
MPRA
Munich Personal RePEc Archive

How to use the R software

Mestiri, Sami

University of Monastir

2019

Online at https://mpra.ub.uni-muenchen.de/119428/
MPRA Paper No. 119428, posted 23 Dec 2023 08:50 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/119428/


How to use R software
Sami Mestiri 1

Applied Economics and Simulation
Faculty of Management and Economic Sciences of Mahdia,

University of Monastir, Tunisia. Rue Ibn Sina Hiboun, Mahdia Tunisia

Abstract: R is a language and software that allows statistical analysis. It includes means
that make it possible to manipulate data, calculations and graphical representations.
It provides a wide variety of statistical tools (modeling, statistical testing, time series
analysis, classification problems, machine learning, ...)
Nowadays, there is no doubt that it is the software par excellence in statistical courses
for any level, for theoretical and applied subjects alike.
The goal of this paper is helping to start using the statistical software R. We will cover
its benefits, show how to get started and will make interesting recommendations for using
R, according to my experience .
JEL codes: C15, C88
Keywords : R software, Statistical analysis, Control Structures.

1 Introduction
R is a software library distributed by the "GNU Public License" (which is a license that
fixes the legal conditions of the distribution of the GNU project’s software libraries) and
drives the language S-PLUS. It presents remarkable defects as possible for the effect of
calculus matrix and other complex operations, storage and manipulation of data. It
contains numerous functions for statistical analyses and flexible graphics outputs. It is
addressed to a large public format of specialists and non-specialists in informatics.

R was initially created, in 1996, by Robert Gentleman and Ross Ihaka of the statistical
department of the University of Auckland in New Zealand. Since 1997, it was formed by
the "R Core Team" to develop R. It is intended to be used with the exploitation systems
Unix, Linux, Windows and MacOS.
It has a logical library and content in 1995. It has a programming language and a
statistical function. The base version of R contains a large number of significant statistic
functions and graphics, for example, the calculation of a mean or a variance or a tracer
of a histogram.

The software is downloaded onto the official web site of R www.R-project.org /.
Choose a site near your home (example: in France), the latest possible charges will be
more rapid, you will be able to download and install an encrypted legend. For Windows,
click on Windows then base. Click on the "exist" file (par example: R-2.14.1-win.exe).

1 Email : mestirisami2007@gmail.com

1



The installation program is also charged to your device. It allows you to click on the
buttons and provide the instructions. It is important that the name of the version of the
downloader is released. It is located on the disk of C, in the series of files connected to
program files .

This is where you find the packages based on R. Another item used should be localized:
the data file. This is not apparent until now. It contains all the objects that you want
to create and store in R. Despite of having been designed for data analysis, R belongs
to the top ranks of most employed programming languages, even for general purposes.R
provides all the usual statistical tools in its base package, but also the most specific and
modern techniques, together with amazing graphical tools, are available in its nearly 20000
packages.

For users with poor or no programming knowledge, GUIs are very helpful. Many of
them have been developed, with different purposes. We can highlight the easiness and
reproducibility of Jamovi, and the great help R Commander offers to make data analysis
in a very simple way, while the user learns programming.RStudio IDE offers a perfect
framework to make the most of R for users with programming skills.Some R packages
have become tools of great utility in education. For example, exams allows to create
exams and lists of personalized exercises in a very simple way, interacting with Moodle
and another educational platforms.

There is an important difference in philosophy between R and most other statistical
packages. With most packages, a statistical analysis will lead to a large amount of output
containing information about the estimation, diagnostic tests, etc. In R, a statistical
analysis is normally done as a series of steps, with intermediate results being stored in
objects. There is usually minimal output at each step, but the objects obtained at each
step can be interrogated by R functions to obtain the information required.

At first, this may seem like a disadvantage, as students will not always be able to find
the information they want from an analysis. However, it does teach students the interac-
tive nature of data analysis, and it avoids the confusion that students often experience in
being confronted with pages of output that they cannot interpret.

The research paper is organized as follows: We provide creation and manipulation of
data in Section 2. Section 3 presents some useful functions. In section 4, we show how
created the Graphics. The fifth section is devoted to present how creating functions. And
finally, we conclude in section 6.

2 Creation and manipulation of data
When directly connected to the command line, or by editing a text file (with the extension
.R) under editor preferred.
The manipulative data under R are stored in a space work. The operating system can be
visualized at the tap getwd(), which means that the computers are fast enough to use the

2



command setwd().
At the same time it is not important at the moment of the session to visualize the content
of the space to travel to the command ls(), and another variable to the command rm( ),
and you pass the argument the name of the variable. For delete all content variables in
the space work using the command: rm(list=ls())
By typing ls(), we will see that our variables have always been present in the space work
. The command history() allows you to list the previous commands. Finally, you can
save all the commands that can be used to analyse the downloads in a script file with
the extension .R, and tap the source (’script.R’,echo=T), enter the command, for effect.
’analyse.
It is a language in the command line (interpretation), such as Matlab, and can handle
the number types of data in the past commands. what you need to know how to create,
manage and treat these objects.
Notes that, as in all languages, certain mots-keys on the servers and none may be used
as variable names or functions:
FALSE Inf NA NaN NULL TRUE
break else for function if in next repeat while Although we have only used numeric type
variables, there are other ways of representing data (or classes) in a vector: character,
integer, logical, complex, list.
Finally, the NULL and NA types play a particular role since they respectively designate
the absence of a value (i.e. an empty set) and the default coding of a missing value.

2.1 Vector

Different functions allows to easily generate vectors: c, seq, rep. For example, we can
create the vector X = [1 2 3 4 5] in different ways:
X ← c(1, 2, 3, 4, 5)
[1] 1 2 3 4 5
The seq() function is useful for generating sequences of integers, and has several arguments
to specify the desired sequence (see ?seq).
Y ← seq(1 : 5)
Y
[1] 1 2 3 4 5
We can duplicate a vector using the rep() command:
Z ← rep(X, 2)
Z
[1] 1 2 3 4 5 1 2 3 4 5
The rev() function allows you to reverse the order of the sequence (1 2 3 becomes 3 2 1).
W ← rev(X)
W
[1] 5 4 3 2 1

3



Arithmetic operations also apply to vectors. For example, we can add two vectors a and
b, and perform the classic scalar or member-to-member products:
a← 1 : 5
b← 5 : 9
a× 2
[1] 2 4 6 8 10
a+ b
[1] 6 8 10 12 14
a× b
[1] 5 12 21 32 45
Many functions also make it possible to classify the elements (or indices) of a vector, to
sum them, etc.
u← c(1, 3, 2, 7, 4)
u
[1] 1 3 2 7 4
sort(u) # order the elements of vector u
[1] 1 2 3 4 7
order(u) # give the rank of the elements of vector u
[1] 1 3 2 5 4
sum(u) # give the sum of the elements of vector u
[1] 17
length(u) give the length of vector u
[1] 5
Finally, a particularity of R is that the elements of a vector can have names. The names()
function allows you to associate a label with each of the elements of a vector:
x← 1 : 5
names(x)← c(”a”, ”b”, ”c”, ”d”, ”e”)
x
a b c d e
1 2 3 4 5

2.2 Matrix

For matrices, we can either generate a vector of size n, and rearrange it to create a
matrix of size (l,m), or directly create a matrix using the matrix() function, specifying in
arguments the number of rows and columns, for example:
M ← matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10), nrow = 2, ncol = 5)

[, 1] [, 2] [, 3] [, 4] [, 5]
x 1.00 3.00 5.00 7.00 9.00
y 2.00 4.00 6.00 8.00 10.00

The cbind and rbind functions allow you to manipulate vectors in order to form a matrix

4



by concatenation on the columns or on the rows.
x← c(1, 3, 5, 7, 9
y ← c(2, 4, 6, 8, 10
A← cbind(x, y)

x y
[1] 1.00 2.00
[2] 3.00 4.00
[3] 5.00 6.00
[4] 7.00 8.00
[5] 9.00 10.00

B ← rbind(x, y)
[, 1] [, 2] [, 3] [, 4] [, 5]

x 1.00 3.00 5.00 7.00 9.00
y 2.00 4.00 6.00 8.00 10.00

To access the elements of a matrix, it’s a little different from Matlab: you must specify the
indices in square brackets, and the comma serves as a delimiter between row and column
indices:
M [, 1]
x y
1 2
M [1, ]
[1] 1 2 3 4 5
M [1, 2]
[1] 2
The matrix product is carried out in the same way as for vectors. For example, if we have
a contingency table (the numbers broken down into the modalities of the variables, or,
in other words, the frequencies of association between the modalities of two qualitative
variables), we can code it in disjunctive form, that is to say, associate a table of indicators
with each of the variables: the contingency table is none other than the matrix product
of the two tables of indicators.
x1← matrix(c(1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
0, 1, 0, 0, 0, 1), nrow = 8, byrow = T )
x2← matrix(c(1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0), nrow = 8, byrow = T )
x1;x2
t(x1)% ∗%x2

[, 1] [, 2]
[1, ] 2 0
[2, ] 2 1
[3, ] 1 2

The array() function allows you to generate multidimensional matrices:
a = array(1 : 20, dim = c(4, 5, 2))

5



Under R, this is not the most interesting type of data when working for modeling or
statistical testing purposes, and we will see a particular type of data structure that is
much more useful.

2.3 The factors

There is a particular type of vector corresponding to the notion of factor which makes it
possible to create a sequence of values which presents the modalities of the variable). To
do this, we use the functions factor() and gl().
The factor() function is used to explicitly convert a (numeric) vector into a factor.
v ← c(1, 2, 1, 2, 2)
f ← factor(v, labels = c(”yes”, ”no”))
f
[1] yes no yes no no
Levels : yes no
The factor() function is also used to explicitly convert a vector (characters) into a factor.
u← c(”yes”, ”no”, ”yes”, ”no””no”)
g ← factor(u, levels = c(”yes”, ”no”))
g
[1] yes no yes no no
Levels : yes no
While the gl() function allows you to directly generate a factor vector, by specifying the
arrangement of the levels. Here are two ways to create the same factor:
fbis← gl(2, 1, 4, labels = c(”A”, ”B”))
[1] A B A B
Levels : A B
x← c(1, 3, 2, 4)
x[f == ”A”]
[1]12
To see the (numerical) levels of a factor, we can use unclass(). The gl() function is
very useful when it comes to creating a large vector (with many replicates), or when you
want to precisely control the arrangement of the factor levels. Note that these functions
can essentially be used for balanced plans in terms of numbers and replicas. These two
functions allow you to generate nominal qualitative variables, while the ordered() function
allows you to create an ordinal variable, that is to say one whose modalities are ordered.

2.4 Object lists

The list is a heterogeneous object. It is therefore an ordered set of objects which are not
necessarily all of the same mode or the same length. An object of type list() makes it
possible to group together in the same data structure variables having a different mode

6



of representation (e.g. numeric and character), and possibly of different sizes
sami← list(alpha = 1 : 3, beta = c(′a′,′ b′,′ c′,′ d′))
b
sami$alpha
[1] 1 2 3
sami$beta
[1] ”a” ”b” ”c” ”d”
This type will not really be used later, but you should know that it is useful for returning
multiple values when creating your own functions, and it is this data type that R uses
when it returns the result of a statistical test, for example. We can thus easily obtain the
value of a t test, without displaying the complete result of the analysis:
x← rnorm(10) + 0.5
res← t.test(x)
res$p.value

3 Useful functions
The R language has a very large number (thousands!) of internal functions. This section
presents just a few of the basic functions most often used for programming in R and
manipulating data. For each function presented in the following sections, we provide one
or two examples of use. These examples often fall far short of covering all possible uses
of a function.

3.1 Vector manipulation

seq : generation of sequences of numbers
seq(1, 9, by = 2)
[1] 1 3 5 7 9
rep: repetition of values or vectors
rep(2, 10)
[1] 2 2 2 2 2 2 2 2 2 2
sort : sort in ascending or descending order
sort(c(4,−1, 2, 6), decreasing = TRUE)
[1] 6 4 2 − 1
rank : rank of the elements of a vector in ascending or descending order
rank(c(4,−1, 2, 6))
[1] 3 1 2 4
order : order of extracting elements from a vector to place them in ascending or descending
order
order(c(4,−1, 2, 6))

7



[1] 2 3 1 4
rev : reverse a vector
rev(1 : 10)
[1] 10 9 8 7 6 5 4 3 2 1
head : extraction of the first n elements of a vector (n > 0) or deletion of the last n (n < 0)
head(1 : 10, 3);head(1 : 10,−3)
[1] 1 2 3
[1] 1 2 3 4 5 6 7
tail : extraction of the last n elements of a vector (n > 0) or deletion of the first n (n < 0)
tail(1 : 10, 3); tail(1 : 10,−3)
[1] 8 9 10
[1] 4 5 6 7 8 9 10
unique: extraction of different elements from a vector
unique(c(2, 4, 2, 5, 9, 5, 0))
[1] 2 4 5 9 0

3.2 Finding elements in a vector

The functions in this subsection are all illustrated with the vector
x← c(4,−1, 2,−3, 6)
x
[1] 4 − 1 2 − 3 6
which: positions of TRUE values in a Boolean vector
which(x < 0)
[1] 2 4
which.min: position of the minimum in a vector
which.min(x)
[1] 4
which.max : position of the maximum in a vector
which.max(x)
[1] 5
match: position of the first occurrence of an element in a vector match(2, x)
[1] 3
%in% membership of one or more values to a vector
−1 : 2%in%x
[1] TRUE FALSE FALSE TRUE

3.3 District

The functions in this subsection are all illustrated with the vector
x← c(−3.6800000,−0.6666667, 3.1415927, 0.3333333)

8



x
[1] − 3.6800000 − 0.6666667 3.1415927 0.3333333
round : rounded to a defined number of decimal places (default 0)
round(x)
[1] − 4 − 1 3 0 3
round(x, 3)
[1] − 3.680 − 0.667 3.142 0.333
floor : largest integer less than or equal to argument
floor(x)
[1] − 4 − 1 3 0
ceiling : smallest integer greater than or equal to argument
ceiling(x)
[1] − 3 0 4 1

3.4 Descriptive statistics

The functions in this subsection are all illustrated with the vector
x← c(1, 4, 1, 7, 3, 4)
x
[1] 1 4 1 7 3 4
sum, prod : sum and product of elements of a vector
sum(x); prod(x)
[1] 20
[1] 336
diff : differences between the elements of a vector (mathematical operator ∇)
diff(x)
[1] 3 − 3 6 − 4 1
mean: arithmetic mean (and truncated mean with the trim argument)
mean(x)
[1] 3.33
var, sd : variance and type (unbiased versions)
var(x)
[1] 5.066
min, max : minimum and maximum of a vector
min(x);max(x)
[1] 1
[1] 7
range: vector containing the minimum and maximum of a vector
range(x)
[1] 1 7
median: empirical median

9



median(x)
[1] 3.5
quantile: empirical quantiles
quantile(x)
0% 25% 50% 75% 100%
1 1.5 3.5 4 7
summary : descriptive statistics of a sample
summary(x)
Min. 1stQu. Median Mean 3rdQu.Max.
1 1.5 3.5 3.33 4 7
cumsum, cumprod sum and cumulative product of a vector
cumsum(x); cumprod(x)
[1] 1 5 6 13 16 20
[1] 14 4 28 84 335

3.5 Matrix Operations

The functions in this subsection are all illustrated with the matrix
A← matrix(c(2, 1, 4, 3), ncol = 2)
A
[, 1] [, 2]

[1, ] 2 4
[2, ] 1 3
nrow, ncol number of rows and columns of a matrix
nrow(A);ncol(A)
[1] 2
[1] 2
rowSums, colSums are per row and per column, respectively, elements of a matrix
rowSums(A)
[1] 6 4
rowMeans, colMeans : averages per row and per column, respectively, of the elements of
a matrix;
colMeans(A)
[1] 1.5 3.5
t transposed
t(A)
[, 1] [, 2]
[1, ] 2 1
[2, ] 4 3
det determinant
det(A)

10



[1]2
solve:1) with a single argument (a square matrix): inverse of a matrix; 2) with two
arguments (one square matrix and a vector): solution of the system of linear equations
Ax = b
solve(x)
[, 1] [, 2]

[1, ] 1.5 − 2
[2, ] − 0.5 1
solve(x, c(1, 2))
[1] − 2.5 1.5
diag : 1) with a matrix as argument: diagonal of the matrix; 2) with a vector as argument:
diagonal matrix formed with the vector; 3) with a scalar u as argument: identity matrix
p p
diag(A)
[1] 2 3

3.6 External product

The outer function calculates the outer product between two vectors. This isn’t the most
intuitive feature to use, but it’s extremely useful for doing multiple operations in a single
expression while avoiding loops. The syntax for outer is:
outer(X, Y, FUN)
The result is the application of the FUN function (default prod) between each elements
of X and each of the elements of Y, in other words
(X[i], Y [j])
for all values of indices i and j.
The dimension of the result is therefore c(dim(X), dim(Y)).
For example, the result of the exterior product between two vectors is a matrix containing
all the products between the elements of the two vectors:
outer(c(1, 2, 5), c(2, 3, 6))
[, 1] [, 2] [, 3]
[1, ] 2 3 6
[2, ] 4 6 12
[3, ] 10 15 30
The %o% operator is a shortcut for outer(X, Y, prod).

4 Graphics
Ability to see examples of graphics with demo(graphics) or demo(persp). When a graphics
function is typed on the console, a graphics window will open with the requested graph.

11



Partition a graphics window:
by(mfcol=c(nr,nc))
we partition the window into a matrix of nr rows and nc columns and the filling is carried
out by column. - mfrow: same but the graphics are drawn in line;
- layout(): for more complex partitions
layout(matrix(c(1,2,3,4),2,2)) # to insert into a graph
layout(matrix(c(1,1,2,1),2,2),c(3,1),c(1,3))
layout.show(2) # view the created partition
- plot (x): graph of the values of x (on the ordinate) as a function of the values of x;
- plot (x,y): graph of the values of y (the ordinate) as a function of the values of x;
- pie(x): "pie chart" of the values of x;
- boxplot(x): boxplot of x;
- hist(x): histogram of x (for quantitative x);
- borplot(x): column diagram (for qualitative x) For each function, we have several options
but some are common:
- type: "p": points, "l": lines, "b" both, "h": vertical lines, "s": stairs; for stair steps ;
- xlab, ylab: axis names, character variables between " " ;
- main: character type variable; sub: subtitle ;
- points(x,y): adds points;
- lines(x,y): same but with lines;
- segments(x0,y0,x1,y1): draws a line between the points (x0, y0) and (x1, y1);
- abline(a,b): draws a line with slope b and ordinate at the origin a;
- legend(x,y,legend): adds a legend to the point of coordinates (x, y) with the symbols
given by legend

5 Functions
General structure for creating functions
The general syntax for defining a function is as follows:
function-name<-function(arg1[=expr1],arg2[=expr2]...)
{
instruction blocks
}
The braces allow you to separate the instructions from the signature of the function, the
square brackets allow you to specify default values of the arguments in an optional way.
Example 1: here is an example of simulation of the function f(x) = x2:
square=function(x) { x*x}
square(2)
Example 2: defining the mean of a vector:
mean.vec <- function(x) {

12



s<-sum(x); # Sum of the elements of x
n<-length(x); # Number of elements of x
res<-round(s/n,2); # rounded result
return(res)
}
Using a text editor using the fix() function:
fix(mean.vect)
This command launches a text editor that works with the R system and allows you to
define functions. The function code is written from the editor. This method is more
comfortable and practical than the first.
The return() function allows you to specify the result of the function, when the correspond-
ing return instruction is not used, R returns the result of the last expression evaluated in
the function.

6 Control Structures
Control structures are commands that determine the flow of execution of a program:
choice between blocks of code, repetition of commands, or forced exit.

6.1 Conditional execution

if ( test. expression) {
statement1
} else {
statement2
} If condition is true, branch.true is executed, otherwise it will be branch.false.
To illustrate control structures, we use these example:
x← x = c(−12, 10,−8, 14) # initialization of container x
y ← rep(0, 4)#
for(i in 1 : 4)
{
if(x[i] > 0) y[i] = x[i] ∗ log(x[i]) else y[i] = 0
y = round(y, 3) # display the value on the screen
}
y# verification

ifelse(condition, expression.true, expression.false) (ifelse(test, yes, no))
Vector function which returns a vector of the same length as condition formed as follows:
for each element TRUE of condition we choose the corresponding element of expres-
sion.true and for each FALSE element we choose the corresponding element of expres-
sion.false.

13



To illustrate control structures ifelse, we use these example:
x <- rnorm(100)
y <- ifelse(x>0, 1, -1)
z <- ifelse(x>0, 1, ifelse(x<0, -1, 0))

Multiple conditional execution
if. (test.expression1) {
statement1
} else if (test.expression2) {
statement2
} else if ( test .expression3) {
statement3
} else
statement4
To illustrate Multiple conditional execution, we use this example:
After an exam, the possibilities are as follows: if you have less than 12, you have a men-
tion, "Passable". If you are between 12 and 14, you have a "Good" mention. If you are
over 14, you have a rating, "Very good".

note=c(6,12.5,14,7)
for (i in 1:4) {
if (note[i]<12) print ("Passable") else if(12<= note[i]& note[i]<14) {
print ("good") }
else print ("Very good")
}

6.2 Loops

Loops are and should be used sparingly in R, as they are generally inefficient. In most
cases, it is possible to vectorize the calculations to avoid explicit loops, or to rely on the
outer, apply, lapply sapply and mapply functions to perform loops more efficiently.
for (variable in suite) expression
Run expression successively for each variable value contained in suite. Again here, we will
group the expressions in braces {}. Note that sequence does not have to be composed of
consecutive numbers, or even numbers, in fact.
ages <- c(12, 18, 32, 2, 4)
names(ages) <- c(’Jane’,’Ed’,’Bob’,’Joe’,’Liz’)
for (person in names(ages))
{
message(person, " is ", ages [person], " years old.")
}

14



while (condition) expression
Execute expression as long as condition is true. If condition is false when entering the
loop, it is not executed. A while loop is therefore not necessarily always executed.
z ← 0
while(z < 5)
{
z ← z + 1
message(z)
}
repeat expression
Repeat expression. The latter must include a shutdown test which will use the break
command. A repeat loop is always executed at least once.
break
Immediate exit from a for, while or repeat loop.
next
Immediate transition to the next iteration of a for, while or repeat loop.

7 Conclusions
As we mentioned in the introduction, the employment of Statistics as a tool to analyze
data from research has become essential, especially in the last years. For most scientific or
technological disciplines, even in many social and humanistic fields, there exists the need
of handling basic statistical concepts, in order to be capable of extracting conclusions
from the researchers’ own data or to understand published research. That is the reason
why subjects of Statistics, at different levels, are included in very different academic
curriculum, with students owning previous knowledges and capacities in a very diverse
range. Besides, it is obvious that each statistical technique requires adequate software to
perform calculations and create appealing graph reports.

For all these reasons, there is a growing need for a statistical software as simple and
versatile as possible. After more than 20 years of experience as students, teachers and
researchers, our choice is R, without any doubts. The more we use it, the bigger advan-
tages we find. We highlight the most important ones:
- Free. Students can have copies at home.
- Portable. Once students invest in learning this program, they can take it with them
and install it again wherever they may end up working.
- Versatile. The software exists for more platforms than virtually any existing commer-
cial program.
- General. A very large number of statistical/econometric tools are available, so the
software could be used for many (maybe all) subjects.
- Cutting-edge. It includes the very latest methods.

15



- Programmable. It is easy for students to program new methods or develop modifica-
tions of existing methods.
- Matrix language. The R language handles vectors and matrices directly (as do Gauss,
Matlab and Ox). This makes programming much simpler for students and reinforces the
matrix notation used in class.
-Object-oriented language structure. However, the use of a command console instead
of a GUI is a big handicap for a beginner. Due to this, the attempts to introduce the
use of R in a first course of Statistics, or in Applied Statistics, can lead to bad results,
especially for students with no previous programming experience.

References
[1] The R Project for Statistical Computing. Available online: https://www.r-project.org

[2] Ihaka, R; Gentleman, R. (1996) R: A language for Data Analysis and Graphics. Journal
of Computational and Graphical Statistics , 5(3), 299–314.

[3] The R Graph Gallery. Available online: https://r-graph-gallery.com

[4] Available Packages. Available online: https://cran.r-project.org/web/packages/

[5] R AnalyticFlow: Designed for data analysis. Great for everyone. Available online:
https://r.analyticflow. com/en/

[6] Williams, G. Rattle (2009) A Data Mining GUI for R. The R Journal, 1(2), 45-55.

[7] Fox, J.(2017) Using the R Commander: A Point-and-Click Interface for R, 1st ed.;
Chapman and Hall/CRC Press: BocaRaton, FL.

[8] Mestiri, S. (2023). Initiation à l’utilisation du logiciel R Éditions universitaires eu-
ropéennes.DOI: 10.13140/RG.2.2.16938.08641/1

[9] Mestiri, S. (2019). Statistical tests using R Software University of Monastir Press.
DOI: 10.13140/RG.2.2.29300.50566

[10] Wickham, H.;Golemund, G.(2017) R for Data Science: Import, Tidy Transform,
Visualize, and Model Data, 1st ed.; O’Reilly Media: Sebastopol, CA, .

[11] Tucker, Mary C.;Shaw, Stacy T.; Son, Ji Y. and Stigler, James W. (2022,) Teaching
Statistics and Data Analysis with R. Journal of Statistics and Data Science Education

16


	Introduction
	Creation and manipulation of data
	Vector
	Matrix
	The factors
	Object lists

	Useful functions
	Vector manipulation
	Finding elements in a vector
	District
	Descriptive statistics
	Matrix Operations
	External product

	Graphics
	Functions
	Control Structures
	Conditional execution
	Loops

	Conclusions

