Kleiner, George (2023): Доказательное моделирование как перспективный инструмент научного исследования социально-экономических процессов. Published in:
Preview |
PDF
MPRA_paper_119300.pdf Download (494kB) | Preview |
Abstract
Actual problems of developing the methodology of economic-mathematical and information-computer modeling of economic processes and systems are revealed in the paper. Model construction is included in a wide range of studies of ontological, epistemological, ideological and praxeological systems. The problem of coordinating the complexity of the object, apparatus and modeling result is put forward and emphasized. The concept of evidence-based modeling is formulated as a process of constructing and interpreting a mathematical model that ensures the reliability and safety of its application. The principles of evidence-based modeling are given.
Item Type: | MPRA Paper |
---|---|
Original Title: | Доказательное моделирование как перспективный инструмент научного исследования социально-экономических процессов |
English Title: | Evidence-based Modeling as a Perspective Tool for Scientific Research of Socio-economic Processes |
Language: | Russian |
Keywords: | modeling methodology, evidence-based modeling, complexity modeling, modeling stages |
Subjects: | A - General Economics and Teaching > A1 - General Economics > A10 - General C - Mathematical and Quantitative Methods > C0 - General > C02 - Mathematical Methods |
Item ID: | 119300 |
Depositing User: | Mrs Ekaterina Koroleva |
Date Deposited: | 02 Dec 2023 21:36 |
Last Modified: | 02 Dec 2023 21:36 |
References: | 1. Balatsky E.V. (2022). New imperatives of economic knowledge: on the way to socionomics. Social space. no. 8(4). DOI: 10.15838/sa.2022.4.36.2 (In Russ.) 2. Galliamova E.M. (2021). Evidence-based state policy: opportunities and limitations. Sociology. no. 2, pp.158–162. (In Russ.) 3. Druzhinina O. V., Masina O. N., Igonina E. V. (2022). Application of artificial intelligence methods and cognitive technologies in the tasks of modeling dynamic systems // Modern information technologies and IT education. no. 18(1), pp.83-97. DOI: 10.25559/SITITO.18.202201.83-97 (In Russ.) 4. The use of optimization methods in the current planning and operational management of production: Sat. abstract report All-Union. conf. (17–19 Oct. 1979). M.: VINITI, 1979. 392 p. (In Russ.) 5. Kapelyushnikov R.I. (2023). "Randomists"; new development economics // Questions of Economics. no. 6, pp.5–35. DOI: 10.32609/0042-8736-2023-6-5-35. (In Russ.) 6. Kirdina S.G. (2018). Mesoeconomics and Economics of Complexity: Actual Going Beyond Orthodoxy // Journal of Institutional Studies. no.10(3), pp.6–17. (In Russ.) 7. Kline M. (1984). Mathematics. Loss of certainty. M.: Mir. 434 p. (In Russ.) 8. Kleiner G.B. (1986). Production functions: theory, methods, application. M.: Finance and statistics, 238 p. (In Russ.) 9. Kleiner G.B. (2001). Economic-Mathematical Modeling and Economic Theory // Economics and Mathematical Methods. no.37(3), pp.111–126. (In Russ.) 10. Kleiner G.B. (2023). System methodology of Alexander Bogdanov in the context of the modern economic outlook // Questions of Economics. no.3, pp.24–39. DOI: 10.32609/0042-8736-2023-3-24-39 (In Russ.) 11. Makarov V.L., Bakhtizin A.R., Loginov E.L. (2022). Application of economic and mathematical methods and models of optimal planning in the digital economy of the future (CEMI AS USSR and CEMI RAS: predictive interpretation and development of the scientific heritage of Nobel laureates L.V. Kantorovich and V.V. Leontiev). M.: CEMI RAN, 248 p. (In Russ.) 12. Myasoedov A.I. (2020). Application of mathematical methods in economics: specifics, problems, prospects // Beneficium. no.3(36), pp.35–47. (In Russ.) 13. Orlov A.I. (2022). Sustainable economic and mathematical methods and models. M.: AI Pi Ar Media, 337 p. (In Russ.) 14. Parilis S.E., Libin A.V. (1991). The psychology of your mind. M.: Thought, 218 p. (In Russ.) 15. Parfenova O. (2022). How did evidence-based medicine develop in Russia: from closed forums to “evidence-based” clinics // Laboratorium: Journal of Social Research. no.14(1), pp.111–132. DOI: 10.25285/2078-1938-2022-14-1-111-132 (In Russ.) 16. Polterovich V.M. (1998). Crisis of economic theory // Economic science of modern Russia. no.1, pp.46–66. (In Russ.) 17. Polterovich V.M. (2011). Formation of general social analysis // Social sciences and modernity. no.2, pp.101–111. (In Russ.) 18. Polterovich V.M. (2016). Institutions of catch-up development (to the project of a new model of economic development of Russia). no.5(47), pp.34–56. (In Russ.) 19. Sokolov A.V., Voloshinov V.V. (2018). Mathematical Model Selection: Balancing Complexity and Measurement Proximity // International Journal of Open Information Technologies, no.6(9), pp.33–41. (In Russ.) 20. Soloviev A.I. (2021). "Evidence-based politics" and "evidence politics": the dilemma of post-Soviet societies // Contours of global transformations: politics, economics, law. no.14(5), pp.61–80. DOI: 10.23932/2542-0240-2021-14-5-3 (In Russ.) 21. Chernov V.A. (2016). Mathematics in Economics: Illusions and Opportunities // Innovative Economics and Society. no.3(13), pp.53–65. (In Russ.) 22. Arthur W.B. (1999). Complexity and the Economy. Science. no. 284(5411), pp.107–109. 23. Arthur W.B. (2013). Complexity and the Economy: a Different Framework for Economic Thought. SFI Working Paper: 2013-04-012. 24. Boumans M., Duarte P.G. (2019). The History of Macroeconometric Modeling: An Introduction. History of Political Economy. no. 51(3), pp. 391–400. DOI: 10.1215/00182702-7551828 25. Green K.С., Armstrong J.S. (2012). Demand Forecasting: Evidence-Based Methods. URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3063308 (дата обращения: 20.06.2023). 26. Knight C., Parker S. (2021). How work redesign interventions affect performance: An evidence-based model from a systematic review. Human relations. no. 74(1), pp. 69–104. DOI: 10.1177/0018726719865604 |
URI: | https://mpra.ub.uni-muenchen.de/id/eprint/119300 |