt
wt
=
_Zt
Zt
, (A3)

where the second equality uses _wt=wt = _Zt=Zt from wt = Zt=�. Based on (A2) and the no-
arbitrage condition rtvt = �t + _vt � �tvt, (A3) can be rewritten as

rt + '

�
1

�

�

1� �

��
lr;t �

�t
vt
=
_Zt
Zt
. (A4)

Using (9) and (14) yields �t=vt = (�� 1) (1� �)�tyt= (�wtlr;t) and then combining (10) obtains
�t=vt = (�� 1) (1� �)�tlx;t=lr;t. Substituting this condition into (A4) and using (A2), we
obtain

rt + '

�
1

�

�

1� �

��
lr;t � ' (�� 1) (1� �)

�
1

�

�

1� �

��
(1� lr;t) =

_Zt
Zt
, (A5)

where we have used the resource constraint on labor lx;t = 1� lr;t. We de�ne a transformed
variable st � ct=Zt. Then, di¤erentiating st with respect to time yields _st=st = _ct=ct � _Zt=Zt
and combining (4) obtains rt = _st=st + _Zt=Zt + �. Substituting this condition into (A5) yields

_st
st
= ' (�� 1) (1� �)

�
1

�

�

1� �

��
� �� ' [1 + (�� 1) (1� �)]

�
1

�

�

1� �

��
lr;t. (A6)

Based on the market-clearing condition for �nal goods, we obtain st = (yt�Rt)=Zt. Substituting
(17) and (19) into this condition, we obtain the following relationship between st and lr;t:

st = 1�
�(1� �) + �
�(1� �) lr;t. (A7)

Di¤erentiating (A7) with respect to time yields _st = � [�(1� �) + �] _lr;t= [�(1� �)] and then
substituting it into (A6) obtains

_lr;t =
�(1� �)st
�(1� �) + �

�
' [1 + (�� 1) (1� �)]

�
1

�

�

1� �

��
lr;t � ' (�� 1) (1� �)

�
1

�

�

1� �

��
+ �

�
,

(A8)
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which is a one-dimensional di¤erential equation in lr;t. Drawing _lr;t as a function of lr;t on phase
diagram, one can easily show that the dynamics of lr;t is characterized by saddle-point stability
such that lr;t must jump to the unique steady-state value lr:

lr =
' (�� 1) (1� �)

�
1
�

�
1��

��
� �

' [1 + (�� 1) (1� �)]
�
1
�

�
1��

�� . (A9)

Proof of Lemma 2. Di¤erentiating (A9) with respect to � yields

dlr
d�

=
(1� �)

h
�+ '

�
1
�

�
1��

��i
� � [1 + (�� 1) (1� �)] �

�

' [1 + (�� 1) (1� �)]2
�
1
�

�
1��

�� . (A10)

From (A9), we obtain

lr > 0() ' (1� �)
�
1

�

�

1� �

��
>

�

(�� 1) . (A11)

Substituting (A11) into (A10) yields

dlr
d�

>
�

'� (�� 1)
�
1
�

�
1��

�� > 0. (A12)

Equation (A12) shows that lr is increasing in �.

Proof of Proposition 1. Substituting (A9) into (20) and then di¤erentiating it with respect
to � yields

dg

d�
=

(1� �) ln z
[1 + (�� 1) (1� �)]2

8>>><>>>:�� '
�
��2 � (1 + �)�� �2(�� 1)2

�� �

1� �

���
1

�

�1+�
| {z }

��(�)

9>>>=>>>; .
(A13)

Note the following properties: (a) �(1) = �' [�= (1� �)]�; (b) lim
�!1

�(�)!1; (c) �(�) is a
strictly increasing function, i.e.,

d�(�)

d�
= �'

�
�

1� �

���
1

�

�2+� ��
�� �2(�� 1)

�
+ � (1� �) [� (1� �) + �] + �

	
> 0.

Using these properties, we can graphically show that �(�) intersects � from below only once
at some point � > 1, below (above) which dg=d� > 0(< 0); see Figure A1. This result shows
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that g is an inverted-U function in �.

Figure A1

Proof of Lemma 3. Substituting (A9) into (A7), we obtain the initial level of aggregate
consumption c0 as

c0 � s0Z0 =
�+ (1� �)'

�
1
�

�
1��

��
'� (1� �)

�
1
�

�
1��

�� , (A14)

where Z0 is normalized to unity. Equation (A14) is identical to (32) in text. Di¤erentiating
(A14) with respect to � yields

dc0
d�

= �
�+ '

�
1
�

�
1��

��
'�2

�
1
�

�
1��

�� < 0. (A15)

Equation (A15) shows that c0 is decreasing in �.

Proof of Proposition 2. In this proof, we make use of the parameter �! 0, which renders
the general innovation speci�cation degenerate. First, using (A9), the steady-state equilibrium
level of R&D labor lr is given by

lim
�!0

lr =
�� 1
�

� 1

�

�

'
exp

24lim
�!0

�
ln
�
1
�

�
1��

�
1
�

35 = �� 1
�

� 1

�

�

'
, (A16)

where the second equality uses the L�Hôpital�s rule. Equation (A16) shows that lr is also
increasing in � as in the case of the general innovation speci�cation. Using (A2) and (A9)
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derives the arrival rate of innovation:

lim
�!0

� = '(
�� 1
�

) exp

24lim
�!0

ln
�
1
�

�
1��

�
1
�

35� �

�
= '

�
�� 1
�

�
� �

�
, (A17)

where the second equality also uses the L�Hôpital�s rule. Substituting (A17) into (16), under
the knowledge-driven innovation speci�cation, the steady-state growth rate g is given by

g =

�
'

�
�� 1
�

�
� �

�

�
ln z, (A18)

Equation (A18) shows that g is increasing in �. Using (A14) and the L�Hôpital�s rule, we can
derive the initial level of aggregate consumption c0 is given by:

lim
�!0

c0 =
1

�

8<:1 + �

'
exp

24lim
�!0

�
ln
�
1
�

�
1��

�
1
�

359=; =
1

�

�
1 +

�

'

�
. (A19)

Equation (A19) shows that c0 is also decreasing in � as in the case of the general innovation
speci�cation. As for the aggregate consumption-asset ratio, using (28) and the L�Hôpital�s rule
yields

lim
�!0

c

a
=

�

�� 1

2664�+ lim�!0'
�
1

�

�

1� �

��
lr| {z }

=�

3775 = �+ '. (A20)

Combining (A20) and (29) yields �c(h) = 1� � [1� �a;0(h)] = (�+ '). Substituting this condi-
tion, (A18) and (A19) into (31) and then di¤erentiating it with respect to � yields

�
@u(h)

@�
=
1

�2

2664�1 + '�
�
ln z � �| {z }

��

3775 . (A21)

The utility-maximizing level of patent protection for household h requires � = 0. Then, we can
derive

��(h) =

�
1 +

'

�

�
ln z. (A22)

Equation (A22) shows that ��(h) = �� across all households h because it is independent of
�a;0(h). As a result, ��(h) = �� is also the optimal level of patent protection.

Proof of Proposition 3. In this proof, we make use of the parameter �! 1, which renders
the general innovation speci�cation degenerate. First, using (A9), the steady-state equilibrium
level of R&D labor lr is given by

lim
�!1

lr = 0. (A23)
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Using (A2) and (A9) derives the arrival rate of innovation:

lim
�!1

� = '(
�� 1
�

) exp

"
lim
�!1

ln
�

�
1��
�

1
1��

#
� � = '

�
�� 1
�

�
� �, (A24)

where the second equality uses the L�Hôpital�s rule. Substituting (A24) into (16), under the
lab-equipment innovation speci�cation, the steady-state growth rate g is given by

g =

�
'

�
�� 1
�

�
� �
�
ln z, (A25)

Equation (A25) shows that g is increasing in �. Using (A14) and the L�Hôpital�s rule, we can
derive the initial level of aggregate consumption c0 is given by:

lim
�!1

c0 =
1

�
+
�

'
exp

24lim
�!1

ln
�
1
�

�
1��

�
1

1��

35 = 1

�
+
�

'
. (A26)

Equation (A26) shows that c0 is also decreasing in � as the general innovation speci�cation. As
for the aggregate consumption-asset ratio, using (28) and the L�Hôpital�s rule yields

lim
�!1

c

a
= '

8<: 1� + �

'
exp

24lim
�!1

ln
�
1
�

�
1��

�
1

1��

359=; = �+
'

�
. (A27)

Combining (A27) and (29) yields �c(h) = 1 � � [1� �a;0(h)] = (�+ '=�). Substituting this
condition, (A25) and (A26) into (31) and di¤erentiating it with respect to � yields

�
@u(h)

@�
=

'

�2
n�
�+ '

�

�
� � [1� �a;0(h)]

o
8>><>>:1�

�
'

�

�
1

�
+
�

'

�
� [1� �a;0(h)]

�
ln z| {z }

�


9>>=>>; . (A28)

The utility-maximizing level of patent protection for household h requires 
 = 0. Then, we can
derive

��(h) =
'

�

ln z

1� �a;0(h) ln z
. (A29)

Proof of Proposition 5. There are two types of households. Type 1 has �a;0(h) = 1 � "
for h 2 [0; 0:5] whereas type 2 has �a;0(h) = 1 + " for h 2 [0:5; 1]. As a result, (29) can
be rewritten as �c(h) = 1 � "�= (�+ '=�) for h 2 [0; 0:5] and �c(h) = 1 + "�= (�+ '=�) for
h 2 [0:5; 1]. Substituting these condition into (31), we obtain the welfare functions of two types
respectively:

�u(h) = ln c0 + ln

 
1� "�

�+ '
�

!
+
g

�
for h 2 [0; 0:5] , (A30)
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�u(h) = ln c0 + ln

 
1 +

"�

�+ '
�

!
+
g

�
for h 2 [0:5; 1] . (A31)

We substitute (A30) and (A31) into (36) to derive the social welfare function:

�U = ln c0 + 0:5 ln

 
1� "�

�+ '
�

!
+ 0:5 ln

 
1 +

"�

�+ '
�

!
+
g

�
. (A32)

Substituting (A25) and (A26) into (A32) and then di¤erentiating it with respect to � yields

�
@U

@�
=

' ln z

��2
��
�+ '

�

�2
� ("�)2

� (("�)2 � "��+ '
�

�2
� �

ln z

�
�+

'

�

�#)
. (A33)

Based on (A33), we know that the optimal level of patent protection �� is determined by

1

�2

26664
�
'

��
+ �

�2
| {z }

��2

� �

ln z

�
'

��
+ �

�
| {z }

��

37775 = "2. (A34)

The left-hand side (LHS) of (A34) is increasing in � because " > 0 () � > �= ln z whereas
the right-hand side (RHS) of (A34) "2 is independent of �. Therefore, we can �nd the optimal
level of �, which is increasing in ". Based on � � '=�� + �, we know �� is decreasing in �. As
a result, �� is decreasing in ".

Proof of Lemma 4. The market-clearing condition for �nal goods is yt = ct+Rt. Using this
condition, one can derive the following aggregate consumption-asset ratio:

ct
at
=

yt
Zt
at
Zt

�
Rt
Zt
at
Zt

=
lx;t
at
Zt

�
�
1��

lr;t
�

at
Zt

, (A35)

where the second equality uses (17) and (19). We know that the value of assets equals the value
of inventions such that at = vt. The balanced-growth values of an innovation is vt = �t= (�+ �)
and the combining (9) and (A2) yields

at
Zt
=
a

Z
=

��1
�
lx

�+ '
�
1
�

�
1��

��
lr
. (A36)

Substituting (A36) into (A35) yields

ct
at
=
c

a
=

1

�� 1

�
�� �

1� �
lr

1� lr

��
�+ '

�
1

�

�

1� �

��
lr

�
. (A37)
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Equation (A37) is identical to (28). Substituting (A9) into (A37) and di¤erentiating it with
respect to � yields

d
�
c
a

�
d�

= �
�
�
c
a

�
�
h

�
1�� + '

�
1
�

�
1��

��i < 0. (A38)

Equation (A38) shows that c=a is decreasing in �.

Proof of Proposition 6. The condition that determines the utility-maximizing level of
patent protection for household h is given by

�
@u (h)

@�
= ��@a=c

@�| {z }
+

1� �a;0(h)
�c (h)

+
@ ln c0
@�| {z }
�

+
1

�

@g

@�|{z}
+=�

, (A39)

where @(a=c)=@� is positive from Lemma 4. Therefore, the �rst term on the right-hand side
of (A39) is negative for less wealthy households (i.e., �a;0(h) < 1) and positive for wealthier
households (i.e., �a;0(h) > 1), implying that wealthier households prefer a stronger level of
patent protection. As before, we consider a linear aggregate of the households�utility functions
given by

U �
Z 1

0

u (h) dh =
1

�

�Z 1

0

ln �c (h) dh+ ln c0 +
g

�

�
. (A40)

Then, the condition that determines the optimal level of patent protection � is given by

�
@U

@�
=

Z 1

0

@ ln �c (h)

@�
dh+

@ ln c0
@�| {z }
�

+
1

�

@g

@�|{z}
+=�

. (A41)

The �rst term on the right-hand side of (A41) is given byZ 1

0

@ ln �c (h)

@�
dh = ��@a=c

@�| {z }
+

Z 1

0

1� �a;0(h)
�c (h)

dh = ��@a=c
@�| {z }
+

Z 1

0

�
1

1� �a;0(h)
� �a

c

��1
dh, (A42)

where �c (h) is given by (29) and a=c is given by (28) and increasing in � from Lemma 4. Finally,
from Jensen�s inequality, we haveZ 1

0

�
1

1� �a;0(h)
� �a

c

��1
dh >

"
1R 1

0
[1� �a;0(h)]dh

� �a
c

#�1
= 0, (A43)

which together with (A42) implies thatZ 1

0

@ ln �c (h)

@�
dh < 0 (A44)

unless �a;0(h) = 1 for all h. Therefore, wealth inequality gives rise to an additional negative
e¤ect of patent protection on social welfare.
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Appendix B: The generalized utility function

This appendix presents the key equilibrium conditions for the model under the isoelastic
utility function in (43). Equation (3) can be revised as follows:

_ct(h)

ct(h)
=
1

�
(rt � �) . (B1)

Therefore, the growth rate of aggregate consumption is given by

_ct
ct
=
1

�
(rt � �) . (B2)

Appendix A shows _vt=vt = _ct=ct on the balanced-growth path. Substituting this condition into
(11) and using (B2), we obtain

�

�
+

�
� � 1
�

�
rt + �t =

�t
vt
. (B3)

Combining (9), (10) and (14) yields �t=vt = (�� 1) (1� �)�tlx;t=lr;t. Using this condition and
�t = ' f�= [� (1� �)]g� lr;t from (20), (B3) can be rewritten as

�

�
+

�
� � 1
�

�
rt + '

�
1

�

�

1� �

��
lr;t = (�� 1) (1� �)'

�
1

�

�

1� �

��
(1� lr;t) , (B4)

where we have used the resource constraint on labor lx;t = 1� lr;t. Moreover, on the balanced-
growth path, _ct=ct = _Zt=Zt implies that

rt = �'

�
1

�

�

1� �

��
lr;t ln z + �, (B5)

where we have used (20) and (B2). We substitute (B5) into (B4) to derive the equilibrium lr
under the generalized utility function:

lr =
' (�� 1) (1� �)

�
1
�

�
1��

��
� �

' [1 + (� � 1) ln z + (�� 1) (1� �)]
�
1
�

�
1��

�� . (B6)

As for wealth distribution, we �rstly substitute (B2) into (21) by considering _at=at = _ct=ct
and then (26) can be revised as follows

ct � wt
at

=

�
� � 1
�

�
rt +

�

�
. (B7)

Substituting (B5) into (B7) and using (B6), (B7) can be rewritten as

ct � wt
at

=
' (� � 1) (�� 1) (1� �)

�
1
�

�
1��

��
ln z + [1 + (�� 1) (1� �)] �

1 + (� � 1) ln z + (�� 1) (1� �) . (B8)

Under this generalized utility function, we know that �c;t(h) = �c(h) still holds for all t. Given
this condition and using (B8), (27) can be revised as follows
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_�a;t(h) =
' (� � 1) (�� 1) (1� �)

�
1
�

�
1��

��
ln z + [1 + (�� 1) (1� �)] �

1 + (� � 1) ln z + (�� 1) (1� �) [�a;t(h)� 1]�[�c(h)� 1]
ct
at
,

(B9)
where ct=at can be derived as

ct
at
=
c

a
=

1

�� 1

�
�� �

1� �
lr

1� lr

��
�+ ' [1 + (� � 1) ln z]

�
1

�

�

1� �

��
lr

�
, (B10)

for all t. As a result, we know _�a;t(h) = 0 for all t with long-run stability. Imposing _�a;t(h) = 0
on (B9) yields the steady-state value of �c;t(h) given by

�c;t(h) = �c(h) = 1�
' (� � 1) (�� 1) (1� �)

�
1
�

�
1��

��
ln z + [1 + (�� 1) (1� �)] �

1 + (� � 1) ln z + (�� 1) (1� �)
[1� �a;0(h)]

c=a
.

(B11)
Finally, we impose balanced growth on (43) to derive the welfare function of household h as

u(h) =
1

1� �

(
[c0 �c(h)]

1��

�� (1� �) g �
1

�

)
, (B12)

where we have used c0 (h) = �c (h) c0. Then, we assume � > (1 � �)g to ensure that utility is
bounded. The market-clearing condition for �nal goods implies yt=Zt = (ct +Rt) =Zt. Using
this condition, (17) and (19), we obtain the initial level of aggregate consumption c0 as

c0 =
(1� �) [� (1� �) + �+ � (� � 1) ln z]

�
1
�

�
1��

��
+ [� (1� �) + �] �

�' (1� �) [1 + (� � 1) ln z + (�� 1) (1� �)]
�
1
�

�
1��

�� , (B13)

where we have used (B6) and Z0 is normalized to unity. Similarly, we consider two types of
households: type 1 has �a;0(h) = 1 � " for h 2 [0; 0:5] and type 2 has �a;0(h) = 1 + " for
h 2 [0:5; 1]. The social welfare function is given by

U =
0:5

1� �

(
[c0 �1c(h)]

1��

�� (1� �) g �
1

�

)
+

0:5

1� �

(
[c0 �2c(h)]

1��

�� (1� �) g �
1

�

)
, (B14)

where

�1c(h) = 1�
' (� � 1) (�� 1) (1� �)

�
1
�

�
1��

��
ln z + [1 + (�� 1) (1� �)] �

1 + (� � 1) ln z + (�� 1) (1� �)
"

c=a
for h 2 [0; 0:5] ,

�2c(h) = 1+
' (� � 1) (�� 1) (1� �)

�
1
�

�
1��

��
ln z + [1 + (�� 1) (1� �)] �

1 + (� � 1) ln z + (�� 1) (1� �)
"

c=a
for h 2 [0:5; 1] .
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