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1. Introduction

In the middle of the twentieth century, American mathematician and statistician,
professor Leonard Savage (the University of Michigan) and Swiss economist, professor Jurg
Niehans (the University of Zurich) independently proposed an approach to solving a single-
criterion problem under uncertainty (SCPU), later called the principle of minimax regret
or the Savage-Niehans principle. Along with Wald’s principle of guaranteed outcome
(maximin), the principle of minimax regret is crucial for guaranteed decision-making in
SCPUs. The main role in this principle is played by the regret function, which determines
the Savage-Niehans risk in SCPUs. In recent years, such a risk has been widely used in
microeconomic analysis and applications. This article proposes a possible approach to
solving SCPUs for a risk-neutral decision-maker, who simultaneously seeks to increase his
outcome and reduce his risk ("to kill two birds with one stone"). The explicit form of
such a solution for the linear-quadratic statement of the SCPU of a fairly general form is
obtained.

2. Interval uncertainties

The mathematical model of decision-making under conflict considered below is de-
scribed by the single-criterion choice problem under uncertainty (SCPU). Note that the
case of interval uncertainty will be studied: the decision-maker knows only the ranges of
admissible values of uncertain factors, and their probabilistic characteristics are absent,
for one reason or another. The uncertainties occur due to the incomplete (inaccurate)
information about the practical use of any strategies chosen by the decision maker. For
example, an economic system is often subject to unexpected, difficult-to-predict distur-
bances, both of exogenous origin (the disruption and variation of the quantity (range) of
supply, demand fluctuations for the products supplied by a given enterprise, etc.) and
endogenous origin (the emergence of new technologies, breakdowns and replacement of
equipment, etc.). The question naturally arises: how to take into account the presence of
uncertainties when choosing strategies?

The following aspects are described in the economic literature.
First, modern economic systems are characterized by a large number of elements and

functional relations between them, a high degree of dynamism, the presence of nonfunc-
tional relations between the elements, and the action of subjective factors due to the
participation of individuals or their groups in the operation of such systems; in other
words, an economic system usually operates under the uncertainty of its external and
internal environment.

Second, as it has been already mentioned, the sources of uncertainties in economic
systems are the incomplete or insufficient information about economic processes and their
conditions; random or deliberate opposition from other economic agents; random factors
that cannot be predicted due to the unexpectedness of their occurrence.
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Guaranteed solution for risk-neutral decision maker 3

Third, the uncertainties are estimated using deterministic and probabilistic-statistical
approaches as well as the approaches based on fuzzy logic.

Interval uncertainties were surveyed in the books [1] – [6] and other publications.
Each type of uncertainty requires its own approach for proper consideration. In this

article, the analysis will be restricted to the class of interval uncertainties: only the
ranges of admissible values of uncertain factors are known, without any probabilistic
characteristics. The uncertainties will be taken into account using the method proposed
by V. Zhukovskiy in [7] – [11]. This method allows passing from the original single-criterion
choice problem under uncertainty (SCPU) to an equivalent single-criterion choice problem
without uncertainty.

3. Principle of minimax regret

Traditionally, one of the most important challenges in the mathematical theory of
SCPUs is the development of optimality principles, i.e., the answer to the following ques-
tions: What behavior of the decision-maker should be considered optimal (reasonable,
appropriate)? Does an optimal solution exist and how can it be constructed? This work
gives a possible answer to both questions for SCPUs.

The mathematical theory of games recommends making the concept of stability the
cornerstone of optimality: a player’s deviation from the optimal strategy introduced below
cannot improve but at the same time can worsen his payoff (as well as the associated risk).

Let us proceed to the formal statement. Consider a single-criterion choice problem
under uncertainty Γ(1) = 〈X, Y, f(x, y)〉. In Γ(1), the decision-maker chooses his alternative
x ∈ X ⊆ Rn, seeking to maximize the value of a scalar criterion f(x, y) for all possible
realizations of the uncertainty y ∈ Y ⊆ Rm. Recall that only the range of admissible
values of the uncertainty is known.

The presence of uncertainties leads to the set of outcomes

f(x, Y ) = {f(x, y) | ∀y ∈ Y },

that is induced by x ∈ X. The set f(x, Y ) can be reduced using risks.
Risk management is a topical problem of economics: in 1990, H. Markowitz [12]

was awarded the Nobel Prize in Economic Sciences "for having developed the theory of
portfolio choice". What is a proper comprehension of risk? A well-known Russian expert
in optimization, T. Sirazetdinov, claims that today there is no rigorous mathematical
definition of risk [13, p. 31]. The monograph [14, p. 15] even suggested sixteen possible
concepts of risk. Most of them require statistical data on uncertainty. However, in many
cases the decision-maker does not possess such information for objective reasons.

Thus, here risks will be understood as possible deviations of realized values from the
desired ones. Note that this definition (in particular, Savage-Niehans risk) is in good with
the conventional notion of microeconomic; for example, see [15, pp. 40–50].
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In 1939 A. Wald, a Romanian mathematician who emigrated to the USA in 1938,
introduced the maximin principle, also known as the principle of guaranteed outcome [16,
17]. This principle allows finding a guaranteed outcome in a single-criterion choice problem
under uncertainty (SCPU). Almost a decade later, Swiss economist J. Niehans (1948)
and American mathematician, economist, and statistician L. Savage (1951) suggested the
principle of minimax regret (PMR) for building guaranteed risks in the SCPUs [18, 19].
In the modern literature, this principle is also referred to as the Savage risk or the Savage–
Niehans criterion. Interestingly, during World War II Savage worked as an assistant of
J. von Neumann, which surely contributed to the appearance of the PMR. Note that
the authors of two most remarkable dissertations in economics and statistics are annually
awarded the Savage Prize, which was established in the USA as early as 1971.

For the single-criterion choice problem Γ(1) = 〈X, Y, f(x, y)〉, the principle of minimax
regret is to construct a pair

(
xr, Rr

f

)
∈ X ×R that satisfies the chain of equalities

Rr
f = max

y∈Y
Rf (xr, y) = min

x∈X
max
y∈Y

Rf (x, y) (1)

where the Savage–Niehans risk function has the form

Rf (x, y) = max
z∈X

f(z, y)− f(x, y) (2)

The value Rr
f given by (1) is called the Savage-Niehans risk in the problem Γ(1). The risk

function Rf (x, y) assesses the difference between the realized value of the criterion f(x, y)

and its best-case value maxz∈X f(z, y) from the DM’s view. Obviously, the DM strives for
reducing Rf (x, y) as much as possible with an appropriately chosen alternative x ∈ X,
naturally expecting the strongest opposition from the uncertainty in accordance with the
principle of guaranteed outcome; see formula (1). Therefore, following (1) and (2), the
DM is an optimist who seeks for the best-case value maxx∈X f(x, y). In contrast, the
pessimistic DM is oriented towards the worst-case outcome — the Wald maximin solution
(x0, f 0 = maxx∈X miny∈Y f(x, y) = miny∈Y f (x0, y)).

In the sequel, assume that the DM in the problem Γ(1) is optimistic: he constructs
the Savage-Niehans risk function (2) for f(x, y). Note two important aspects as follows.
First, the criterion f(x, y) from Γ(1) has its own risk Rf (x, y); see (2). Second, the DM
tries to choose alternatives x ∈ X in order to reduce the risk Rf (x, y), expecting any
realization of the strategic uncertainty y(·) ∈ Y X , y(x) : X → Y .

Remark 1. The models Γ(1) naturally arise, e.g., in economics: a seller in a market is
interested to maximize his profits under import uncertainty.

In many publications on macroeconomics [15, 6], all decision-makers are divided into
three categories: risk-averse, risk-neutral, and risk-seeking. In this appendix, the DM is
assumed to be a risk-neutral person and, as it has been mentioned above, an optimist.
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Guaranteed solution for risk-neutral decision maker 5

4. Hierarchical interpretation of principle of minimax regret

Consider two hierarchical interpretations as follows. The first arises when the Savage–
Niehans risk function Rf (x, y) = maxz∈X f(z, y) − f(x, y) is constructed, whereas the
second when the solution

(
xr, Rr

f

)
∈ X ×R of the problem Γ(1) for the risk-seeking DM

is obtained.

5. Hierarchical interpretation of Savage-Niehans risk function
design

Hierarchical games represent a mathematical model of a conflict with a fixed sequence
of moves and information exchange between its parties [20, p.477]. In Russia, the intensive
research of hierarchical games was initiated in the second half of the 20 th century by
Yu. Germeier [21, 22] (the founder of the Department of Operations Research at the
Faculty of Computational Mathematics and Cybernetics, Moscow State University) and
then continued by his scholars. Hierarchical two-player games describe the interaction
between the upper (Leader) and lower (Follower) levels of the hierarchy. Such games have
a given sequence of moves, i.e., an order in which each player chooses his strategies and
(possibly) reports them to the partner.

An important element of hierarchical games is to choose the class of admissible strate-
gies depending on the information available to the players. In the theory of hierarchical
games, the informational extension of the game was rigorously formulated in [23]. In a par-
ticular case, this extension leads the so-called strategic uncertainties, i.e., m-dimensional
vector functions y(x) : X → Y, y(·) ∈ Y X , which are used along with pure uncertainties
y ∈ Y in the game Γ(1).

Now, let us discuss the hierarchical interpretation of risk function design for the SCPU
Γ(1). Assume that the lower-level player (Follower) can apply only his pure strategy y ∈ Y ,
whereas the upper-level player (Leader) can adopt "any conceivable information" [23,
p.353]. Thus, further analysis will be confined to the Follower’s pure strategies y ∈ Y

and the Leader’s counterstrategies x(y) : Y → X, x(·) ∈ XY , i.e., the set of functions
x(y) with Y as the domain of definition and X as the codomain. For risk function design,
consider the two-level two-stage hierarchical game

ΓR =
〈
XY , Y, f(x, y)

〉
In this game, the first move is made by Follower (the lower-level player), who reports his
admissible pure strategies to the upper level.

The second move belongs to Leader (the upper-level player), who performs the fol-
lowing actions. First, he analytically constructs the counterstrategy

x(y) ∈ Y (x) = Arg max
x∈X

f(x, y) ∀y ∈ Y,

«Таврический вестник информатики и математики», 201?’ ?
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i.e., finds the scalar function f [y] = f(x(y), y) = maxx∈X f(x, y); second, he designs the
Savage–Niehans risk function

Rf (x, y) = f [y]− f(x, y).

Solution of choice problem Γ(I) for risk-seeking DM

Assume that the Savage–Niehans risk function has the explicit form Rf (x, y) =

maxz∈X f(z, y)−f(x, y), and the problem is to construct a pair
(
xr, Rr

f

)
∈ X×R defined

as the solution of the SCPU Γ(1) for the risk-seeking DM:

Rr
f = min

x∈X
max
y∈Y

Rf (x, y) = max
y∈Y

Rf (xr, y)

In the problem Γ(1), suppose that Leader applies only a pure alternative (strategy) x ∈ X,
whereas the other player (Follower) can adopt any conceivable information [24, 25], in-
cluding his knowledge of the strategy x ∈ X, to form his strategy (uncertainty) as a
function y(x) : X → Y, y(·) ∈ Y X . (This hypothesis is well known as the informational
discrimination of Leader.) As a result, the criterion in the choice problem Γ(1) is defined
as the scalar function f(x, y(x)).

Recall that in the theory of differential games, the functions y(·) ∈ Y X (the set of
m-dimensional vector functions with the domain of definition X and the codomain Y )
are called counterstrategies. The problem Γ(1) in which counterstrategies describe the
behavior of uncertain factors is called the minimax game [24, 25].

Thus, consider the hierarchical two-level three-stage game of two players (Leader and
Follower) in which, in contrast to ΓR, Leader and Follower use a pure strategy x ∈ X and
a counterstrategy y(x) : X → Y, y(·) ∈ Y X , respectively.

The first move is made by Leader, who reports his admissible strategies x ∈ X to the
lower level.

The second move is made by Follower, who analytically constructs y(x) in accordance
with

max
y(·)∈Y X

Rf (x, y) = Rf (x, y(x)) = Rf [x] ∀x ∈ X

assuming that the vector function y(x) is unique (e.g., for a scalar function Rf (x, y) that
is strictly concave in y for each x ∈ X ), and then reports Rf [x] to the upper level.

The third move is made by Leader, who constructs a strategy xr ∈ X such that
minx∈X Rf [x] = Rf [xr] = Rr

f

This three-move game-theoretic framework completely matches the concept of the
Leader’s guaranteed outcome in the problem Γ(1) (in the Germeier sense) if the Follower’s
payoff function considered in [10, 11, 27] is replaced by −Rf (x, y). Moreover, in the
game ΓR, Leader can calculate the Follower’s response and immediately implement the
third move if he knows the behavioral rule of the opponent. Once again, note that
the analog and modification of this three-move framework is convenient to design the
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Guaranteed solution for risk-neutral decision maker 7

guaranteed solution in outcomes and risks for the risk-seeking DM, both in noncooperative
and cooperative conflicts.

Remark 2. The minimax solution for the risk-seeking DM is determined by the pair(
xr, Rr

f = minx∈X maxy(·)∈Y X Rf (x, y) = maxy∈Y Rf (xr, y)
)
for two solutions as follows:

(1) For each alternative x ∈ X, the inner maximum maxy∈Y Rf (x, y) = Rf (x, y(x)) =

Rf [x] (see move 2) gives the greatest Savage-Niehans risk of the form

Rf [x] = max
y∈Y

Rf (x, y) ≥ Rf (x, y)∀y ∈ Y.

In other words, Rf (x, y) cannot exceed Rf [x] for all y ∈ Y , and hence Rf [x] can
be considered the DM’s guarantee obtained by choosing the alternative x. Note that
due to (2), Rf (x, y) ≥ 0; therefore, the Savage–Niehans risk function takes the values
Rf (x, y) ∈ [0, Rf [x]] for all (x, y) ∈ X × Y .
(2) Like any DM, the risk-seeking one would like to implement his decisions (the choice
of x ∈ X) with the smallest risk (ideally, zero!). This aspect explains his third move.

Therefore, in the problem Γ(1) the risk-seeking DM is suggested to use the alternative
xr to obtain the smallest (minimum) guarantee Rf [xr] = Rf (xr, y (xr)) ≥ R (xr, y)∀y ∈
Y . The same technique can be applied to formalize the strongly-guaranteed solution in
outcomes and risks of the problem Γ(1).

Here is an important result from operations research that concerns informed uncer-
tainties and strategies.

Lemma 1. If in the choice problem Γ(1) = 〈X, Y, f(x, y)〉 the sets X and Y are compact
and the criterion f(x, y) is continuous on X×Y , then the maximum (minimum) function
maxx∈X f(x, y) (miny∈Y f(x, y)) is continuous on Y (X).

Lemma 1 is a well-known fact that can be found in almost any textbook on operations
research; for example, see [27].

Remark 3. Lemma 1 implies the continuity of the risk function (2) on X×Y (of course,
only if in the problem Γ(1) the sets X and Y are compact and the criterion f(x, y) is
continuous on X × Y .)

Remark 4. Assume that in the problem Γ(1), X ∈ compRn, Y ∈ comp Rm, and
f(·) ∈ C(X × Y ). Then there exists the guaranteed solution in risks

(
xr, Rr

f

)
of this

problem.

Really, the Savage–Niehans risk function Rf (x, y) (2) is continuous on X × Y (see
Remark 2). In this case, by Lemma 1 the function maxy∈Y Rf (x, y) = Rf [x] is also
continuous on X. (There exists a Borel measurable counterstrategy (selector) y(x) :
X → Y such that

max
y∈Y

Rf (x, y) = Rf (x, y(x)) = Rf [x]∀x ∈ X

«Таврический вестник информатики и математики», 201?’ ?
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and Rf [x] is continuous on X). According to the Weierstrass extreme-value theorem,
on a compact set X a continuous function Rf [x] achieves minimum at the point xr ∈
X. If both sets X and Y are compact and the function f(x, y) is continuous, then the
guaranteed solution in risks

(
xr, Rr

f

)
defined by (1) exists.

Thus, using xr, the risk-seeking DM obtains a guarantee in risks Rr
f ≥ Rf (xr, y)∀y ∈

Y , and for all x ∈ X this guarantee will be smallest among all other guarantees Rf [x] ≥
Rf (x, y) for all alternatives x ∈ X. Such a procedure is characteristic of the risk-seeking
DM. In this article, we will consider a similar procedure for the risk-neutral DM.

New approach to SCPU for risk-neutral DM: Preliminaries

Let us utilize the approach proposed for noncooperative games in [29]. For this pur-
pose, from the SCPU Γ(1) we will pass to the problem of guarantees without any uncer-
tainties.

At conceptual level, the DM’s goal so far has been to choose an appropriate alternative
maximizing his outcome. But this is not enough for the risk-neutral DM! He seeks for an
alternative that would not only increase his outcome but also reduce his risk, as much as
possible. Recall that the DM forms the Savage–Niehans risk function Rf (x, y)((2)), the
value of which is called the DM’s risk, and the Savage-Niehans risk Rr

f itself is determined
by the chain of equalities (1). The pair

(
xr, Rr

f

)
is the solution of the choice problem Γ(1)

for the risk-seeking DM: the value Rf (x, y) characterizes his risk when choosing and
implementing the alternative x ∈ X, which he strives to minimize simultaneously with
outcome improvement. In this context, two questions arise naturally:
(1) How can we combine the two objectives of the decision-maker (outcome increase with
simultaneous risk reduction) using only one criterion?
(2) How can we implement these objectives in a single alternative, in such a way that
uncertainty is also accounted for?

How to combine DM’s desire to increase outcome and reduce
risks?

Recall that, according to the principle of minimax regret, the DM’s risk is defined by
the value of the Savage–Niehans risk function Rf (x, y) = maxz∈X f(z, y)− f(x, y), where
f(x, y) denotes the DM’s criterion in the choice problem Γ(1). Thus, to construct the risk
function Rf (x, y) for the DM, first the dependent maximum f [y] = maxx∈X f(x, y)∀y ∈ Y
needs to be found. To calculate f [y], following the theory of two-level hierarchical games,
assume the discrimination of the lower-level player, who forms the uncertainty y ∈ Y and
sends this information to the upper level for constructing a counterstrategy x(y) : Y → X

such that

max
x∈X

f(x, y) = f(x(y), y) = f [y] ∀y ∈ Y.
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Guaranteed solution for risk-neutral decision maker 9

The set of such strategies is denoted by XY . (Actually, this set consists of n-dimensional
vector functions x(y) : Y → X with the domain of definition Y and the codomain X).
Thus, to construct the first term in (2) at the upper level of the hierarchy, we have to solve
the single-criterion choice problem

(
XY , Y, f(x, y)

)
for each uncertainty y ∈ Y ; here XY

is the set of counterstrategies x(y) : Y → X. The problem itself consists in determining
the scalar function f [y] defined by

f [y] = max
x(·)∈XY

f(x, y)∀y ∈ Y. (3)

Then, the Savage–Niehans risk functions are constructed by formula (2).
Hereinafter, the collection of all compact sets of Euclidean space Rk is denoted by

comp Rk, and if a scalar function ψ(x) on the set X is continuous, we write ψ(·) ∈ C(X).
The main role in this paragraph will be played by the following result.

Proposition 1. If X ∈ compRn, Y ∈ compRm, and f(·) ∈ C(X × Y ), then
(1) the maximum function maxx∈X f(x, y) is continuous on Y ;
(2) the minimum function miny∈Y f(x, y) is continuous on X.

Corollary 1. If in the choice problem Γ(1) the sets X ∈ compRn and Y ∈ compRm

and the function f(·) ∈ C(X × Y ), then the Savage–Niehans risk function Rf (x, y) is
continuous on X × Y . (Also, see Remark 3.)

Let us proceed with the strongly-guaranteed outcome and risk in the SCPU Γ(1).
In a series of papers [10, 11], three different ways to account for uncertain factors of
decision-making in conflicts under uncertainty were proposed. Our analysis below will be
confined to one of them presented in [11], based on the following method. We associate
with the criterion f(x, y) in the problem Γ(1) its strong guarantee f [x] = miny∈Y f(x, y).
As a consequence, choosing his alternatives x ∈ X, the DM ensures an outcome f [x] ≤
f(x, y) ∀y ∈ Y under any realized uncertainty y ∈ Y . Such a strongly-guaranteed outcome
f [x] seems natural for the interval uncertainties y ∈ Y addressed in this appendix, because
no additional probabilistic characteristics of y (except for information on the admissible
set Y ⊆ Rm ) are available. Proposition 1, in combination with Corollary 1 as well as the
continuity of f(x, y) and Rf (x, y) on X × Y , leads to the following result.

Proposition 2. If in the SCPU Γ(1) the sets X and Y are compact and the criterion
f(x, y) is continuous on X × Y , then the strongly-guaranteed outcome

f [x] = min
y∈Y

f(x, y) (4)

and the strongly-guaranteed risk

Rf [x] = max
y∈Y

Rf (x, y) (5)

are scalar functions that are continuous on X.
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Remark 5. First, the meaning of the guaranteed outcome f [x] from (4) is that, for any
y ∈ Y , the realized outcome f(x, y) is not smaller than f [x]. In other words, using his
alternative x ∈ X in the choice problem Γ(1), the DM ensures an outcome f(x, y) of at
least f [x] under any uncertainty y ∈ Y . Therefore, the strongly-guaranteed outcome f [x]

gives a lower bound for all possible outcomes f(x, y) occurring when the uncertainty y
runs through all admissible values from Y . Second, the strongly-guaranteed risk Rf [x]

also gives an upper bound for ail Savage–Niehans risks Rf (x, y) that can be realized under
any uncertainties y ∈ Y . Really, from (5) it immediately follows that

Rf [x] ≥ Rf (x, y)∀y ∈ Y.

Thus, adhering to his alternative x ∈ X, the DM obtains the strong guarantee in
outcomes f [x], and simultaneously the strong guarantee in risks Rf [x].

Transition from single-criterion choice problem under
uncertainty Γ(1) to bi-criteria vector optimization problem

The DM’s desire to increase his outcome and simultaneously reduce his risk is de-
scribed well by the new mathematical model of a bi-criteria choice problem under uncer-
tainty with the two-component vector criterion

Γ2 = 〈X, Y, {f(x, y),−Rf (x, y)}〉 .

In this model, the sets X and Y are the same as in Γ(1). The novelty consists in
the transition from the one-component criterion f(x, y) to the two-component criterion
{f(x, y),−Rf (x, y)}, in which Rf (x, y) is the Savage-Niehans risk function for the DM.
In the problem Γ2, the DM chooses an alternative x ∈ X in order to increase as much
as possible the values of both criteria simultaneously, which explains the minus sign of
Rf (x, y). Moreover, the DM must expect any realization of the uncertainty y ∈ Y . Note
that due to Rf (x, y) ≥ 0, for all (x, y) ∈ X × Y an increase of −Rf (x, y) is equivalent to
a decrease of Rf (x, y).

The uncertainty y ∈ Y in the choice problem Γ2 is of the interval type. This feature
compels the DM to use the available information about the uncertainty, i.e., the limits
of its range, being guided by the strongly-guaranteed outcome f [x] (4) and the strongly-
guaranteed risk Rf [x] (5). Therefore, it seems natural to pass from Γ(1) to the two-
component vector optimization problem without uncertainty

Γg
2 = 〈X, {f [x],−Rf [x]}〉

in which the DM chooses an appropriate alternative x ∈ X for maximizing both criteria
f [x] and −Rf [x] simultaneously.

For the practical design of the strongly-guaranteed outcome and risk in Γg
2, we will

employ the mathematical theory of vector optimization, e.g., from [28], with its different
approaches and results. Consider an optimal solution of multicriteria problems introduced
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in 1909 by Italian economist and sociologist V. Pareto [30]. For the problem Γg
2, the Pareto

maximality (efficiency) of an alternative xP is reduced to the inconsistency of the system
of two inequalities f [x] ≥ f

[
xP
]
,−Rf [x] ≥ −Rf

[
xP
]
∀x ∈ X, in which at least one

inequality is strict. This leads to the following notion.

Definition 1. A triplet
(
xP , f

[
xP
]
, Rf

[
xP
])

is called a Pareto-maximal strongly-
guaranteed solution in outcomes and risks (PSGOR) of the problem Γg

2 if
(1) the alternative xP is Pareto-maximal in the problem Γg

2;
(2) f

[
xP
]
is the value of the strongly-guaranteed outcome f [x] = miny∈Y f(x, y) in the

problem Γg
2 for x = xP ;

(3) Rf

[
xP
]
is the value of the strongly-guaranteed risk Rf [x] = maxy∈Y Rf (x, y) in the

problem Γg
2 for x = xP .

Remark 6. Definition 1 may also involve other optimality principles (Pareto, Geoffrion,
Borwein, cone, A-optimality). All these principles as well as connections between different
vector optimal solutions were considered in [31].

According to the definition of Pareto maximality,
(1) if xP is a Pareto-maximal alternative, then for x̄ 6= xP , x̄ ∈ X an increase of value of
one criterion will inevitably reduce the value of the other;
(2) there exists no alternative x ∈ X for which the values of both criteria will increase in
comparison with their values for x = xP .

Perhaps the term "Slater maximality" appeared in the Russian literature after the
translation [32] of a paper by Hurwitz.

If Pareto optimality is replaced by Slater maximality (weak efficiency), then Defini-
tion 1 takes the following form.

Definition 2. A triplet
(
xS, f

[
xS
]
, Rf

[
xS
])

is called a Slater-strongly-guaranteed solu-
tion in outcomes and risks of the problem Γg

2 if
(1) the alternative xS ∈ X is Slater-maximal in the problem Γg

2, i.e., for any x ∈ X the
system of two strict inequalities

f [x] > f
[
xS
]
,−Rf [x] > −Rf

[
xS
]

is inconsistent;
(2) f

[
xS
]
is the value of the strongly-guaranteed outcome in the problem Γg

2 for x = xS;
(3) Rf

[
xS
]
is the value of the strongly-guaranteed risk in the problem Γg

2 for x = xS.

Any efficient (Pareto-maximal) alternative is also weakly efficient, which follows di-
rectly from Definitions 1 and 2. Generally speaking, the converse is false. Also, property
(2) of Remark 6 remains valid for the Slater-strongly-guaranteed solution in outcomes
and risks of the problem Γ(1). The next result seems quite obvious.
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Proposition 3. If in the problem Γg
2 there exists an alternative xP ∈ X and values α, β ∈

(0, 1) such that xP maximizes the scalar function Φ[x] = αf [x]− βRf [x], i.e.,

Φ
[
xP
]

= max
x∈X

(αf [x]− βRf [x]) (6)

then xP is the Pareto-maximal alternative in the problem Γg
2; in other words, for any

x ∈ X the system of two inequalities

f [x] ≥ f
[
xP
]
, Rf [x] ≤ Rf

[
xP
]

(7)

with at least one strict inequality, is inconsistent. (Here α = β = 1.)

Remark 7. The combination of the criteria (4) and (5) in the form Φ[x] = αf [x]−βRf [x]

is of interest for two reasons. First, even if for x̄ 6= xP we have an increase of the guar-
anteed outcome f [x̄] > f

[
xP
]
, then due to the Pareto maximality of xP and the fact

that Rf [x̄] ≥ 0 such an improvement of the guaranteed outcome f [x̄] > f
[
xP
]
will in-

evitably lead to an increase of the guaranteed risk Rf [x̄] > Rf

[
xP
]
; conversely, for the

same reasons, a reduction of the guaranteed risk Rf [x̄] < Rf

[
xP
]
will lead to a reduc-

tion of the guaranteed outcome f [x̄] < f
[
xP
]
(both cases are undesirable for the DM).

Therefore, the replacement of the bi-criteria choice problem Γg
2 with the single-criterion

choice problem (X,Φ[x] = αf [x]− βRf [x]) matches well the DM’s desire to increase f [x]

and simultaneously reduce Rf [x]. Second, since Rf [x] ≥ 0 and α, β ∈ (0, 1), an increase
of the difference αf [x]− βRf [x] also matches the DM’s desire to increase the guaranteed
outcome f [x] and simultaneously reduce the guaranteed risk Rf [x].

Now, let us answer the second question: how can we combine both objectives of the
DM in a single alternative taking into account the existing interval uncertainty? To do
this, from the problem Γ(1) we will pass sequentially to choice problems Γ1,Γ2, and Γ3 :

Γ1 = 〈X, Y, {f(x, y),−Rf (x, y)}〉
Γ2 = 〈X, {f [x],−Rf [x]}〉

Γ3 = 〈X, {Φ[x] = f [x]−Rf [x]}〉
(8)

In all the three choice problems, x ∈ X ⊆ Rn denotes the alternative chosen by the
DM; y ∈ Y ⊆ Rm are uncertainties; the DM’s criterion f(x, y) is defined on the
pairs (x, y) ∈ X × Y ; in (2), Rf (x, y) means the Savage–Niehans risk function. In the
choice problem Γ1, the criterion has two components - the original criterion f(x, y) of
the problem Γ(1) and the risk function Rf (x, y) of (2). In the choice problem Γ2, the
original criterion f(x, y) and the risk function Rf (x, y) are replaced by their guarantees
f [x] = miny∈Y f(x, y) and Rf [x] = maxy∈Y Rf (x, y), respectively. Finally, in the choice
problem Γ3, the linear convolution of the guarantees f [x] and −Rf [x] (see Proposition 3)
is used instead of the two-component criterion.
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Remark 8. Let us discuss the advantages of the solution formalized by Definitions 1
and 2. First, recall that economists divide all decision-makers into three categories: risk-
averse, risk-neutral, and risk-seeking. In Definitions 1 and 2, the DM is assumed to
be a risk-neutral person, who simultaneously considers the outcome and associated risk.
Second, this solution imposes a lower bound on the outcomes and also an upper bound on
the risks, f [x] ≤ f

(
xP , y

)
∀y ∈ Y and Rf [x] ≥ Rf

(
xP , y

)
∀y ∈ Y , respectively. Note that

the existence and continuity of the guarantees f [x] and Rf [x] are based on the hypotheses
X ∈ comp Rn, Y ∈ comp Rm, and f(·) ∈ C(X × Y ); see Proposition 1. Third, an
improvement of the Pareto-maximal guaranteed outcome (in comparison with f

[
xP
]
)

will inevitably increase the guaranteed risk (in comparison with Rf

[
xP
]
); conversely, a

reduction of the risk will inevitably decrease the guaranteed payoff.

Remark 9. Definitions 1 and 2 suggest a constructive method of SGPOR design. It
consists of four steps as follows.

Step I. Using f(x, y), find f [y] = maxx∈X f(x, y) and construct the Savage–Niehans
risk function Rf (x, y) = f [y]− f(x, y) for the criterion f(x, y).

Step II. Evaluate the strong guarantee in outcomes f [x] = miny∈Y f(x, y) and also
the strong guarantee in risks Rf [x] = maxy∈Y Rf (x, y).

Step III. For the auxiliary choice problem Γ2, calculate the Pareto-maximal alternative
xP . At this step, Proposition 3 is of assistance.

Then the Pareto-maximal alternative in the auxiliary choice problem Γ3 is xP for
which

max
x∈X

(f [x]−Rf [x]) = f
[
xP
]
−Rf

[
xP
]
. (9)

Step IV. Using xP , evaluate the strong guarantees f
[
xP
]
and Rf

[
xP
]
.

The resulting triplet
(
xP , f

[
xP
]
, Rf

[
xP
])

is the requisite SGPOR, which complies
with Definition 1, i.e., for the original criterion f(x, y) the alternative xP leads to a
guaranteed outcome f

[
xP
]
with a guaranteed Savage–Niehans risk Rf

[
xP
]
.

Explicit form of Savage-Niehans risk for linear-quadratic SCPU

Consider the linear-quadratic single-criterion choice problem under uncertainty

Γlq = 〈Rn,Rm, f(x, y)〉 ,

in which the set of alternatives x coincides with the n-dimensional Euclidean space Rn,
the set of uncertainties y is Rm, and the linear-quadratic criterion is given by

f(x, y) = x′Ax+ 2x′By + y′Cy + 2a′x+ 2c′y + d.

Here A and C are constant and symmetric matrices of dimensions n × n and m × m,
respectively; B is rectangular constant matrix of dimensions n×m; a and c are constant
vectors of dimensions n and m, respectively; finally, d is a constant. As before, the prime
denotes transposition. In the problem Γlq, the DM chooses an appropriate alternative
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x ∈ Rn in order to maximize the linear-quadratic criterion f(x, y) and simultaneously
minimize a risk function under any possible realizations of the uncertainty y ∈ Rm.

The problem is to design an explicit form of the Savage–Niehans risk function for the
linear-quadratic choice problem Γlq (see Remark 9) and then to obtain the SGPOR. Here-
inafter, for a square constant matrix A of dimensions n×n, the inequality A > 0 (A < 0)

means that the quadratic form with the matrix A is positive definite (negative definite,
respectively). Also, the following notations will be used below: 0n as a zero vector of
dimension n;

∂f
∂x

=


∂f
∂x1...
∂f
∂xn

 as the gradient of a scalar function f(x, y) with respect to x under a fixed

vector y;

∂2f
∂x2 =


∂2f

∂x1∂x1
· · · ∂2f

∂x1∂xn... . . . ...
∂2f

∂xn∂x1
· · · ∂2f

∂xn∂xn

 as a Hessian of a scalar function f(x, y) with respect to x

under a fixed vector y;
detA as the determinant of a matrix A;
En as an identity matrix of dimensions n× n.
Direct calculations show that

∂

∂x
(x′Ax) = 2Ax,

∂

∂x
(2x′By) = 2By,

∂

∂x
(2a′x) = 2a,

∂2

∂x2
(x′Ax) = 2A.

Well, let us construct an explicit form of the Savage-Niehans risk function Rf (x, y)

for the linear-quadratic choice problem Γlq; see Stage I from Remark 9.
Step I. Explicit-form design of the the Savage-Niehans risk function Rf (x, y) for the

problem Γlq.

Proposition 4. In the linear-quadratic choice problem Γlq with a matrix A < 0, the
Savage–Niehans risk function has the form

Rf (x, y) = − (x′A+ y′B′ + a′)A−1(Ax+By + a).

Proof. An n-dimensional vector function x(y) with the domain of definition Rm and the
codomain Rn such that

max
z∈Rn

f(z, y) = f(x(y), y)∀y ∈ Rm,

exists under the sufficient conditions
∂f(x, y)

∂x

∣∣∣∣
x=x(y)

= 2Ax(y) + 2By + 2a = 0n; ∀y ∈ Rm

∂2f(x, y)

∂x2

∣∣∣∣
x=x(y)

= 2A < 0.
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The second condition (inequality) holds due to A < 0; from the first condition (identity)
it follows that

x(y) = −A−1(By + a).

Substituting x = x(y) into f(x, y) gives

max
z∈Rn

f(z, y) = f(x(y), y) = (y′B′ + a′)A−1(By + a)− 2 (y′B′ + a′)A−1By + y′Cy

− 2a′A−1(By + a) + 2c′y + d = − (y′B′ + a′)A−1(By + a) + y′Cy + 2c′y + d

= y′
[
C −B′A−1B

]
y + 2

(
c′ − a′A−1B

)
y +

(
d− a′A−1a

)
As a result, the Savage–Niehans risk function can be written as

Rf (x, y) =f(x(y), y)− f(x, y) = −x′Ax− 2x′By − 2a′x− y′B′A−1By
− 2a′A−1By − a′A−1a = − (x′A+ y′B′ + a′)A−1(Ax+By + a)

The proof of this proposition is complete. �

Step II. Construct the function Rf [x] = maxy∈Rm Rf (x, y).

Proposition 5. In the linear-quadratic choice problem Γlq with matrices

A < 0, detB 6= 0,

the strong guarantee in risks is

Rf [x] = max
y∈Rm

Rf (x, y) ≡ 0∀x ∈ Rn

Proof. First of all, the condition detB 6= 0 implies that B is a square matrix, i.e., n = m.
For finding Rf [x], define an n-dimensional vector function y(x) : Rn → Rn such that

max
y∈Rm

Rf (x, y) = Rf (x, y(x)) = Rf [x] ∀x ∈ Rn.

Recall the sufficient conditions of maximum for y = y(x) : Rn → Rn :

∂Rf (x, y)

∂y

∣∣∣∣
y=y(x)

= −2B′x− 2B′A−1By(x)− 2B′A−1a = 0m ∀x ∈ Rn,

∂2Rf (x, y)

∂y2

∣∣∣∣
y=y(x)

= −2B′A−1B > 0.

(10)

Since A < 0 and det B 6= 0, the following chain of implications is the case:

A−1 < 0 =⇒ B′A−1B < 0 =⇒ −B′A−1B > 0 =⇒ −2B′A−1B > 0.

(In other words, the second condition of (10) is satisfied.)
In view of (

B′A−1B
)−1

= B−1A (B′)
−1
,

the first condition of (10) gives

y(x) = −
(
B′A−1B

)−1 (
B′x+B′A−1a

)
= −B−1A

(
x+ A−1a

)
= −B−1(Ax+ a).
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Then, substituting y = y(x) into Rf [x] yields

Rf [x] = Rf (x, y(x)) = − (x′A− x′A− a′ + a′)A−1(Ax− Ax− a+ a) ≡ 0 ∀x ∈ Rn,

which finally establishes the identity Rf [x] ≡ 0∀x ∈ Rn. �

Continuing Step II (from Remark 9), we find the strong guarantee in outcomes
miny∈Y f(x, y) for

f(x, y) = x′Ax+ 2x′By + y′Cy + 2a′x+ 2c′y + d,

that is, f [x] = miny∈Rm f(x, y), in the case A < 0, C > 0.
Lemma 2. [33] For any positive definite matrix C of dimensions n × n, there exists a
unique positive definite matrix S of dimensions n× n such that S2 = C. The matrix S is
called the square root of the matrix C and denoted by C

1
2 . Moreover, the eigenvalues of

the matrix C are the squares of the eigenvalues of the matrix C
1
2 .

Lemma 3. For a symmetric matrix C > 0 of dimensions n× n, C−1 = [S2]
−1

= [S−1]
2.

Proof. Indeed, for S = C
1
2 it follows that

C = S · S = S2 =⇒ C−1 = [S · S]−1 = S−1 · S−1 =
[
S−1

]2
.

�

Lemma 4.
A < 0 ∧ C > 0⇒ (A−BCB′) < 0 ∀B ∈ Rn×m

where Rn×m is the set of constant matrices of dimensions n×m.

Proof. Really,

C > 0⇒ C−1 > 0⇒ BC−1B′ ≥ 0 ∀B ∈ Rn×m ⇒ −BC−1B′ ≤ 0 ∀B ∈ Rn×m

⇒ A−BC−1B′ < 0 ∀B ∈ Rn×m.

�

Proposition 6. If A < 0 and C > 0, then

f [x] = min
y∈Rm

f(x, y) = x′
[
A−BC−1B′

]
x+ 2x′

[
a−BC−1c

]
+ d− c′C−1C. (11)

Proof. According to Lemma 2, there exists a matrix S such that C = S2; moreover,
C > 0 =⇒ S > 0 ∧ S = S ′. Due to S−1S−1 = C−1 (Lemma 3), SS = C, and S−1S = En,
it follows that

f(x, y) = x′Ax+ 2x′By + y′Cy + 2a′x+ 2c′y + d =
∥∥S−1B′x+ Sy + S−1c

∥∥2
− x′BC−1B′x− 2x′BC−1c− c′C−1c− y′Cy − 2x′By − 2c′y + x′Ax+ 2x′By

+ 2a′x+ d ≥ x′
[
A−BC−1B′

]
x+ 2x′

[
a−BC−1c

]
+ d− c′C−1c = f [x]
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for all x ∈ Rn and y ∈ Rm, because ‖ · ‖ ≥ 0 by the properties of the Euclidean norm.
Using the definition of the strong guarantee in outcomes,

f(x, y) ≥ f [x]∀x ∈ Rn, y ∈ Rm,

we finally arrive in (11). �

Steps III-IV (construction of the Pareto-maximal alternative xP in the problem Γ2

(5) and calculation of f
[
xP
])
.

As it has been established (see Proposition 5), in the linear-quadratic problem Γlq

with
A < 0,m = n, detB 6= 0, (12)

the strong guarantee in risks is Rf [x] = 0 for all x ∈ Rn. Hence, this is also the case for
the Pareto-maximal alternative xP in the problem Γ3 (8). Therefore, the Pareto-maximal
alternative in the linear-quadratic problem Γlq with the matrices (12) and C < 0 can be
reduced to the maximization of f [x], i.e.,

max
x∈Rn

f [x] = f
[
xP
]
. (13)

Proposition 7. In the linear-quadratic problem Γlq with

A < 0, C > 0,m = n, detB 6= 0

the Pareto-maximal strongly-guaranteed solution is given by

xP = −
[
A−BC−1B′

]−1 (
a−BC−1c

)
(14)

f
[
xP
]

= −
(
a′ − c′C−1B′

) [
A−BC−1B′

]−1 (
a−BC−1c

)
+ d− c′C−1c. (15)

Proof. The alternative xP defined by (13) exists under the sufficient conditions

∂f [x]

∂x

∣∣∣∣
x=xP

= 2
[
A−BC−1B′

]
xP + 2

(
a−BC−1c

)
= 0n, (16)

∂2f [x]

∂x2

∣∣∣∣
x=xP

= 2
[
A−BC−1B′

]−1
< 0. (17)

Note that (17) is satisfied due to Lemma 4 and A < 0, C > 0. In view of A —
BC−1B′ < 0, equality (16) implies

xP = −
[
A−BC−1B′

]−1 (
a−BC−1c

)
.

Substituting this alternative xP into (11) gives

f
[
xP
]

=
(
a′ − c′C−1B′

) [
A−BC−1B′

]−1 [
A−BC−1B′

]
·
[
A−BC−1B′

]−1
×
(
a−BC−1c

)
− 2

(
a′ − c′C−1B′

) [
A−BC−1B′

]−1 (
a−BC−1c

)
+ d− c′C−1c

= −
(
a′ − c′C−1B′

) [
A−BC−1B′

]−1 (
a−BC−1c

)
+ d− c′C−1c.

�
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Remark 10. Thus, the following result has been obtained for the class of linear-quadratic
SCPUs Γlq : if the criterion in the linear-quadratic problem

Γlq = 〈Rn,Rm, f(x, y) = x′Ax+ 2x′By + y′Cy + 2a′x+ 2c′y + d〉

satisfies the conditions A < 0, C > 0, and detB 6= 0, then the triplet(
xP , f

[
xP
]
, Rf

[
xP
])
, where

xP = −
[
A−BC−1B′

]−1 (
a−BC−1c

)
f
[
xP
]

= −
(
a′ − c′C−1B′

) [
A−BC−1B′

]−1 (
a−BC−1c

)
+ d− c′C−1c

(18)

and
Rf

[
xP
]

= 0

is the Pareto-maximal strongly-guaranteed solution of Γlq.

This result has the following interpretation in terms of game theory: choosing the
alternative xP (18) in the linear-quadratic SCPU Γlq, the DM obtains the strongly-
guaranteed outcome f

[
xP
]
(18) with the (minimum possible) zero risk Rf

[
xP
]

= 0

(i.e., surely!). Note that by Lemma 4 a considerable part of this outcome is

−
(
a′ − c′C−1B′

) [
A−BC−1B′

]−1 (
a−BC−1c

)
> 0.

Conclusions

The simplest conflict under uncertainty is "the game with nature," where a person
(player) has to choose an optimal action (strategy) for a given criterion (e.g., profit).
Moreover, each action is accompanied by incomplete or inaccurate information (uncer-
tainty) about the results (outcome) of such an action.

This raises the question of risk associated with the resultants. Here an area of inten-
sive research is focused on a special type of uncertainties (interval), for which the only
available information is the ranges of their admissible values, without any probabilis-
tic characteristics. An example of such uncertainties is the diversification problem of a
deposit into sub-deposits in different currencies [29].

In Russia, interval uncertainties were called "bad uncertainties" due to the unpre-
dictability of their realizations [34]–[36]. The effect of such uncertainties can be assessed
using the Savage–Niehans function for a particular alternative or strategy is a measure of
risk.

In this article a solution of the single-criterion choice problem under uncertainty
(SCPU) that takes into account, first, the effect of such uncertainties and, second, the
DM’s desire to increase the outcome and simultaneously reduce the associated risk has
been presented. More specifically, the concept of a strong guarantee from [10, 11] has
been adopted for introducing a new approach that considers all the three factors of
decision-making (uncertainty, outcome, and risk). This approach has been reduced to
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Guaranteed solution for risk-neutral decision maker 19

the construction of the game of guarantees, which contains no uncertainties. For the
game of guarantees, a corresponding bi-criteria optimization problem has been designed
and solved. In the future, a different approach based on vector guarantees [10, 11] can
be used. For a fairly general class of linear-quadratic SCPUs, the new approach proposed
above has anyway yielded an explicit form of the strongly-guaranteed solution in outcomes
and risks in which the guaranteed risk (and hence any Savage–Niehans risk) is 0.
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