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Abstract. For a noncooperative N -player normal-form game, we introduce the concept of

hybrid equilibrium (HE) by combining the concepts of Nash and Berge equilibria and Pareto max-
imum. Some properties of hybrid equilibria are explored and their existence in mixed strategies
is established under standard assumptions of mathematical game theory (convex and compact
strategy sets and continuous payoff functions). Similar results are obtained for noncooperative
N -player normal-form games under uncertainty.
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Introduction

In 1949 twenty-one years old Princeton University postgraduate J. F. Nash suggested
and proved the existence of a solution [1, 2], which subsequently became known as Nash
equilibrium (NE). Nash equilibrium has been widely used in economics, military science,
policy and sociology. After 45 years, J. Nash together with R. Selten and J. Harsanyi
were awarded the Nobel Prize in Economic Sciences «for their pioneering analysis of
equilibria in the theory of non-cooperative games.» The point is that NE has stability
against arbitrary unilateral deviations of a single player, which explains its success in
economic and political applications [3, 4].

Almost every issue of modern journals on operations research, systems analysis, or
game theory contains papers involving the concept of Nash equilibrium. However, there
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are spots on the sun: an obvious drawback of NE is its pronounced selfishness, as each
player seeks to increase his own payoff only.

The antipode of NE is the concept of Berge equilibrium (BE): each player makes every
effort to maximize the payoffs of the other players, neglecting his individual interests.
BE was formalized in 1985 by Zhukovskiy [5] as a possible solution of noncooperative
N -player games, after a critical analysis of C. Berge’s book Théorie générale des jeux
a n personnes [6] published in 1957 (which explains the term «Berge equilibrium»). In
1995, Russian mathematician K. Vaisman defended his Candidate of Sciences Dissertation
entitled «Berge equilibrium» [7] at Department of Applied Mathematics and Control
Processes (St. Petersburg State University) under the scientific supervision of Zhukovskiy.
This dissertation and Vaisman’s early papers [8, 9] attracted the attention of researchers,
first in Russia and then abroad. As of today, the number of publications related to this
equilibrium has exceeded three hundreds. BE is a good mathematical model for the
Golden Rule of ethics («Behave to others as you would like them to behave to you.»). BE
is famed for its altruism.

Obviously, these features-selfishness and altruism — are intrinsic (in some proportion)
to any individual, including a conflicting party. However, it seems delusive to expect
that such a combined solution exists in pure strategies. Therefore, again employing the
approach of Borel [10], von Neumann [11], Nash [1] and their followers, we will establish
the existence of a combined Nash-Berge equilibrium in mixed strategies. This solution is
called a hybrid equilibrium (HE). The main goal of this paper is to prove the existence of
HE in mixed strategies. Also note a negative property of NE [12] and BE: the sets of both
types of equilibria are internally unstable, i.e., there may exist two (NE or BE) profiles
such that the payoff of each player in one of them is strictly greater than in the other.
We will remove this undesirable negative feature by adding the Pareto maximality of HE
with respect to all other equilibria. Thus, our formalization combines three properties,
namely, a HE is

first, a Nash equilibrium;
second, a Berge equilibrium;
third, Pareto-maximal with respect to the other equilibria.
This paper proves the following result: if a noncooperative N -player normal-form

game has bounded convex and closed strategy sets of players and continuous payoff func-
tions, then there exists a HE in mixed strategies in this game.

In addition, we obtain sufficient conditions for the existence of HE that are reduced
to calculation of a saddle point for a special Germeier convolution of payoff functions.

Finally, the derived results are extended to the case of noncooperative N -player
normal-form games under strategic uncertainty. A proper consideration of uncertain fac-
tors yields more adequate models of real conflicts, which is testified by numerous publica-
tions in this field (recall the over 1 million research works with keywords «mathematical
modeling under uncertainty» in Google Scholar).
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1. Formalization of Hybrid Equilibrium

Consider the mathematical model of a conflict as a noncooperative N -player normal-
form game described by an ordered triplet

Γ = 〈N, {Xi}i∈N, {fi(x)}i∈N〉.

Here N = {1, 2, . . . , N} denotes the set of players (N > 1); each of N players chooses his
strategy xi ∈ Xi ⊆ Rni , thereby forming a strategy profile

x = (x1, . . . , xN) ∈ X =
∏
i∈N

Xi ⊆ Rn (n =
∑
i∈N

ni)

in this game; a payoff function fi(x) is defined on the set X, which gives the payoff of
player i (i ∈ N). At a conceptual level, each player i in the game Γ is looking for a
strategy xi that would maximize his payoff.

A natural approach is to define a solution of the game Γ using a pair

(x∗, f(x∗) = f1(x
∗), . . . , fN(x∗)) ∈ X × RN ,

where the strategies of a profile x∗ = (x∗1, . . . , x
∗
N) ∈ X1×· · ·×XN = X are determined by

an optimality principle while the components of the vector f(x∗) specify the corresponding
payoffs of players under these strategies. As noted by N. Vorobiev, the founder of the
largest national scientific school on game theory, «. . . the practice of games shows that
all the optimality principles developed so far directly or indirectly reflect the idea of a
stable strategy profile that satisfies these principles. . . » [13, pp. 94]. To introduce the
concept of hybrid equilibrium, we will adopt three optimality principles, namely, Nash
equilibrium, Berge equilibrium (from the theory of noncooperative games) and Pareto
maximum (PM, from the theory of multicriteria choice problems). Interestingly, each of
these principles has its own type of stability : NE is stable against the unilateral deviations
of any player i (i.e., the deviations of xi from x∗i ); BE is stable against the deviations
of all players except for one player i with the payoff function fi(x) (i.e., the deviations of
(x1, . . . , xi−1, xi+1, . . . , xN) from (x∗1, . . . , x

∗
i−1, x

∗
i+1, . . . , x

∗
N)); finally PM is stable against

the deviations of all players (i.e., the deviation of the whole current profile x from the
optimal solution x∗). Using the standard notation (x||zi) = (x1, . . . , xi−1, zi, xi+1, . . . , xN)

of noncooperative games, we introduce the following notions.

Definition 1. A strategy profile xe = (xe1, . . . , x
e
i , . . . , x

e
N) ∈ X is called a Nash equilib-

rium in the game Γ if

max
xi∈Xi

fi(x
e||xi) = fi(x

e) (i ∈ N). (1)

«Таврический вестник информатики и математики», 201?’ ?
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Definition 2. A strategy profile xB = (xB1 , . . . , x
B
i , . . . , x

B
N) ∈ X is called a Berge equi-

librium in the game Γ if

max
x∈X

fi(x||xBi ) = fi(x
B) (i ∈ N). (2)

Let us associate with the game Γ the N -criteria choice problem

Γc = 〈X, f(x)〉,

where the set of alternatives X coincides with the set of strategy profiles X in the game
Γ and the vector criterion has the form f(x) = (f1(x), . . . , fN(x)), consisting of the payoff
functions fi(x) of all players i ∈ N in the game Γ.

Definition 3. An alternative (here a strategy profile x ∈ X) is Slater (Pareto)-maximal
in the problem Γc if, for all x ∈ X, the system of inequalities fi(x) > fi(x

∗) (i ∈ N)
(fi(x) ≥ fi(x

P ) (i ∈ N), respectively), with at least one strict inequality, is inconsistent.

Corollary 1. The following sufficient condition of Pareto maximality is obvious: if

max
x∈X

∑
i∈N

fi(x) =
∑
i∈N

fi(x
∗) ∀x ∈ X, (3)

then the strategy profile x∗ is Pareto-maximal in the problem Γc.

Now, we introduce the central concept.

Definition 4. A pair (x∗, f(x∗)) ∈ X × RN is called a Pareto hybrid equilibrium (PHE)
in the game Γ if the strategy profile x∗ is simultaneously a Nash equilibrium and a Berge
equilibrium in this game, and also a Pareto-maximal alternative in the multicriteria choice
problem Γc, i.e., the PHE x∗ satisfies the following three conditions:

max
xi∈Xi

fi(x
∗||xi) = fi(x

∗) (i ∈ N),

max
x∈X

fi(x||x∗i ) = fi(x
∗) (i ∈ N), (4)

x∗ is Pareto-maximal in Γc.

Remark 1. By Corollary 1, a strategy profile x∗ is a PHE in the game Γ if it simultane-
ously satisfies the three optimality conditions (1)–(3).

Remark 2. By analogy with Definition 4, we may easily introduce the concept of Slater
hybrid equilibrium (SHE), by simply replacing the Pareto maximality of x∗ with its Slater
maximality in the problem Γc.

“Taurida Journal of Computer Science Theory and Mathematics”, 201?, ?
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2. Properties of Hybrid Equilibria

Hereinafter, cocomp Rn stands for the set of convex and compact subsets of Rn and
we write φ(·) ∈ C(X) if φ(·) is a continuous scalar function defined on X.

In this section, the game Γ is assumed to satisfy the conditions

Xi ∈ cocomp Rni , fi(·) ∈ C(X) (i ∈ N). (5)

Property 1. Under conditions (5), any PHE in the game Γ is simultaneously a SHE;
the set of all SHE is compact in X × RN (possibly, empty).

Property 1 directly follows from the fact that a Pareto-maximal alternative in the
choice problem Γc is also Slater-maximal (in general, the converse is not true), while the
set of Slater-maximal alternatives XS in Γc is nonempty and compact in X [14, pp. 142].

The sets of Nash and Berge equilibria, Xe and XB, in the game Γ are also compact
in X (perhaps, empty) if assumptions (5) hold. In this case, the intersection of the
three compact sets XS

⋂
Xe
⋂
XB = X∗ is also a compact set in X (again, it may be

empty). The compactness of f(X∗) = {f(x)|x ∈ X∗} is an immediate consequence of the
continuity of the payoff functions fi(x) on X (i ∈ N).

Note that, generally speaking, the set of PHE can be noncompact due to the noncom-
pactness of the set of all Pareto-maximal alternatives XP in the choice problem Γc. Also
keep in mind the inclusion f(XP ) ⊆ f(XS).

Property 2. Under assumptions (5), the PHE x∗ satisfies the individual rationality con-
dition, i.e.,

fi(x
∗) ≥ max

xi∈Xi

min
xN\{i}∈XN\{i}

fi(xi, xN\{i}) =

= min
xN\{i}∈XN\{i}

fi(x
0
i , xN\{i}) = f 0

i (i ∈ N), (6)

where x = (x1, . . . , xi, . . . , xN) = (xi, xN\{i}), xN\{i} = (x1, . . . , xi−1, xi+1, . . . , xN) and
XN\{i} =

∏
j∈N\{i}

Xj (N \ {i} = 1, . . . , i− 1, i+ 1, . . . , N).

Indeed, each Nash equilibrium x∗ in the game Γ has property (6) (individual rational-
ity), i.e., fi(x∗) ≥ f 0

i (i ∈ N), where x0i and f 0
i are the maximin strategy and the payoff

of player i, respectively.

Remark 3. As illustrated by Vaisman’s counter-example [56, pp. 68–69], individual
rationality generally fails for a Berge equilibrium xB in the game Γ.

Property 3. A PHE x∗ is collectively rational in a cooperative N-player game without
side payments. This is a consequence of the Pareto maximality of the alternative x∗ in
the choice problem Γc.

«Таврический вестник информатики и математики», 201?’ ?
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Remark 4. Individual rationality imposes certain requirements to alliances (coalitions)
with other players: player i joins a coalition only if his payoff guaranteed by the coali-
tion is not smaller than the maximin value f 0

i , which can be achieved by this player
independently using the maximin strategy x0i .

Collective rationality drives all players to the largest payoffs (in the vector sense!) —
the Pareto maxima.

As x∗ is a Nash equilibrium, each player seeks to maximize his payoff.
Berge equilibrium matches an altruistic aspiration of each player to maximize the

payoffs of all other players.
Let us note that, the first two requirements (individual and collective rationality) are

among the standard criteria of «good» solutions for cooperative N -player games without
side payments. At the same time, the properties brought by the Nash and Berge equilibria
are new for such games, which (we believe) makes the novel concept of PHE an efficient,
«good» solution for the game Γ.

To formulate sufficient conditions for the existence of PHE in the game Γ, we will
ensure Pareto maximality in terms of Definition 3 by satisfying equality (3). The sufficient
conditions will be based on the original approach from [15]. Let us introduce an N -
dimensional vector z = (z1, . . . , zN) ∈ X and the Germeier convolution [16, 17] of the
form

φi(x, z) = fi(z||xi)− fi(z) (i ∈ N),

φi+N(x, z) = fi(x||zi)− fi(z) (i ∈ N),

φ2N+1(x, z) =
∑
j∈N

fj(x)−
∑
j∈N

fj(z), (7)

ψ(x, z) = max
r=1,...,2N+1

φr(x, z).

A saddle point (x0, z∗) ∈ X×X of the scalar function ψ(x, z) (7) is given by the chain
of inequalities

ψ(x, z∗) ≤ ψ(x0, z∗) ≤ ψ(x0, z) ∀x ∈ X, z ∈ X. (8)

Theorem 1. If (x0, z∗) is a saddle point of the function φ(x, y) (8) in the zero-sum
two-player game

Γa = 〈X,Z = X,ψ(x, z)〉,

then the maximin strategy z∗ ∈ X is a PHE of the game Γ.

Proof. Indeed, formula (7) with z = x0 gives ψ(x0, x0) = 0. Then, by transitivity,

“Taurida Journal of Computer Science Theory and Mathematics”, 201?, ?
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ψ(x, z∗) ≤ 0 ∀x ∈ X.

Using the fact that max
r=1,...,2N+1

φr(x, z
∗) ≤ 0 ∀x ∈ X and (7), we arrive at a set of

2N + 1 inequalities of the form

fi(z
∗||xi) ≤ fi(z

∗) ∀xi ∈ Xi (i ∈ N),

fi(x||z∗i ) ≤ fi(z
∗) ∀x ∈ X (i ∈ N),∑

j∈N

fj(x) ≤
∑
j∈N

fj(z
∗) ∀x ∈ X.

Here the first N inequalities make z∗ ∈ X a Nash equilibrium in the game Γ (see (1));
the second group of inequalities ensures that z∗ is a Berge equilibrium as dictated by (2);
finally, the last, (2N + 1)th inequality means that z∗ is a Pareto-maximal alternative in
the choice problem Γc.

�

Remark 5. By Theorem 1, the construction of a PHE reduces to the calculation of a
saddle point (x0, z∗) for the Germeier convolution ψ(x, z) (7). Thus, we have developed a
constructive method of PHE design in the game Γ, which consists of the following steps:

first, define the scalar function ψ(x, z) using formulas (7);
second, find a saddle point (x0, z∗) of the function ψ(x, z) (see the chain of inequal-
ities (8));
third, calculate the values fi(z∗) (i ∈ N).

Then the pair (z∗, f(z∗) = (f1(z
∗), . . . , fN(z∗))) is a PHE in the game Γ: each player

i ∈ N should apply his strategy from the profile z∗, thereby obtaining the payoff fi(z∗).

Remark 6. The whole complexity of constructing a PHE in the game Γ lies in calculation
of the saddle point (x0, z∗) (8) for the Germeier convolution ψ(x, z) = max

r=1,...,2N+1
φr(x, z)

(7). The reason is that the maximization of a finite number of functions φr(x, z)

(r = 1, . . . , 2N+1) spoils the differentiability and concavity (or convexity) of the functions
φr(x, z), despite the fact that it preserves the continuity of this function on the product
X × Z of the compact sets X and Z. Here we face a situation well described by C. Her-
mite: «I turn with terror and horror from this lamentable scourge of continuous functions
with no derivatives». Thus, it is necessary to develop numerical calculation methods for
the saddle point (x0, z∗) of the Germeier convolution max

r=1,...,2N+1
φr(x, z). Unfortunately, to

this date we were not able to find any literature devoted to this field of research. In partic-
ular, the saddle point calculation problem was not solved at the International Conference
on Constructive Nonsmooth Analysis and Related Topics (CNSA-2017, St. Petersburg,
May 22–27, 2017) dedicated to the Memory of Professor V. Demyanov.

«Таврический вестник информатики и математики», 201?’ ?
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One must be a rather optimistic person to look for a game Γ (especially with an
explicit form of the payoff function) in which a PHE in pure strategies x∗i ∈ Xi (i ∈ N)
exists (by Definition 4, the desired strategy profile x∗ must be simultaneously a Nash
equilibrium and a Berge equilibrium in the game Γ and also a Pareto-maximal alternative
in the corresponding choice problem). Thus, employing the approach of Borel [10], von
Neumann [11], Nash [1] and their followers, we will extend the set Xi of pure strategies
xi to a set of mixed strategies. Then we will establish the existence of appropriately
formalized mixed strategy profiles in the game Γ that satisfy the three requirements of
hybrid equilibrium.

As before, cocomp Rni stands for the set of all convex and compact (closed and
bounded) subsets of the Euclidean ni-dimensional space Rni while fi(·) ∈ C(X) means
that the scalar function fi(x) is continuous on X.

Consider again the noncooperative N -player game Γ without side payments. Without
special mention, assume that the elements of the ordered triplet Γ satisfy requirements
(5), i.e.,

Xi ∈ cocomp Rni , fi(·) ∈ C(X) (i ∈ N).

For each compact set Xi ⊂ Rni (i ∈ N), consider the Borel σ-algebra B(Xi). Further,
consider the Borel σ-algebra B(X) for the set X =

∏
i∈N

Xi of all strategy profiles, such

that B(X) contains all Cartesian products of elements from the Borel σ-algebras B(Xi)

(i ∈ N).
Within the framework of mathematical game theory, a mixed strategy νi(·) of player i

is identified with a probability measure on the compact set Xi. By definition [18, p. 271],
in the notations of [19, p. 284] a probability measure is a nonnegative scalar function νi(·)
defined on the Borel σ-algebra B(Xi) that satisfies the following two conditions:

1. νi
(⋃

k

Q
(i)
k

)
=
⋃
k

νi

(
Q

(i)
k

)
for any sequence {Q(i)

k }∞k=1 of pairwise disjoint elements

from B(Xi) (countable additivity);
2 νi(Xi) = 1 (normalization), which implies νi

(
Q(i)

)
≤ 1 for all Q(i) ∈ B(Xi).

Denote by {νi} the set of all mixed strategies of player i (i ∈ N).
The product measures ν(dx) = ν1(dx1) · · · νN(dxN), treated in the sense of the well-

known definitions from [18, p. 370] (and in the notations of [19, p. 123]), are probability
measures on the strategy profile set X. Let {ν} be the set of such probability measures
(strategy profiles). Once again, we emphasize that in the construction of the product
measure ν(dx), the role of the σ-algebra of all subsets of the setX1×· · ·×XN = X is played
by the smallest σ-algebra B(X) that contains all Cartesian products Q(1) × · · · × Q(N),
where Q(i) ∈ B(Xi) (i ∈ N). The wellknown properties of probability measures [18, p.
254] imply that the sets of all possible measures νi(dxi) (i ∈ N) and ν(dx) are weakly

“Taurida Journal of Computer Science Theory and Mathematics”, 201?, ?
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closed and weakly compact (see [18, pp. 212, 254]). As applied, e.g., to {ν}, this means
that from any infinite sequence {ν(k)} (k = 1, 2, . . .) one can extract a subsequence {ν(kj)}
(j = 1, 2, . . .) which weakly converges to a measure ν(0)(·) ∈ {ν}. In other words, for any
continuous scalar function ψ(x) on X,

lim
j→∞

∫
X

ψ(x)ν(kj)(dx) =

∫
X

ψ(x)ν(0)(dx)

and ν(0)(·) ∈ {ν}. Due to the continuity of ψ(x), the
∫
X

ψ(x)ν(dx) (the expectations) are

well defined; by Fubini’s theorem,

∫
X

φ(x)ν(dx) =

∫
X1

· · ·
∫
XN

φ(x)νN(dxN) · · · ν1(dx1),

and the order of integration can be interchanged.
Let us associate with the game Γ in pure strategies its mixed extension

Γ̃ = 〈N, {νi}i∈N, {fi[ν] =

∫
X

f [x]ν(dx)}i∈N〉, (9)

where, like in Γ, N is the set of players while {νi} is the set of mixed strategies νi(·) of
player i; in game (9), each conflicting party i ∈ N chooses its mixed strategy νi(·) ∈ {νi},
thereby forming a mixed strategy profile ν(·) ∈ {ν}; the payoff function of each player i,
i.e., the expectation

fi[ν] =

∫
X

fi[x]ν(dx),

is defined on the set {ν}.
For game (9), the notion of a PHE x∗ (see Definition 4) has the following analog.

Definition 5. A mixed strategy profile ν∗(·) ∈ {ν} is called a hybrid equilibrium (HE)
in the mixed extension (9) (equivalently, a hybrid equilibrium in mixed strategies in the
game Γ) if

1. ν∗(·) is a Nash equilibrium in the game Γ̃, i.e.,

max
νi(·)∈{νi}

fi(ν
∗||νi) = fi(ν

∗) (i ∈ N); (10)

2. ν∗(·) is a Berge equilibrium in game (9), i.e.,

«Таврический вестник информатики и математики», 201?’ ?
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max
νN\{i}(·)∈{νN\{i}}

fi(ν||ν∗i ) = fi(ν
∗) (i ∈ N); (11)

3. ν∗(·) is a Pareto-maximal alternative in the N -criteria choice problem

Γ̃c = 〈{ν}, {fi(ν)}i∈N〉,

i.e., for all ν(·) ∈ {ν}, the system of inequalities

fi(ν) ≥ fi(ν
∗) (i ∈ N),

with at least one strict inequality, is inconsistent.

Here and in the sequel,

νN\{i}(dxN\{i}) = ν1(dx1) · · · νi−1(dxi−1)νi+1(dxi+1) · · · νN(dxN),

(ν||ν∗i ) = ν1(dx1) · · · νi−1(dxi−1)ν∗i (dxi)νi+1(dxi+1) · · · νN(dxN),

ν∗(dx) = ν∗1(dx1) · · · ν∗N(dxN);

in addition, denote by {ν∗} the set of hybrid equilibria ν∗(·), i.e., the set of strategy
profiles that satisfy the three requirements of Definition 5.

Let us state several results used below for proving the existence of HE in mixed
strategies. The following sufficient condition of Pareto maximality is obvious.

Proposition 1. A mixed strategy profile ν∗(·) ∈ {ν} is a Pareto-maximal alternative in
the choice problem Γc = 〈{ν}, {fi(ν)}i∈N〉 if

max
ν(·)∈{ν}

∑
i∈N

fi(ν) =
∑
i∈N

fi(ν
∗). (12)

Proposition 2. Consider the game Γ under conditions (5), i.e., the sets Xi are convex
and compact and the payoff functions fi(x) are continuous on X = X1 × · · · ×XN . Let
{νe} be the set of Nash equilibria νe(·) that satisfy (10) with ν∗(·) replaced by νe(·);
{νB} be the set of Berge equilibria νB(·) that satisfy (11) with ν∗(·) replaced by νB(·);
{νP} be the set of alternatives νP (·) that satisfy (12) with ν∗(·) replaced by νP (·) (i.e.,

νP is a Pareto-maximal alternative in mixed strategies in the N -criteria choice problem
〈{ν}, {fi(ν)}i∈N〉).

Then the set {ν∗} of hybrid equilibria ν∗(·) in the mixed extension Γ̃ of the game Γ

is a weakly compact subset of the set of mixed strategy profiles {ν} in the game Γ{ν∗}
(may be empty).

“Taurida Journal of Computer Science Theory and Mathematics”, 201?, ?
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Proof. Under conditions (5), we have {νe} 6= ∅ as shown by Gliksberg’s theorem [30].
Next, the fact {νB} 6= ∅ has been established in the preceding sections of our book. The
non-emptiness of the set of Pareto-maximal alternatives, {νP} 6= ∅, can be proved in
analogous manner. The intersection of a finite number of weakly compact sets (in our
case, three) is also weakly compact, possibly empty.

�

Corollary 2. Under conditions (5), the set

f({ν∗}) =
⋃

ν(·)∈{ν∗}

f(ν), f = (f1, . . . , fN),

is compact (bounded and closed) in the N-dimensional Euclidean criterion space RN .

Theorem 2 below establishes the implication (5) ⇒ {ν∗} 6= ∅, which is the central
result of Sect. 2.

Proposition 3. Consider game (9) under conditions (5). Then the function φr(x, z) in
the formula

ψ(x, z) = max
r=1,...,2N,2N+1

φr(x, z) (13)

satisfies the inequality

max
r=1,...,2N,2N+1

∫
X×X

φr(x, z)µ(dx)ν(dz) ≤

≤
∫

X×X

max
r=1,...,2N,2N+1

φr(x, z)µ(dx)ν(dz) (14)

for any µ(·) ∈ {ν} and ν(·) ∈ {ν}, where

φi(x, z) = fi(x||zi)− fi(z) (i ∈ N),

φj(x, z) = fj(z||xi)− fj(z) (j ∈ {N + 1, . . . , 2N}), (15)

φ2N+1(x, z) =
∑
i∈N

[fi(x)− fi(z)].

This proposition was proved in [12].

Remark 7. In fact, formula (3) generalizes the well-known property of maximization:
the maximum of a sum does not exceed the sum of the maxima.
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Let us state an interesting fact from operations research, which plays a crucial role in
the proof of Theorem 2. Consider 2N+1 scalar functions φr(x, z) (r = 1, . . . , 2N, 2N+1),
where z = (z1, . . . , zN) ∈ Z = X and φj(x, z) (j = 1, . . . , 2N + 1) are defined by (15).

Proposition 4. If 2N + 1 scalar functions φj(x, z) (j = 1, . . . , 2N + 1) are continuous on
the product X × (Z = X) of compact sets, then the function

ψ(x, z) = max
j=1,...,2N+1

φj(x, z)

is also continuous on X × Z.

The proof of a more general result can be found in many textbooks on operations
research, e.g., [20].

Finally, let us establish the central result of Sect. 2 — the existence of a hybrid
equilibrium (HE) in mixed strategies under conditions (5).

Theorem 2. If in the game Γ the sets Xi ∈ cocomp Rni and fi(·) ∈ C(X) (i ∈ N), then
there exists a hybrid equilibrium in mixed strategies in this game.

Proof. Consider an auxiliary zero-sum two-player game

Γa = 〈{1, 2}, {X,Z = X}, ψ(x, z)〉.

In the game Γa, the set X of strategies x chosen by player 1 (seeking to maximize
ψ(x, z)) coincides with the set of strategy profiles of the game Γ; the set Z of strategies
z chosen by player 2 (seeking to minimize ψ(x, z)) coincides with X. A solution of the
game Γa is a saddle point (x0, zB) ∈ X ×X ; for all x ∈ X and each z ∈ X, it satisfies
the chain of inequalities

ψ(x, zB) ≤ ψ(x0, zB) ≤ ψ(x0, z).

�

Now, associate with the game Γa its mixed extension

Γ̃a = 〈{1, 2}, {µ}, {ν}, ψ(µ, ν)〉,

where {ν} and {µ} = {ν} denote the sets of mixed strategies ν(·) and µ(·) of players 1
and 2, respectively. The payoff function of player 1 is the expectation

ψ(µ, ν) =

∫
X×X

ψ(x, z)µ(dx)ν(dz).

“Taurida Journal of Computer Science Theory and Mathematics”, 201?, ?



Hybrid Equilibrium 13

The solution of the game Γ̃a is also a saddle point (µ0, ν∗) defined by the two inequal-
ities

ψ(µ, ν∗) ≤ ψ(µ0, ν∗) ≤ ψ(µ0, ν), (16)

for any ν(·) ∈ {ν} and µ(·) ∈ {ν}.
Sometimes, the pair (µ0, ν∗) is also called the solution of the game Γa in mixed strate-

gies.
Applying Gliksberg’s [21] existence theorem of a mixed strategy Nash equilibrium for

a noncooperative game of N ≥ 2 players to the zero-sum two-player game Γa, we obtain
the following result. In the game Γa, suppose the set X ⊂ Rn is nonempty, convex and
compact and the payoff function ψ(x, z) of player 1 is continuous on X × X (note that
the continuity of ψ(x, z) is assumed in Proposition 4). Then the game Γa has a solution
(µ0, ν∗) defined by (16), i.e., there exists a saddle point in mixed strategies in this game.

Using (13), inequalities (16) can be written as

∫
X×X

max
j=1,...,2N+1

φj(x, z)µ(dx)ν∗(dz) ≤

≤
∫

X×X

max
j=1,...,2N+1

φj(x, z)µ
0(dx)ν∗(dz) ≤ (17)

≤
∫

X×X

max
j=1,...,2N+1

φj(x, z)µ
0(dx)ν(dz)

for all ν(·) ∈ {ν} and µ(·) ∈ {ν}. Using the measure νi(dzi) = µ0
i (dxi) (i ∈ N) (and hence

ν(dz) = µ0(dx)) in the expression

ψ(µ0, ν) =

∫
X×X

max
j=1,...,2N+1

φj(x, z)µ
0(dx)ν(dz),

we obtain ψ(µ0, µ0) = 0 due to (13). Similarly, ψ(ν∗, ν∗) = 0, and then it follows from
(16) that

ψ(µ0, ν∗) = 0.

The condition ψ(µ0, µ0) = 0 and the chain of inequalities (16) by transitivity give

ψ(µ, ν∗) =

∫
X×X

max
j=1,...,2N+1

φj(x, z)µ(dx)ν∗(dz) ≤ 0 ∀µ(·) ∈ {ν}.
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By Proposition 3, we then have

0 ≥
∫

X×X

max
j=1,...,2N+1

φj(x, z)µ(dx)ν∗(dz) ≥

≥ max
j=1,...,2N+1

∫
X×X

φj(x, z)µ(dx)ν∗(dz).

Therefore, for all j = 1, . . . , 2N + 1,

∫
X×X

φj(x, z)µ(dx)ν∗(dz) ≤ 0 ∀µ(·) ∈ {ν}. (18)

Consider three cases as follows.

Case I (j = N, ..., 2N) Here, by (18), (15) and the normalization of µ(·), we obtain

0 ≥
∫

X×X

φN+i(x, z)µ
0(dx)ν(dz) =

∫
X×X

[fi(z||xi)− fi(z)]µ0(dx)ν(dz) =

=

∫
X×X

fi(z||xi)µ0(dx)ν(dz)−
∫
X

fi(z)µ0(dx)

∫
X

ν(dz) =

= fi(µ
0||νi)− fi(µ0) ∀ν(·) ∈ {ν} (i ∈ N).

By (10), µ0(·) is a Nash equilibrium in the game Γ̃ (equivalently, a Nash equilibrium
in mixed strategies in the game Γ).

Case II (j = 1, . . . , N) Again, using (18), (15) and the normalization of ν(·),

0 ≥
∫

X×X

φi(x, z)µ(dx)ν∗(dz) =

∫
X×X

[fi(x||zi)− fi(z)]µ(dx)ν∗(dz) =

=

∫
X×Xi

fi(x||zi)µ(dx)ν∗i (dz)−
∫
X

fi(z)µ(dz)

∫
X

ν∗(dz) =

= fi(µ||ν∗i )− fi(ν∗) ∀µ(·) ∈ {ν} (i ∈ N).

In view of (11), the mixed strategy profile ν∗(·) is a Berge equilibrium in the game Γ,
by Definition 5.

Case III (j = 2N + 1) Again, using (18), (15) and the normalization of ν(·) and µ(·), we
have
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0 ≥
∫

X×X

[∑
r∈N

fr(x)−
∑
r∈NN

fr(z)

]
µ(dx)ν∗(dz) =

=

∫
X

∑
r∈N

fr(x)µ(dx)

∫
X

ν∗(dz)−
∫
X

µ(dx)

∫
X

∑
r∈N

fr(z)ν∗(dz) =

=
∑
r∈N

fr(µ)−
∑
r∈N

fr(ν
∗) ∀µ(·) ∈ {ν}.

By Proposition 1 and (12), the mixed strategy profile ν∗(·) ∈ {ν} of the game Γ is a
Pareto-maximal alternative in the multicriteria choice problem

Γ̃c = 〈{ν}, {fi(ν)}i∈N〉.

Thus, we have proved that the mixed strategy profile ν∗(·) in the game Γ is simul-
taneously a Nash equilibrium and a Berge equilibrium that satisfies Pareto maximality.
Hence, by Definition 5, the mixed strategy profile ν∗(·) is a hybrid equilibrium in the
game Γ.

3. Hybrid Equilibrium in Games Under Uncertainty

Let us augment the mathematical model of a conflict

Γ = 〈N, {Xi}i∈N, {fi(x)}i∈N〉

by including the influence of uncertain factors y ∈ Y . Assume that these factors
take arbitrary values from given ranges without any probability characteristics (e.g., the
distribution of y on Y is absent for some reasons). Once again, we emphasize that a
proper consideration of uncertainties gives a more adequate description of the decision-
making process in economics, ecology, sociology, management, trade, policy, security, and
so on. Uncertain factors occur due to incomplete (inaccurate) knowledge about the re-
alizations of strategies chosen by conflicting parties. «There is no such uncertainty as a
sure thing.» (R. Burns)1. For example, an economic system is subject to almost unpre-
dictable exogenous disturbances (forces of nature, disruption of supplies, low qualification
or incompetence of economic partners, counteractions of rivals) as well as endogenous
disturbances (breakdown and failure of industrial equipment, unplanned additional cost
and losses of materials, innovations suggested by employees, etc.). New technologies and
also anthropogenic and weather changes may cause uncertainty in ecological systems; in
mechanical systems, among the sources of uncertainty are weather conditions. «The only

1Robert Burns, (1759–1796), was a national poet of Scotland, who wrote lyrics and songs in Scots and
in English.
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thing that makes life possible is permanent, intolerable uncertainty; not knowing what
comes next.» (Ursula K. Le Guin)2. Possible approaches to take the effect of uncertain
factors into account were the subject of investigations [22, 23] initiated in 2013, which
resulted in the book [24]. In this paper, we will use elementary methods to deal with
uncertainty.

Consider a noncooperative N -player normal form game under uncertainty

〈N, {Xi}i∈N, Y, {fi(x, y)}i∈N〉. (19)

Compared with the game Γ (which shares the first two components of its ordered
triplet with game (19), namely, N = {1, 2, . . . , N} and the set Xi of pure strategies xi of
player i, i ∈ N), in this game we have an additional set Y ⊂ Rm of uncertain factors y
and payoff functions fi(x, y) that depend on y.

Game (19) runs as follows. Each player i ∈ N chooses his individual strategy
xi ∈ Xi ⊂ Rni (i ∈ N), which gives a strategy profile x = (x1, . . . , xN) ∈ X =

∏
j∈N

Xj ⊂ Rn

(n =
∑
j∈N

nj) in this game. Regardless of their choice, an arbitrary uncertainty y ∈ Y

figures in (19). For each player i (i ∈ N), a payoff function fi(x, y) is defined on all
such pairs (x, y) ∈ X × Y . At a conceptual level, each player i seeks to maximize his
payoff fi(x, y) under any unpredictable realization of the uncertainty y ∈ Y . This last
requirement calls for estimating the set

fi(x, Y ) =
⋃
y∈Y

fi(x, y)

for each player i (i ∈ N). In turn, for such a multivalued function fi(x, Y ) (i ∈ N), it is
necessary to choose another function fi[x] that would act as a guarantee for any element
fi(x, y) from the set fi(x, Y ). As defined by the Merriam-Webster dictionary, guarantee
is an assurance for the fulfillment of a condition. A most obvious guarantee for
player i in game (19) is the so-called strong guarantee [22], provided by the scalar function

fi[x] = min
y∈Y

fi(x, y). (20)

Indeed, it follows from (20) that, for each strategy profile x ∈ X,

fi[x] ≤ fi(x, y) ∀y ∈ Y,

i.e., in each strategy profile x ∈ X the value fi(x, y) is not smaller than the guarantee
fi[x] under any realization of the uncertainty y ∈ Y .

2Ursula K. Le Guin, original name Ursula Kroeber, (1929–2018), was an American writer best known
for tales of science fiction and fantasy

“Taurida Journal of Computer Science Theory and Mathematics”, 201?, ?



Hybrid Equilibrium 17

Proposition 5. If a scalar function F (x, y) is continuous on the product X×Y of convex
and compact sets X and Y , then the function f [x] = min

y∈Y
F (x, y) is continuous on X.

Therefore, all the N strong guarantees fi[x] (20) are continuous on X under the
assumptions Xi ∈ comp Rni (i ∈ N), Y ∈ comp Rm and fi(·) ∈ C(X × Y ).

This approach allows us to associate with game (19) under uncertainty the game of
guarantees (without uncertainty)

Γg = 〈N, {Xi}i∈N, {fi[x]}i∈N〉, (21)

which coincides with the game from Sect. 1 provided that fi(x) is replaced by the strong
guarantee fi[x] = min

y∈Y
fi(x, y).

In contrast to (19), here the performance of each player i is assessed using the strong
guarantee fi[x] instead of the payoff function fi(x, y) itself (this seems quite natural for
considering arbitrary realizations y ∈ Y ).

Then the following analog of Definition 4 can be suggested for the game under uncer-
tainty (19) with the strong guarantees (20).

Definition 6. A pair (xP , f [xP ] = (f1[x
P ], . . . , fN [xP ])) ∈ X × RN is called a strongly-

guaranteed Pareto hybrid equilibrium in game (19) if

1. the strong guarantees fi[x] (20) are continuous on X;
2. the strategy profile xP is simultaneously a Nash equilibrium and a Berge equilibrium

in the game of guarantees (21), i.e.,

max
xi∈Xi

fi[x
P ||xi] = fi[x

P ] (i ∈ N),

and

max
x∈X

fi[x||xPi ] = fi[x
P ] (i ∈ N),

respectively;
3. the strategy profile xP is a Pareto-maximal alternative in the N -criteria choice

problem 〈X, {fi[x]}i∈N〉.

Similarly to Definition 5, we introduce an analog of Definition 6 with a feature that
the players use mixed strategies νi(·) (i ∈ N) in game (19).

Definition 7. A mixed strategy profile νP (·) ∈ {ν} is called a strongly-guaranteed Pareto
hybrid equilibrium in mixed strategies in game (19) if

1. for each player i (i ∈ N), there exists the strong guarantee
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fi[x] = min
y∈Y

fi(x, y)

that is continuous on X;
2. νP is simultaneously a Nash equilibrium and a Berge equilibrium in game (9), i.e.,

equalities (10) and (11) hold with ν∗(·) replaced by νP (·);
3. νP in game (9) is a Pareto-maximal alternative in the N -criteria choice Problem

Γ̃c = 〈{ν}, {fi[ν]}i∈N〉.

Finally, the combination of Proposition 5 and Theorem 1 directly leads to the follow-
ing result on the existence of a strongly-guaranteed Pareto hybrid equilibrium in mixed
strategies.

Theorem 3. Consider game (19) with convex and compact sets Xi (i ∈ N), compact
set Y , and payoff functions fi(x, y) (i ∈ N) continuous on X × Y . Then there exists a
strongly-guaranteed Pareto hybrid equilibrium in mixed strategies in this game.

Remark 8. Our analysis in Sect. 3 has been confined to the strong guarantees
fi[x] = min

y∈Y
fi(x, y) (i ∈ N) as the smallest ones. It is possible to adopt the so-called

vector guarantees: the components of an N -dimensional vector f [x] = (f1[x], . . . , fN [x])
form a vector guarantee for an N -dimensional vector f(x, y) = (f1(x, y), . . . , fN(x, y)) if,
for all y ∈ Y and each x ∈ X, the N strict inequalities

fi(x, y) < fi[x] (i ∈ N)

are inconsistent. In other words, the vector guarantee f [x] cannot be reduced simultane-
ously in all the components by choosing y ∈ Y . In terms of vector optimization, for each
alternative x ∈ X the vector f [x] is a Slater minimum (weakly efficient) solution in the
N -criteria choice problem Γ(x) = 〈Y, f(x, y)〉.

In the same fashion, using other concepts of vector optima (minima in the sense
of Pareto, Geoffrion, Borwein, cone optimality), we may introduce a whole collection
of vector guarantees. These guarantees have the remarkable property that their values,
first, are not smaller than the corresponding components of the strong guarantee vector
f [x] (20) but, second, can be large. Recall that the goal is to increase the payoffs of
players (in particular, by increasing their guarantees!). In this respect, the listed vector
guarantees are preferable to their strong counterparts. However, one should keep in mind
an important aspect: transition from the game under uncertainty (19) to the game of
guarantees Γg (with subsequent application of Theorem 1) is possible only if the new
payoff functions fi[x] (i ∈ N) in the game Γg are continuous. This continuity can be
ensured in the following way.
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Let Xi ∈ comp Rni , Y ∈ comp Rm and fi(·) ∈ C(X × Y ) (i ∈ N) in game (19). In
addition, require that for each x ∈ X at least one fj(x, y) (j ∈ N) is strictly convex in y
on the set Y . Then the minimum in

min
y∈Y

fj(x, y) = fj[x] (22)

is achieved at a unique point y∗(x) for each x ∈ X, and the m-dimensional vector function
y∗(x) itself is continuous on X. In this case, the superposition of the continuous functions
fi(x, y) and y∗(x) implies the continuity of all scalar functions fi[x] = fi(x, y

∗(x)) (i ∈ N).
We finalize the design of Γg with the following fact. Assume for each x ∈ X the same
function fj[x] is implemented by the minimum in (22). Then for all x ∈ X the N -
dimensional vector f [x] = (f1[x], . . . , fN [x]) is a Slater-minimal alternative in the current
N -criteria choice problem Γ(x) = 〈Y, {fi(x, y)}i∈N〉. In other words, it is impossible to find
ȳ ∈ Y such that fi(x, ȳ) < fi[x] (i ∈ N). A detailed treatment of these issues for Slater,
Pareto, Geoffrion, Borwein, and cone optimality will be given in our future publications.
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