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Abstract

This study examines how the long-run growth rate of per capita income is deter-

mined when population growth is negative. It uses the augmented Solow growth

model as a tool for this investigation. The results reveal four distinct types of

dynamics, depending on the parameter combinations. In all these dynamics, the

long-run growth rate of per capita income remains positive. This finding implies

that sustainable growth in per capita income is achievable, even in the context

of negative population growth.
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1 Introduction

The phenomenon of population decline is becoming a global issue. Countries such

as Germany and Italy have already experienced this decline, and Japan has been

witnessing a continuous decrease in population since 2010. The United Nations World

Population Prospects 2019 indicates that high-income economies, as classified by the
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World Bank, are projected to see a population decline post-2050, and middle-income

economies are expected to follow suit after 2075. Given these circumstances, there is

a growing emergence of economic growth models that take into account population

decline.1

Christiaans (2011) develops a Solow model that incorporates increasing returns to

scale due to a positive externality with capital accumulation, showing that the long-run

growth rate of per capita income can remain positive, even if the population growth rate

is negative. This result is possible because the effect of capital deepening becomes more

powerful when the absolute value of the population decline rate is sufficiently large.

Sasaki and Hoshida (2017) apply an R&D growth model, following the approach of

Jones (1995), and consider negative population growth. They discover that while R&D

activities may stagnate as the population decreases, the effect of capital deepening

intensifies, leading to positive growth in per capita income.2 In these models, when

the rate of population decline is high, the capital stock per effective labor continues

to rise, meaning capital deepening occurs. Consequently, the balanced growth path

(BGP) typically seen in growth models does not exist. However, owing to decreasing

returns in relation to capital in the production function, the growth rate of capital

stock per effective labor decreases and converges to a positive value. Consequently,

the growth rate of per capita income also converges to a positive value. This is a growth

path specific to a negative population growth economy (NPGP: negative population

growth path).

The aforementioned studies consider the accumulation of physical capital and the

progress of endogenous technology, but do not consider the accumulation of human

capital. Elgin and Tumen (2012) incorporate a Lucas (1988) style of human capital

accumulation into a continuous time growth model by Barro and Sala-i-Martin (2003,

ch. 9). This model endogenizes population growth and explores the relationship be-

tween the endogenously determined rate of population growth and the rate of per

capita income growth. Bucci (2023) introduces a Lucas (1988) style of human capital

accumulation into an R&D growth model, following the style of Romer (1990) and

Jones (1995). This study investigates the relationship between the exogenously given

rate of population growth and the rate of per capita income growth. Both studies

1Sasaki (2023) has considered negative population growth in Prettner’s (2019) model, which intro-
duces automation capital (i.e., robots and AI) into the Solow (1956) model. Sasaki shows that, under
plausible population decline, sustained growth of per capita income can be achieved if households
maintain a high enough saving rate.

2Jones (2022) presents an R&D growth model that endogenizes the population growth rate, but
omits capital accumulation. He shows that when population growth is negative, sustained growth of
per capita income is unattainable because R&D activities stagnate.
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conclude that, under certain conditions, the long-run per capita income growth rate

can be positive.

The two studies mentioned above focus their analysis on the BGP, where the pri-

mary variables in models consistently increase at a uniform constant growth rate.

Consequently, along the BGP, ratios of variables such as the output-capital ratio or

capital stock per effective labor remain constant.3 In contrast, Christiaans (2011)

and Sasaki and Hoshida (2017) direct their analysis toward the Negative Population

Growth Path (NPGP), where the output-capital ratio converges to zero and capital

stock per effective labor becomes infinite in the long run.4

Drawing from the above observations, we apply the augmented Solow growth model

by Mankiw, Romer, and Weil (1992), which considers the accumulation of human

capital. Similarly to the approaches of Christiaans (2011) and Sasaki and Hoshida

(2017), we explore a growth path that is specific to an economy experiencing negative

population growth. We then explain the relationship between the rate of population

decline and the growth rate of per capita income.

Our study reveals that, based on the parameter combinations, four types of dy-

namic paths emerge. In each dynamic path, the long-run growth rate of per capita

income remains positive. This finding indicates that even in an economy experiencing

negative population growth, sustained growth can still be achieved.

2 Model

The model aligns with the one presented by Mankiw, Romer, and Weil (1992). The

production of final goods involves physical capital K, human capital H, and labor

L. The production function adopts the Cobb–Douglas form, which exhibits constant

returns to scale:

Y = KαHβ(AL)1−α−β, 0 < α < 1, 0 < β < 1, α + β < 1 (1)

=⇒ y = kαhβ, (2)

3Mino and Sasaki (2023) construct an endogenous growth model where the production of final
goods requires exhaustible resources, in addition to physical capital and labor, and they explore the
relationship between the population growth rate and the per capita income growth rate along the
BGP. In the production function for final goods, they consider a positive externality caused by capital
accumulation, which results in increasing returns to scale. They discover that along the BGP, positive
growth of per capita income is not achieved when the population growth rate is negative.

4Daitoh and Sasaki (2023) conduct a detailed analysis of a canonical Ramsey–Cass–Koopmans
model with negative population growth, and they find that the NPGP emerges depending on certain
conditions.
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where Y denotes output; A is the index of labor-augmenting technological progress;

α is the output-elasticity of physical capital; and β is the output-elasticity of human

capital. All parameters are larger than zero and less than unity. We define y = Y/(AL),

k = K/(AL), and h = H/(AL).

Let the population growth rate and labor-augmenting progress rate be n and g,

respectively. Then, we have

L̇

L
= n < 0, (3)

Ȧ

A
= g > 0. (4)

Both growth rates are assumed to be constant. The population growth rate is negative.

Let the investment rate of physical capital and that of human capital be sk ∈ (0, 1)

and sh ∈ (0, 1), respectively. Suppose that sk and sh are constant fractions of total

output. Then, the dynamical equations of physical capital and human capital are as

follows:

K̇ = skY − δkK, (5)

Ḣ = shY − δhH, (6)

where δk ∈ (0, 1) and δh ∈ (0, 1) are the depreciation rates of physical and human

capital, respectively.

Summarizing the above equations, the dynamical equations of k and h are as

follows:

k̇ = skk
αhβ − (n+ g + δk)k, (7)

ḣ = shk
αhβ − (n+ g + δh)h. (8)

When n+ g+ δk < 0 or n+ g+ δh holds, for k > 0 and h > 0, we have k̇ > 0 or ḣ > 0,

which suggests that k or h continues to increase. In this case, the usual steady states

of k and h do not exist, because k̇ = 0 or ḣ = 0 is never obtained, and we obtain the

growth path specific to an NPGP.

The growth rates of k and h are given by

k̇

k
= sk

hβ

k1−α
− (n+ g + δk), (9)

ḣ

h
= sh

kα

h1−β
− (n+ g + δh). (10)
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The growth rate of per capita income gY/L is the sum of the growth rate of y and

that of A, given by

gY/L = g + α

[
sk

hβ

k1−α
− (n+ g + δk)

]
+ β

[
sh

kα

h1−β
− (n+ g + δh)

]
. (11)

When n + g + δk < 0 or n + g + δh < 0, we cannot use the usual phase diagram

analysis, as employed in Mankiw, Romer, and Weil (1992), because we cannot obtain

k̇ = 0 or ḣ = 0. Therefore, considering equations (9) and (10), we introduce the

following new variables:

x ≡ hβ

k1−α
, z ≡ kα

h1−β
. (12)

The differential equations of the newly introduced variables are given by

ẋ = x[−(1− α)skx+ βshz + C1], (13)

ż = z[αskx− (1− β)shz + C2], (14)

where C1 and C2 are defined as follows:

C1 = (1− α)(n+ g + δk)− β(n+ g + δh), (15)

C2 = (1− β)(n+ g + δh)− α(n+ g + δk). (16)

The parameters C1 and C2 can be positive or negative, and the size relationship be-

tween them is ambiguous. Substituting x and z into equation (11), we obtain

gY/L = g + α [skx− (n+ g + δk)] + β [shz − (n+ g + δh)] . (17)

To draw the phase diagram of (x, z), we find the loci of ẋ = 0 and ż = 0:

ẋ = 0 =⇒ z =
(1− α)sk

βsh
x− C1

βsh
, (18)

ż = 0 =⇒ z =
αsk

(1− β)sh
x+

C2

(1− β)sh
. (19)

These are straight lines with positive slopes. The slope of ẋ = 0 is steeper than that

of ż = 0. Both intercepts can be positive or negative.
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3 Analysis

We obtain four outcomes, depending on the intercepts of the two straight lines.

3.1 Case 1

In Case 1, we define n < 0, but its absolute value is relatively small; hence, both

n + g + δk > 0 and n + g + δh > 0 hold. Case 1 is the same as the case examined by

Mankiw, Romer, and Weil (1992). Here, both C1 > 0 and C2 > 0 hold, and considering

the intercepts of ẋ = 0 and ż = 0, we obtain Figure 1.

x

z

O x
∗

z
∗

E1

ẋ = 0

ż = 0

Figure 1: Phase diagram in Case 1

Both straight lines have an intersection, which gives the steady state in Case 1, E1:

x∗ =
n+ g + δk

sk
> 0, (20)

z∗ =
n+ g + δh

sh
> 0. (21)

From Figure 1, the steady state is stable. The long-run growth rate of per capita

income g∗Y/L is equal to the labor augmenting technological progress rate:

g∗Y/L = g > 0. (22)
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3.2 Case 2

In Case 2, we define n < 0 and its absolute value is relatively large; hence, both

n + g + δk < 0 and n + g + δh > 0 hold.5 In this case, we obtain C1 < 0 and C2 > 0,

and the phase diagram is shown in Figure 2.

x

z

O

z
∗

E2

ẋ = 0

ż = 0

Figure 2: Phase diagram in Case 2

From Figure 2, the economy converges to the corner solution E2, and the long-run

situations are as follows:

x∗ = 0, (23)

z∗ =
(1− β)(n+ g + δh)− α(n+ g + δk)

(1− β)sh
> 0. (24)

From equation (17), the long-run growth rate of per capita output is given by

g∗Y/L = g − α

1− β
(n+ g + δk)︸ ︷︷ ︸

−

> 0. (25)

3.3 Case 3

In Case 3, we define n < 0 and its absolute value is relatively large; hence, both

n+ g+ δk > 0 and n+ g+ δh < 0 hold. In this case, we have both C1 > 0 and C2 < 0,

5The condition n+g+δk < 0 can be rewritten as n < −(g+δk), which suggests that the population
declining rate is relatively large. For example, if g = 0.01 and δk = 0.03, we need n smaller than
−4%. Jones (2022) criticizes this as unrealistic. For additional discussion, see footnote 8 in Section
3.
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and the phase diagram is shown in Figure 3.

x

z

O x
∗

E3

ẋ = 0

ż = 0

Figure 3: Phase diagram in Case 3

From Figure 3, the economy converges to the corner solution E3, and the long-run

situations are as follows:

x∗ =
(1− α)(n+ g + δk)− β(n+ g + δh)

(1− α)sk
, (26)

z∗ = 0. (27)

From equation (17), the long-run growth rate of per capita income is given by

g∗Y/L = g − β

1− α
(n+ g + δh)︸ ︷︷ ︸

−

> 0. (28)

3.4 Case 4

In Case 4, we define n < 0 and its absolute value is relatively large; hence, both

n + g + δk < 0 and n + g + δh < 0 hold. Based on the sizes of C1 and C2, Case 4 is

divided into four sub-cases: (i) when C1 < 0 and C2 > 0; this sub-case is the same as

Case 2; (ii) when C1 > 0 and C2 < 0; this sub-case is the same as Case 3; (iii) when

C1 > 0 and C2 > 0; this sub-case is impossible as long as α + β < 1; and (iv) when

C1 < 0 and C2 < 0, we obtain the phase diagram shown in Figure 4.
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x

z

O

E4

ẋ = 0

ż = 0

Figure 4: Phase diagram for Case 4 with C1 < 0 and C2 < 0

From Figure 4, we find that the economy converges to the origin, E4, and the

long-run situations are as follows:

x∗ = z∗ = 0. (29)

From equation (17), the long-run growth rate of per capita output is given by

g∗Y/L = g − α (n+ g + δk)︸ ︷︷ ︸
−

−β (n+ g + δh)︸ ︷︷ ︸
−

> 0. (30)

3.5 Numerical examples

Which case is realistic? Using data on the Japanese economy, we present a simple

numerical example. We set the parameters as follows:

n = −0.0019, α = 0.14, β = 0.37, δ = 0.03, g = 0.0067. (31)

For the population growth rate, we use the long-run economic statistics of the Annual

Report on the Japanese Economy and Public Finance 2021. The annual average

rate of population decline in 2010–2020 is 0.19%, and hence, we have n = −0.0019.

The parameters α and β are taken from Mankiw, Romer, and Weil (1992). For the

depreciation rates, we suppose that δk = δh, and we set δ = 0.03. This value is

suggested by Jones (2022). The labor augmenting technological progress rate is taken

from the data of The Japan Productivity Center. We use the average growth rate of
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it during the period 2000–2020, g = 0.0067.6 With these parameters, we have both

n+ g+ δk > 0 and n+ g+ δh > 0, which corresponds to Case 1: g = 0.0067 = 0.67%.7

This numerical example suggests that, given the current rate of population decline,

the Japanese economy does not achieve NPGPs in Cases 2–4. Daitoh (2020) and

Daitoh and Sasaki (2023) propose a solution to this problem. They recommend incor-

porating child-rearing costs, as outlined by Barro and Sala-i-Martin (2003, ch. 9), into

growth models. This approach could potentially yield an NPGP under a realistically

plausible rate of population decline.8 Therefore, if we consider child-rearing costs, we

might obtain Cases 2–4. This important topic is left to future research.

4 Conclusion

This study examines the issue of a decreasing population within the context of the

augmented Solow growth model by Mankiw, Romer, and Weil (1992), which incor-

porates human capital accumulation. The study investigates whether the long-run

growth rate of per capita income remains positive when the population growth rate is

negative. The analysis reveals four potential scenarios based on the parameter sizes.

In each scenario, the long-run growth rate of per capita income is positive.
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