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Abstract 

In this paper, I simulate how an economy grows endogenously and reaches a balanced 

growth path supposing that households behave under the MDC (maximum degree of 

comfortability)-based procedure, where MDC indicates the state at which a household 

feels most comfortable with its combination of income and assets. Although it is not easy 

to numerically simulate the path to a steady state in dynamic economic growth models in 

which households behave generating rational expectations, it is easy if households are 

supposed to behave under the MDC-based procedure to reach a steady state. The 

simulation results indicate that an economy can indeed grow endogenously as predicted 

theoretically, although some small scale effects exist. If uncompensated knowledge 

spillovers are restrained, however, large scale effects are generated. A lower degree of 

risk aversion increases the growth rate. In addition, economies converge if productivities 

are identical, but they diverge if they are not. 
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1  INTRODUCTION 

 

In this paper, I numerically simulate the paths of economies that endogenously grow and 

reach a balanced growth path by using the novel simulation method presented by 

Harashima (2022c, 2023a, 2023b). In dynamic economic growth models in which 

households behave generating rational expectations, it is not easy to numerically simulate 

the path to a steady state and a balanced growth path because there is no closed-form 

solution to these models. However, Harashima (2022c) presented a completely different 

way to simulate it on the basis of the concept of the maximum degree of comfortability 

(MDC), where MDC indicates the state at which a household feels most comfortable with 

its combination of incomes and assets.  

 Usually, it is assumed that households behave by generating rational 

expectations to reach a steady state, but Harashima (2018 1 ) showed an alternative 

procedure for households to reach a steady state. With this procedure, households 

maintain their capital-wage ratio (CWR) at the MDC. He showed that the behavior of 

households based on rational expectations (i.e., the behavior under the RTP [rate of time 

preference]-based procedure) is equivalent to that under the MDC-based procedure 

(Harashima 2018, 2021, 2022a2). Unlike the case of the RTP-based procedure, the path 

to a steady state will easily be simulated if we suppose that households behave under the 

MDC-based procedure because households are not required to do something equivalent 

to computing complex models.  

 Indeed, Harashima (2022c) numerically simulated the path to a steady state 

under the MDC-based procedure and showed that households can reach a stabilized 

(steady) state without generating any rational expectations, as predicted theoretically 

(Harashima, 20103, 2012a4, 2014), and a government can achieve a stabilized (steady) 

state by appropriately intervening, although heterogeneous households cannot necessarily 

reach their intrinsic CWRs at MDC (this state is called “approximate sustainable 

heterogeneity”). Furthermore, Harashima (2023a) simulated the effect of economic rents 

obtained heterogeneously among households, and Harashima (2023b) examined the 

mechanism underlying why economic inequality can increase in democratic countries 

using the same simulation method. In these simulations, a household was set to increase 

or decrease its consumption according to simple formulae that are supposed to well 

capture and represent a household’s behaviors under the MDC-based procedure. 

 However, in these simulations, technologies are exogenously given and therefore 

 
1 Harashima (2018) is also available in Japanese as Harashima (2019a). 
2 Harashima (2022a) is also available in Japanese as Harashima (2022b). 
3 Harashima (2010) is also available in Japanese as Harashima (2017). 
4 Harashima (2012a) is also available in Japanese as Harashima (2020a). 
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paths of endogenously growing economies are not simulated. The purpose of this paper 

is to numerically simulate and examine how an economy endogenously grows and 

reaches a balanced growth path by extending the method of numerical simulation shown 

in Harashima (2022c, 2023a, 2023b). To do so, a mechanism of endogenous growth, on 

which the simulations are based, has to be specified first. Many kinds of mechanisms of 

endogenous growth have been presented. In this paper, I use the asymptotically non-scale 

endogenous growth model presented in Harashima (2013) because it avoids the familiar 

and problematic “scale effects” (i.e., as the population increases, the growth rate 

increases) (see, e.g., Romer, 1990; Grossman and Helpman, 1991; Aghion and Howitt, 

1992, 1998; Jones, 1995b; Kortum, 1997; Segerstrom, 1998; Eicher and Turnovsky, 

1999; Young, 1998; Peretto, 1998; Dinopoulos and Thompson, 1998; Peretto and 

Smulders, 2002). In simulations based on the extended method, firms behave to always 

keep the marginal products of capital and technology equal, following the mechanism 

shown in Harashima (2013). This behavior makes an economy grow endogenously and 

reach a balanced growth path in simulations. 

 The results of the simulations indicate that, as predicted theoretically in 

Harashima (2013), an economy can indeed grow endogenously and reach a balanced 

growth path if firms behave keeping the marginal products of capital and technology 

equal. Scale effects exist but they are small; even if the population is very small, the 

growth path is almost the same as that when the population is very large. If 

uncompensated knowledge spillovers are restrained as the population increases, however, 

large scale effects emerge. Furthermore, although the degree of risk aversion (DRA) is 

not explicitly included in the simulation method, the effect of its surrogate variable (i.e., 

the adjustment speed of consumption) in simulations suggests that a smaller DRA 

increases the growth rate. Finally, I simulate whether the growth paths of different 

economies eventually converge. The results of the simulations indicate that, if 

productivities are identical, economies converge regardless of their past economic paths, 

but if productivities are heterogeneous, economies diverge even if they are initially 

identical. 

 

2  ENDOGENOUS GROWTH 

 

2.1  Non-scale endogenous growth 

Scale effects have been a central issue in the study of endogenous growth. Early 

endogenous growth models (e.g. Romer, 1986, 1987; Lucas, 1988) commonly included 

scale effects. However, the existence of scale effects in present-day economies is not 

supported by empirical evidence (Jones, 1995a). The source of scale effects lies in the 

assumption of a linear relation between capital and technology. Many kinds of solutions 
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to this problem have been presented, but most of them generate other problems in the 

attempt to solve this problem (Romer, 1990; Grossman and Helpman, 1991; Aghion and 

Howitt, 1992, 1998; Jones, 1995b; Kortum, 1997; Segerstrom, 1998; Eicher and 

Turnovsky, 1999; Young, 1998; Peretto, 1998; Dinopoulos and Thompson, 1998; Peretto 

and Smulders, 2002). 

 Harashima (2013 5 ) showed a different kind of solution and presented an 

asymptotically non-scale endogenous growth model that does not have the problem of 

scale effects. A key mechanism in this model is substitution between investments in 

capital and technology. The simulation method used in this paper adopts this mechanism 

as the driving force of endogenous growth. 

 

2.2  Essence of endogenous growth 

The asymptotically non-scale endogenous growth model presented in Harashima (2013) 

is summarized in Appendix 4; its essence is briefly explained in this section.  

 

2.2.1  Production of technologies 

In the model, Yt is output (production) and is the sum of consumption Ct, the increase in 

capital Kt, and the increase in technology At in period t such that 
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growth rate in period t, ( )0ν  is a constant, and a unit of Kt and 1−ν  of a unit of At are 

equivalent; that is, they are produced using the same quantities of inputs (capital, labor, 

and technology). This means that technologies are produced with capital, labor, and 

technology in the same way as consumer goods and services and capital. The production 

function is assumed to be ( )αtt
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5 Harashima (2013) is also available in Japanese as Harashima (2019b). 
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It is assumed for simplicity that the population growth rate (nt) is zero. 

 

2.2.2  Substitution between investments in capital and technology 

For any period,  

 

 𝑚 =
𝑀𝑡

𝐿𝑡
 , 

 

where Mt is the number of firms (which are assumed to be identical) and m(>0) is a 

constant. For any period,  

 

𝜕𝑌𝑡

𝜕𝐾𝑡
=

𝜛

𝑀𝑡
1−𝜌

𝜕𝑌𝑡

𝜕(𝑣𝐴𝑡)
  ;                                               (1) 

 

thus,  

𝜕𝑦𝑡

𝜕𝑘𝑡
=

𝜛𝐿𝑡
𝜌

𝑚1−𝜌𝑣

𝜕𝑦𝑡

𝜕𝐴𝑡
                                                    (2) 

 

is always kept, where ( )1  and ( )10  ρρ  are constants. The parameter ρ describes 

the effect of uncompensated knowledge spillovers, and the parameter   indicates the 

effect of patent protection. For simplicity, the patent period is assumed to be indefinite, 

and no capital depreciation is assumed. Equations (1) and (2) indicate that the marginal 

products of capital and technology are always kept equal through arbitrage in markets.  

 Because  
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by equation (2), which indicates that 
t

t

k

A
= constant for 𝐿𝑡

𝜌
 = constant, and the model 

can therefore show balanced endogenous growth. 
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2.2.3  Uncompensated knowledge spillovers 

Equations (1) and (2) also indicate that the investing firm cannot obtain all of the returns 

on its investment in technology because knowledge spills over to other firms without 

compensation and other firms possess complementary technology. If the number of firms 

increases and uncompensated knowledge spillovers increase, the compensated fraction in 

t

t

A

Y



   that the investing firm can obtain becomes smaller, as do its returns on the 

investment in technology. The parameter ρ describes the magnitude of this effect. 

 Because of the non-rivalness of technology, all firms can equally benefit from 

uncompensated knowledge spillovers, regardless of the number of firms. Hence, it is quite 

likely that the probability that a firm can utilize a unit of new technology developed by 

each of the other firms without compensation will be kept constant even if the population 

and the number of firms increase. As a result, uncompensated knowledge spillovers will 

eventually increase to the point that they increase at the same rate as the increase in the 

number of firms. The investing firm’s fraction of 
t

t

A

Y



  that it can obtain will thereby be 

reduced at the same rate as the increase in the number of firms, which means that ρ will 

naturally decrease to zero as a result of firms’ profit-seeking behavior.  

 Based on ρ = 0, 

 

𝜕𝑌𝑡

𝜕𝐾𝑡
=

𝜛

𝑀𝑡

𝜕𝑌𝑡

𝜕(𝑣𝐴𝑡)
 

 

by equations (1) and (2); thus,  

 

𝜕𝑦𝑡

𝜕𝑘𝑡
=

𝜛

𝑚𝑣

𝜕𝑦𝑡

𝜕𝐴𝑡
                                                      (3) 

 

is always maintained. 

 

3  SIMULATION METHOD 

 

Simulations in this paper are undertaken on the basis of the sustainable heterogeneity 

(SH) concepts presented in Harashima (2010, 2012a, 2014) and the MDC-based 

procedure developed in Harashima (2018, 2021, 2022a). These concepts are briefly 

summarized in Appendixes 1 and 2. The method of simulations is basically the same as 

that used in Harashima (2022c, 2023a, 2023b), which is explained in Appendix 3, but it 

is extended to simulate endogenous growth. 
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3.1  Basic simulation assumptions  

No technological progress and capital depreciation are assumed, and all values are 

expressed in real and per capita terms. It is assumed that there are H economies in a 

country, the number of households in each of economy is identical, and households within 

each economy are identical. The production function of Economy i (1 ≤ i ≤ H) is  

 

𝑦𝑖,𝑡 = 𝜔𝑖𝐴𝑡
𝛼𝑘𝑖,𝑡

1−𝛼 ,                         (4) 

 

where yi,t and ki,t are the production and capital of a household in Economy i in period t, 

respectively; 𝜔𝑖 is the productivity of a household in Economy i; At is technology in 

period t; and α (0 < α < 1) is a constant and indicates the labor share. All variables are 

expressed in per capita terms. In simulations, I set α = 0.65, 𝐴𝑡 = 1, and 𝜔𝑖 = 1 for any 

t and i. The initial capital a household owns is set at 1 for any household.  

 By equation (4), the production of a household in Economy i in period t (yi,t) is 

calculated, for any i, by  

 

  𝑦𝑖,𝑡 = 𝑘𝑖,𝑡
1−𝛼 . 

 

The amount of capital used (not owned) by each household (i.e., ki,t) is kept identical 

among households although the amount of capital owned (not used) by each household 

can be heterogeneous. For any i,  

 

 

 𝑘𝑖,𝑡 =
∑ 𝑘̌𝑖,𝑡

𝐻
𝑖=1

H
 , 

 

where 𝑘̌𝑖,𝑡 is the amount of capital a household in Economy i owns (not uses).  

 The capital income of a household in Economy i in period t (𝑥𝐾,𝑡) is calculated 

by  

 

  𝑥𝐾,𝑖,𝑡 = 𝑟𝑡𝑘̌𝑖,𝑡 , 

 

where rt is the real interest rate in period t and  

 

 𝑟𝑡 =
𝜕𝑘𝑖,𝑡

𝜕𝑦𝑖,𝑡
 . 

 



 7 

The labor income of a household in Economy i in period t (𝑥𝐿,𝑖,𝑡 ) is calculated by 

extracting its capital income from its production such that  

 

  𝑥𝐿,𝑖,𝑡 = 𝑦𝑖,𝑡 − 𝑟𝑡𝑘𝑖,𝑡 = 𝑦𝑖,𝑡 − 𝑟𝑡

∑ 𝑘̌𝑖,𝑡
𝐻
𝑖=1

H
 . 

 

Household savings in Economy i in period t (si,t) are calculated by  

 

  𝑠𝑖,𝑡 = 𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡 − 𝑐𝑖,𝑡 , 

 

where ci,t is the consumption of a household in Economy i in period t. In period t + 1, 

these savings (𝑠𝑖,𝑡) are added to the capital the household owns, and therefore,  

 

 𝑘̌𝑖,𝑡+1 = 𝑘̌𝑖,𝑡 + 𝑠𝑖,𝑡 . 

 

 The following simple consumption formula is used.  

 

Consumption formula 1: The consumption of a household in Economy i in period t is  

 

  𝑐𝑖,𝑡 = (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝛤(𝑠̃𝑖)

𝛤𝑖,𝑡
)

𝛾

  , 

 

and equivalently  

 

  𝑐𝑖,𝑡 = (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝜃𝑖

𝛤𝑖,𝑡
1 − α

α

)

𝛾

 , 

 

where Γi,t is the capital-wage ratio (CWR) of a household in Economy i in period t, 𝛤(𝑠̃𝑖) 

is Γi,t of a household in Economy i in period t when the household is at its MDC, and γ is 

a parameter. In this paper, I set the value of γ to be 0.5. It is assumed that the intrinsic 

𝛤(𝑠̃𝑖) (i.e., CWR at MDC) of a household is identical across households and economies, 

and I set this common 𝛤(𝑠̃𝑖) to be 0.04 × 0.65/(1 − 0.65) = 0.0743, which corresponds 

to an RTP of 0.04. 

 In a heterogeneous population, Consumption formula 1 should be modified to 

Consumption formula 2. Let ΓR,i,t be the adjusted value of Γi,t of a household in Economy 

i in period t in a heterogeneous population, and 𝛤(𝑆𝑡) be the CWR of the country (i.e., 

the aggregate CWR). 
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Consumption formula 2: In a heterogeneous population, the consumption of a 

household in Economy i in period t is  

 

             𝑐𝑖,𝑡 = (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝛤(𝑠̃𝑖)

𝛤𝑅,𝑖,𝑡
)

𝛾

 

= (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝛤(𝑠̃𝑖)

𝑟𝑡
𝛼

1 − 𝛼

)

𝛾

= (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝛤(𝑠̃𝑖)

1 − 𝛼
𝛼

𝑟𝑡
)

𝛾

 , 

 

and equivalently,  

 

  𝑐𝑖,𝑡 = (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝜃𝑖

𝑟𝑡
)

𝛾

 . 

 

 Let κi be the 𝑘̌𝑖,𝑡 that a government aims for to force a household in Economy i 

to own capital at a stabilized (steady) state (i.e., κi is the target value set by the 

government). Under these conditions, the bang-bang (two-step) control of government 

transfers is set as follows.  

 

Transfer rule: The amount of government transfers from a household in Economy i to a 

household in Economy i + 1 in period t is Tlow if 𝑘̌𝑖,𝑡 is lower than κi, and Thigh if 𝑘̌𝑖,𝑡 is 

higher than κi, where Tlow and Thigh are constant amounts of capital predetermined by the 

government, and if i = H, i + 1 is replaced with 1.  

 

 In the simulations, I set Tlow to be −0.1 and Thigh to be 0.5. The value of κi is 

varied in each simulation depending on what stabilized (steady) state the government is 

aiming to achieve.  

 

3.2  Extension to simulate endogenous growth  

In the basic simulation assumptions shown in Section 3.1, no technological progress is  

assumed. In this section, the simulation is extended to allow technology to progress 

endogenously. 

 

3.2.1  Investments in capital and technology 

Let the population (i.e., the number of households) in an economy be L and be constant. 

The total amount of investments in technology in the economy in period t is described as 
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𝑣𝑑𝐴𝑡 , and to finance these investments, 
𝑣𝑑𝐴𝑡

𝐿
 is allocated from the savings of each 

household (st) indirectly through financial institutions in period t. Hence, for a household, 

 

𝑠𝑡 = 𝑑𝑘𝑡 +
𝑣𝑑𝐴𝑡

𝐿
 .                                                  (5) 

 

Equation (5) means that a household’s savings are allocated for either investments in 

capital, 

 

 𝑑𝑘𝑡 =
𝑑𝐾𝑡

𝐿
 , 

 

or those in technology, 

 

  
𝑣𝑑𝐴𝑡

𝐿
 . 

 

 On the other hand, as shown in Section 2.2, firms behave so as to keep equation 

(3); therefore, 

 

𝑑𝐴𝑡 =
𝜛𝛼

𝑚𝑣(1 − 𝛼)
𝑑𝑘𝑡                                                (6) 

 

holds (see Appendix 4). Here, by equations (5) and (6),  

 

𝑑𝑘𝑡 =
𝐿

[
𝜛𝛼

𝑚(1 − 𝛼) + 𝐿]
𝑠𝑡 .                                            (7) 

 

By equations (5) and (7),  

 

𝑑𝐴𝑡 =
𝑣−1

1
𝐿 +

𝑚(1 − 𝛼)
𝜛𝛼

𝑠𝑡 .                                              (8) 

 

 As indicated by equation (5), a household’s savings are indirectly allocated for 

either investments in capital or technology. In simulations, a household’s indirect 

investments in capital are calculated by equation (7) and those in technology are 

calculated by equation (8). 
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3.2.2  Multiple economies 

Suppose that there are H economies that are identical and each of them has the same 

population L. These economies are open to each other, although labor is immobilized 

within each economy; therefore, technologies generated by an economy can be used by 

any other economy. Because equation (6) holds in any economy, for any i (=1, 2,…, H), 

 

𝑑𝐴𝑡 =
𝜛𝛼

𝑚𝑣(1 − 𝛼)
𝑑𝑘𝑖,𝑡 .                                             (9) 

 

Let 𝐴𝑖,𝑡 be technologies that are newly generated in Economy i in period t. Because 𝑘𝑖,𝑡 

is identical for any i, then 𝑑𝐴𝑖,𝑡 is also identical for any i, and therefore, 

 

𝑑𝐴𝑡 = ∑ 𝑑𝐴𝑖,𝑡

𝐻

𝑖=1

= 𝐻𝑑𝐴𝑖,𝑡 .                                         (10) 

 

 On the other hand, a household’s savings are indirectly allocated for investments 

in capital or technology or for transactions with other economies. Hence, for any i, 

 

𝑠𝑖,𝑡 = 𝑑𝑘𝑖,𝑡 + 𝜏𝑖,𝑡 +
𝑣𝑑𝐴𝑖,𝑡

𝐿
= 𝑑𝑘𝑖,𝑡 + 𝜏𝑖,𝑡 +

𝑣
𝑑𝐴𝑡
𝐻

𝐿
 = 𝑑𝑘̌𝑖,𝑡 +

𝑣
𝑑𝐴𝑡
𝐻

𝐿
           (11) 

 

by equation (10), where 𝜏𝑖,𝑡 is the current account balance of Economy i in transactions 

with the other economies and 

∑ 𝜏𝑖,𝑡

𝐻

𝑖=1

= 0  .                                                    (12) 

 

By equations (11) and (12), 

 

 𝑆𝑡 = ∑ 𝑠𝑖,𝑡

𝐻

𝑖=1

= ∑ 𝑑𝑘𝑖,,𝑡

𝐻

𝑖=1

+
𝑣𝑑𝐴𝑡

𝐿
= 𝐻𝑑𝑘1,𝑡 +

𝑣𝑑𝐴𝑡

𝐿
 ; 

 

thus, 

 

𝑆𝑡 − 𝐻𝑑𝑘1,𝑡 =
𝑣𝑑𝐴𝑡

𝐿
  .                                             (13) 
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Hence, by equations (9) and (13), 

 

𝑑𝐴𝑡 =
𝑣−1

1
𝐿 + 𝐻

𝑚(1 − 𝛼)
𝜛𝛼

 𝑆𝑡 .                                         (14) 

 

 Here, by equation (11), 

 

𝑑𝑘̌𝑖,𝑡 = 𝑠1,𝑡 −
𝑣

𝐻𝐿
𝑑𝐴𝑡 .                                             (15) 

 

By equations (14) and (15), 

 

𝑑𝑘̌𝑖,𝑡 = 𝑠𝑖,𝑡 −
1

1
𝐿

+ 𝐻
𝑚(1 − 𝛼)

𝜛𝛼

 
𝑆𝑡

𝐻𝐿
 .                                   (16) 

 

 In simulations with multiple economies, the total increase in technologies in 

period t (𝑑𝐴𝑡) is calculated by equation (14), and a household’s increase in capital owned 

in Economy i in period t (𝑑𝑘̌𝑖,𝑡) is calculated by equation (16). 

 

4  SIMULATION RESULTS 

 

In simulations, I set v = 1, 
𝜛𝛼

𝑚
 = 0.3, and the population at 100,000,000, unless otherwise 

noted.  

 

4.1  Base case 

I first simulate the growth path of an economy simply by applying the three parameter 

values given above. The simulated paths of capital owned and consumption are shown in 

Figure 1, and their growth rates are shown in Figure 2. In addition, the simulated path of 

technology and its growth rate are shown in Figures 3 and 4, respectively. These figures 

clearly indicate that the economy endogenously grows and reaches a balanced growth 

path. After reaching a balanced growth path, the economy grows at a constant rate of 

2.08% every period.  

 Note that on this balanced growth path, the real interest rate is 0.0536, which is 

greater than the assumed RTP of 0.04. This occurs because the economy is not at a static 

steady state; rather, it is growing endogenously. 
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Figure 1: Simulation of the base case of endogenous growth: capital owned by each 

household (𝑘̌𝑖,𝑡) and consumption (𝒄𝒊,𝒕)  
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Figure 2: Simulation of the base case of endogenous growth: growth rates of capital 

owned by each household (𝑘̌𝑖,𝑡) and consumption (𝒄𝒊,𝒕)  
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Figure 3: Simulation of the base case of endogenous growth: technology (𝑨𝒕)  

 

 
Figure 4: Simulation of the base case of endogenous growth: the growth rate of 

technology (𝑨𝒕)  

 

4.2  Scale effects 

Next, I examine scale effects by simulating three economies with different populations 

(100, 100,000, and 100,000,000), while the other parameter values are the same as the 

base case in Section 4.1. The simulated paths of consumption of the three economies are 

shown in Figure 5, and their consumption growth rates are shown in Figure 6.  
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Figure 5: Simulation of scale effects: consumptions ( 𝒄𝒊,𝒕 ) of economies with 

populations of 100, 100,000, and 100,000,000  

 

 
Figure 6: Simulation of scale effects: growth rates of consumption (𝒄𝒊,𝒕) of economies 

with populations of 100, 100,000, and 100,000,000  

 

 Although the populations are very different, the simulated paths of the three 

economies are very similar, which means that scale effects are very small. For example, 

the growth rate of the economy with the smallest population in period 300 is lower than 

that those with the larger populations, but not by much (2,750, 2,844, and 2,850, 

respectively). The reason for this very small effect is that knowledge can sufficiently 
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spillover without compensation even if the population is small. Sufficient uncompensated 

knowledge spillovers are possible because ρ = 0 is kept through firms’ fierce competition 

in markets, regardless of population.  

 Historically, before the industrial revolution that began in the 18th century, both 

the population and economic growth rate were far smaller than those in the present day, 

which suggests that scale effects actually existed in the past. However, the low growth 

rate before the industrial revolution probably was caused not by a small population but 

by immature capitalism and strict restriction on market activities, which would 

significantly deter generation of new technologies. On the other hand, in these simulations, 

it is implicitly assumed that markets function sufficiently well and are not restricted, even 

if the population is very small. 

 

4.3  Restrained uncompensated knowledge spillovers 

4.3.1  Positive ρ  

If ρ in equations (1) and (2) is positive, scale effects can clearly emerge because a positive 

ρ means that uncompensated knowledge spillovers do not increase at the same rate as the 

population increases. If ρ is positive,  

 

𝑑𝑘𝑖,𝑡 =
𝐿

[
𝜛𝛼𝐿𝜌

𝑚1−𝜌(1 − 𝛼) + 𝐿]
𝑠𝑖,𝑡 

 

and 

 

𝑑𝐴𝑡 =
𝑣−1

1
𝐿 +

1

[
𝜛𝛼𝐿𝜌

𝑚1−𝜌(1 − 𝛼)]

𝑠𝑖,𝑡 

 

by the same procedure shown in Section 3.2. 

 

4.3.2  Simulation results 

Here, I simulate the case where ρ = 0.01 (i.e., ρ only slightly deviates from ρ = 0) for three 

different economies (populations of 100, 100,000, and 100,000,000); the other parameter 

values are the same as in the base case in Section 4.1. The simulated paths of consumption 

of the three economies are shown in Figure 7, and their consumption growth rates are 

shown in Figure 8.  
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Figure 7: Simulation of restrained uncompensated knowledge spillovers (ρ = 0.01): 

consumption (𝒄𝒊,𝒕) of economies with populations of 100, 100,000, and 100,000,000  

 

 
Figure 8: Simulation of restrained uncompensated knowledge spillovers (ρ = 0.01): 

growth rates of consumption (𝒄𝒊,𝒕) of economies with populations of 100, 100,000, 

and 100,000,000  

 

 Unlike the case where ρ = 0 (Section 4.2), large scale effects are observed. The 

economy with a population of 100,000,000 grows far more rapidly than an economy with 

a population of 100. The growth rates of consumption in economies with populations of 

100, 100,000, and 100,000,000 after reaching a balanced growth path are 2.34%, 2.77%, 

and 3.21%, respectively. 
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 Note that in all three economies, the growth rate of consumption after reaching 

a balanced growth path is higher than that in the case with ρ = 0 (Figure 6). This means 

that, if uncompensated knowledge spillovers are restrained and as a result the returns of 

firms that invest in technology increase as a population increases as indicated by equation 

(2), a greater amount of investments in technology will be undertaken in the economy as 

the population increases. 

  Nevertheless, firms will actually never restrain themselves from utilizing 

uncompensated knowledge spillovers to the greatest extent possible merely because the 

population and consequently the number of firms increase. Therefore, the returns of firms 

that invest in technology will be certainly reduced at the same rate as the increase in the 

number of firms (i.e., ρ = 0 will be always kept) (see Harashima, 2013). 

 

4.4  Effects of degree of risk aversion (DRA) 

4.4.1  Degree of risk aversion  

As shown in Harashima (2018), under the MDC-based procedure, a household responds 

to technological progress such that: 

(a) If a new version (variety) of a product is introduced into markets that performs 

better at the same price as the old version (variety), a household will buy the new 

version (variety) instead of the old one without changing its capital-wage ratio 

(CWR). 

(b) If a household feels that its income has unexpectedly and permanently 

increased and that its current CWR is deviating from (particularly, is higher than) 

its most comfortable CWR, it will begin to adjust its consumption such that its 

CWR returns to its most comfortable CWR according to the consumption 

formulae. Because of the permanent increase in income, the household will 

accumulate more capital to make its CWR return to its most comfortable CWR. 

 How sensitively a household responds to new versions (varieties) in Channel (a) 

and to increases in income in Channel (b) will differ depending on its DRA (ε), and ε will 

eventually influence firms’ plans to invest in technology. 

 In simulations, the sensitivity of a household’s response (i.e., consumption 

adjustment) is represented by γ, the parameter that reflects consumption adjustment (see 

Section 3.1). In this sense, it is highly likely that ε and γ are correlated. Furthermore, if a 

household’s ε is smaller, the household will tolerate larger fluctuations in consumption; 

the same is true if its γ is larger. Therefore, ε is negatively correlated with γ.  

 

4.4.2  Simulation result 

I simulate the paths of three economies with different values of γ (0.4, 0.5, and 0.6); the 

other parameter values are the same as in the base case in Section 4.1. γ = 0.4 is the highest 
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level of risk aversion, and γ = 0.6 is the lowest. The simulated paths of consumption in 

the three economies are shown in Figure 9, and the consumption growth rates are shown 

in Figure 10.  

 After the economies have reached balanced growth paths, the growth rates of 

economies with γ = 0.4, 0.5, and 0.6 are 1.69%, 2.08%, and 2.46%, respectively. That is, 

the economy with γ = 0.6 grows most rapidly, and the economy with γ = 0.4 grows most 

slowly. This relation corresponds to the theoretical prediction. In this sense, the results of 

simulations are generally consistent with the standard growth theory based on the Ramsey 

growth model.  

 

 
Figure 9: Simulation of effects of γ: consumptions (𝒄𝒊,𝒕) of economies with γ = 0.4, 0.5, 

and 0.6   
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Figure 10: Simulation of effects of γ: growth rates of consumption (𝒄𝒊,𝒕) of economies 

with γ = 0.4, 0.5, and 0.6   

 

 Note that I preliminarily simulated several cases with different values of γ, and 

the results indicate that they indeed seem to be negatively correlated, but this correlation 

is not simple. It will be non-linear and complicated, and γ will probably be correlated not 

only with ε but also with other related elements. Because the correlation is not simple, for 

a given constant value of γ, the corresponding value of ε may change with time before 

reaching a balanced growth path in simulations. However, after reaching it, the value of 

ε is kept constant because the economy is on a balanced growth path. 

 

4.5  Heterogeneous households and sustainable heterogeneity  

4.5.1  Sustainable heterogeneity 

As shown in Harashima (2012a), under the RTP-based procedure, if the DRA (ε) is 

heterogeneous among households, it is difficult to achieve a balanced growth path without 

government intervention. Harashima (2018) showed that the same is true under the MDC-

based procedure. However, if a government appropriately intervenes, sustainable 

heterogeneity (SH) (i.e., all optimality conditions of all heterogeneous households are 

satisfied) can be achieved under the RTP-based procedure (see Appendix 1). On the other 

hand, Harashima (2018) showed that under the MDC-based procedure, only approximate 

SH can be achieved with government intervention (see Appendix 2), but at the 

approximate SH, a balanced growth path can be realized even if the parameter that 

corresponds to ε under the RTP-based procedure is heterogeneous among households. 

 

4.5.2  Simulation results 

Suppose that there are two economies (Economies 1 and 2) in a country, and they are 

identical except for their values of γ. In Economy 1, γ is set at 0.6, and in Economy 2, γ 

is 0.4. First, I simulate the case that the government of the country does not intervene to 

achieve an approximate SH in the country. The simulated paths of capital owned and 

consumption are shown in Figure 11, and their growth rates are shown in Figure 12. 

Figures 11 and 12 show that, even without government intervention, the two economies 

eventually reach a balanced growth path. Nevertheless, the levels of capital owned and 

consumption of Economy 2, whose γ is smaller, are smaller than those of Economy 1.  

 As discussed above, theoretically, if the values of ε are heterogeneous, a 

balanced growth path is difficult to achieve without government intervention, but Figure 

12 indicates that a balanced growth path can be achieved even if the values of γ are 

heterogeneous. This result means that the correlation between ε and of γ is not simple, as 

discussed in Section 4.4. The balanced growth path achieved in Figure 11 implicitly 
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indicates that the values of ε eventually become identical in Economies 1 and 2 even 

though their values of γ are different. This means that a constant ε does not necessarily 

guarantee a constant γ in simulations. Hence, if the value of ε is assumed to be constant 

in simulations, the value of γ may have to be reset every period in the simulations. In 

actuality, for example, if a household with a constant ε feels that the current speed of 

increase in technology is lower than expected, it may increase γ to pursue more 

stimulation from unexpectedly smaller numbers of enjoyable new technologies.  

 

 
Figure 11: Simulation of heterogeneous economies (γ = 0.6 and 0.4) without 

government intervention: capital owned by each household (𝑘̌𝑖,𝑡) and consumption 

(𝒄𝒊,𝒕)  
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Figure 12: Simulation of heterogeneous economies (γ = 0.6 and 0.4) without 

government intervention: growth rates of capital owned by each household (𝑘̌𝑖,𝑡) and 

consumption (𝒄𝒊,𝒕)  

 

 Figures 11 and 12 also indicate that the levels of capital owned and consumption 

are clearly different in the two economies. A larger value of γ results in higher levels of  

capital owned and consumption, which indicates that ε and γ are generally negatively 

correlated, although this correlation is non-linear and complex.  
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 Next, I simulate the case in which the government intervenes to achieve an 

approximate SH within the country. The government intervenes according to the Transfer 

rule shown in Section 3.1 to make the amount of capital owned by Economies 1 and 2 

identical. The simulated paths of capital owned and consumption are shown in Figure 13, 

and their growth rates are shown in Figure 14. 

 

 
Figure 13: Simulation of heterogeneous economies (γ = 0.6 and 0.4) with government 

intervention (SH): capital owned by each household (𝑘̌𝑖,𝑡) and consumption (𝒄𝒊,𝒕)  
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Figure 14: Simulation of heterogeneous economies (γ = 0.6 and 0.4) with government 

intervention (SH): growth rates of capital owned by each household ( 𝑘̌𝑖,𝑡 ) and 

consumption (𝒄𝒊,𝒕)  

 

The results indicate that an approximate SH is established between the two heterogeneous 

economies, as predicted theoretically in Harashima (2018). The amounts of capital owned 

on the balanced growth path are between those on the paths of Economies 1 and 2 when 
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the government does not intervene (Figure 11). Note that the curves in Figure 14 are not 

smooth because the Transfer rule shown in Section 3.1 is based on a very simple bang-

bang (two-step) control. 

  

4.6  Convergence 

4.6.1  Heterogeneity in productivities 

Estimates of total factor productivity (TFP) vary substantially among countries, 

particularly those of developed and developing countries. Neo-classical Ramsey growth 

models naturally predict that these currently diverse estimates of TFP will eventually 

converge. On the other hand, many endogenous growth models do not support the 

convergence hypothesis (e.g., Romer, 1986, 1987). Prescott (1998) has concluded that a 

theory of TFP is needed to answer this question.  

 Harashima (2012b6) presented a new model of TFP, in which TFP reflects the 

fruits of human intelligence. This model indicates that TFP is an increasing function of 

ordinary workers’ intelligence. In the production function (i.e., equation (4)), the element 

of ordinary workers’ intelligence is represented by 𝜔𝑖 (i.e., the productivity of economy 

i). If 𝜔𝑖  is heterogeneous among economies, TFP (𝜔𝑖𝐴𝑡
𝛼  in equation (4)) is also 

heterogeneous even though At is common to all economies.  

 

4.6.2  Simulation results 

I first simulate the case of two economies (Economies 1 and 2) that are identical (i.e., 

their productivities are also identical), but Economy 2 starts to be a “market economy” 

100 periods after Economy 1 did so. Here, “market economy” means a modern 

industrialized and capitalist economy. For simplicity, capital, production, consumption, 

and other related variables of Economy 2 are set as zero during periods 0–99, and in 

period 100, Economy 2 begins to produce goods and services and accumulate capital by 

initially borrowing capital from Economy 1. Economy 1 starts the market economy in 

period 0, and its values are the same as in the base case in Section 4.1. 

 The simulated paths of capital owned and consumption are shown in Figure 15, 

and the ratios of capital owned and consumption of Economy 2 to those of Economy 1 

are shown in Figure 16. Figures 15 and 16 indicate that even if Economy 2 starts a market 

economy 100 periods after Economy 1 did, Economy 2 rapidly catches up to Economy 1, 

and the ratios of Economy 2 to Economy 1 eventually approach unity. That is, the two 

economies eventually converge. Therefore, if productivities are identical, economies 

eventually converge. 

  

 
6 Harashima (2012b) is also available in Japanese as Harashima (2020b). 
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Figure 15: Simulation of convergence (homogenous productivity but different start 

periods): capital owned by each household (𝑘̌𝑖,𝑡) and consumption (𝒄𝒊,𝒕)  
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Figure 16: Simulation of convergence (homogenous productivity but different start 

periods): ratios of capital owned by each household (𝑘̌𝑖,𝑡) and consumption (𝒄𝒊,𝒕) of 

Economy 2 to those of Economy 1 

 

 Next, I simulate the case in which the two economies start the market economy 

simultaneously in period 0, but their productivities are heterogeneous. In this case, I set 

the productivity of Economy 1 higher (𝜔1 = 1.2) than that of Economy 2 (𝜔2 = 0.8). 

The simulated paths of capital owned and consumption are shown in Figure 17, and the 

ratios of capital owned and consumption of Economy 2 to those of Economy 1 are shown 



 28 

in Figure 18. Even if the two economies start the market economy at the same time, they 

proceed on different paths (i.e., they do not converge), and the ratios of Economy 2 to 

Economy 1 are eventually stabilized at almost 0.8/1.2 = 0.667.  

 

 
Figure 17: Simulation of convergence (heterogeneous productivities but the same 

start period): capital owned by each household (𝑘̌𝑖,𝑡) and consumption (𝒄𝒊,𝒕)  
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Figure 18: Simulation of convergence (heterogeneous productivities but the same 

start period): ratios of capital owned by each household (𝑘̌𝑖,𝑡) and consumption (𝒄𝒊,𝒕) 

of Economy 2 to those of Economy 1 

 

 These simulations indicate that if the productivities of the economies are almost 

the same, the economies will eventually almost converge regardless of the past economic 
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paths. However, if their productivities are clearly different, they will not converge even 

if they were initially on identical economic paths. 

 

5  CONCLUDING REMARKS 

 

In this paper, I numerically simulate the paths of economies that endogenously grow and 

reach a balanced growth path on the basis of the simulation method presented by 

Harashima (2022c, 2023a, 2023b). In dynamic economic growth models in which 

households behave generating rational expectations, it is not easy to numerically simulate 

the path to a steady state and a balanced growth path because there is no closed-form 

solution to these models. However, the path to a steady state can easily be simulated if 

we suppose that households behave under the MDC-based procedure proposed by 

Harashima (2018, 2021, 2022a). Indeed, Harashima (2022c, 2023a, 2023b) numerically 

simulated the path to a steady state under the MDC-based procedure. 

 However, in the previous simulations, technologies were exogenously given and 

therefore endogenous growth was not simulated. In this paper, I simulate and examine 

how an economy grows endogenously and reaches a balanced growth path by extending 

the method of numerical simulation of reaching a steady state. The results of the 

simulations indicate that, as predicted theoretically in Harashima (2013), an economy 

grows endogenously if firms behave to always keep the marginal products of capital and 

technology equal. Scale effects exist, but they are small. However, if uncompensated 

knowledge spillovers are restrained as the population increases, large scale effects emerge. 

The effect of DRA’s surrogate variable (i.e., the adjustment speed of consumption) 

suggests that a smaller DRA increases the growth rate. Finally, if productivities are 

identical, economies converge regardless of the past economic paths, but if productivities 

are heterogeneous, economies diverge even if they are initially identical. 
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APPENDIX 1: Sustainable heterogeneity 

 

A1.1  SH 

Here, three heterogeneities―RTP, degree of risk aversion (DRA), and productivity―are 

considered. Suppose that there are two economies (Economy 1 and Economy 2) that are 

identical except for RTP, DRA, and productivity. Each economy is interpreted as 

representing a group of identical households, and the population in each economy is 

constant and sufficiently large. The economies are fully open to each other, and goods, 

services, and capital are freely transacted between them, but labor is immobilized in each 

economy. Households also provide laborers whose abilities are one of the factors that 

determine the productivity of each economy. Each economy can be interpreted as 

representing either a country or a group of identical households in a country. Usually, the 

concept of the balance of payments is used only for international transactions, but in this 

paper, this concept and the associated terminology are used even if each economy 

represents a group of identical households in a country. 

 The production function of Economy i (= 1, 2) is 

 

 𝑦𝑖,𝑡 = 𝐴𝑡
𝛼𝑘𝑖,𝑡

1−𝛼 , 

 

where yi,t and ki,t are the production and capital of Economy i in period t, respectively; At 

is technology in period t; and α (0 < α < 1) is a constant and indicates the labor share. All 

variables are expressed in per capita terms. The current account balance in Economy 1 is 

𝜏𝑡 and that in Economy 2 is −𝜏𝑡. The accumulated current account balance 

 

∫ 𝜏𝑠𝑑𝑠
𝑡

0

 

 

mirrors capital flows between the two economies. The economy with current account 

surpluses invests them in the other economy. Since 
𝜕𝑦1,𝑡

𝜕𝑘1,𝑡
  (=

𝜕𝑦2,𝑡

𝜕𝑘2,𝑡
)  is returns on 

investments, 

 

𝜕𝑦1,𝑡

𝜕𝑘1,𝑡
∫ 𝜏𝑠𝑑𝑠

𝑡

0

  and  
𝜕𝑦2,𝑡

𝜕𝑘2,𝑡
∫ 𝜏𝑠𝑑𝑠

𝑡

0

 

 

represent income receipts or payments on the assets that an economy owns in the other 

economy. Hence, 
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𝜏𝑡 −
𝜕𝑦2,𝑡

𝜕𝑘2,𝑡
∫ 𝜏𝑠𝑑𝑠

𝑡

0

 

 

is the balance on goods and services of Economy 1, and  

 

𝜕𝑦1,𝑡

𝜕𝑘1,𝑡
∫ 𝜏𝑠𝑑𝑠

𝑡

0

− 𝜏𝑡 

 

is that of Economy 2. Because the current account balance mirrors capital flows between 

the economies, the balance is a function of capital in both economies such that 

 

 𝜏𝑡 = 𝜅(𝑘1,𝑡, 𝑘2,𝑡) . 

 

 This two-economy model can be easily extended to a multi-economy model. 

Suppose that a country consists of H economies that are identical except for RTP, DRA, 

and productivity (Economy 1, Economy 2, … , Economy H). Households within each 

economy are identical. ci,t, ki,t, and yi,t are the per capita consumption, capital, and output 

of Economy i in period t, respectively; and θi, 𝜀𝑞 = − 
𝑐1,𝑡𝑢𝑖

′′

𝑢𝑖
′ , ωi, and ui are the RTP, 

DRA, productivity, and utility function of a household in Economy i, respectively (i = 1, 

2, …, H). The production function of Economy i is 

 

 𝑦𝑖,𝑡 = 𝜔𝑖𝐴𝑡
𝛼𝑘𝑖,𝑡

1−𝛼 . 

 

In addition, 𝜏𝑖,𝑗,𝑡 is the current account balance of Economy i with Economy j, where i, 

j = 1, 2, … , H and i ≠ j. 

 Harashima (2010) showed that if, and only if, 

 

lim
𝑡→∞

𝑐̇𝑖,𝑡

𝑐𝑖,𝑡
= (

∑ 𝜀𝑞𝜔𝑞
𝐻
𝑞=1

∑ 𝜔𝑞
𝐻
𝑞=1

)

−1

{[
𝜛𝛼 ∑ 𝜔𝑞

𝐻
𝑞=1

𝐻𝑚v(1 − 𝛼)
]

𝛼

−
∑ 𝜃𝑞𝜔𝑞

𝐻
𝑞=1

∑ 𝜔𝑞
𝐻
𝑞=1

}             (A1.1) 

 

for any i (= 1, 2, … , H), all the optimality conditions of all heterogeneous economies are 

satisfied, where m, v, and 𝜛 are positive constants. Furthermore, if, and only if, equation 

(A1.1) holds, 
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lim
𝑡→∞

𝑐̇𝑖,𝑡

𝑐𝑖,𝑡
= lim

𝑡→∞

𝑘̇𝑖,𝑡

𝑘𝑖,𝑡
= lim

𝑡→∞

𝑦̇𝑖,𝑡

𝑦𝑖,𝑡
= lim

𝑡→∞

𝐴̇𝑡

𝐴𝑡
= lim

𝑡→∞

𝜏̇𝑖,𝑗,𝑡

𝜏𝑖,𝑗,𝑡
= lim

𝑡→∞

𝑑 ∫ 𝜏𝑖,𝑗,𝑠𝑑𝑠
𝑡

0

𝑑𝑡

∫ 𝜏𝑖,𝑗,𝑠𝑑𝑠
𝑡

0

 

 

is satisfied for any i and j (i ≠ j). Because all the optimality conditions of all heterogeneous 

economies are satisfied, the state at which equation (A1.1) holds is SH by definition. 

 

A1.2  SH with government intervention 

As shown above, SH is not necessarily naturally achieved, but if the government properly 

transfers money or other types of economic resources from some economies to other 

economies, SH is achieved. 

 Let Economy 1+2+…+ (H – 1) be the combined economy consisting of 

Economies 1, 2, …, and (H – 1). The population of Economy 1+2+… + (H – 1) is 

therefore (H – 1) times that of Economy i (= 1, 2, 3, …, H). 𝑘1+2+⋯+(𝐻−1),𝑡 indicates the 

capital of a household in Economy 1+2+…+ (H – 1) in period t. Let gt be the amount of 

government transfers from a household in Economy 1+2+…+ (H – 1) to households in 

Economy H, and g̅𝑡 be the ratio of gt to 𝑘1+2+⋯+(𝐻−1),𝑡 in period t to achieve SH. That 

is, 

 

 g𝑡 = g̅𝑡𝑘1+2+⋯,+(𝐻−1),𝑡 . 

 

g̅𝑡 is solely determined by the government and therefore is an exogenous variable for 

households. 

 Harashima (2010) showed that if 

 

lim
𝑡→∞

 g̅𝑡 = (
∑ 𝜀𝑞𝜔𝑞

𝐻
𝑞=1

𝜔𝐻
)

−1

{
𝜀𝐻 ∑ 𝜔𝑞

𝐻
𝑞=1 − ∑ 𝜀𝑞𝜔𝑞

𝐻
𝑞=1

∑ 𝜔𝑞
𝐻−1
𝑞=1

[
𝜛𝛼 ∑ 𝜔𝑞

𝐻
𝑞=1

𝐻𝑚v(1 − 𝛼)
]

𝛼

−
𝜀𝐻 ∑ 𝜃𝑞𝜔𝑞

𝐻
𝑞=1 − 𝜃𝐻 ∑ 𝜀𝑞𝜔𝑞

𝐻
𝑞=1

∑ 𝜔𝑞
𝐻−1
𝑞=1

}  

 

is satisfied for any i (= 1, 2, …, H) in the case that Economy H is replaced with Economy 

i, then equation (A1.1) is satisfied (i.e., SH is achieved by government interventions even 

if households behave unilaterally). Because SH indicates a steady state, lim
𝑡→∞

 g̅𝑡= constant. 

 Note that the amount of government transfers from households in Economy 

1+2+ … + (H – 1) to a household in Economy H at SH is 

 

 (𝐻 − 1)g𝑡 = (𝐻 − 1) 𝑘1+2+⋯+(𝐻−1),𝑡 lim
𝑡→∞

g̅𝑡 . 
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Note also that a negative value of g𝑡 indicates that a positive amount of money or other 

type of economic resource is transferred from Economy H to Economy 1+2+ ∙ ∙ ∙ + (H – 

1) and vice versa. 
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APPENDIX 2: The MDC-based procedure 

 

A2.1  “Comfortability” of CWR 

Let kt and wt be per capita capital and wage (labor income), respectively, in period t. 

Under the MDC-based procedure, a household should first subjectively evaluate the value 

of 
𝑤̃𝑡

𝑘̃𝑡
 where 𝑘̃𝑡 and 𝑤̃𝑡 are household kt and wt, respectively. Let Γ be the subjective 

valuation of 
𝑤̃𝑡

𝑘̃𝑡
 by a household and Γi be the value of 

𝑤̃𝑡

𝑘̃𝑡
 of household i (i = 1, 2, 3, … , 

M). Each household assesses whether it feels comfortable with its current Γ (i.e., its 

combination of income and capital expressed by CWR). “Comfortable” in this context 

means “at ease,” “not anxious,” and other similar feelings.  

 Let the “degree of comfortability” (DOC) represent how comfortable a 

household feels with its Γ. The higher the value of DOC, the more a household feels 

comfortable with its Γ. For each household, there will be a most comfortable CWR value 

because the household will feel less comfortable if CWR is either too high or too low. 

That is, for each household, a maximum DOC exists. Let 𝑠̃ be a household’s state at 

which its DOC is the maximum (MDC). MDC therefore indicates the state at which the 

combination of revenues and assets is felt most comfortable. Let 𝛤(𝑠̃) be a household’s 

Γ when it is at 𝑠̃. 𝛤(𝑠̃) indicates the Γ that gives a household its MDC, and 𝛤(𝑠̃𝑖) is 

household i’s Γi when it is at 𝑠̃𝑖.  

 

A2.2  Homogeneous population 

I first examine the behavior of households in a homogeneous population (i.e., all 

households are assumed to be identical).  

 

A2.2.1  Rules  

Household i should act according to the following rules:  

 

Rule 1-1: If household i feels that the current Γi is equal to 𝛤(𝑠̃𝑖), it maintains the same 

level of consumption for any i.  

Rule 1-2: If household i feels that the current Γi is not equal to 𝛤(𝑠̃𝑖), it adjusts its level 

of consumption until it feels that Γi is equal to 𝛤(𝑠̃𝑖) for any i. 

 

A2.2.2  Steady state  

Households can reach a steady state even if they behave only according to Rules 1-1 and 

1-2. Let St be the state of the entire economy in period t and 𝛤(𝑆𝑡) be the value of 
𝑤𝑡

𝑘𝑡
 of 
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the entire economy at St (i.e., the economy’s average CWR). In addition, let 𝑆̃𝑀𝐷𝐶 be the 

steady state at which MDC is achieved and kept constant by all households, and 𝛤(𝑆𝑀𝐷𝐶) 

be 𝛤(𝑆𝑡)  for 𝑆𝑡 = 𝑆𝑀𝐷𝐶 . Let also 𝑆𝑅𝑇𝑃  be the steady state under the RTP-based 

procedure; that is, it is the steady state in a Ramsey-type growth model in which 

households behave based on rational expectations generated by discounting utilities by θ, 

where θ (> 0) is the RTP of a household. In addition, let 𝛤(𝑆𝑅𝑇𝑃) be 𝛤(𝑆𝑡) for 𝑆𝑡 =

𝑆𝑅𝑇𝑃.  

 

Proposition 1: If households behave according to Rules 1-1 and 1-2, and if the value of 

θ that is calculated from the values of variables at 𝑆𝑀𝐷𝐶 is used as the value of θ under 

the RTP-based procedure in an economy where θ is identical for all households, then 

𝛤(𝑆𝑀𝐷𝐶) = 𝛤(𝑆𝑅𝑇𝑃).     

Proof: See Harashima (2018).  

 

Proposition 1 indicates that we can interpret 𝑆𝑀𝐷𝐶 to be equivalent to 𝑆𝑅𝑇𝑃. This means 

that both the MDC-based and RTP-based procedures can function equivalently and that 

CWR at MDC can be substituted for RTP as a guide for household behavior.  

 

A2.3  Heterogeneous population 

In actuality, however, households are not identical—they are heterogeneous—and if 

heterogeneous households behave unilaterally, there is no guarantee that a steady state 

other than corner solutions exists (Becker 1980; Harashima 2010, 2012a). However, 

Harashima (2010, 2012a) has shown that SH exists under the RTP-based procedure. In 

addition, Harashima (2018) has shown that SH also exists under the MDC-based 

procedure, although Rules 1-1 and 1-2 have to be revised, and a rule for the government 

should be added in a heterogeneous population.     

 Suppose that households are identical except for their MDCs (i.e., their values 

of 𝛤(𝑠̃)). Let 𝑆𝑀𝐷𝐶,𝑆𝐻 be the steady state at which MDC is achieved and kept constant 

by any household (i.e., SH in a heterogeneous population under the MDC-based 

procedure), and let 𝛤(𝑆𝑀𝐷𝐶,𝑆𝐻) be 𝛤(𝑆𝑡) for 𝑆𝑡 = 𝑆𝑀𝐷𝐶,𝑆𝐻 . In addition, let ΓR be a 

household’s numerically adjusted value of Γ for SH based on its estimated value of 

𝛤(𝑆𝑀𝐷𝐶,𝑆𝐻) and several other related values. Specifically, let ΓR,i be ΓR of household i, T 

be the net transfer that a household receives from the government with regard to SH, and 

Ti be the net transfer that household i receives (i = 1,2,3, … , M). 

 

A2.3.1  Revised and additional rules 

Household i should act according to the following rules in a heterogeneous population:  
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Rule 2-1: If household i feels that the current ΓR,i is equal to 𝛤(𝑠̃𝑖), it maintains the same 

level of consumption as before for any i. 

Rule 2-2: If household i feels that the current ΓR,i is not equal to 𝛤(𝑠̃𝑖), it adjusts its level 

of consumption or revises its estimated value of 𝛤(𝑆𝑀𝐷𝐶,𝑆𝐻) so that it perceives that ΓR,i 

is equal to 𝛤(𝑠̃𝑖) for any i.  

 

At the same time, the government should act according to the following rule:  

 

Rule 3: The government adjusts Ti for some i if necessary so as to make the number of 

votes cast in elections in response to increases in the level of economic inequality 

equivalent to the number cast in response to decreases. 

 

A2.3.2  Steady state  

Even if households and the government behave according to Rules 2-1, 2-2, and 3, there 

is no guarantee that the economy can reach 𝑆𝑀𝐷𝐶,𝑆𝐻.  However, thanks to the 

government’s intervention, SH can be approximately achieved. Let 𝑆𝑀𝐷𝐶,𝑆𝐻,𝑎𝑝 be the 

state at which 𝑆𝑀𝐷𝐶,𝑆𝐻  is approximately achieved (an approximate SH), and 

𝛤(𝑆𝑀𝐷𝐶,𝑆𝐻,𝑎𝑝) be 𝛤(𝑆𝑡)  at 𝑆𝑀𝐷𝐶,𝑆𝐻,𝑎𝑝  on average. Here, let 𝑆𝑅𝑇𝑃,𝑆𝐻  be the steady 

state that satisfies SH under the RTP-based procedure, that is, in a Ramsey-type growth 

model in which households that are identical except for their θs behave generating rational 

expectations by discounting utilities by their θs. Furthermore, let 𝛤(𝑆𝑅𝑇𝑃,𝑆𝐻) be 𝛤(𝑆𝑡) 

for 𝑆𝑡 = 𝑆𝑅𝑇𝑃,𝑆𝐻. 

 

Proposition 2: If households are identical except for their values of 𝛤(𝑠̃) and behave 

unilaterally according to Rules 2-1 and 2-2, if the government behaves according to Rule 

3, and if the value of θi that is calculated back from the values of variables at 𝑆𝑀𝐷𝐶,𝑆𝐻,𝑎𝑝 

is used as the value of θi for any i under the RTP-based procedure in an economy where 

households are identical except for their θs, then 𝛤(𝑆𝑀𝐷𝐶,𝑆𝐻,𝑎𝑝) = 𝛤(𝑆𝑅𝑇𝑃,𝑆𝐻).  

Proof: See Harashima (2018).  

 

Proposition 2 indicates that we can interpret 𝑆𝑀𝐷𝐶,𝑆𝐻,𝑎𝑝 as being equivalent to 𝑆𝑅𝑇𝑃,𝑆𝐻. 

No matter what values of T, ΓR, and 𝛤(𝑆𝑀𝐷𝐶,𝑆𝐻) are estimated by households, any 

𝑆𝑀𝐷𝐶,𝑆𝐻,𝑎𝑝 can be interpreted as the objectively correct and true steady state. In addition, 

a government need not necessarily provide the objectively correct Ti for 𝑆𝑀𝐷𝐶,𝑆𝐻,𝑎𝑝 even 

though the 𝑆𝑀𝐷𝐶,𝑆𝐻,𝑎𝑝 is interpreted as objectively correct and true. 
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APPENDIX 3: Simulation method 

 

A3.1  Simulation assumptions  

A3.1.1  Environment 

No technological progress and capital depreciation are assumed, and all values are 

expressed in real and per capita terms. It is assumed that there are H economies in a 

country, the number of households in each of economy is identical, and households within 

each economy are identical.  

 

A3.1.2  Production 

The production function of Economy i (1 ≤ i ≤ H) is  

 

𝑦𝑖,𝑡 = 𝜔𝑖𝐴𝑡
𝛼𝑘𝑖,𝑡

1−𝛼 ,                      (A3.1) 

 

where 𝜔𝑖 is the productivity of a household in Economy i. Because α indicates the labor 

share, I set α = 0.65. In addition, I set 𝐴𝑡 = 1 and 𝜔𝑖 = 1 for any t and i. The initial 

capital a household owns is set at 1 for any household.  

 With 𝐴𝑡 = 1 and 𝜔𝑖 = 1, by equation (A3.1), the production of a household in 

Economy i in period t (yi,t) is calculated, for any i, by  

 

𝑦𝑖,𝑡 = 𝑘𝑖,𝑡
1−𝛼 .                                                 (A3.2) 

 

A3.1.3  Capital 

Because the marginal productivity is kept equal across economies within the country 

through arbitrage in markets, the amount of capital used (not owned) by each household 

(i.e., ki,t) is kept identical among households in all economies in any period; that is, 𝑘𝑖,𝑡 

is identical for any i although the amount of capital each household owns (not uses) can 

be heterogeneous. Hence, by equation (A3.2), the amount of production (𝑦𝑖,𝑡) is always 

identical across households and economies regardless of how much capital a household 

in Economy i owns, when 𝜔𝑖 = 1. In addition, for any i,  

 

 

 𝑘𝑖,𝑡 =
∑ 𝑘̌𝑖,𝑡

𝐻
𝑖=1

H
 , 

 

where 𝑘̌𝑖,𝑡 is the amount of capital a household in Economy i owns (not uses). As shown 

above, I set the initial capital of a household owns to be 1 (i.e., 𝑘̌𝑖,0 = 1 for any i) 
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throughout simulations in this paper. 

 

A3.1.4  Incomes 

The capital income of a household in Economy i in period t (𝑥𝐾,𝑡) is calculated by  

 

 𝑥𝐾,𝑖,𝑡 = 𝑟𝑡𝑘̌𝑖,𝑡 , 

 

where rt is the real interest rate in period t and  

 

𝑟𝑡 =
𝜕𝑘𝑖,𝑡

𝜕𝑦𝑖,𝑡
 .                                                  (A3.3) 

 

Hence, by equations (A3.1) and (A3.3), the real interest rate rt is calculated by 

 

 𝑟𝑡 = (1 − 𝛼)𝑘𝑖,𝑡
−𝛼 = (1 − 𝛼) (

∑ 𝑘̌𝑖,𝑡
𝐻
𝑖=1

H
)

−𝛼

 . 

 

 The labor income of a household in Economy i in period t (𝑥𝐿,𝑖,𝑡) is calculated 

by extracting its capital income from its production such that  

 

 𝑥𝐿,𝑖,𝑡 = 𝑦𝑖,𝑡 − 𝑟𝑡𝑘𝑖,𝑡 = 𝑦𝑖,𝑡 − 𝑟𝑡

 ∑ 𝑘̌𝑖,𝑡
𝐻
𝑖=1

H
 . 

 

Because the amount of capital used and the amount of labor inputted by a household is 

identical for any household in any economy when 𝜔𝑖 = 1, household labor income is 

identical across economies. Note that if productivity (𝜔𝑖.𝑡 ) is heterogeneous among 

economies, production and labor income differ in proportion to their productivities. Note 

also that in a homogeneous population, the labor income becomes equal to 𝛼𝑦𝑖,𝑡 for any 

household.  

 

A3.1.5  Savings 

Household savings in Economy i in period t (si,t) are calculated by  

 

  𝑠𝑖,𝑡 = 𝑥𝐿,𝑖,𝑡 +  𝑥𝐾,𝑖,𝑡 − 𝑐𝑖,𝑡 . 

 

In period t + 1, these savings (𝑠𝑖,𝑡) are added to the capital the household owns, and 

therefore,    
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 𝑘̌𝑖,𝑡+1 = 𝑘̌𝑖,𝑡 + 𝑠𝑖,𝑡 . 

 

A3.2  Cconsumption formula  

A3.2.1  Consumption formula in a homogeneous population  

For a simulation to be implemented, the consumption formula that describes how a 

household adjusts its consumptions needs to be set beforehand. However, under the 

MDC-based procedure, there is no strict consumption formula for households. A 

household just has to behave roughly feeling and guessing (i.e., not exactly calculating) 

its CWR and CWR at MDC in each period. It increases its consumption somewhat if it 

feels that 𝛤(𝑠̃𝑖) is larger than 𝛤𝑖,𝑡 and decreases its consumption somewhat if it feels 

the opposite way. The amount of the increase/decrease will differ by period. In this sense, 

the actual formula of consumption under the MDC-based procedure is lax and vague; 

therefore, it is difficult to set a strict consumption formula with a mathematical functional 

form. 

 Nevertheless, if we consider the average consumption over some periods (i.e., 

moving averages), it will be possible to describe a mathematical form of the consumption 

formula because households will behave in a similar manner on average. Considering this 

nature, I introduce the following simple consumption formula because it seems to simply 

but correctly capture the behavior of households under the MDC-based procedure on 

average. Please note that that this consumption formula is not the only possible choice. 

Other, possibly more complex and subtle, functional forms could be chosen. 

 

Consumption formula 1: The consumption of a household in Economy i in period t is  

 

𝑐𝑖,𝑡 = (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝛤(𝑠̃𝑖)

𝛤𝑖,𝑡
)

𝛾

 ,                               (A3.4) 

 

where Γi,t is the CWR of household in Economy i in period t and 𝛾 is a parameter.  

 

 Because  

 

 

𝜃𝑖 = (
1 − 𝛼

𝛼
) 𝛤(𝑠̃𝑖)  ,                                          (A3.5) 

 

as shown in Harashima (2018, 2021, 2022a), by equation (A3.5), equation (A3.4) is equal 

to  
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 𝑐𝑖,𝑡 = (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝜃𝑖

𝛤𝑖,𝑡
1 − α

α

)

𝛾

 . 

 

 Athough a household is set to precisely follow equation (A3.4) in the simulations, 

in reality, they do not behave by calculating equation (A3.4). Furthermore, they are not 

even aware of Consumption formula 1 itself and cannot know the exact numerical value 

of each 𝛤(𝑠̃𝑖) = 𝜃𝑖α/(1 − α). Instead, households feel and guess whether they should 

increase or decrease consumption considering their income and wealth.  

 That is, Consumption formula 1 is set only for the convenience of calculation in 

the simulation. It seems to well capture the essence of household behavior in that it 

increases or decreases consumption depending on a household’s feelings with regard to 

𝛤𝑖,𝑡  and 𝛤(𝑠̃𝑖) . In this context, the value of parameter 𝛾  represents the average 

adjustment velocity of increase or decrease in consumption.  

 Consumption formula 1 means that a household’s consumption is roughly equal 

to the sum of its incomes (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡). The reason for this equality is that there is no 

technological progress and capital depreciation, so savings stay around zero at the 

stabilized (steady) state. As mentioned above, the adjustment velocity of consumption in 

each period is determined by the value of γ in equation (A3.4). As the value of γ is larger, 

a stabilized (steady) state can be achieved more quickly (if it can be achieved). In this 

paper, I set the value of γ to be 0.5.  

 

A3.2.2  Consumption formula in a heterogeneous population 

As shown in Harashima (2018, 2021, 2022a), in a heterogeneous population, a household 

behaving under the MDC-based procedure does not use its CWR (Γi,t) to make decisions 

about its consumption. Instead, it uses an adjusted value of CWR considering the 

behaviors of other heterogeneous households and the government because the entire 

economic state of the country depends on these heterogeneous behaviors in a 

heterogeneous population. Accordingly, in a heterogeneous population, Consumption 

formula 1 has to be modified to accommodate the adjusted CWR. Let ΓR,i,t be the adjusted 

value of Γi,t of a household in Economy i in period t and 𝛤(𝑆𝑡) be the CWR of the 

country (i.e., the aggregate capital-wage ratio). 

  

A3.2.2.1  Consumption formula 2 

Unilateral behavior implies that a household behaves supposing that other households 

must behave in the same manner as it does. In other words, it assumes that other 

households’ preferences are almost identical to its preferences, or at least, its preferences 

are not exceptional but roughly the same as the preferences of the average household 
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(Harashima, 2018). If all households behaved in the same manner as a household in 

Economy i did, the real interest rate (rt) would be equal to the household’s 𝛤𝑅,𝑖,𝑡(1 − α)/α 

and eventually converge at its 𝛤(𝑠̃𝑖)(1 − α)/α. Hence, if a household in Economy i 

behaves unilaterally in a heterogeneous population, it feels and guesses that its ΓR,i,t 

(1 − α)/α is roughly identical to the real interest rate (rt). That is, the real interest rate 

will be used as 𝛤𝑅,𝑖,𝑡(1 − α)/α, and 𝑟𝑡α/(1 − α) will be used as its adjusted CWR (𝛤𝑅,𝑖,𝑡). 

 Therefore, even if a unilaterally behaving household’s raw (unadjusted) CWR is 

accidentally equal to its CWR at MDC, the household does not feel that it is at its MDC 

unless at the same time rt is accidentally equal to its 𝛤(𝑠̃𝑖)(1 − α)/α. The household will 

instead feel that the value of rt will soon change, and accordingly, its raw (unadjusted) 

CWR will also change soon. That is, it feels and guesses that the entire economic state of 

the country is not yet stabilized because rt is not equal to its 𝛤(𝑠̃𝑖)(1 − α)/α. As a result, 

the household will still continue to change its consumption to accumulate or diminish 

capital (see Lemma 2 in Harashima, 2018).  

 Considering the above-shown nature of the adjusted CWR, Consumption 

formula 1 can be modified to Consumption formula 2 to use in simulations with a 

heterogeneous population.  

 

Consumption formula 2: In a heterogeneous population, the consumption of a 

household in Economy i in period t is  

 

        𝑐𝑖,𝑡 = (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝛤(𝑠̃𝑖)

𝛤𝑅,𝑖,𝑡
)

𝛾

 

= (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝛤(𝑠̃𝑖)

𝑟𝑡
𝛼

1 − 𝛼

)

𝛾

= (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝛤(𝑠̃𝑖)

1 − 𝛼
𝛼

𝑟𝑡
)

𝛾

   (A3.6) 

 

and equivalently, by equations (A3.5) and (A3.6), 

 

 𝑐𝑖,𝑡 = (𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡) (
𝜃𝑖

𝑟𝑡
)

𝛾

 . 

 

 As with 𝛤𝑖,𝑡 in Consumption formula 1, the use of 𝑟𝑡 in equation (A3.6) does 

not mean that households always actually behave by paying attention to rt. What 

Consumption formula 2 means is that, on average, unilaterally behaving households will 

feel and guess that rt represents their adjusted CWRs. 

 Under the RTP-based procedure, a household changes its consumption according 

to 
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𝑐̇𝑖,𝑡

𝑐𝑖,𝑡
=𝜀−1(𝑟𝑡 − 𝜃𝑖) , 

 

where ε is the degree of relative risk aversion. That is, a household changes its 

consumption by comparing rt and its 𝜃𝑖 = 𝛤(𝑠̃𝑖)(1 − α)/α . The household changes 

consumption as rt increasingly differs from 𝜃𝑖 = 𝛤(𝑠̃𝑖)(1 − α)/α . This household’s 

behavior under the RTP-based procedure is very similar to that according to Consumption 

formula 2, which means that the formula is basically consistent with a household’s 

behavior under the RTP-based procedure. 

 In addition, in a homogeneous population, rt is always equal to a homogenous 

household’s 𝛤𝑖,𝑡(1 − α)/α because all households behave in the same manner. Hence, 

equation (A3.4) is practically identical to equation (A3.6) (i.e., Consumption formula 1 

is practically identical to Consumption formula 2) because 𝛤𝑖,𝑡 in equation (A3.4) can be 

replaced with 𝑟𝑡
𝛼

1−𝛼
. 

 

A3.2.2.2  Consumption formula 2-a 

In Consumption formula 2, a household is supposed to feel that its preferences are not 

exceptional and almost the same as the preferences of the average household, but it may 

not actually feel that way. It may instead feel that its preferences are different from those 

of the average household. In this case, the household will not only feel its preferences are 

different, but it will also have to guess how far its preferences are from the average (i.e., 

by how much its adjusted CWR is different from the real interest rate).  

 For example, a household in Economy i may feel and guess that its adjusted 

CWR is    

 

𝛤𝑅,𝑖,𝑡 =
𝛼

1 − 𝛼
 (𝑟𝑡 + 𝜒𝑖)                                         (A3.7) 

 

instead of 𝛤𝑅,𝑖,𝑡 = 𝑟𝑡
𝛼

1−𝛼
 in Consumption formula 2, where χi is a constant and 𝜒𝑖 ≠ 𝜒𝑗 

for any i and j. χi represents the magnitude of how much a household in Economy i feels 

it is different from the average household. I refer to a modified version of Consumption 

formula 2 in which 𝑟𝑡
𝛼

1−𝛼
 is replaced with 

𝛼

1−𝛼
 (𝑟𝑡 + 𝜒𝑖) shown in equation (A3.7)  

as Consumption formula 2-a. In this case, a household in Economy i behaves feeling that  

 

𝛤𝑅,𝑖,𝑡 =
𝛼

1 − 𝛼
 (𝑟𝑡 + 𝜒𝑖)= 𝛤𝑖,𝑡                                     (A3.8) 
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holds at a stabilized (steady) state that will be realized at some point in the future.  

 

A3.2.2.3  Consumption formula 2-b 

In both Consumption formulae 2 and 2-a, the raw (unadjusted) CWR is not included and 

therefore plays no role. Nevertheless, a household may utilize a piece of information 

derived from its raw (unadjusted) CWR because past behaviors may contain some useful 

information for guiding future behavior. As indicated in Section A3.2.2.2, 𝜒𝑖  is a 

parameter that indicates how far a household is from the average household. In general, 

the value of the parameter should be adjusted if households obtain any new and additional 

pieces of information. This implies that a piece of information derived from the raw 

(unadjusted) CWR may be used to adjust the value of parameter 𝜒𝑖.  

 For example, a household in Economy i may use its raw (unadjusted) CWR (𝛤𝑖,𝑡) 

to adjust the value of 𝜒𝑖 such that  

 

𝜒𝑖,𝑡 = 𝜒𝑖,𝑡−1 + 𝜁𝑖 (𝛤𝑖,𝑡

1 − 𝛼

𝛼
− 𝑟𝑡−1 − 𝜒𝑖,𝑡−1)  ,                     (A3.9) 

 

where 𝜒𝑖,𝑡 is 𝜒𝑖 in period t, and 𝜁𝑖 is a positive constant and its value is close to zero. 

Equation (A3.9) means that a household in Economy i increases the value of 𝜒𝑖,𝑡 a little 

if its raw (unadjusted) CWR is higher than its adjusted CWR (𝑟𝑡−1 + 𝜒𝑖,𝑡−1 ) in the 

previous period and vice versa. It fine-tunes 𝜒𝑖,𝑡  in this manner because it feels that 

equation (A3.8) will eventually hold at some point in the future, as shown in Section 

A3.2.2.2. The value of 𝜁𝑖 is close to zero because 𝛤𝑖,𝑡 is highly likely to be almost equal 

to 𝛤𝑖,𝑡−1, and therefore, the guess of 𝜒𝑖,𝑡 in period t will not change largely from that of 

𝜒𝑖,𝑡−1 in period 𝑡 − 1. I refer to the modified version of Consumption formula 2-a in 

which 𝜒𝑖 is replaced with 𝜒𝑖,𝑡 shown in equation (A3.9) as Consumption formula 2-b.   

 

A3.3  Rule of government transfer 

Although governments implement transfers among households in complex and subtle 

manners, a simple bang-bang (two-step) control is adopted in simulations in this paper as 

the rule of government transfer for simplicity. In addition, government transfers in each 

period are assumed to be added to or extracted from the capital of each relevant household 

in the next period.  

 In simulations with government transfers, it is assumed for simplicity that there 

are two economies (Economies 1 and 2) in a country, the economies are identical except 

for each 𝛤(𝑠̃𝑖)(1 − α)/α = 𝜃𝑖, and all households in each economy are identical. Let κ 

be the 𝑘̌1,𝑡 that a government aims for to force a household in Economy 1 to own capital 

at a stabilized (steady) state (i.e., κ is the target value set by the government). Under these 
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conditions, the bang-bang (two-step) control of government transfers is set as follows.  

 

Transfer rule: The amount of government transfers from a household in Economy 1 to a 

household in Economy 2 in period t is Tlow if 𝑘̌1,𝑡 is lower than κ and Thigh if 𝑘̌1,𝑡 is 

higher than κ, where Tlow and Thigh are constant amounts of capital predetermined by the 

government. 

 

 In the simulations, I set Tlow to be −0.1 and Thigh to be 0.5. The value of κ is 

varied in each simulation depending on what stabilized (steady) state the government is 

aiming to achieve. Note that because of the discontinuous control signal in bang-bang 

(two-step) control, flow variables may show discontinuous zigzag paths but stock 

variables can move relatively smoothly. These zigzag paths may look unnatural, but they 

are generated only because of the bang-bang (two-step) control method that is adopted 

for simplicity.  

 Even if a household knows about the existence of government transfers, it still 

behaves based on Consumption formula 2 (or 2-a and 2-b) with no government transfer. 

That is, a household uses 𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡, not 𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡 + government transfers (Tlow 

or Thigh), as the “base” consumption in determining whether it should increase or decrease 

its consumption. This behavior superficially may mean that a household does not consider 

government transfers in the process of adjusting its CWR. However, it is implicitly 

assumed that a household knows that government transfers exist and that they are an 

exogenous factor. Therefore, the household feels that the transfers should be removed 

from the elements that it can change or control freely. Furthermore, it is implicitly 

assumed that a household correctly knows the exact amount of government transfers.  

 However, these assumptions may be oversimplifications, and they can be relaxed 

to allow for incorrect guesses on the amount of government transfers. This relaxation 

enables a household to use 𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡 + government transfers (Tlow or Thigh) instead of 

𝑥𝐿,𝑖,𝑡 + 𝑥𝐾,𝑖,𝑡 in determining its consumption. 
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APPENDIX 4:  

An Asymptotically Non-Scale Endogenous Growth Model 

 

A4.1  Production of technologies 

Outputs (production) Yt are the sum of consumption Ct, the increase in capital Kt, and the 

increase in technologies At in period t are such that 

 

tttt AνKCY  ++=  

 

and thus, 

 

tt

t

t

ttt kn
L

Aν
cyk −−−=


  

 

where 𝑦𝑡 =
𝑌𝑡
𝐿𝑡

, 𝑐𝑡 =
𝐶𝑡
𝐿𝑡

, 𝑘𝑡 =
𝐾𝑡
𝐿𝑡

, Lt is labor input, 








=

t

t
t

L

L
n


 is the population growth rate 

in period t, and in addition, ( )0ν  is a constant, and a unit of Kt and 1−ν  of a unit of At are 

equivalent; that is, they are produced using the same quantities of inputs (capital, labor, 

and technology). This means that technologies are produced with capital, labor, and 

technology in the same way as consumer goods and services and capital. 

 Because balanced growth paths are the focal point of this paper, Harrod-neutral 

technical progress is assumed. Hence, the production function is ( )αtt

α

tt LAKY
−

=
1

; thus, 

 

 
α

t

α

tt kAy
−

=
1

 . 

 

It is assumed for simplicity that the population growth rate (nt) is constant and not 

negative such that nt = n ≥ 0. 

 

A4.2  Substitution between investments in capital and 

technologies 

For any period,  

 

𝑚 =
𝑀𝑡

𝐿𝑡
                                                     (A4.1) 
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where Mt is the number of firms (which are assumed to be identical) and m (> 0) is a 

constant. Equation (A4.1) presents a natural assumption that the population and number 

of firms are proportional to each other. Equation (A4.1) therefore indicates that any firm 

consists of the same number of employees regardless of Lt. Note that, unlike the 

arguments in Young (1998), Peretto (1998), Aghion and Howitt (1998), and Dinopoulos 

and Thompson (1998), Mt is not implicitly assumed to be proportional to the number of 

sectors or researchers in the economy (see also Jones, 1999). Equation (A4.1) merely 

indicates that the average number of employees per firm in an economy is independent 

of the population. Hence, Mt is not essential for the amount of production of At. As will 

be shown by equations (A4.2) and (A4.3), production of At does not depend on the number 

of researchers but on investments in technologies. In contrast, Mt plays an important role 

in the amount of uncompensated knowledge spillovers.  

 The constant m implicitly indicates that the size of a firm is, on average, 

unchanged even if the population increases. This assumption can be justified by Coase 

(1937) who argued that the size of a firm is limited by the overload of administrative 

information. In addition, Williamson (1967) argued that there can be efficiency losses in 

larger firms (see also Grossman and Hart, 1986 and Moore, 1992). Their arguments 

equally imply that there is an optimal firm size that is determined by factors that are 

basically independent of population.  

 Next, for any period,  

 

( )t
t

ρ

tt

t

νA

Y

MK

Y




=




−1

  ;                     (A4.2) 

 

thus,  
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
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=




−1


                      (A4.3) 

 

is always kept, where ( )1  and ( )10  ρρ  are constants. The parameter ρ describes 

the effect of uncompensated knowledge spillovers, and the parameter   indicates the 

effect of patent protection. With patents, incomes are distributed not only to capital and 

labor but also to technology. For simplicity, the patent period is assumed to be indefinite, 

and no capital depreciation is assumed.  

 Equations (A4.2) and (A4.3) indicate that returns on investing in capital and 

technology for the investing firm are kept equal. The driving force behind the equations 

is that firms exploit all opportunities and select the most profitable investments at all times. 

Through arbitrage, this behavior leads to equal returns on investments in capital and 
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technology. With substitution between investments in capital and technology, the model 

exhibits endogenous balanced growth. Because  

 

 
𝜛𝐿𝑡

𝜌

𝑚1−𝜌v

𝜕𝑦𝑡

𝜕𝐴𝑡
=

𝜕𝑦𝑡

𝜕𝑘𝑡
⇔

𝜛𝐿𝑡
𝜌
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𝐴𝑡

𝛼−1𝑘𝑡
1−𝛼 = (1 − 𝛼)𝐴𝑡

𝛼𝑘𝑡
−𝛼 , 

 

( ) tρ
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αL
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−
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
 

 

by equations (A4.3), which indicates that 
t

t

k

A
 = constant for 𝐿𝑡

𝜌
  = constant, and the 

model can therefore show balanced endogenous growth. 

 

A4.3  Uncompensated knowledge spillovers 

Equations (A4.2) and (A4.3) also indicate that the investing firm cannot obtain all of the 

returns on its investment in technology. That is, although investment in technology 

increases Yt, the investing firm’s returns are only a fraction of the increase in Yt, such that 

( )t
t

ρ

t νA

Y

M 


−1

 , because knowledge spills over to other firms without compensation and 

other firms possess complementary technologies.  

 Broadly speaking, there are two types of uncompensated knowledge spillovers: 

intra-sectoral knowledge spillovers (MAR externalities: Marshall, 1890; Arrow, 1962; 

Romer, 1986) and inter-sectoral knowledge spillovers (Jacobs’ externalities: Jacobs, 

1969). MAR theory assumes that knowledge spillovers between homogenous firms are 

the most effective and that spillovers will primarily emerge within sectors. As a result, 

uncompensated knowledge spillovers will be more active if the number of firms within a 

sector is larger. On the other hand, Jacobs (1969) argues that knowledge spillovers are 

most effective among firms that practice different activities and that diversification (i.e., 

a variety of sectors) is more important in influencing spillovers. As a result, 

uncompensated knowledge spillovers will be more active if the number of sectors in the 

economy is larger. If all sectors have the same number of firms, an increase in the number 

of firms in the economy results in more knowledge spillovers in any case, as a result of 

either MAR or Jacobs externalities. 

 As uncompensated knowledge spillovers increase, the investing firm’s returns 

on investment in technology decrease. 
t

t

A

Y




  indicates the total increase in Yt in the 

economy by an increase in At, which consists of increases in both outputs of the firm that 

invested in the new technologies and outputs of other firms that utilize the newly invented 
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technologies, regardless of whether the firms obtained the technologies by compensating 

the originating firm or through uncompensated knowledge spillovers. If the number of 

firms increases and uncompensated knowledge spillovers increase, the compensated 

fraction in 
t

t

A

Y



  that the investing firm can obtain becomes smaller, as do its returns on 

the investment in technology. The parameter ρ describes the magnitude of this effect. If ρ 

= 0, the investing firm’s returns are reduced at the same rate as the increase of the number 

of firms. 10  ρ  indicates that the investing firm’s returns diminish as the number of 

firms increase but not to the same extent as when ρ = 0. 

 Both types of externalities predict that uncompensated knowledge spillovers will 

increase as the number of firms increases, and scale effects have not actually been 

observed (Jones, 1995a), which implies that scale effects are almost canceled out by the 

effects of MAR and Jacobs externalities. Thus, the value of ρ is quite likely to be very 

small. From the point of view of a firm’s behavior, a very small ρ appears to be quite 

natural. Because firms intrinsically seek profit opportunities, newly established firms 

work as hard as existing firms to profit from knowledge spillovers. An increase in the 

number of firms therefore indicates that more firms are trying to obtain the investing 

firm’s technologies.  

 Because of the non-rivalness of technology, all firms can equally benefit from 

uncompensated knowledge spillovers, regardless of the number of firms. Because the size 

of firms is independent of population and thus constant, each firm’s ability to utilize the 

knowledge that has spilled over from each of the other firms will not be reduced by an 

increase in population. In addition, competition over technologies will increase as the 

number of firms increases, and any firm will completely exploit all opportunities to utilize 

uncompensated knowledge spillovers as competition increases. Hence, it is quite likely 

that the probability that a firm can utilize a unit of new technologies developed by each 

of the other firms without compensation will be kept constant even if the population and 

the number of firms increase. As a result, uncompensated knowledge spillovers will 

increase eventually to the point that they increase at the same rate as the increase in the 

number of firms. 

 The investing firm’s fraction of 
t

t

A

Y




 that it can obtain will thereby be reduced 

at the same rate as the increase in the number of firms, which means that ρ will naturally 

decrease to zero as a result of firms’ profit-seeking behavior. Based on ρ = 0, 
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by equations (A4.2) and (A4.3); thus,  
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is always maintained. 

 Complementary technologies also reduce the fraction of 
t

t

A

Y



  that the investing 

firm can obtain. If a new technology is effective only if it is combined with other 

technologies, the returns on investment in the new technology will belong not only to the 

investing firm but also to the firms that possess the other technologies. For example, an 

innovation in computer software technology generated by a software company increases 

the sales and profits of computer hardware companies. The economy’s productivity 

increases because of the innovation but the increased incomes are attributed not only to 

the firm that generated the innovation but also to the firms that possess complementary 

technologies. A part of 
t

t

A

Y



  leaks to these firms, and the leaked income is a kind of rent 

revenue that unexpectedly became obtainable because of the original firm’s innovation. 

Most new technologies will have complementary technologies. Because of both 

complementary technologies and uncompensated knowledge spillovers, the fraction of 

t

t

A

Y



  that an investing firm can obtain on average will be very small; that is,   will be 

far smaller than Mt except when Mt is very small. 

 

A4.4  The optimization problem 
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 As a whole, the optimization problem of the representative household is to 

maximize the expected utility 
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( ) ( )dtθtcuE t −


exp
0

 

 

subject to equation (A4.4) where u(•) is a constant relative risk aversion (CRRA) utility 

function and E is the expectation operator. 

 

A4.5  Growth rate and transversality condition 

Let Hamiltonian H be 
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where
tλ  is a costate variable. The optimality conditions for the optimization problem 

shown in the previous section are  
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 By equation (A4.6),  
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Hence, by equations (A4.5) and (A4.9), the growth rate of consumption is 
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  By equation (A4.7), 
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Therefore, if 0
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, and transversality condition (A4.8) 

is satisfied. Conversely, if 0=
t

t
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c  for any period after a certain period, the transversality 

condition is not satisfied.    

 

A4.6  Balanced growth path 

There is a balanced growth path on which all the optimality conditions are satisfied.  

 

Lemma: If and only if 
t

t

t
t

t

t k

k

c

c 

→→
= limlim , all the conditions (equations [A4.5]–[A4.8]) are 

satisfied. 

Proof: See Harashima (2013). 

 

 Rational households will set an initial consumption that leads to the growth path 

that satisfies all the conditions. The Lemma therefore indicates that, given an initial A0 

and k0, rational households will set the initial consumption c0 so as to achieve the growth 

path that satisfies 
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. With this household behavior, the growth rates of technology, per capita 

output, consumption, and capital converge at the same rate.  

 

Proposition: If all of the optimality conditions (equations [A4.5]–[A4.8]) are satisfied, 
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Proof: Proof: See Harashima (2013). 



 53 

 

By Proposition and Lemma, the balanced growth path is  
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This balanced growth path can be seen as a natural extension of the steady state in the 

conventional Ramsey growth model with exogenous technology.  
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