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Abstract

Much of the literature emphasizes the relationship between interdisciplinarity and the Sustainable

Development Goals (SDGs), which are seen as closely linked and highly interdisciplinary. Therefore,

innovation related to the SDGs is expected to be technologically diverse, especially when it emanates

from academia, where teams of researchers collaborate to create innovation for the benefit of society.

However, research on innovation for the SDGs is still in its infancy due to a lack of comprehensive

quantitative analysis about its characteristics and a lack of consideration of potentially relevant actors,

such as universities. This paper aims to make a threefold contribution to the existing literature by

analyzing USPTO patent data from 2006 to 2020. First, we develop a novel method for tagging

SDGs-related patents using an unsupervised natural language processing (NLP) approach. Starting

from an initial list of keywords, we build an extended dictionary of keywords for each SDG based on

the patent text by combining the TF-IDF method with a vector representation of the patent text and

SDGs keywords. Second, we analyze innovation related to the SDGs, focusing particularly on the

contribution of universities. Third, we compare the diversity of SDGs and non-SDGs patents using the

Rao-Stirling index. Our results show that patents related to the SDGs are on the rise, but the trend

is more pronounced for universities, where the majority of innovation production revolves around

SDG 3 (good health and well-being). Moreover, the rise in SDGs patents seems to be led not only by

green technologies, but mainly by high technologies. Eventually, the empirical results point in two

directions. On the one hand, SDGs related patents are more diverse than their counterparts across

almost all technology sectors. However, if we consider university patents only, there is a diversity

premium only for a few SDGs, namely SDG 2, SDG 3, and SDG 15.
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1 Introduction

The Sustainable Development Goals (SDGs) aim to address the complex challenges of our century through

167 interlinked and interdisciplinary targets; progress on one goal depends on and influences other goals.

For example, developments in agriculture towards zero hunger (SDG 2) depend on affordable and clean

energy (SDG 7), while also reducing inequalities (SDG 5 and SDG 10) and protecting life on land (SDG

15) and in water (SDG 14). The use of technology and innovation is crucial to achieving the goals of the

SDGs, as it fosters the knowledge economy and the resulting creation of inventions that can help decouple

economic growth from the risk of environmental and social crises and improve living conditions in areas

such as the environment, energy, medicine and transport (Blohmke, 2014; Walz et al., 2017). In this sense,

technological development can unleash its potential for systemic change while having a positive impact

on the environment and society (Deuten, 2003). The importance of science, technology and innovation

to reach the SDGs has been stressed in the UN official documents where they are intended to boost the

capacity of countries to change the current trajectory and accelerate progress toward a sustainable future

(UN, 2020). However, there is no direct reference to IP in the goals and targets of the 2030 Agenda, with

the exception of paragraph 3.b of Goal 3, nor any IP-related indicators in the current Global Indicator

Framework. Therefore, in this research we contribute to reduce this gap, proposing a novel methodologies

to map patents to the SDGs, adding evidence about the relationship between IP and SDGs.

Although the literature linking interdisciplinarity to the SDGs is extensive, less attention has been

dedicated to the characteristics of innovation in the context of the SDGs (van der Waal et al., 2021;

Hajikhani and Suominen, 2021) and recent studies do not consider potentially relevant stakeholders

such as universities, which are expected to contribute to the achievement of the SDGs through a mix of

education, research and innovation (Owens, 2017; Sánchez-Carracedo et al., 2021; Kopnina, 2020). Further,

a popular view is that exploiting a single domain promotes "one way of thinking, damping creativity,

while combining knowledge from diverse and distant domain leads to more breakthrough innovation."

(Hargadon and Sutton, 1997; Ahuja and Morris Lampert, 2001). This has been proven to be the case

for green technologies, which are characterized by intrinsic complexity and therefore result from the

integration of different and heterogeneous technologies and knowledge sources (Quatraro and Scandura,

2019; Barbieri et al., 2020; Fusillo et al., 2020). Therefore, this research builds on the green innovation

literature and explores the characteristics of SDGs-related innovation, which includes not only green

innovation but also the so-called "blue" innovation which relates to unmet sustainable development needs,

such as reducing poverty and hunger, promoting health and well-being, education, biodiversity, water

and sanitation (van der Waal et al., 2021). In particular, we investigate if SDGs-related innovation is

more diverse than its counterpart, as this information might add on the debate about the best policy

intervention to foster the development this kind of technologies.

In addition, considering that universities and research centers around the world have made significant
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progress in establishing collaborative, interdisciplinary initiatives in sustainability science thanks to their

more diverse knowledge and skills base (De Marchi, 2012; De Marchi and Grandinetti, 2013) , this research

also examines whether universities are able to exploit their favorable position to produce more diverse

innovation when it is linked to the SDGs.

Thus, the contribution of this paper to the literature is threefold. First, exploiting the textual part of

patents (title, abstract and claims), we develop a novel methodology for tagging SDGs-related patents

through an unsupervised natural language processing (NLP) approach; starting from a pre-validated list

of keywords, we create a keywords’ dictionary for each SDG based on patent text. To do that, we combine

the TF-IDF (Term Frequency-Inverse Document Frequency) method with a vectorial representation of

patent text. Thanks to the enriched vocabulary, we manage to better identify those patents that were

missed in the initial matching due to the peculiarities of the legal jargon characterizing patents in general,

but especially claims (Bonino et al., 2010; Tseng et al., 2007). This is, to our knowledge, one of the first

attempts to create a proxy measure to analyse the progress towards the SDGs in the innovation system.

Second, we are among the first to analyse innovation related to each SDG, providing original descriptive

evidence about that; then we empirically compare the diversity of American SDGs and non-SDGs patents

across the main technological classes.

Third, we provide evidence about American universities SDGs patent portfolios composition and

investigate whether and for which specific SDGs, there is a diversity premium.

Our results show that, overall, patents related to the SDGs are on the rise, but the trend is more

pronounced for patents owned by universities, highlighting that universities are increasingly aware of their

role in the sustainability journey; however, most of the production of university patents related to the

SDGs seems to revolve around SDG 3 (good health and well-being). Overall, the rise of SDGs patents

seem to be led not only by green technologies, but mostly by high technologies, a relationship which has

been underestimated by the literature (Vinuesa et al., 2020; Kostoska and Kocarev, 2019). Furthermore,

we prove that SDGs related patents are more diverse than non-SDGs patents across most of the main

technological fields. Although the role of universities in providing an interdisciplinary perspective to

the SDGs is highlighted in the literature, university patents only have a diversity premium for few of

the SDGs (namely SDG 2, SDG 3, and SDG 15). This may suggest that interdisciplinarity is seen as a

valuable resource in universities, but paradoxically it is more difficult to achieve in sustainable innovation.

The rest of the paper is organized as follows: Section 2 presents the theoretical background and the

research hypotheses, Section 3 presents the Research Design, Section 4 shows the main results and Section

5 concludes.
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2 Theoretical Background and hypotheses development

2.1 Intellectual property and the SDGs

Intellectual property (IP) is a critical incentive for innovation and creativity, which are key to achieving

the Sustainable Development Goals (Walz et al., 2017; Cordova and Celone, 2019). Only through human

ingenuity it is possible to develop new solutions not only to promote economic growth, but also to

eradicate poverty, increase agricultural sustainability and ensure food security, combat disease, improve

education and equality, protect the environment, and accelerate the transition to a low-carbon economy to

combat climate change and preserve biodiversity (Rimmer, 2018). From this perspective, innovation and

creativity are not goals in themselves; they are methods and tools for innovative solutions to development

problems and, because they are at the core of the system, have an impact on a number of SDGs. As

such, technologies are deemed to directly impact SDG 2 (zero hunger) (Blakeney, 2009; Oguamanam,

2006), SDG 3 (good health and well-being) (Abbott, 2002), SDG 6 (clean water and sanitation), SDG

8 (decent work and economic growth) and SDG 9 (industry, innovation and infrastructure) (WIPO,

2019). In addition, increasing the share of environmental oriented technologies is essential to achieve

SDG 7 (affordable and clean energy), SDG 11 (sustainable cities and communities), SDG 12 (responsible

production and consumption), SDG 13 (climate action), SDG 14 (life under below water) and SDG

15 (life on land) (Henry and Stiglitz, 2010; Rimmer, 2014). Further, the so-called "blue" technologies,

namely those aiming at "improving conditions" (van der Waal et al., 2021) might help in achieving SDG

1 (no poverty) (Idris, 2003), SDG 4 (quality education), SDG 5 (gender equality) and SDG 10 (reduce

inequalities) (WIPO, 2019). In a perfect world, a sustainable development agenda for IP would include

a "universal call to action" to ensure that the IP system helps address the sustainability related issues

(Bannerman, 2020). However, it should be noted that there is no direct reference to IP in the goals and

targets of the 2030 Agenda, with the exception of paragraph 3.b of Goal 3, which mentions IP rights

in relation to flexibilities to protect public health. In addition, there are no IP-related indicators in the

current Global Indicator Framework adopted by the UN Statistical Commission, the UN Economic and

Social Council, and the UN General Assembly in 2017. On the one hand, the World Intellectual Property

Organization (WIPO) has considered relatively few of its activities to contribute directly to the SDGs,

limiting its contribution to explicitly acknowledge the role of IP for SDG 9 and proposing an accurate

classification of green technologies (the WIPO Green Inventory) that can be used to spot environmental

related patents which might be consistent with some SDGs objectives such as those of SDG 6, SDG

7, SDG 13, SDG 14, and SDG 15 (Walz et al., 2017; Guo et al., 2020). Consistently, several scholars

emphasize the role of green technologies in fulfilling the 2030 Agenda. For example, the study by Walz

et al. (2017) examines the dynamics of green energy and resource efficiency innovation, looking at the

position of northern and emerging economies. Instead, Guo et al. (2020) examine the characteristics
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of sustainable development in the context of green technology, using the indicators of the Sustainable

Development Goals Index (SGDI) in its environmental component. On the other hand, researchers urge a

more in-depth examination of innovation and the SDGs, particularly in relation to social issues. This call

has been echoed by scholars, such as van der Waal et al. (2021) and Hajikhani and Suominen (2021), and

practitioners; for instance, IP specialist consultancy Lex Machina recently published a study describing an

additional feature of the Lexis Nexis database to map patents connected to the SDGs. They emphasize

that mapping patents to the Sustainable Development Goals allows companies to objectively measure

progress, understand their portfolio and that of their competitors, identify licensing and M&A targets,

and assess risks and opportunities in the context of sustainable development. From a policy perspective,

SDGs patent mapping could support strategic decision-making for sustainable investment, as well as

identify gaps in sustainable technology development and the most effective innovations. This can lead

to improved sustainability-related decision making and reporting, as well as influence R&D investments

and support investment plans. Therefore, our first research contribution consists in an original attempt

of mapping of patents related to each SDG, aiming to identify the key enabling technologies, therefore

expanding the literature with new evidence about the relationship IP and the SDGs. The methodological

section (Section 3.2) provides details about the methodology through which we accomplish the task.

2.2 Technological diversity and the SDGs

Many authors believe that inventions result from the combination of existing ideas and devices (Weitzman,

1998; Arthur, 2007). Recombinant inventions are frequently referred to be breakthrough because, in

contrast to incremental innovation, merging information from various and distant disciplines nurtures

creativity and promotes innovative ideas that are more likely to result in valuable inventions (Ahuja and

Morris Lampert, 2001; Audia and Goncalo, 2007; Zhu et al., 2022). This type of innovation is consistent

with that required to address sustainability-related challenges (Lam et al., 2014; Jones et al., 2010), where

an interdisciplinary approach is required to adequately map multi-layered, complex issues, and without

such an approach, necessary solutions risk not be identified. Complex systems, such as acid rain or

rapid population expansion, are multifaceted, and standard disciplinary techniques are severely limited

in their ability to provide a full view of such phenomena by examining them from the perspective of a

single discipline. Newell et al. (2001) suggests that a complete understanding of the interrelationships

and dynamics between the various components of these complex events can be achieved by drawing on

and integrating multiple perspectives. To this end, it is necessary to combine the efforts of experts from

multiple disciplines to address the complex socio-ecological problems of our time (Morse et al., 2007).

Interdisciplinarity has already been proven as an effective means of addressing complex challenges

in the innovation system, such as those posed by climate change and environmental degradation. In

particular, the link between diversified knowledge sources and green innovation has been analyzed through
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the framework of recombinant technologies and recombinant competences (Fusillo et al., 2020; Orsatti

et al., 2020; Zeppini and van Den Bergh, 2011). For example, preliminary evidence from Fusillo et al.

(2020) showed that green technologies have a higher degree of diversity than their non-green counterparts,

reinforcing the idea that green technologies should be considered complex due to the different bodies

of technologies they combine. Further, Popp and Newell (2012) find that patents in sustainable energy

domains are cited by a variety of other technological domains.

Consistently, innovation related to the SDGs is expected to be interdisciplinary and overcome the

lack of holistic vision that often characterizes individual disciplines (Annan-Diab and Molinari, 2017).

Although van der Waal et al. (2021) confirms that green technologies are relevant for many SDGs, no

study attempts to quantitatively measure the interdisciplinarity of SDGs-related innovations, neither

those more environmentally or more socially related.

To this end, in this study we follow the framework proposed by Rafols and Meyer (2010) who define

diversity as the differences in the body of integrated knowledge that can be summarized by three attributes:

1. Variety: the number of different categories in which an element can be classified;

2. Balance: the evenness of the distribution of elements among categories;

3. Disparity: the degree of diversity between these categories.

The Rao-Stirling (RS) diversity index was originally proposed by Rao (1982) and then revised by

Stirling (2007) to consider all the above three elements simultaneously, and it is often considered in the

analysis of research interdisciplinarity, although its validity has been discussed in recent studies such as

Leydesdorff et al. (2019).

In view of this, we put forward the first hypothesis:

Hypothesis 1 (H1): SDGs related patents are more diverse than non-SDGs related ones across the

different technological fields.

2.3 The role of American universities for SDGs

Universities are fundamental actors in the innovation ecosystem, which are expected to have a "public

mission" which consists of providing knowledge, critical thinking, and technological advances to tackle

society’s fundamental problems (Winickoff, 2013; Papadimitriou, 2020). In particular, since the Bayh-Dole

Act, American universities have been encouraged to pursue the so-called “third mission”, maximizing the

societal benefit of technology they produce (Lemley, 2007). Therefore, the third mission of contemporary

universities includes fostering the achievement of the SDGs (Lozano et al., 2013; Ceulemans et al., 2015;

Blasco et al., 2020). Education, research and innovation are the three areas where universities play a

vital role in putting society on the path of sustainable development (Körfgen et al., 2018; Leal Filho
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et al., 2019). While there are extensive studies in the literature about implementation of SDGs into

university curricula (Albareda-Tiana et al., 2018; Álvarez et al., 2021; Sánchez-Carracedo et al., 2021;

Thomas, 2016), academic research about the SDGs is expected to use a transformative approach which

brings together different fields of study and uses interdisciplinarity as a "competitive advantage" to address

complex societal challenges (Leal Filho et al., 2019). To this end, universities and research centers around

the world have made significant progress towards establishing collaborative, interdisciplinary initiatives

in sustainability science (Hernandez-Aguilera et al., 2021). This idea is consistent with the momentum

that interdisciplinary research (IDR) is having in universities, producing wide-ranging scientific advances

and leading to the establishment of interdisciplinary research centers (Biancani et al., 2018). Although

interdisciplinarity research of SDGs is a trending topic (El-Jardali et al., 2018; Kestin et al., 2017),

quantitative contributions on this topic are still scarce.

Further, the role of scientific research by universities to achieve the SDGs is not limited to a "knowledge

phase", where research is conducted to answer the question "what is at present", but it includes a

"technological phase" as well, where universities develop technological solutions to solve specific SDGs

challenges (Kestin et al., 2017). Therefore, the research function of universities is closely linked to

the production of innovation. Recently, universities have been shown to be particularly important

in the development of environmental innovations because they accumulate a wide range of expertise

and competencies that are distributed across different organisations (De Marchi, 2012; De Marchi and

Grandinetti, 2013). Because of their particular educational endowments, inventors within universities are

thought to have diverse knowledge bases and skills that enable them to successfully recombine bits of

knowledge from different technological fields domains (Quatraro and Scandura, 2019).

Based on this conceptual background, we intend to analyze the production of innovation of American

universities related to the SDGs, to check whether the interdisciplinary environment that contemporary

universities are deemed to foster has an impact on the technological diversity of university produced

innovation; thus, we put forward our second hypothesis:

Hypothesis 2 (H2): University patents related to each of the SDGs are more diverse compared to other

university patents.

3 Research Design

3.1 Patent data collection

We use as a source of data for this research the information in patents granted at USPTO, considering

them as a viable proxy to study the domain of technological domains in the knowledge economy (Jaffe

and Trajtenberg, 2002). In order to use patents filed at USPTO, we relied on Patents View (Version

2021) where we collected all patents granted from 2006 to 2020. The Patents View platform is built on a
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Figure 1: Flowchart of SDGs related patent identification

Notes: The flowchart represents the research design of this work, emphasizing the four steps that compose the SDG tagging
process: i) the first round of patent tagging using the original keywords lists, ii) the tf-idf keywords expansion, iii)the cosine-
similarity based keywords selection iiii) the final round of patent tagging

regularly updated database that longitudinally links inventors, their organizations, locations, and overall

patenting activity and reports the name(s) of first assignee(s), while the US Patent Assignment Database

contains detailed information on patent assignments and other transactions recorded at the USPTO. The

data collected from Patents View include general information about the patents (patent identification

code, grant date), patent text (title, abstract and claims)1, the IPC and WIPO classes associated with

each patent. Information about patent quality is retrieved from OECD 2021 patent quality dataset.2 Our

analysis includes the specific subset of American universities’ patents, defined as those having at least

one university among the assignees in the patent history. After merging together the general information

about patent text, the dataset has 85’169 patents including US universities among their applicants granted

in the time range from 2006 to 2020.

3.2 Tagging SDGs related patents

We approach the research questions exploring SDGs-relevant innovations using patent data and a textual

analysis of their content. To identify patents related to interdisciplinary or integrated technologies or
1Two tables were used to collect the textual part of the patents. The first table is “patent.tsv” where it

is possible to find information about abstract and title of patents; then, the claims information was retrieved
joining each year’s claim table from Patents View to the patents.tsv table. The data is free and accessible at
https://patentsview.org/download/data-download-tables

2The OECD patent quality dataset (version 2021) is available upon request at
https://www.oecd.org/sti/inno/intellectual-property-statistics-and-analysis.htm
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emerging products, keyword search can be used as an effective method (Xie and Miyazaki, 2013). Patent

documents are divided into several elements, including title, abstract, claims, and description, and since

their purposes differ, their sentence structures and vocabulary also differ from each other. First, the

title and abstract use distinctive and significantly differentiated words to properly express the relevant

technologies, but are short and lack specific details about them. On the other hand, the claims are more

complete and explicitly describe the related technical features to ensure complete legal protection, which

is essential for patents (Noh et al., 2015). Previous work by van der Waal et al. (2021) and Hajikhani and

Suominen (2021) also used patent text to map patents to the SDGs. In particular, the former use direct

keyword matching from an initial keyword list and then label the green and "blue" (socially oriented)

patents relevant to the SDGs; the latter propose a supervised machine learning approach instead: first,

they create a dictionary of SDG-relevant keywords from UN SDGs documents, then they use it to identify

relevant publications in the SCOPUS database. Second, they preprocess the text and convert it into a

TF-IDF matrix, to create word embeddings to be used for classification. After validating the model, their

classifier is trained on labeled publication data to predict the vector of probabilities that a patent belongs

to each of the SDGs. However, they are not able to evaluate the quality of their patent results because

they lack a ground truth on patent data (they only have pre-labeled data on publications and not on

patents). In line with the previously mentioned literature, we perform a text analysis of the title, abstract

and claims of patents, which are considered by the authors to be the most appropriate parts of the text

for performing a quantitative analysis and a keyword search to avoid type I errors (missing patents that

should be identified) and type II errors (retrieving irrelevant patents) (Xie and Miyazaki, 2013).

3.2.1 First round of matching and TF-IDF

As reported in Figure 1, the first step for tagging SDGs related patents consists of a direct matching

between a corpus generated from joining each patent title, abstract and claims and 16 lists of keywords

related to the SDGs (one for each SDG expect for SDG 17 which focuses on strengthening the partnerships

to reach the other goals, thus is omitted from this analysis) developed by the University of Auckland

SDGs keywords mapping research project 3. The choice of this keyword list is due to its completeness,

considering it combines Elsevier’s queries, a subset of Sustainable Development Solutions Network (SDSN)

and UN queries. Moreover, the list was generated using a text mining approach on academic publications,

hence we selected it also for its consistency with the methodology proposed in this research.4 Through

this first round of matching, we are able to tag 426’863 patents related to at least one SDG as those

that have at least one keyword from the corresponding list in their text.5 However, considering that the
3More information on the project is available at https://www.sdgmapping.auckland.ac.nz/
4In particular, the list was made applying an n-gram model to mine the abstracts of academic publications, in order

to identify relevant sequences of words. Afterwards, n-gram tokens were then scored by a range of factors, including
counts and measures of frequency, and were then ranked by those scores. Keywords with a high rank were then evaluated
in more detail and manually reviewed to confirm that they were relevant to the Goal in question.

5Considering the overlapping among SDGs (Nilsson et al., 2016), some keywords might be repeated in different lists.
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keywords lists are based on academic publication text as well the peculiarities of patent texts and their

specific legal jargon (especially in the claims) and the technical words that are not common in everyday

language (Bonino et al., 2010; Tseng et al., 2007), we decided to perform a keyword extraction procedure

to avoid type I errors as much as possible. The criteria for selecting keywords from a document may also

vary. For example, words that occur most frequently in certain documents may be considered critical, or

words that fit well with the main topics of the document are often assumed to be important. In general,

while words that occur frequently in patent documents are likely to be representative keywords, those that

occur too frequently in such documents are also likely to be general words that occur in all documents

rather than representative words that allow specific patents to be identified. Noh et al. (2015) sought

to identify the most effective keyword strategy for text mining-based patent analysis by evaluating and

verifying the most commonly used keyword selection and processing methods in existing studies. Their

results highlight TF-IDF (Term Frequency-Inverse Document Frequency) as the best performer because

it has the lowest entropy values. The term frequency (TF) is the number of times a term appears in a

document and is calculated as follows:

tfij = nij

|dj |
(1)

tfij stands for the number of occurrences of word i in document j and |dj | is the dimension, expressed by

the number of words of j. Inverse Document Frequency (IDF) measures the rarity of a term in the whole

corpus. It is calculated as follows:

idfi = log10
|D|

|d : iϵd|
(2)

where the denominator is the number of documents containing i. The concepts of term frequency and

inverse document frequency are combined, to produce a composite weight for each term in each document,

with the following formula:

tf − idf = tfij ∗ idfi (3)

In this way, the TF-IDF method can retrieve important keywords that are closely related to a representative

technology while avoiding general terms in the corpus (Usui et al., 2007). Thus, TF-IDF allows us to

score each word in each patent document according to its weight both in the single patent text and in the

whole collection of texts. For this analysis, we performed TF-IDF separately for each SDG, considering

each SDG as a separate collection of texts.6

3.2.2 Keyword selection through cosine similarity and second round of matching

To evaluate the effectiveness of TF-IDF, we confronted the resulting extra keywords with the original

lists. To make the comparison, we selected the 10 most relevant keywords for each patent according to
6In this research, Python scikit-learn library is used to carry out the tf-idf because it considers also bi-grams and

tri-grams that are more common than monograms in the original SDGs lists.
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their score and we compared them with the keywords in the original lists that had at least one match

in any patent text. The results confirm the validity of TF-IDF: more than half of the keywords scored

among the top 10 for each patent are also in the original SDGs lists, hence confirming the validity of

this unsupervised method. Moreover, a further step of selection was needed to choose among the top

10 scored keywords per patent the most relevant ones to expand the original SDGs dictionaries. To do

that, we took advantage of the vectorial representation of words elaborated by a pre-trained transformer

based neural network (SentenceTransformers)7, a kind of technique which has already demonstrated huge

potentialities for patent analysis (Li et al., 2018; Chen et al., 2020; Roudsari et al., 2021). For each SDG,

we compared the n-dimensional vector representing each keyword in the original list to the n-dimensional

vector representing each word in the top 10 words per patent according to TF-IDF score. Among them,

for each keyword in the original lists we selected the closest 3 in terms of cosine similarity.8 Therefore,

exploiting the vectorial representations of patents and their spatial and semantic closeness, as measured

by cosine similarity, we are able to enlarge the original dictionaries with two different types of keywords:

1. Keywords which enrich concepts already present in the original list with semantically relevant

keywords/synonyms (e.g., in the original list of SDG 9-Industry, Innovation and Infrastructure-

there is the keyword "Sustainable Industrialization" whose closest keywords are "industrial waste"

and "renewable", which are semantically close ideas; or, in SDG 3- Good Health and Wellbeing- the

keyword "Sexual Health" has as closest keywords "sexual disorders" and "reproductive health").

2. Keywords which specify concepts and ideas already present in the original list with more technical

wording (e.g., "Photochemistry" is a keyword present in the original list of SDG 7-Sustainable

Development- and one of the closest identified keywords is "photocatalysis"; or in SDG 13-Climate

Action- the bigram "greenhouse gas" has as closest keyword "CO2" which is the primary greenhouse

gas emitted through human activities).9

Table 8 in the Appendix gives further detail about the results of the two rounds of matching. In particular,

in the second round of matching, using the keywords derived from TF-IDF and selected through the

cosine similarity method, we are able to add 1’784 keywords that produce a match in our patent record.10

The total number of SDGs related patents identified is 693’571.11

7SentenceTransformers (https://www.sbert.net/) is a modification of the pretrained BERT network that use siamese
and triplet network structures to derive semantically meaningful sentence embeddings that can be compared using cosine-
similarity. The main advantage of the model is that it is optimized to calculate cosine similarity, while maintaining the
accuracy from BERT. Further information on the architecture is available in the work of Reimers and Gurevych (2019).

8Cosine similarity measures the cosine of the angle between two vectors, whose values range between -1 and 1. It is
widely used as technique to assess semantic similarity between two documents, including patents’ text. For instance see
recent work by Rogers (2020) and Feng (2020)

9For each SDG, the enlarged list of keywords is available upon request.
10Based on the frequencies of the matched terms we excluded 34 noisy keywords, derived from the TF-IDF. We de-

cided, for each SDG, to exclude from the keywords those whose matching frequency was higher than the average fre-
quency of all terms.

11As robustness check for this results, we compared the number of SDGs related patents to the number of green
patents (as defined by two established international classifications, both based on the International Patent Classification
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Table 1: Number of SDGs related patents and % by assignee type

SDG all-assignees % on tot.patents %_all_SDG univ-assignee %_tot_univ %_SDG univ
SDG1 66’998 1,8 9,7 1’093 1,3 4,3
SDG2 39’367 1,1 5,7 2’193 2,6 8,7
SDG3 101’129 2,8 14,6 13’486 15,8 53,4
SDG4 46’255 1,3 6,7 1’533 1,8 6,1
SDG5 135’821 3,7 19,6 3’712 4,4 14,7
SDG6 18’712 0,5 2,7 663 0,8 2,6
SDG7 85’761 2,4 12,4 2’801 3,3 11,1
SDG8 23’294 0,6 3,4 520 0,6 2,1
SDG9 26’271 0,7 3,8 552 0,6 2,2
SDG10 8’156 0,2 1,2 77 0,1 0,3
SDG11 235’204 6,5 33,9 2’387 2,8 9,5
SDG12 31’708 0,9 4,6 819 1 3,2
SDG13 12’426 0,3 1,8 255 0,3 1
SDG14 8’949 0,2 1,3 249 0,3 1
SDG15 10’211 0,3 1,5 358 0,4 1,4
SDG16 11’306 0,3 1,5 187 0,2 0,7

Notes: The table represents the number and percentages of patents for each SDG. In particular, the second column shows the
total number of patents for each SDG considering all the patents in our sample. The third column shows the percentages of
each SDG patents on the total number of patents. The fourth column instead shows the percentage of each SDG on the total
of all SDGs patents. The last three columns respectively represents the total number of each SDG related patent in university
patents, the percentage on the total number of university patents and eventually the percentage of each SDG on the total
number of university SDG patents. The sum of the percentages are greater than the unity because each patent can be assigned
to more than one SDG at the same time.

3.3 SDGs related patents

Through the two rounds of matching, we are able to identify 693’571 SDGs related patents. Figure 2

depicts the trends in SDGs related patents granted from 2006 to 2020. The green line refers to the share of

SDGs related university patents on the total of university patents for each year of the range, while the red

line depicts the share of non-university SDGs related patents on the total of non-university patents. The

share of university patents related to the SDGs is greater than the non-university counterpart, peaking at

33% in 2019, while patents related to the SDGs filed by other actors rise up to around 21%. Further, Table

1 presents the total number of SDGs related patents and the percentage of each SDG over the total of

patents (Column 3) and the total of university patents (Column 6). Column 4 and Column 7 respectively

report the composition of SDGs patents with respect to each SDG in the total number of patents and of

university patents. The results presented in the Table 1 highlight the differences between production of

SDGs related innovation in American universities and considering all US assignees. The biggest difference

is represented by SDG 3 which is prominent in the total SDG landscape with a share of almost 15 %,

but predominant in university innovation production, representing around 53 % of all university patents

related to the SDGs. Universities also seem to focus more on SDG 2 (almost 9 % vs 6 % in all patents).

This figure is to some extent consistent with the results of van der Waal et al. (2021) who find, using

EPO patent data, that the most important contribution of multinational corporations is related to SDG

3. Figure 3 represents the percentage of patents, for each SDG, belonging to the top 10 most common

(IPC): WIPO IPC Green Inventory (WIPO, 2012) and OECD ENV-TECH (Haščič and Migotto, 2015) and to the num-
ber of circular economy patents, as defined in Fusillo et al. (2021). In our data, almost 34% of green patents and 63% of
circular economy patents are identified also as SDGs-related patents.
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Figure 2: Trends in SDGs related patents

Notes: This distribution is related to all university owned patents in the time range 2006-2020.

IPC codes. We observe that, on the one hand, out of the 10 codes, only 4 are identify green patents,

namely H01L, H01M, C12N and G06Q according to the classification of the WIPO Green Inventory. It is

to be noted that green IPC codes stand out more in SDGs related to environmental innovation. On the

other hand, most of the SDGs seem to be associated with the G06F class which is related to computer

systems based on specific computational models and with the H04L class which covers the transmission

of digital information. Both of these classes belong to the high-tech IPC classification12The definition

of high-technology patents proposed by Eurostat uses specific subclasses of the International Patent

Classification (IPC) as defined in the trilateral statistical report of the EPO, JPO and USPTO. The

list is accessible at https://ec.europa.eu/eurostat/cache/metadata/Annexes/pat_esms_an2.pdf Another

relevant technological class for some of the SDGs, especially for SDG 3, is A61K, which refers to medical

preparations and pharmaceutical products. These results are especially interesting considering that

currently the IPC classes related to sustainable development are limited to green technologies and do

not cover “improved conditions” and social sustainability, which is currently possible to identify through

semantic search.

3.3.1 Universities’ SDGs related patents

This research has a special focus on universities’ SDGs innovation. To this end, we identify 25’247 SDGs-

related university owned patents. Figure 4 is a network where each of the 25’247 university SDG-related
12.
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Figure 3: Top 10 most comment 4-digit IPC codes for SDGs related patents

Notes: The figure represents the percentage of patents, for each SDG, belonging to the top 10 most frequent 4-digit IPC codes in
the total distribution. The bubbles are proportional to the percentage and each color is linked to a specific IPC code.

Figure 4: SDGs cosine similarity network (university patents only)

Notes: The figure represents a section of a network where each patent of the 25’247 identified SDGs university patents is a node
and the edges’ length is proportional to the cosine distance between each couple of patents. For the purpose of clarity, we plot
only the edges where the cosine similarity is above a threshold of 0.6.
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Table 2: Top 15 universities for share of SDGs related patents

University No. patents SDGs No. patents % SDG
Johns Hopkins University 620 1’691 37
University of South Florida 427 1’145 37
New York University 339 925 37
Duke University 314 897 35
University of North Texas 562 1’661 34
University of Florida 323 1’038 31
Ohio university 842 2’787 30
Cornell University 359 1’185 30
University of Illinois 290 967 30
University of California 2’136 7’500 28
Michigan State University 345 1’269 27
Stanford University 677 2’597 26
University of Wisconsin Madison 375 1’530 25
Massachusetts Institute of Technology 733 3512 21
California Institute of Technology 337 1’945 17

Notes: The ranking is based on the number of USPTO patents held by American universities in the 2006-2020 time span.

patents is a node and the edges are weighted according to the cosine similarity among the vectorial

representation of each patent. From the graph it is clear that university SDGs innovation production

mostly revolves around SDG 3 and SDG 2 and, interestingly, the patents related to both are semantically

closer one another. This might be a hint about the diversity of these patents, which will be verified through

the econometric estimations in Section 3.6. Table 2 reports the top 15 universities in terms of SDGs related

patents in the time span 2006-2020. In absolute numbers, the best performer is University of California

with 2’136 SDGs related patents. However, looking for universities with the highest share of SDGs related

patents the best performer are the Johns Hopkins University, the University of South Florida and the New

York University with a share of around 37% SDGs related patents. Figure 5 shows the percentage of the 5

WIPO classes composing each of the 16 SDGs. Chemistry seems to be the prevailing class in almost all

the SDGs, especially for SDG 2 (Zero Hunger), SDG 3 (Good Health and Wellbeing) and SDG 6 (Clean

water and Sanitation) where the Chemistry share is around 75%. This seems reasonable, considering

health and sanitation are both fields where chemical technologies are fundamental. Furthermore, SDG 7

(Affordable and Clean Energy) and SDG 9 (Industry, Innovation and Infrastructure) have the greatest

share of Electrical Engineering patents, around 50%. This is consistent with the fact that, being focused

on innovation, SDG 9 includes many ICT related technologies. At the same time, ICT technologies seem

to be relevant also for more socially oriented goals, such as SDG 16 (Peace, Justice and Strong Institutions)

and SDG 8 (Decent work and Economic Growth).

3.4 Technological diversity of patents through Rao-Stirling index

As mentioned before, interdisciplinarity can be decomposed in three main components: variety, balance

and disparity (Leydesdorff, 2018; Wang et al., 2015), which are accounted for in the Rao-Stirling index.
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Figure 5: SDGs technological class composition

Notes: The graph represents the technological composition in percentage of each SDG (SDG 1 to SDG 16) according to the five
WIPO technological classes (Chemistry, Electrical Engineering, Instruments, Mechanical Engineering and Other fields).

The Rao-Stirling index has been widely used to measure diversity and in general interdisciplinarity (Porter

et al., 2007; Porter and Rafols, 2009). The indicator is defined as follows:

∆ =
∑

ij

pipjdij (4)

where dij is a measure of cognitive distance between classes i and j and pi and pj are the proportions

of elements assigned respectively to class i and j. Considering patents as our work unit, the classes are,

in this case, 4-digits-IPC codes to which patents are co-assigned. Thus, the diversity of each patent is

calculated as the proportion of IPC4 codes weighted by their cognitive distance.

The first step is calculating the cognitive distance. This research uses co-classification, the frequency

with which two classes are assigned to a patent, as a measure of cognitive distance (defined also as

‘proximity’). Considering a patent usually belongs to multiple classes, scholars have often used co-

classification of patents to develop indicators of distance among technological fields (Engelsman and

van Raan, 1994). The underlying assumption is that if the frequency with which two classes are jointly

assigned is high, these two classes are proximate (Yan and Luo, 2017). Thus, we use co-occurrences

between IPC4 codes as a measure of cognitive distance, creating a symmetric co-occurrence matrix C in

which each term Cij represents the number of patents linked to IPC class i and j.

However, the recent work by Alstott et al. (2017) highlighted that all the measures of technology

proximity might be affected by factors other than the technologies themselves. In the case of measures of

co-occurrence, the authors claim that the simple number of occurrences can be considered as an impinging

factor. In particular, the probability that two classes co-occur in the same patent depends on the number

of classes that are associated with a patent and the number of patents that are associated with a certain

technological class. Bottazzi and Pirino (2010) propose to overcome this issue comparing the observed
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co-occurrence against the null hypothesis in which the co-occurrences of classes are randomly distributed,

preserving, at the same time, both the number of occurrences of a class and the number of classes that are

associated with the selected patent. Alstott et al. (2017) propose to verify this null hypothesis creating

1000 randomized control matrices in which the number of occurrences of each class and the number of

patents per class are preserved. However, the two constraints proposed by Bottazzi and Pirino (2010) are

consistent with the moments (such as mean and standard deviation) of a hypergeometric distribution

as explained in the seminal work of Teece et al. (1994). Hence, under the assumption of joint random

occurrences and hypergeometric distribution, the mean and the standard deviation are calculated as

following:

µ = CiCj

N
(5)

σ2
ij = µij(N − Ci

N
)(N − Cj

N − 1 ) (6)

Where N is the number of patents, Ci and Cj the numbers of patents respectively linked to class i and

class j. The relation between class i and j can be express through a z-score, where Cij is the empirical

co-occurrence value between class i and j:

rij = Cij − µij

σij
(7)

Calculating term r for every couple of IPC classes we obtain a matrix Rij and using a cosine normalization,

we obtain a Sij matrix whose values range from 0 to 1. At this point, it is possible to calculate the

cognitive distance for each patent, through the following:

dij = 1 − sij (8)

whose result is used to weight the proportion of technologies in Rao-Stirling index.

3.5 Technological diversity assessment

Figure 6 represents the average of Rao-Stirling index, calculated as previously mentioned and plotted

for the time range 2006-2020. The green line represents the trend of university patents related to SDGs,

while the blue line represents university patents not related to SDGs. University patents (blue and green

lines) are, on average, more diverse compared to non university patents (red and orange lines). This might

be explained considering that diverse innovation, such as the one required by SDGs, might be better

tackled by collective efforts of universities and research institutions where teams of inventors collaborate to

generate innovation rather than individual inventors (Quatraro and Scandura, 2019; Orsatti et al., 2020).

Furthermore, patents related to SDGs seem to be slightly more diverse compared to non-SDG related
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Figure 6: Rao-Stirling index

Notes: The graph represents the yearly average of Rao-Stirling index for patents granted between 2006 and 2020.

patents for both university and non-university patents. In particular, university patents perform the best

in terms of diversity from 2015 (the year of the adoption of the Agenda for Sustainable Development and

of the SDGs). These findings will be further explored through the econometric models presented in the

following section.

3.6 Empirical Strategy

3.6.1 Diversity of SDGs vs non-SDGs related patents across different technological fields

In order to empirically test Hypothesis (1) we estimate the following model:

∆i = α + β1SDGi + β2inventorsi + β3familySizei

+β4backCitsi + β5claimsi + β6univi + IPC.3digiti + ti + wi + ϵi

(9)

The dependent variable is ∆i, the Rao-Stirling diversity index and our focal explanatory variable is

SDGi, taking value 1 if the patent is related to SDGs and 0 otherwise. The model includes controls for

the number of claims (claimsi) and the number of backwards citations (backCitsi), as well as for the

number of distinct inventors (inventorsi), family size (familySizei), which can be linked to the degree

of diversity, and for the fact of being owned by a university (univi). To account for time varying effects

we include a set of 15 dummies for the 15 years span considered (ti) and a set of state controls to account

from geographic heterogeneity within the US (wi); to account for technological heterogeneity instead,

we add narrow technological controls (IPC.3digiti) which is a set of IPC 3-digit dummy variables that

capture the specific features of each technological domain. We include the latter control following the

suggestion of Barbieri et al. (2020) to increase the robustness of the analysis by eliminating the risk of the
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coefficient of SDG variable being driven by effects that are related to the different technological fields.

The estimation could be biased by ignoring the peculiarities of technological areas, such as the availability

of consolidated previous work and the inclination to rely on a broader knowledge base. However, it should

be noted that adding these dummies, limits the analysis to those IPC 3-digit codes that include at least

one SDG and one non-SDG patent.

Furthermore, all reported standard errors are heteroskedastic robust. Considering our dependent

variables ranges between 0 and 1 and there is no consensus about the econometric specification for this

kind of dependent variable, the best choice seems to carry out the estimation through OLS regression

(Fusillo et al., 2020). Furthermore, we take into account that the sample of considered patents might

be highly heterogeneous in terms of patent characteristics and to partially tackle this issue, the analysis

is conducted considering separately the 5 WIPO technological macro field (Chemistry, Mechanical

Engineering, Instruments, Electrical Engineering and Other).

3.6.2 Diversity of university patents related to the SDGs

After testing for the technological diversity of SDGs related patents, we specifically focus on American

universities patent portfolios, to check whether university patents related to each SDG have a diversity

premium. Thus, in order to empirically test Hypothesis (2) we estimate the following model using

university owned patents only:

∆i = α + β1SDG1i + β2SDG2i + β3SDG3i + β4SDG4i + β5SDG5i + β6SDG6i + β7SDG7i

+β8SDG8i + β9SDG9i + β10SDG10i + β11SDG11i + β12SDG12i + β13SDG13i + β14SDG14i

+β15SDG15i + β16SDG16i + β17inventorsi + β18familySizei

+β19backCitsi + β20claimsi + β21renewali + ti + wi + ϵi

(10)

The dependent variable is ∆i, the Rao-Stirling diversity index and each of the focal explanatory

variables (SDG1i to SDG16i) is a dummy taking the value 1 if the patent is related to corresponding

SDG. The controls are the same as presented in Section 3.6.1.

4 Results

4.1 Technological diversity of SDGs-related patents

Section 2.2 and Section 2.3 put respectively forward the two hypotheses of the present research. The first is

that SDGs related patents are more diverse than non-SDGs related ones across the different technological

fields. The second hypothesis is that university patents related to the SDGs are more diverse compared to

other university patents. Table 3 presents the descriptive statistics. Further, Table 9 in Appendix presents
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Table 3: Descriptive statistics (2006-2020)

Obs Mean SD Min Max
Rao Stirling 3’640’513 .022 0.059 0 .386
SDG 3’640’513 .191 0.393 0 1
SDG 1 3’640’513 .018 0.134 0 1
SDG 2 3’640’513 .011 0.103 0 1
SDG 3 3’640’513 .028 0.164 0 1
SDG 4 3’640’513 .013 0.112 0 1
SDG 5 3’640’513 .037 0.190 0 1
SDG 6 3’640’513 .005 0.072 0 1
SDG 7 3’640’513 .024 0.152 0 1
SDG 8 3’640’513 .006 0.080 0 1
SDG 9 3’640’513 .007 0.085 0 1
SDG 10 3’640’513 .002 0.047 0 1
SDG 11 3’640’513 .065 0.246 0 1
SDG 12 3’640’513 .009 0.093 0 1
SDG 13 3’640’513 .003 0.058 0 1
SDG 14 3’640’513 .002 0.050 0 1
SDG 15 3’640’513 .003 0.053 0 1
SDG 16 3’640’513 .003 0.056 0 1
Family Size 3’303’762 3.747 3.788 1 57
Inventors 3’640’513 2.759 1.944 1 133
Backward cits. 3’303’762 27.603 75.379 0 858
Claims 3’303’728 16.708 10.580 1 803

Notes: Unit of observation: patent. Grant years: 2006-2020

the pairwise correlations.

Table 4 presents the results related to the first hypothesis. Columns 1, 2, 3, 4 and 5 report the estimates

for the 5 WIPO technological sectors. The SDG coefficient is positive and signficant in all the cases expect

for the Chemistry field where it is significant and negative. Thus, this first set of results mostly confirm

our first hypothesis, showing that SDGs related technologies are more diverse as compared to non-SDGs

related inventions.

Table 5 presents the results related to the second hypothesis, shedding light on the interplay between

university patents, technological diversity and SDGs. Considering SDGs cover wide and distinct areas of

knowledge and technologies, it is worth observing them separately. The results show that, when looking

at university patents only, the diversity effect is heterogeneous across different SDGs. On the one hand,

SDG 2, SDG 3, SDG 4 and SDG 15 have a positive and significant coefficient; on the other hand, SDG 1,

SDG 6, SDG 7, SDG 9, SDG 10 and SDG 14 have a significant and negative coefficient, while SDG 5,

SDG 8, SDG 11, SDG 12, SDG 13 and SDG 16 have a non significant coefficient.

Overall, these results might be aligned with the literature which defines technologies aiming to tackle

the multifaceted issue of our century as more diversified (Fusillo et al., 2020) and the idea that the

promotion of interdisciplinarity within higher education institutions has become widespread over the

last few decades (Tarrant and Thiele, 2017). However, these results only partially confirm our second
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Table 4: OLS regression results of SDG on Rao-Stirling with time state and IPC controls

(1) (2) (3) (4) (5)
Chemistry Elec.Eng Instr. Mech.Eng Other

SDG -0.0024∗∗∗ 0.0003∗∗∗ 0.0040∗∗∗ 0.0027∗∗∗ 0.0020∗∗∗

(0.0003) (0.0001) (0.0003) (0.0003) (0.0004)
family_size -0.0004∗∗∗ 0.0002∗∗∗ 0.0004∗∗∗ 0.0005∗∗∗ 0.0001∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
bwd_cits 0.0000∗∗∗ 0.0000∗∗∗ -0.0000∗∗∗ -0.0000 -0.0000

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
claims 0.0001∗∗∗ 0.0000∗∗∗ 0.0000∗∗∗ -0.0000 0.0000∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
no_inv -0.0000 -0.0001∗∗∗ 0.0002∗∗∗ 0.0004∗∗∗ -0.0001

(0.0001) (0.0000) (0.0001) (0.0001) (0.0001)
university 0.0010∗∗ 0.0018∗∗∗ 0.0035∗∗∗ 0.0048∗∗∗ 0.0067∗∗∗

(0.0004) (0.0003) (0.0005) (0.0012) (0.0022)
_cons 0.1251 0.0386∗∗∗ 0.0460∗∗∗ 0.0122∗∗∗ 0.0203∗∗∗

(0.0927) (0.0041) (0.0030) (0.0019) (0.0038)
Year Dummies YES YES YES YES YES
State Dummies YES YES YES YES YES
IPC.3digit YES YES YES YES YES
Observations 264726 872576 303690 248920 104621
R2 0.182 0.156 0.133 0.121 0.140
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Notes: The dependent variable is the Rao-Stirling index as defined by Rao (1982). Unit of observation: patent. Grant years:
2006-2020. Heteroskedastic-Robust standard errors in parentheses; ***p<0.01,**p<0.05, *p<0.1

hypothesis, considering there is a diversity premium only for university patents linked to SDG 2, SDG 3,

SDG 4 and SDG 15.

4.2 Robustness checks

To check the robustness of our empirical study, we present some additional estimates in this subsection.

Nevertheless, we assume that the direction of the previously identified relationships should be robust

to the choice of diversity measure, as long as these such measures are intended to capture the diversity

construct. Therefore, we further check the robustness of our analysis by using alternative measures of

technological diversity. To this end, we choose the index of technological diversity developed by Blau

(1977) and recently adopted by Zhu et al. (2022) to measure the degree of knowledge recombination in a

patent application. The indicator is defined as follows:

Technological Diversity = 1 −
∑

i

(
no. of IPCi codes

tot IPC codes

)2
(11)

where IPCi represents each unique 4-digit IPC code assigned to a patent. Further, considering our

dependant variable is a continuous variable between 0 and 1, we use a Fractional response model which

can be used to model a variable that takes values within a bounded range; the dependent variable may be
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Table 5: OLS regression results of SDG on Rao-Stirling with time and state controls (university
patents only)

(1) (2) (3)
Rao-stirling Rai-stirling Rao-stirling

SDG 1 -0.0095∗∗∗ -0.0107∗∗∗ -0.0103∗∗∗

(0.0021) (0.0021) (0.0021)
SDG 2 0.0055∗∗∗ 0.0063∗∗∗ 0.0066∗∗∗

(0.0017) (0.0018) (0.0018)
SDG 3 0.0140∗∗∗ 0.0134∗∗∗ 0.0133∗∗∗

(0.0007) (0.0008) (0.0008)
SDG 4 0.0068∗∗∗ 0.0086∗∗∗ 0.0088∗∗∗

(0.0021) (0.0022) (0.0022)
SDG 5 -0.0004 -0.0004 -0.0003

(0.0013) (0.0013) (0.0013)
SDG 6 -0.0145∗∗∗ -0.0136∗∗∗ -0.0136∗∗∗

(0.0026) (0.0027) (0.0027)
SDG 7 -0.0116∗∗∗ -0.0128∗∗∗ -0.0126∗∗∗

(0.0013) (0.0013) (0.0013)
SDG 8 0.0003 -0.0002 0.0000

(0.0032) (0.0033) (0.0033)
SDG 9 -0.0157∗∗∗ -0.0162∗∗∗ -0.0155∗∗∗

(0.0025) (0.0025) (0.0025)
SDG 10 -0.0183∗∗ -0.0153∗ -0.0148∗

(0.0072) (0.0080) (0.0080)
SDG 11 -0.0008 -0.0011 -0.0010

(0.0016) (0.0017) (0.0017)
SDG 12 0.0006 0.0004 0.0005

(0.0026) (0.0026) (0.0026)
SDG 13 0.0039 0.0011 0.0012

(0.0049) (0.0049) (0.0049)
SDG 14 -0.0076∗ -0.0091∗∗ -0.0090∗∗

(0.0045) (0.0046) (0.0046)
SDG 15 0.0265∗∗∗ 0.0301∗∗∗ 0.0305∗∗∗

(0.0050) (0.0052) (0.0053)
SDG 16 -0.0025 -0.0008 -0.0006

(0.0054) (0.0056) (0.0056)
family_size 0.0008∗∗∗ 0.0007∗∗∗

(0.0001) (0.0001)
no_inv 0.0004∗∗ 0.0004∗∗

(0.0002) (0.0002)
bwd_cits 0.0000∗∗∗

(0.0000)
claims -0.0002∗∗∗

(0.0000)
_cons 0.0259∗∗∗ 0.0227∗∗∗ 0.0264∗∗∗

(0.0028) (0.0029) (0.0030)
Year Dummies YES YES YES
State Dummies YES YES YES
Observations 84488 76957 76957
R2 0.034 0.032 0.033
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Notes: The dependent variable is the Rao-Stirling index as defined by Rao (1982). Unit of observation: patent. Grant years:
2006-2020. Heteroskedastic-Robust standard errors in parentheses; ***p<0.01,**p<0.05, *p<0.1
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Table 6: Fractional regression results of SDG on Technological Diversity with time and state and IPC
controls

(1) (2) (3) (4) (5)
Chemistry Elec.Eng Instr. Mech.Eng Other

SDG 0.0075 0.0187∗∗∗ 0.0194∗∗∗ 0.0693∗∗∗ 0.0775∗∗∗

(0.0055) (0.0040) (0.0069) (0.0072) (0.0132)
family_size 0.0033∗∗∗ 0.0252∗∗∗ 0.0122∗∗∗ 0.0137∗∗∗ 0.0061∗∗∗

(0.0004) (0.0005) (0.0008) (0.0010) (0.0017)
bwd_cits -0.0003∗∗∗ 0.0002∗∗∗ -0.0003∗∗∗ 0.0002∗∗∗ 0.0001

(0.0000) (0.0000) (0.0000) (0.0001) (0.0001)
claims 0.0017∗∗∗ 0.0007∗∗∗ 0.0019∗∗∗ 0.0011∗∗∗ 0.0033∗∗∗

(0.0002) (0.0002) (0.0003) (0.0004) (0.0006)
no_inv 0.0317∗∗∗ -0.0013 0.0111∗∗∗ 0.0190∗∗∗ 0.0210∗∗∗

(0.0010) (0.0008) (0.0014) (0.0017) (0.0031)
university 0.0706∗∗∗ 0.0993∗∗∗ 0.1712∗∗∗ 0.2188∗∗∗ 0.2516∗∗∗

(0.0072) (0.0112) (0.0114) (0.0232) (0.0507)
_cons -1.2462 -0.8497∗∗∗ -0.7092∗∗∗ -1.8281∗∗∗ -1.6391∗∗∗

(0.9112) (0.0664) (0.0549) (0.0411) (0.1037)
Year Dummies YES YES YES YES YES
State Dummies YES YES YES YES YES
IPC3.digit YES YES YES YES YES
Observations 264726 872576 303690 248920 104621
pseudo R2 0.062 0.121 0.120 0.133 0.153
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Notes: The dependent variable is the Technological Diversity as defined by Blau (1977). Unit of observation: patent. Grant
years: 2006-2020. Robust standard errors in parentheses; ***p<0.01,**p<0.05, *p<0.1

any continuous variable bounded between 0 and 1, so that: 0 ≤ yi ≤ 1 (Papke and Wooldridge, 1996).

The results of the robustness checks are presented in Table 6 and in Table 7.13 In the former, we observe

that the previous results hold even if we use as dependent variable the technological diversity (tech_div)

as defined by Blau (1977). Further, the latter confirms our results for SDG 1, SDG 2, SDG 3, SDG 8,

SDG 12, SDG 13 and SDG 16; SDG 5, SDG 11 and SDG 15 become significant keeping the same sign

while SDG 6, SDG 7 and SDG 14 take the opposite sign; finally, SDG 4, SDG 9 and SDG 10 lose their

significant effect.

Further, considering literature suggests that green technologies are more diverse (Quatraro and

Scandura, 2019; Fusillo et al., 2020), we check whether the premium diversity we observe is only due

to environmental related SDGs technologies. To this end, in the Appendix we present the results

of econometric specification where the independent variable SDGi is split in the three components:

environmental, social and development related. As shown in Table 10, the results confirm the diversity

premium for all the three subgroups.
13However, the coefficients of Fractional response model cannot be easily interpreted by themselves and to ease inter-

pretation, elasticities should be calculated.
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Table 7: Fractional regression results of SDG on Technological Diversity with time and state controls
(university patents only)

(1) (2) (3)
Tech_div Tech_div Tech_div

SDG 1 -0.1315∗∗∗ -0.1432∗∗∗ -0.1411∗∗∗

(0.0411) (0.0439) (0.0439)
SDG 2 0.1349∗∗∗ 0.1304∗∗∗ 0.1311∗∗∗

(0.0263) (0.0286) (0.0286)
SDG 3 0.1016∗∗∗ 0.0973∗∗∗ 0.0910∗∗∗

(0.0121) (0.0131) (0.0132)
SDG 4 -0.0260 -0.0094 -0.0082

(0.0342) (0.0364) (0.0365)
SDG 5 -0.1773∗∗∗ -0.1848∗∗∗ -0.1840∗∗∗

(0.0228) (0.0246) (0.0246)
SDG 6 0.1417∗∗∗ 0.1647∗∗∗ 0.1626∗∗∗

(0.0506) (0.0556) (0.0556)
SDG 7 0.1057∗∗∗ 0.1159∗∗∗ 0.1162∗∗∗

(0.0238) (0.0255) (0.0255)
SDG 8 0.0007 -0.0067 -0.0072

(0.0548) (0.0574) (0.0574)
SDG 9 -0.0213 -0.0309 -0.0305

(0.0536) (0.0581) (0.0582)
SDG 10 -0.0262 -0.0790 -0.0724

(0.1391) (0.1620) (0.1622)
SDG 11 -0.1053∗∗∗ -0.1033∗∗∗ -0.0988∗∗∗

(0.0277) (0.0300) (0.0300)
SDG 12 0.0443 0.0313 0.0319

(0.0449) (0.0477) (0.0478)
SDG 13 0.0414 0.0498 0.0480

(0.0725) (0.0773) (0.0773)
SDG 14 0.2247∗∗∗ 0.2104∗∗ 0.2114∗∗

(0.0804) (0.0861) (0.0859)
SDG 15 0.1035 0.1276∗ 0.1252∗

(0.0704) (0.0758) (0.0759)
SDG 16 -0.0090 -0.0249 -0.0224

(0.0919) (0.1008) (0.1007)
family_size 0.0126∗∗∗ 0.0142∗∗∗

(0.0011) (0.0011)
no_inv 0.0194∗∗∗ 0.0202∗∗∗

(0.0026) (0.0026)
bwd_cits -0.0006∗∗∗

(0.0001)
claims -0.0010∗∗

(0.0004)
_cons -1.3492∗∗∗ -1.4682∗∗∗ -1.4494∗∗∗

(0.0509) (0.0535) (0.0541)
Year dummies YES YES YES
State dummies YES YES YES
Observations 84488 76957 76957
pseudo R2 0.049 0.051 0.051
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Notes: The dependent variable is the Technological Diversity as defined by Blau (1977). Unit of observation: patent. Grant
years: 2006-2020. Robust standard errors in parentheses; ***p<0.01,**p<0.05, *p<0.1
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5 Discussion and Conclusion

Innovation for sustainable development plays a fundamental role in achieving the SDGs by fostering the

creation of inventions that can help address the complex challenges of this century, such as environmental

and social crises, and improve people’s lives through advances in relevant sectors such as energy, medicine,

and transportation (Blohmke, 2014; Bannerman, 2020; Rimmer, 2018).

However, the potential contribution of intellectual property to advancing the SDGs does not appear to

have been explored in depth by scholars and practitioners. In particular, the World Intellectual Property

Organization (WIPO) has only acknowledged the link between SDG 9 and IP (WIPO, 2018), while

making a stronger contribution to the mapping of green technologies through the IPC codes based Green

Inventory. Nevertheless, as we show in this research, green technologies are only a partial response to the

challenges of SDGs (van der Waal et al., 2021).

In this work, starting from an initial NLP-derived keywords list, we used a robust, unsupervised

methodology, to create a patent-related enriched dictionary that references 16 of the SDGs, allowing us

to quantify interest in patents related to the SDGs and identify the most represented technology areas.

This is a first contribution of this research, as no such patent-related dictionary has been proposed so far.

These dictionaries might serve as a starting point for extracting other sustainability-related information

from patent texts, thus improving the use of this type of data, which is not normally intended to facilitate

communication about sustainability among stakeholders (Abrahamson and Baumard, 2008).

In addition, semantic-based patent analysis allows us to evaluate and compare which technical areas

(i.e., IPC codes) contribute more to achieving the SDGs. This information could not be retrieved if

considering only the technological classes of patents, since specific classes related to the Sustainable

Development Goals have not yet been proposed (van der Waal et al., 2021). Our results shed light on

the fact that green technologies only partially contribute to the achievement of the SDGs, while the

predominant role is played by high technologies, whose contribution is in fact hardly recognized in the

literature (Kostoska and Kocarev, 2019; Vinuesa et al., 2020). Therefore, this finding calls for a more

careful consideration and understanding of the role of digital technologies in achieving the Sustainable

Development Goals.

Second, this research also provides information on the role of US universities in producing innovation

related to the SDGs, a role that is consistent with their mission to maximize societal benefits from the

innovations they produce (Papadimitriou, 2020). In this context, we note that the filing of SDG-related

patents by universities is increasing at a faster rate compared to other actors. This could be interpreted

as universities becoming more aware that part of their public mission is to support the realization of the

SDGs (Owens, 2017; Nilsson et al., 2016). However, university-generated innovations related to the SDGs

are not evenly distributed among them: SDG 3 related patents account for more than 50% of the total

number of SDGs-related patents from universities. This finding is consistent with van der Waal et al.
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(2021) results and it is explicable considering the increasing importance of disease control in our society,

especially after COVID19. At the same time, it could give rise to further debate and analysis, because

patenting in the pharmaceutical field is not without negative consequences and criticism, especially when

the university is the owner of the patent (Sampat, 2020, 2021). With this in mind, universities that are

heavily involved in patenting for SDG 3 might consider adopting specific licensing strategies to maximize

the associated social benefits, such as requiring licensing companies to distribute the product in developing

countries beforehand or setting a fair price for the product at the time of technology transfer (Nelsen,

2002).

Third, this research has shown that, consistently with the literature on green innovation (Fusillo et al.,

2020; Quatraro and Scandura, 2019), most techonologies related to the SDGs are more technologically

diverse, confirming the first research hypothesis. This finding calls for a consistent policy intervention to

better stimulate technological diversity to increase technological progress related to the SDGs and reduce

environmental and social pressures.

This is especially true for universities, which are uniquely positioned to lead cross-sectoral implemen-

tation of the SDGs and provide an invaluable source of expertise in research and education on all areas of

the SDGs (Owens, 2017; Nilsson et al., 2016). Moreover, it is increasingly important for universities to

demonstrate not only to their financiers but to all stakeholders their ability to generate positive impacts

on the territory through their coupling strategies. In this sense, it is critical to understand how the

university generates societal benefits and how research activities impact societal benefits. Thus, the results

of this study are intended to provide additional data that can help inform how university research projects

generate societal impact. Indeed, interpolation between universities and SDGs does not always lead to a

diversity premium for university patents. From this study, universities patents show a diversity premium

only for SDG 2, SDG 3, which is the most prevalent in university SDG innovation production, and SDG

15. Thus, most university patents related to the SDGs do not show a diversity premium, even those

related to greener SDGs, in contrast with what one would expect from the literature (Barbieri et al.,

2020; Quatraro and Scandura, 2019). To improve this situation, we believe that specific investments in

research and development that foster interactions between different disciplines and abet the creation of

new knowledge-based networks are necessary to increase the diversity of SDG-related patents. In addition,

to encourage the recombination of knowledge, it should be easier to obtain funding for interdisciplinary

research than for mainstream activities (Rylance, 2015).

However, incentivizing interdisciplinarity does not come without any caveat. For instance, recent work by

Zhu et al. (2022), showed that patent filings related to high diverse innovation run the risk of having a

delayed patent grant, due to the increased complexity and ambiguity for patent examiners. For these

reasons, the process to create highly diverse technologies should be carefully monitored, because delays in

this kind of patents would entail delay in solving the grand challenges they are supposed to tackle.
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This study is not free from limitations. First, patent data may not be able to fully capture technological

innovation in the context of the SDGs, as it only partially represents a broader range of knowledge and

technologies needed to promote sustainable development. Second, this research is based on initial keyword

lists that influence the overall results and risk being incomplete or unbalanced across the SDGs, which may

lead to an overemphasis or overweighting of some SDGs over others. Further, through this methodology

is not possible to identify all SDGs-related patents whose text do not hint at SDGs keywords; thus, we

fail to identify this kind of patents (false negative cases). This limitation is especially relevant for the

identification of university patents related to the SDGs, as they are deemed to be more oriented towards

basicness and therefore make less references to practical applications (Trajtenberg et al., 1997). At the

same time, the keywords added by the TF-IDF method contain some "noise" that could affect the overall

quality of the results obtained.

Future works should consider different approaches to the patent tagging problem, better exploiting the

vectorial representations of patent text, in order to understand how patents are written, so to choose

the best text representation model. The ideal situation would be to have a ground truth about patents

related to the SDGs, allowing classification through more sophisticated machine learning methodologies,

therefore leading to the creation of a validated dataset. A combination of these techniques, as well as

using other patent features, might also allow classification of those patents that do not explicitly mention

SDGs related keywords in their text.
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Appendix

Additional tables
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Table 9: Pairwise correlation

raostirling family_size no_inv bwd_cits claims
raostirling 1.0000
family_size 0.0781* 1.0000
no_inv 0.0319* 0.0319* 1.0000
bwd_cits 0.0188* 0.1070* 0.0617* 1.0000
claims -0.0163* 0.0351* 0.0547* 0.0837* 1.0000

Notes: Significance level 0.05 or more.

Additional econometric specification

In addition to the models provided, we deem important observing the effect of different kinds of SDGs on

technological diversity: the environmental related SDGs (including SDG 6, SDG 7, SDG 11, SDG 13,

SDG 14 and SDG 15) (Guo et al., 2020), the "social" related SDGs (including SDG 1, SDG 4, SDG 5,

SDG 12, SDG 10, SDG 12, SDG 16) (van der Waal et al., 2021) and the "development" related SDGs

(including SDG 2, SDG 3, SDG8 and SDG 9) (WIPO, 2019). Table 10 reports the results of the following

specifications:

∆i = α + β1SDGi + β2inventorsi + β3familySizei

+β4backCitsi + β5claimsi + β6univi + IPC.3digiti + ti + wi + ϵi

(12)

where the variable SDGi respectively correspond to environmental SDGs (SDG_env), social SDGs

(SDG_social) and development SDGs (SDG_develop).
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Table 10: OLS regression results of the 3 kinds of SDGs on Rao-Stirling with IPC, time and state
controls

(1) (2) (3)
Environmental Social Development

SDG_env 0.0014∗∗∗

(0.0002)
family_size 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗

(0.0000) (0.0000) (0.0000)
bwd_cits -0.0000∗∗ -0.0000∗∗ -0.0000∗

(0.0000) (0.0000) (0.0000)
claims 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗

(0.0000) (0.0000) (0.0000)
no_inv 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗

(0.0000) (0.0000) (0.0000)
university 0.0049∗∗∗ 0.0049∗∗∗ 0.0047∗∗∗

(0.0003) (0.0003) (0.0003)
SDG_social 0.0007∗∗∗

(0.0001)
SDG_develop 0.0019∗∗∗

(0.0002)
_cons 0.1252 0.1253 0.1254

(0.0874) (0.0874) (0.0875)
Observations 1794533 1794533 1794533
Year Dummies YES YES YES
State Dummies YES YES YES
IPC.3digit YES YES YES
R2 0.167 0.167 0.167
Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Notes: The dependent variable is the Rao-Stirling index as defined by Rao (1982). Unit of observation: patent. Grant years:
2006-2020. Heteroskedastic-Robust standard errors in parentheses; ***p<0.01,**p<0.05, *p<0.1
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