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Abstract

Bull and bear market identification generally focuses on a broad index of returns
through a univariate analysis. This paper proposes a new approach to identify and
forecast bull and bear markets through multivariate returns. The model assumes all
assets are directed by a common discrete state variable from a hierarchical Markov
switching model. The hierarchical specification allows the cross-section of state spe-
cific means and variances to differ over bull and bear markets. We investigate several
empirically realistic specifications that permit feasible estimation even with 100 assets.
Our results show that the multivariate framework provides competitive bull and bear
regime identification and improves portfolio performance and density prediction com-
pared to several benchmark models including univariate Markov switching models.
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1 Introduction

There is a long tradition of sorting upward and downward movements of a broad market
index as bull and bear markets, respectively. These terms date back to the 1700s and were
popularized after the south sea bubble (Marriam-Webseter 2022). Since then, bull and bear
labels have become the de facto standard that the popular press uses to characterize the
state of the stock market. Almost universally these descriptors have been applied to a single
index of stock returns both in the financial press and in academic work. This paper moves
in a new direction by identifying and forecasting bull and bear markets for an index by using
the underlying multivariate stock returns that constitute the index. We propose new models
to extract and exploit the information on bull and bear markets contained in disaggregated
stock return data.

There are two main approaches to dating bull and bear markets. Historically market
phases have been identified through some ex post sorting rule applied to historical index
data. For instance, a bull market is an increase of 20% or more from the most recent low
(trough) in the index. These rules have been formalized by Pagan & Sossounov (2003)
and Lunde & Timmermann (2004) but are not directly applicable to prediction and online
(real time) inference for investors. The other dominant approach to bull and bear market
identification assumes the state of the market is unobserved and are model based. These
methods feature some form of a Markov switching (MS) specification that estimates the state
of the market and provides a probability law on the likelihood of future states. Examples of
this approach include Turner et al. (1989), Maheu & McCurdy (2000) and Maheu et al. (2012,
2021). Kole & Van Dijk (2017) compare ex post sorting rules to model based approaches for
bull and bear identification.

Other papers are concerned with predicting bull and bear markets and the role of addi-
tional non-market data. Chen (2009) and Haase et al. (2020) use the bull and bear regimes
obtained from one of the methods discussed above as the dependent variable and investigate
the predictability of regimes through various information sources. Candelon et al. (2008)
investigate the synchronization of market phases obtained from an ex post filter of several
Asian indices. Other papers that consider trends in stock returns include Ang & Bekaert
(2002) and Chauvet & Potter (2000).

There are some examples of Markov switching for multivariate modeling of asset returns
for the purpose of asset allocation. Four assets are included in Guidolin & Timmermann
(2006) and Guidolin & Timmermann (2007) while Tu (2010) extends this to 28 variables (3
Fama-French factors and 25 portfolios).1 This differs from our purpose which is to model
a larger set of assets to better identify bull and bear markets that constitute an index and
make asset allocation decision based on this inference.

The panel data literature on business cycle analysis is related to our approach as well.
Part of that literature is concerned with inferring a common Markov switching structure in
a panel setting (Kaufman 2010, Hamilton & Owyang 2012) or allowing for nonsynchronous
cycles (Harding & Pagan 2006, Paap et al. 2009) among series. These approaches either
assume independent series conditional on the state variable, or if the correlation is modeled,
it is in a small dimension. Our approach assumes one or two common state variables direct

1Pelletier (2006) models exchange rates with Markov switching directing the correlation matrix.
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a large dimension of returns in which the full correlation dynamics are modelled. How the
correlation structure is modelled is critical to state identification. We characterize state-
specific parameters of all stocks with a hierarchical prior.

At a firm level we show that the main distinguishing feature between bull and bear mar-
kets are differences in conditional mean and conditional variances with the latter being the
most important. These observations lead us to use a hierarchical prior to learn and charac-
terize the differences in the cross-section of firm returns’ conditional moments. A hierarchical
prior is an effective method of information pooling for many common parameters and can
lead to improved forecasts (Pesaran et al. 2006, Song 2014). At the same time correlations
do change but the changes are only loosely associated with market cycles. We explore several
correlation assumptions from constant, perfectly coupled to the regime and loosely coupled
to the regime. These empirical characteristics, only available from multivariate data, are
absent in the MS models of bull and bear regimes based on a univariate index.

The largest application is to 100 stocks. In each of the multivariate applications the model
provides accurate inference on the regimes and is close to that of a MS model applied to the
univariate index, but tend to be more precise. The cross-section of returns over regimes is
very different. Individual stocks’ means are lower and more dispersed in the bear market as
well as possessing larger variances in general. We show that our preferred models improve
density forecasts of returns.

Our multivariate approach provides superior signals for market timing compared to the
univariate model. Sharpe ratios are larger and investors are willing to pay a higher perfor-
mance fee for the information from multivariate returns. Although our focus is on market
timing for an index based on the underlying multivariate stock returns we also show the
multivariate models lead to improved investment decisions for the S&P500. These benefits
from multivariate data transfer over to a more general mean-variance portfolio selection.

The multivariate models are designed to be parsimonious but in larger applications com-
putational challenges do arise. The main bottleneck is inversion of covariance and correlation
matrices and lack of a simple posterior sampling method for correlation matrices. We adopt
a geodesic Lagrangian Monte Carlo method, which is a special case of Hamiltonian Monte
Carlo (HMC), from Holbrook et al. (2018) and show that this approach works well in our
application.

Section 2 details the data and provides some motivation for the multivariate models.
Section 3 delineates the modelling framework and Section 4 shows how to perform inference
from these models along with prediction. The application to several datasets is in Section 5,
which includes model comparison using out-of-sample forecasts, regime identification and
portfolio investment strategies. Section 6 reports several robustness checks including for
potential survival bias, duration dependence and sub-cycle dynamics. Section 7 concludes.
The Appendix describes data and posterior sampling methods in detail including details on a
geodesic Lagrangian Monte Carlo method to sample large dimension positive definite matrix
from a non-standard distribution.
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2 Data and Motivation

In this section, we introduce the data followed by estimates of bull and bear markets from
a univariate MS model applied to the S&P 500 index. The resulting inference on historical
market episodes is used to sort the firm level data and investigate their econometric properties
that a multivariate model should capture.

2.1 Data

To analyze bull and bear markets a long calendar span of data is needed that includes
as many market cycles as possible. However, going back further in history results in fewer
firms that have survived to the present. As such, there is a tradeoff between long historical
datasets with fewer firms and shorter historical datasets with more firms. Therefore, we
consider three samples of monthly equity returns excluding dividends obtained from CRSP.
The first sample contains data of 30 assets from January 1926 to December 2020 (1140
months). The second sample includes 60 stocks from January 1931 to December 2020 (1080
months). The last sample considers 100 assets from January 1951 to December 2020 (840
months). Table 14 in Appendix A.1 provide detailed information about the 100 assets,
in which the first 30 and 60 assets from the first two samples. The monthly returns are
converted to annualized continuously compounded returns.2

Similar to Tu (2010) we selected a monthly frequency. In our experience higher frequency
data such as weekly suffers from asynchronous components unrelated to the broad market
trends. Namely, the individual stocks have their own distinct sub-cycle behaviour. Model-
ing multivariate sub-cycle behaviour would require a significantly more complex model and
restrict the dimension to a much smaller number of assets. Using monthly returns allows us
to exploit the benefit of high dimensionality with a feasible cost of model complexity and
computational burden.

At the aggregate level, we use the equally weighted (EW) index formed from the 30,
60 and 100 asset returns, which we name EW-30, EW-60 and EW-100, respectively. We
also use the S&P500 index from CRSP to align with the literature. The S&P500 index data
before 1957 is the 90-stock index from CRSP. The risk-free rate is obtained from the Kenneth
French data library.

In the following, we use rt to denote the index return, rt,i for the return of firm i and
Rt = (rt,1, . . . , rt,N)

′
for the N × 1 vector of stock returns. The notation r1:t = {r1, . . . , rt}

and R1:t = {R1, . . . , Rt} are used for the index returns and stock returns up to time t,
respectively.

2.2 Bull and Bear Markets from a Univariate Model

Consider the following 2-state univariate Markov switching model, denoted by UMS for
the univariate S&P 500 portfolio return rt.

rt | st = k ∼ N(µk, σ
2
k), (1)

P (st+1 = k | st = j) = pjk, (2)

2That is, not excess returns.
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where j, k = 1, 2, t = 1, . . . , T . The prior is

µk ∼ N(0, 1), σ2
k ∼ IG(2, 2), k = 1, 2, (3)

(p11, p12) ∼ Dir(10, 1) and (p22, p21) ∼ Dir(10, 1). (4)

An identification restriction is µ1 < µ2, that the bear mean is less than the bull mean. These
priors are fairly uninformative but do favour persistent states. When st = 1 , the period t is
in the bear regime, while st = 2 means the bull regime. IG() and Dir() denote an inverse
gamma and Dirichlet distribution, respectively. The posterior inference is standard from
Chib (1996).

Bayesian posterior simulation methods enable us to obtain the posterior probability of
states as P (st = k | r1:T ). Our estimate of the bull state (st = 2) probability is displayed in
the top of Figure 2. Obviously, P (st = 1 | r1:T )+P (st = 2 | r1:T ) = 1 by model construction.
If we call period t a bear regime when P (st = 1 | r1:T ) > 0.50 and bull otherwise, the firm
level data can be partitioned into two states using this rule. Collecting all data from state
1 and 2 gives us two samples, one of bear market returns and one of bull market returns.

Summary statistics for individual stocks in the bull and bear states are calculated for
investigation using the 30 stock dataset from 1926–2020 for illustration. Figure 1 shows the
scatter plot of the sample means and variances of individual stocks for different regimes.
Blue dots are bear regime statistics while red ones are bull regime statistics. Clearly, indi-
vidual stocks in the bear regime tend to have negative average returns and higher volatilities
than in the bull regime. These results are consistent with the aggregate index data esti-
mates that show negative mean, high variance for bear and high mean, low variance for bull
markets (Turner et al. 1989, Maheu & McCurdy 2000, Pagan & Sossounov 2003, Lunde &
Timmermann 2004). This similarity between firms and aggregate data suggests that we may
improve bull and bear identification by using all firm level information.

One benefit from the multivariate analysis is that we can investigate the correlation
structure among variables, which is infeasible for any univariate analysis. Figure 3 shows
the sample correlations of all pairs of the first 30 stocks in bull and bear regimes. All but
two points are below the 45 degree line, indicating a stronger correlation between stocks
during a bear regime. In the bear market most correlations are between 0.2–0.8 while they
are in 0.1–0.4 in the bull market. These observations are consistent with Tu (2010) but that
analysis is restricted to the Fama-French 25 portfolios with a much shorter time span. The
clear change in correlation structure over regimes indicates that correlations may provide a
strong signal on the market phase.

This preliminary investigation reveals a potential benefit by using multiple stock returns
to learn about bull and bear regimes. We find significant differences in the stock return
moments and correlations of firm returns over bull and bear markets. There are differences
in both the level and dispersion of these moments. However, a multivariate model can
suffer from the curse of dimensionality and computational problems. Therefore, we pursue
parsimonious parametrization that can exploit the empirical regularities we discuss in this
section. To this end we design a hierarchical prior specification to consolidate information
from individual stocks. Such a hierarchical approach explicitly estimates the uncertainty
associated with regime-dependent means and variances of individual stocks. Our model
allows counter-cyclical behaviour from any individual stocks.
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The second new feature is that our models is able to decouple the correlation dynamic
from the mean and variance process. This is motivated from Figure 2. Its top panel shows the
posterior probability of being in the bull regime based on the S&P500 index. The middle
and bottom panel plots the average monthly realized volatilities and pairwise correlation
coefficients of 30 stock returns constructed at daily frequency, respectively. A visual check
indicates that a bear (bull) regime is usually associated with higher (lower) volatility, as
agreed by the literature and documented above. On the other hand, only mild evidence
exists for regime dependent correlations. Hence, we consider several correlation structures
from perfectly coupled, loosely coupled to independent with bull and bear regimes. These
are discussed next.

3 Multivariate Models

We focus on four models in this paper. The first is a benchmark unrestricted multivariate
Markov switching (MMS) model. The second model is multivariate Markov switching with
constant correlation. This is more parsimonious, because only one set of the correlation
coefficients is needed and it saves N(N − 1)/2 parameters. The third specification is a
multivariate Markov switching model with independent correlation dynamics. Here the
mean and variance parameters follow a Markov chain while the correlation matrix follows
its own independent Markov chain. The final model combines the two Markov chains to
allow dependence between them. The regime governing the means and variances can extract
information from the correlation dynamics but they are not restricted to switching regimes
simultaneously.

3.1 Benchmark Multivariate Markov Switching Model (MMS)

Our benchmark model is a standard multivariate Markov switching model with 2 states
and multivariate normal data density denoted as MMS. In particular, the N × 1 vector
Rt = (rt,1, . . . , rt,N)

′
of stock returns follows,

Rt | st = k ∼ N(Mk,Σk), (5)

P (st+1 = j | st = k) = pkj, (6)

where j, k = 1, 2. Without loss of generality, we name regime 1 as the bear market and 2 as
the bull market. The N × 1 vector Mk, for k = 1, 2, is the mean vector of Rt in regime k.
The N ×N matrix Σk, for k = 1, 2, is the covariance matrix of Rt in regime k.

For identification purposes, we assume that the equally-weighted portfolio constructed
from Rt has a negative mean in the bear market and a positive mean in the bull market. We
adopt an equally-weighted portfolio as our target market portfolio that emerges from the
model. It is this portfolio that we are concerned about for tracking bull and bear phases.
Define ιN as a N dimensional vector of ones. This restriction is equivalent to

ι′NM1 < 0, ι′NM2 > 0. (7)
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Such a restriction is not binding at all in the applications and provides a great deal of
flexibility for individual stock return means.3

Define the ith element in Mk as µik, hence Mk = (µ1k, µ2k, ..., µNk)
′ for k = 1, 2. The

priors for the MMS model are

Σk ∼ IW (Ψ, τ), for k = 1, 2, (8)

µik ∼ N(0, 1), for i = 1, 2, ..., N and k = 1, 2, (9)

(p11, p12) ∼ Dir(10, 1) and (p22, p21) ∼ Dir(10, 1). (10)

The IW means the invert Wishart distribution, and Dir means the Dirichlet distribution.
We assume that Ψ = ĉov(Rt)(τ−N−1) and τ = N+2, so the prior mean of Σ is the sample
covariance of Rt. The value τ implies infinite variance, hence our prior covers a large range
of reasonable values. The prior on the transition probabilities is informative and favours
persistence of states which is consistent with past work.

3.2 Correlation Decomposition and Hierarchical Prior

The next set of models we consider all make use of the following covariance decomposition
into a correlation matrix as

Σk = ∆kΛj∆k, (11)

Λj = ΓjQjΓj, Γj = diag

(
1√
Qj,11

, ...,
1√

Qj,NN

)
, (12)

where the regime dependent diagonal matrix of standard deviations is ∆k = diag (σ1k, σ2k, ..., σNk)
′

for k = 1, 2 and Λj is a correlation matrix and can be constant or follow a Markov chain
indexed by j. This specification allows for stock variances with significant regime differ-
ences and constant correlations as well as correlations displaying less regime dependence and
possible independent dynamics.

The decomposition allows us to exploit regime differences and pool information among
stocks’ mean and variance parameters through the following hierarchical prior,

µik ∼ N(mk, v
2
k), (13)

mk ∼ N(0, 0.5), (14)

v2k ∼ IG(5, 0.25), (15)

log(σik) ∼ N(ζk, b
2
k), (16)

ζk ∼ N(0, 0.5), (17)

b2k ∼ IG(5, 0.25), (18)

Qj ∼ IW (Ψ, ν) (19)

(p11, p12) ∼ Dir(10, 1) and (p22, p21) ∼ Dir(10, 1), (20)

3We did not find a single violation of these restrictions in execution if such restriction is not imposed
in a long sequence of MCMC iterations. We do not impose restrictions on the means of individual stocks.
Namely, counter-cyclical dynamics for an individual stock is permitted.
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for i = 1, 2, ..., N and k = 1, 2, j = 1, 2. The first component implies all stock return means
are drawn from a common normal distribution with mean mk and variance v2k which are
allowed to differ over bull and bear markets and characterize the cross-sectional differences
in stock returns. The prior on both mk and v2k allows for learning about these parameters
from the data. A priori, the means of stock returns are centred around 0 with a standard
deviation of around 2.2, which means a large dispersion of 220 percentage points. Hence,
the prior of the means is very diffuse, so the posterior distribution would mainly reflect the
data information.

For identification of regimes, we impose the restriction m1 < m2 making the mean of
the cross-section of stock return means less in the bear market than the bull market. No
restrictions are imposed on variances or other parameters.

Similarly, the prior on log(σik) indicates that all log-volatilities of stocks are drawn from
a common normal distribution. The parameters governing this distribution, ζk, b

2
k, have a

prior and are estimated from the data and in general will differ in each regime. The centre of
σik is around 1 and a standard deviation of around 4, which is very large in the applications
and makes the prior uninformative. The special case of v2k → 0 or b2k → 0 occur when all
stocks share the same mean or the same log-volatility level. In general, these parameters will
be positive and larger values indicate greater heterogeneity among stocks within a regime.

The prior onQ follows Barnard et al. (2000), which separates the volatility and correlation
symmetrically, unlike some other approaches such as the Cholesky decomposition. We set
Ψ = ĉov(Rt)(ν −N − 1) and ν = N + 2 as in the MMS model.4

The prior of the transition probability is a standard setting for Markov switching models.
It shows a weak belief that the regimes are persistent.

3.2.1 Constant Correlation

A constant correlation model is more parsimonious than the MMS because it only es-
timates one correlation matrix. However, only the mean and variance dynamics can be
used for bull and bear identification. We denote this model as MMS-CC (CC as constant
correlation) and is

Rt | st = k ∼ N(Mk,∆kΛ∆k), (21)

P (st+1 = j | st = k) = pkj, (22)

where j, k = 1, 2. The MMS-CC model uses the hierarchical prior of Section 3.2 but simplifies
the covariance decomposition with a constant correlation Λ across regimes. This model
postulates that the key differences in regimes is the conditional mean and conditional variance
which is partially consistent with Section 2 results.

3.2.2 Independent Correlation Process

The next model investigates if an independent correlation process may help bull and
bear regime identification. It is motivated from Figure 2, as it does not clearly show if the

4We have also tried a uniformly distribution of the correlations by setting Ψ = I and ν = N + 1. The
results are qualitatively the same.
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correlation synchronizes with bull and bear regimes. If there is more noise than signal in the
correlation, it is probably better to let it follow an independent process. The idea is similar
to MMS-CC model, but allows the correlation to change over time to give more flexibility.
We denote this model as MMS-IC (IC as independent correlation).

In execution, we propose a second independent Markov process to govern the dynamics
of the correlation matrix. This does not rule out synchronization of regimes and correlation
states. If the data favours synchronization, then the posterior inference may indicate such,
otherwise, modelling the correlation structure independently may improve inference on bull
and bear cycles.

The model is,

Rt | st = k, wk = j ∼ N(Mk,∆kΛj∆k), (23)

P (st+1 = k | st = l) = pslk, (24)

P (wt+1 = j | wt = n) = pwnj, (25)

where j, k, l, n = 1, 2 and the parameters have the hierarchical prior of Section 3.2. The
state st governs the conditional mean vector Mk and conditional variance matrix ∆k while
and the state variable wt governs Λj. The transition probabilities prior for the correlation
matrix is

(pw11, p
w
12) ∼ Dir(10, 1) and (pw22, p

w
21) ∼ Dir(10, 1). (26)

This prior reflects state persistence in correlation dynamics. In the following we continue to
refer to bull and bear regimes as st = 1, 2 irrespective of the value of wt.

3.2.3 Dependent Correlation

It is possible that the correlation structure depends on the regime process directing the
mean and variances but does not fully co-move with them. In this case correlation dynamics
can provide useful information on regime identification but the model extremes above will
not accommodate this structure. The benchmark MMS imposes the restriction that the
correlation matrix and the volatility must change at the same time. On the other hand, the
MMS-CC and MMS-IC cut off any potential dependence between these two state processes.

As a middle ground, we propose a restricted 4-state model, denoted by MMS-DC (DC
as dependent correlation), to allow stochastic dependence between the correlation structure
and the regime process governing means and volatility parameters. We still preserve two
sets of correlation matrices and means/volatilities as in MMS-IC. Instead of assuming two
independent 2-state Markov chains, we allow for these two processes to have dependence,
which is achieved by augmenting the state space to form one Markov process with 4 states.

The details are as follows,

Rt | st = k ∼ N(Mk,∆kΛk∆k), (27)

P (st+1 = j | st = k) = pkj, (28)

where j, k = 1, 2, 3, 4. Note that Λk now shares the same state indicator k as ∆k. The
restrictions are M1 = M2, ∆1 = ∆2, M3 = M4, ∆3 = ∆4, Q1 = Q3 and Q2 = Q4. These
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restrictions imply the parameters M2,M4,∆2,∆4, Q3 and Q4 are redundant while the free
parameters M1,M3,∆1,∆3, Q1, Q2 follow the hierarchical prior of Section 3.2.

The kth row of the transition matrix P , denoted by Pk., has a Dirichlet prior with more
weight on the self-transition probability.

Pk. ∼ Dir(1 + 9× 1(k = 1), 1 + 9× 1(k = 2), 1 + 9× 1(k = 3), 1 + 9× 1(k = 4)). (29)

This transition matrix differs from that in the MMS-IC model. In that model P = Ps ⊗Pw,
where Ps is the transition matrix of the mean and volatility state and Pw is the transition
matrix of the correlation state and is restricted to 4 parameters. In this model P is unre-
stricted with 12 parameters; and the bear regime occurs when st = 1 or 2 while the bull
regime is when st = 3 or 4.

4 Inference and Prediction

4.1 Bayesian Inference

The models are estimated through standard Markov chain Monte Carlo (MCMC) tech-
niques. Since Chib (1996) posterior sampling has become standard for conventional MS
models so we do not elaborate on them here. All details are in the appendix.

The posterior simulation is carried out forG iterations after an initial burnin are discarded
to remove potential initial value effects. These G iterations give a sample of parameters that
are used to form simulation consistent estimators of model parameters. For instance, if one
is interested in the probability of period t being in a bull regime P (st = 2 | R1:T ) in the
MMS model, where R1:T represents the full sample data, we can use

̂P (st = 2 | R1:T ) =
1

G

G∑
g=1

1(s
(g)
t = 2)

as an estimate of the true value P (st = 2 | R1:T ). The superscript (g) is the iteration counter.
The accuracy of this estimator increases as G increases. In the applications, we use 5000
posterior draws for inference after dropping 50000 burnin iterations.

The high dimensionality, however, creates a bottleneck from a simulation efficiency per-
spective for Qk in MMS-IC and MMS-DC models and Q in the MMS-CC model. No sim-
ple Gibbs sampling method is available for these correlation matrices. One could use the
Metropolis-Hastings algorithm on each individual parameter in Qk, but it is extremely time
consuming and practically infeasible as the dimension becomes large (up to 5050 parame-
ters when N = 100). A joint Metropolis-Hastings (M-H) sampler might be faster, however,
in general it produces a highly persistent sample path and quickly becomes inefficient at a
higher dimension than 30. A generic Hamiltonian Monte Carlo (HMC) method (see Neal
et al. (2011) for an overview) works well when N = 30 in our application but constantly
fails to provide a positive definite proposal matrix when N becomes larger. Instead, we
applied Holbrook et al. (2018)’s geodesic Lagrangian Monte Carlo (gLMC) method, which
is a specially tailored HMC on manifolds (see Girolami & Calderhead (2011) and Byrne &
Girolami (2013)), to sampling Qk or Q.
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We found the gLMC works well in our applications. The next section provides details on
efficiency gains of gLMC while Appendix A.5 contains the technical details for estimation.
The reader interested in the empirical results may skip Section 4.2.

4.2 Evaluating Geodesic Lagrangian Monte Carlo

To evaluate the gLMC’s usefulness on sampling positive definite matrices, we consider a
very simple multivariate normal model as

yt ∼ N(0,Σ),

for t = 1, ..., T . The vectors {yt}Tt=1 have dimension N × 1 and are independent. There is
only one parameter, Σ, which can have a large dimension as N(N + 1)/2. We assume a
conjugate prior as

Σ ∼ IW (A0, a0),

which returns a textbook analytic posterior distribution as

Σ | Y ∼ IW (A1, a1),

where a1 = a0 + T and A1 = A0 + Y ′Y with Y = [y1, y2, ..., yT ]
′. The analytic solution can

verify the convergence of the M-H and gLMC methods and then help us understand their
efficiency. IW means invert-Wishart.

We compare the gLMC to a joint random walk Metropolis-Hastings method. Table 1
compares these two sampling algorithms. We chose the dimensions and sample size to
match the application in this paper. The true value Σ has 1 on the diagonal and 0.1 on the
off-diagonals. In summary, for our application, the gLMC is more efficient for all dimensions
(30, 60 and 100). However, the efficiency gain is diminishing as the dimension increases.

These calculations are performed in Matlab(2020b) and run on a Windows 10 operating
system with Intel Core i7-4790 CPU @ 3.60GHz. We report the number of seconds, efficient
sample size and their ratio (ESS per second). The last column of the table reports the
efficiency gain if we use gLMC over the M-H method, defined as the ratio of ESS per sec
of gLMC over that of the M-H method. For example, when N = 30 and T = 1116, the
gLMC is 11 times as efficient as the M-H method. Such an advantage diminishes when N
grows larger. Nonetheless, when N = 100, the gLMC still produces more than double of the
effective sample size that the M-H can offer.

For the M-H algorithm, we set the total number of iterations as 200,000 and discard the
first half of the samples as burn-in. Then we save 1 out of each 100 iterations for inference.
The inverse step size parameter v is set as 100k for N = 30 and 60; 500k for N = 100 (very
small step sizes for a reasonable acceptance rate). For the gLMC, we set the total number
of iterations as 1100 and discard the first 100 as burn-in. The leap size is set as 0.01, and
the number of leaps is set as L = 10 for N = 30 and 60; and L = 5 for N = 100. The
posterior distributions are compared to the true posterior distribution, so the convergence is
guaranteed.
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4.3 Prediction

The posterior analysis provides insight into the models’ in-sample performance. An
investor could be more interested in a model’s out-of-sample forecasts in order to make
decisions to buy or sell. Because the models in this paper are all complete, we can evaluate
their out-of-sample forecast precision as well as their economic values for an investor.

For statistical evidence, we compute the predictive likelihood p(Rt+1 | R1:t,Mi), where
Mi represent model i including MMS, MMS-CC, MMS-IC and MMS-DC. Using the MMS-IC
model for example, define Ψ = {µik,mk, v

2
k, σik, ζk, b

2
k, Qk, s1:t, w1:t, P

s, Pw}2,Nk=1,i=1 as the col-
lection of all model parameters and auxiliary variables. A one-period conditional predictive
density p(Rt+1 | R1:t,Ψ) (ignore Mi for simplicity) is given by

p(Rt+1 | R1:t,Ψ) =
2∑

k=1

2∑
j=1

p(Rt+1 | Mk,∆kΛj∆k)p
s
st,kp

w
wt,j. (30)

It is a mixture of multivariate normal distributions, where the weights are determined by
the current state at time t and the transition probabilities.

Suppose that we have collected a sample of draws, denoted by {Ψ(g)}Gg=1, from the pos-
terior distribution p(Ψ | R1:t). The predictive density is

p(Rt+1 | R1:t) =

∫
p(Rt+1 | R1:t,Ψ)p(Ψ | R1:t)dΨ, (31)

and can be consistently estimated from the posterior sample as

̂p(Rt+1 | R1:t) =
1

G

G∑
g=1

p(Rt+1 | R1:t,Ψ
(g)), (32)

where p(Rt+1 | R1:t,Ψ
(g)) is available in (30). Evaluating the predictive density at the realized

data Rt+1 gives the predictive likelihood and forms the basis of model comparison amongst
models. The predictive likelihood is forecast based and hence does not suffer from an over-
fitting problem because it penalizes more complex models that do not deliver improved
predictions as measured by larger predictive likelihood values.

The data is divided into a training sample from period 1 to T0 and the rest is used to
compute predictive likelihood values for all models. The predictive likelihood for data from
T0 + 1 till the end of the sample T is expressed as the product of 1-period ahead predictive
likelihoods as

p(RT0+1:T | R1:T0) =
T−1∏
t=T0

p(Rt+1 | R1:t). (33)

Each individual predictive likelihood, p(Rt+1 | R1:t), involves a separate estimation for each t.
A higher predictive likelihood means more support for the data. Using predictive likelihood
for model comparison is advocated by Geweke & Amisano (2010) and can be linked to the
marginal likelihood comparison in Kass & Raftery (1995). A simple rule of thumb is that
model Mi is strongly supported by the data against model Mj if the log predictive Bayes

factor, defined as log(Bij) = log
(

p(RT0+1:T |R1:T0
,Mi)

p(RT0+1:T |R1:T0
,Mj)

)
, is larger than 5.
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To investigate the economic value of these models, we carry out investment strategies
and evaluate their performance for different models. All these strategies are based on out-
of-sample forecasting. Key inputs include the predictive probability of a state, predictive
mean and covariance. The predictions are computed through simulations as a byproduct
of the posterior simulations. Using MMS-IC again as an example, given a posterior sample
(Ψ(g))Gg=1 conditional on data R1:t, for each Ψ(g), we simulate states st+1 and wt+1 according
to (24) and (25), followed by returns generated by (23). The simulated data, denoted by

{R̃(g)
t+1}Gg=1, represents a sample from the predictive distribution of Rt+1 | R1:t from which

simulation consistent statistics such as the predictive mean and covariance can be easily
computed.

5 Application

5.1 Model Comparison

Table 2 reports log-predictive likelihoods (as the log value of (33)) for model comparison.
The out-of-sample period is 1971/01-2020/12 (600 months) for 30 and 60 assets and 1991/01-
2020/12 (360 months) for the 100 assets application. The first model UMS is a univariate
2-state MS model in Section 2.2 applied individually to each return series. It ignores any
correlation or other dependencies between individual return series. The other models are
delineated in Section 3. All models are recursively estimated by expanding samples, hence
the model comparison is forecasting based.

From Table 2 we see significant improvements in density forecasts by moving from the
simple UMS model to the benchmark MMS model. It shows that ignoring correlations could
lead to erroneous prediction and likely to harm any associated investment strategy. Our
models, however, provide huge additional gains in forecast accuracy. For example the log-
Bayes factor for MMS-DC vs the MMS for 100 assets is an astonishing 5133. For each dataset
the more sophisticated models with independent or dependent correlation are strongly pre-
ferred. As more assets are included, the flexible modeling of dependence in means/variance
and correlations switching becomes important. Based on density forecasts, MMS-DC is our
preferred model for capturing bull and bear market trends. This model comparison result is
robust to various out-of-sample sizes. Additional results are available on request from the
authors.

5.2 Full Sample Estimates

A contribution of this paper is the introduction of the hierarchical prior to characterize
the cross-section of stock return moments in a bull and bear market. Table 3 reports the
posterior means of the hierarchical prior parameters for the MMS-DC model for 30/60/100
assets cases. On average, stock returns are negative in the bear market and positive in
the bull market. Average return standard deviation is larger in the bear market, which is
about double the size of that in the bull market. Use the 60-asset case for illustration, the
differences are displayed in Figure 4 and 5. This is the hierarchical distribution for stock
means and volatilities (standard deviations) for bull and bear markets. The distribution
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governing µi2 (mean of stock i in the bull market), as shown by the dashed line, is more
concentrated and farther to the right. Nevertheless, a negative mean can occur in the bull
market as well as a positive mean in the bear market. As such, this model can accommodate
counter-cyclical stocks. The differences in the regimes are more pronounced for volatility as
seen in Figure 5 and make volatility differences an important signal on regime inference.

The value of v2k for k = 1, 2 decreases when the number of assets increases. This can be
visualized in Figure 6, which plots the distribution of µik for k = 1, 2 (bear) or 3, 4 (bull) as
a function of 30/60/100 assets. The shape of the distributions becomes more concentrated
as the number of assets increases and is more pronounced in the bull market. Because we do
not impose sign restrictions on any individual stock return, such shape evolution shows that
more assets are able to provide a better description of the typical stock in a bull and bear
regime with a more focused meta-distribution over respective regimes. The same pattern of
concentration also exists in the distribution of volatility in Figure 7, although such pattern
is not as visible as in Figure 6. The same pattern appears in the MMS-CC and MMS-IC
models as the number of assets increases and their results are available on request.

The posterior mean of the transition matrices for 30/60/100 assets from the MMS-DC
model is shown in Table 4. Each top-left 2×2 sub-matrix is the bear block and represents the
bear market, and the bottom-right 2× 2 sub-matrix is the bull block and represents the bull
market. The in-block transition probability ranges between 0.54 to 0.84 for the bear regime,
and the in-block transition probability ranges between 0.53 to 0.94 for the bull regime. The
bear and bull block are persistent, which is consistent with the existing literature.

Mixture models including Markov switching models might suffer from the label switching
problem (Jasra et al. 2005). Because we impose restrictions to the mean vector for the
multivariate models, the identification of bull and bear regimes is not a problem. On the
other hand, the correlation matrices do not have any restriction and hence are not identified
in theory. Geweke (2007) demonstrated that label switching is not an empirical issue as long
as the posterior distribution of the components are well separated and convergence check is
performed, which is confirmed in our applications. For example, Figure 8 shows the trace
plot of the average of correlation coefficients in the 60 assets application and displays no
evidence of label switching. We also checked the trace plots of a large spectrum of quantiles
of the correlations’ distribution in each regime for all three applications and find no label
switching behaviour.

The absence of label switching allows us to interpret the correlation matrices. For illustra-
tion, Figure 9 shows the kernel density plot of the posterior means of correlation coefficients
in each regime for the 60 assets application. The distributions of correlations over regimes
are visually distinguished after we established that no label switching happens during the
MCMC. Figure 9 indicates a high correlation regime (state 1 and 3) and a low (state 2 and
4) one.

The transition matrix P 60 from Table 4 shows that the bear block is more likely to be
associated with the high correlation state. This can be seen from the bear block matrix(
0.84 0.05
0.07 0.74

)
. The high correlation state has a higher self-transition probability (0.84) than

the low correlation state (0.74), and the low correlation state is more likely to switch to the
high correlation state (0.07) than the other direction (0.05). With the same logic, we can see
that the bull regime favours the low correlation state. This is consistent with Figure 3 and
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shows that the correlation structure aids bull and bear regime identification. Meanwhile,
the transition matrix also shows that low (high) correlation state is not perfectly coupled
with bear (bull) regimes and points to the importance of the 4-state model which captures
these dependencies. The unconditional probabilities associated with the posterior mean of
P 60 are (0.139, 0.136, 0.039, 0.685) and the most time is spent in the last state, high mean
return and low correlation.

5.3 State Identification

In this section, we consider state identification. Our focus is to compare univariate and
multivariate models state identification for an EW index. The former only exploits the
aggregate equally weighted return (EW-30, EW-60 and EW-100), while the latter use the
full information from 30, 60 and 100 assets’ returns. Since we never observe the real bull
and bear regime in reality, the results here should be interpreted with caution.

Although the equally-weighted portfolio provides a consistent way to compare univariate
and multivariate models we also include the S&P500 as another benchmark. However, the
S&P500 is not directly comparable, since we do not model its underlying assets.

Figure 10, 11 and 12 display the results. The top panel is the cumulative log-return from
the equally-weighted index and the S&P500. The second and third panel are the probability
of the bull regime in the MMS-DC model and the benchmark MMS model, respectively. The
bottom panel shows the probability of the bull regime from a UMS model applied to EW-30,
EW-60 and EW-100, respectively, and the S&P500. The last panel of each figure reflects
what is conventionally delivered if using an aggregate index.

All three models display close resemblance in capturing market states, but the multivari-
ate models provide sharper regime identification. Focusing on 100 asset cases in Figure 12,
the closest to a broad market index, we see that the multivariate models provide abrupt
turning points with probability often shifting immediately from 1 to 0 or vice versa. The
univariate model generates more uncertainty in regime inference. Recall that the multivari-
ate models provide good out-of-sample density forecasts, which should translate into more
clear-cut in-sample state identification. Next, we discuss whether such a difference in the
regime inference improves investment decisions.

5.4 Investment Strategy

This section investigates the economic value of the multivariate models in comparison to
the univariate model through various investment strategies. Model comparison is conducted
on the same out-of-sample window that was used for the log-predictive likelihood calculations
results in Section 5.1. Alternative sub-sample results have been carried out as robustness
check and qualitatively similar.

5.4.1 Market Timing Portfolio

We consider two strategies based on the predicted probability of market regimes. For
the first, an investor invests his wealth in the equally-weighted index (EW-30, EW-60 or
EW-100) at time t if p(st = bull | It−1,M) > τ for a pre-specified threshold τ , otherwise,
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he holds the risk-free asset. The symbol It−1 means the information up to t − 1 implied
by the model. Namely, for multivariate models It−1 = R1:t−1, and for univariate models
It−1 = r1:t−1. The st = bull is a shorthand meaning st = 2 in the UMS models, MMS,
MMS-CC and MMS-IC model; and st = 3 or 4 in the MMS-DC model.

The second market timing strategy invests a proportion of wealth in an EW index using
the predicted probability of the bull state to determine the proportion. A higher probability
of a future bull state means a higher share of wealth being invested in the index. For example,
if P (st = bull | It−1,M) = 0.75, the investor allocates 75% of his wealth to buy the index
and puts the remaining 25% in the risk-free asset.

The univariate model uses these indices directly for estimation and forecasting while
multivariate models use all asset returns to forecast the future state. For all methods,
univariate or multivariate, the investment strategy operates on the same financial assets:
an EW index and the risk-free asset and the investor takes a position for day t and the
return computed at the end of the day. This makes the univariate and multivariate model
performance directly comparable.

We report the summary statistics associated with the return from the investment strate-
gies. In addition, we also calculate the performance fee based on a quadratic utility function
for an investor, which is

U(rpt |MA) = (1 + rpt )−
γ

2(1 + γ)
(1 + rpt )

2, (34)

where γ denotes the risk aversion coefficient, rpt represents the portfolio return. The perfor-
mance fee ∆ that an investor would pay to switch from the model MA to MB is inferred
from

T∑
t=1

U(rpAt |MA) =
T∑
t=1

U(rpBt −∆|MB). (35)

Here ∆ is the fee that makes the investor indifferent in terms of ex post utility between using
model MA and MB. A positive value of ∆ means MB is preferred to MA. The notation
rpAt and rpBt are the return from the optimal decision based on the prediction from model
MA and MB, respectively.

Table 5 – 7 report results for the 30, 60 and 100 assets application, respectively. Models
are recursively estimated to produce a forecast of the bull regime at each point in the out-
of-sample period, and make the investment decision. The top entry in the tables reports
summary statistics and the Sharpe ratio of the buy-and-hold strategy of the EW indices.
The buy-and-hold strategy of the EW index serves as the benchmark for model evaluation
and performance fees calculation. We summarize some key information conveyed below.

Table 5 – 7, with few exceptions, show that the multivariate models on various strategies
have much larger Shape ratios than the buy-and-hold strategy. For 30 assets application,
simple multivariate models MMS or MMS-CC have the best Sharpe ratio. As the number of
assets increase to 60 and 100, more flexible multivariate models as MMS-IC and MMS-DC
provide more gains. As the dimension increases, the trade-off between signal and noise is
more influential, a more careful treatment of the correlation structure may identify the state
better.

Figure 13 displays the log-portfolio value for each model over time for investment strategy
I with τ = 0.5. MMS-IC not only has the largest terminal wealth but generally has the largest

16



value over the investment period. The buy and hold portfolio does a bit better for a few
years after 2003.

The performance fee shows similar results as the Sharpe ratio. The multivariate approach
is always better than the univariate approach (UMS model or the buy-and-hold approach).
The best model changes with the number of assets. For 30 assets, the MMS model is often
preferred; for 60 assets, the MMS-IC model performs the best most of the time; and for 100
assets, the MMS-DC model is superior to the others. These results confirm that a more
flexible correlation structure becomes valuable as the dimension increases. This is consistent
with the forecast results in Table 2 showing the MMS-DC model as the best at higher
dimension.

5.4.2 Mean-Variance Portfolio

In this section, we allow the weight to change in the portfolio choice problem. This is only
feasible for the multivariate models since the univariate model does not utilize the individual
stock data.

We assume a simple and classical CAPM world with focus on the mean-variance portfolio
and consider two strategies. The first strategy is to construct the global minimum variance
portfolio by solving the following optimization problem

min
wt

w′
tΣ̂twt s.t. w′

tι = 1, (36)

where wt represents the portfolio weights, Σ̂t is the predicted covariance matrix based on
information up to day t− 1 using model M. The solution to equation (36) is

wgmv
t =

Σ̂−1
t ι

ι′Σ̂−1
t ι

. (37)

A better model should achieve a lower portfolio variance ex post.
The second strategy is to maximize the Sharpe ratio as follows

max
wt

µ̂′
twt

w′
tΣ̂twt

s.t. w′
tι = 1, (38)

where µ̂t is the predictive mean of excess returns conditional on the information up to time
t− 1 using model M. The optimal weight is

wsr
t =

Σ−1
t µ̂t

ι′Σ̂−1
t µ̂ t

. (39)

A larger ex post Sharpe ratio indicates a better model.
Table 8 summaries the performance of global minimum variance and maximum Sharpe

ratio portfolios in 30, 60 and 100 assets application. The global minimum variance column
shows that the standard deviation from the multivariate model is much lower (10−25%) than
the corresponding EW index. Hence, an additional benefit from the multivariate models lies
in its ability to allow the investor to choose weights among multiple assets. Notice that all
outcomes are out-of-sample, so the conclusion does not suffer from over-fitting.
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The maximum Sharpe ratio columns show that the multivariate models favor higher
return (about double the return from EW indices) accompanied by higher risk. The extra
return compensates for the additional risk as shown by a higher Sharpe ratio than the
indices. Overall, the MMS-CC model does the best for global minimum variance portfolio
and maximizing the Sharpe ratios.

The investment applications demonstrate the value of our multivariate Markov switch-
ing models for its efficient utilization of information, flexible accommodation of correlation
structure and the ability to select investing weights on individual assets.

5.4.3 S&P500

This section reports results using the models to make market timing decisions using
the S&P500. Note that our previous results used multivariate models to trade an equally-
weighted index constructed from the underlying stocks. In this example, we use the same
models and underlying stocks to make trading decisions for the S&P500. The underlying
stocks do not make up the S&P500 index and we have made no attempt to match them.

Table 9 reports results for the 60 asset case. The UMS-S&P500 model is a univariate
MS model that uses S&P500 returns. The top numeric entry is the statistics for the buy
and hold strategy. The Sharpe ratio shows large improvements from using the multivariate
models. The performance fee that an investor would pay to move from the buy and hold
strategy for the S&P500, to the model decisions based on 60 assets is also substantial. The
overall favoured model in this application is the MMS-IC specification. Similar results are
found for the other cases with the MMS favoured in the 30 asset case and the MMS-DC
preferred in the 100 asset case. These last two set of results are reported in the Appendix.
Even though the models do not use the underlying stocks of the S&P500 this example shows
the value of using the multivariate models to make investment decisions on a broad market
index.

6 Robustness Checks

In this section, we consider robustness checks for data and models.

6.1 Volatility Timing?

Are the trading results detailed above only a function of volatility timing or does the
conditional mean dynamics play a role? To investigate this Table 10 reports performance
fees for three of the multivariate models against the EW portfolio for 60 assets. We include
the full version of the MMS-CC, MMS-IC and MMS-DC models as well as a restricted version
that has a constant conditional mean across states. This has the hierarchical prior only for
the variance parameters. In 6 of the 9 cases the model with regime changes in the conditional
mean has a larger Sharpe ratio and larger performance fee. We conclude that the conditional
variance and conditional mean play a role in regime identification and can lead to improved
market timing.
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6.2 Survival Bias

To check if our results are impacted by potential survival bias from the data (individual
stocks), we obtained 30 industrial portfolios’ monthly returns between 1926/07 and 2022/10
from Kenneth French’s website. We report the log predictive likelihoods of MMS, MMS-CC,
MMS-IC and MMS-DC in Table 11. It shows that moving from the benchmark MMS model
to the MMS-CC/MMS-IC/MMS-DC leads to significant improvements in density forecasts
of return vectors. Table 12 summarizes the market timing performance. The order of model
performance aligns with the results of the applications to individual stocks. Our proposed
multivariate models on various strategies have larger Shape ratios and higher performance
fees than the univariate UMS and the benchmark MMS model. However, the buy and hold
EW-30 portfolio is now more competitive with a large Sharpe ratio and often being preferred
to the other models in terms of performance fees. Nevertheless, the multivariate models are
preferred over the univariate model, UMS. Figure 14, shows the smoothed probabilities of
bull regime identified from the three multivariate models. Regime identification is similar
to the results from individual stocks. Hence, our conclusion is not affected by potential
survival bias from three perspectives,: density forecast, market timing performance and
regime identification.

6.3 Duration Dependence

The state variables in our multivariate models have constant transition probabilities. In
this extension, we consider time-varying transition probability (Maheu & McCurdy 2000) by
explicitly modelling regime durations.

Let dj,t represent the duration of state j in period t. If st = st−1 = j, dj,t = dj,t−1 + 1.
Suppose the foundation duration has a Gamma distribution d ∼ G(κ, θ), where κ is the
shape and θ is the scale parameter. It implies that E(d) = κ/θ and V (d) = κ/θ2. Let the
bear market duration follows G(κ1, θ1). The implied hazard function is

P (d1,t = d | d1,t ≥ d) =

∫ d

d−1
f(x)

1− F (d− 1)
=

γ(κ1, θ1d)− γ(κ1, θ1(d− 1))

Γ(κ1)− γ(κ1, θ1(d− 1))
, (40)

where γ(κ1, θ1(d− 1)) is the lower incomplete Gamma function. Similarly, for bull regimes,
the duration prior G(κ2, θ2) implies

P (d2,t = d | d2,t ≥ d) =

∫ d

d−1
f(x)

1− F (d− 1)
=

γ(κ2, θ2d)− γ(κ2, θ2(d− 1))

Γ(κ2)− γ(κ2, θ2(d− 1))
(41)

These hazard functions are the time-varying transition probabilities.
We apply the duration dependence to the most robust MMS-CC model.

Rt | st = j ∼ N(Mj,∆jΛ∆j),

Λ = ΓQΓ, Γ = diag

(
1√
Q11

, ...,
1√
QNN

)
,

P (st+1 = j | st = k, dt) = p(k, j, dt),

(42)
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where p(k, j, dt) is determined based on (40) and (41).
The hyper-parameters κj and θj are calibrated such that the implied mean duration

is centred between 20 and 30 months with various dispersion settings shown in Table 13.
The implied bull and bear market durations under four priors are broadly in line with the
constant transition probability models. If κ is set as degenerate, the implied duration is
longer, however, they are still within a reasonable range from the results of the constant
transition probability models.

Figure 15 in the Appendix evaluates the sensitivity of state identification results to du-
ration distribution priors. Unless κj values are fixed, the regime identification results are
almost identical to the constant transition probability models. Even when κj’s are fixed,
the most different period is before the 1950’s. Therefore, adding a simple regime duration
dependence may not add much value to bull and bear regime identification.

6.4 Intra-regime Components

Bull and bear markets could contain sub-cycles such as bull corrections and bear rallies
in Maheu et al. (2012) or require more than two states (Baele et al. 2019). We extend the
multivariate model to a new 4-state version. Taking the MMS-CC model as an example, its
4-state version is given as

Rt | st = k ∼ N(Mk,∆kΛ∆k), (43)

Λ = ΓQΓ, Γ = diag

(
1√
Q11

, ...,
1√
QNN

)
, (44)

P (st+1 = j | st = k) = pkj, j, k = 1, 2, 3, 4 (45)

Let st = 1, 2, 3 and 4 represent bear, bear rally, bull correction and bear states, respec-
tively. Following Maheu et al. (2012), we set the transition matrix as follows

P =


p11 p12 0 p14
p21 p22 0 p24
p31 0 p33 p34
p41 0 p43 p44

 (46)

The same identification restrictions are applied to the aggregate mean as below.

ι
′

NM1 < 0, ι
′

NM2 > 0, ι
′

NM3 < 0, ι
′

NM4 > 0 (47)

and

E(ι
′

NRt|st = 1, 2) =
π1

π1 + π2

ι
′

NM1 +
π2

π1 + π2

ι
′

NM2 < 0

E(ι
′

NRt|st = 3, 4) =
π3

π3 + π4

ι
′

NM3 +
π4

π3 + π4

ι
′

NM4 > 0
(48)

where ι = [1, 1, 1, 1]′, π = [π1, π2, π3, π4] = (A′A)−1A′e and A′ = [P ′ − I, ι] and e′ =
[0, 0, 0, 0, 1]. The state interpretation is the same as the model in Maheu et al. (2012).
State 1 is the bear state, State 2 is the bear rally, State 3 is the bull correction and State 4
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is the bull state. State 1 and 2 comprise the bear regime, while state 3 and 4 are the bull
regime.

We found in multivariate applications the 4-state structure very difficult to estimate.
Standard MCMC algorithms for the mean parameters in state 3 always rejects the parameter
restrictions.5 Therefore, we cannot correctly draw inferences on regime identification. This
may be due to the heterogeneous behaviour of individual stocks and their asynchronous
movements. To capture such complex dynamics, we need a more sophisticated structure
than the simple 4-state model, which has been applied only to an index before. We leave
this for future work.

7 Conclusion

We propose a high-dimensional multivariate regime switching model to exploit the in-
formation in individual stock returns to identify bull and bear regimes. A novel geodesic
Lagrangian Monte Carlo method is applied to speed up posterior sampling of the high di-
mensional correlation matrix. The multivariate approach contains important information
on regime changes that a univariate approach neglect or obscures. First, individual stocks
show a clear distinction in the level of conditional mean and variance over bull and bear
markets. In addition, the cross-section of stock return moments displays important distri-
butional differences which a univariate approach ignores. We design a hierarchical prior to
learn about these cross-sectional differences over regimes. Second, the correlation structure
improves regime identification. Our multivariate models provide superior density forecasts
and portfolio decisions out-of-sample compared to methods that use only a portfolio. The
larger dimension multivariate models appear to identify regimes more sharply than the uni-
variate model. We conclude that there are significant benefits from using multivariate data
to identify and forecast bull and bear stock market regimes.

5We could apply the individual sampler to draw each stock’s mean via a truncated normal distribution.
However, we view such a strong rejection rate as an indication of model failure.
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Table 1: Algorithm Comparison

M-H gLMC Eff. gain gLMC/M-H

N=30, T= 1116

Time/ESS/ESS per sec 124/212/1.71 43/809/18.8 11.0

N=60, T= 1068

Time/ESS/ESS per sec 265/29/0.11 620/534/0.86 7.8

N=100, T= 816

Time/ESS/ESS per sec 537/16/0.03 4707/382/0.08 2.7

The simulation is carried out in Matlab(2020b) on a Windows 10 operating system with Intel Core i7-4790
CPU @ 3.60GHz. For the M-H algorithm, the total number of iterations is 200,000, and the first half of the
samples is discarded as burn-in. We apply the thinning method to select 1 out of each 100 iterations for
inference. The step size parameter v is set as 105 for N = 30 and 60; 5× 105 for N = 100. For the gLMC,
we set the total number of iterations as 1100 and discard the first 100 as burn-in. The leap size is set as
0.01, and the number of leaps is set as L = 10 for N = 30 and 60; and L = 5 for N = 100.

Table 2: Density Forecast of Return Vectors

30 assets 60 assets 100 assets
UMS -24106.55 -47711.06 -47392.79
MMS -23032.29 -46329.33 -48049.96

MMS-CC -22596.61 -43754.81 -43303.09
MMS-IC -22249.61 -43420.93 -43020.77
MMS-DC -22263.41 -43190.61 -42917.07

This table reports log predictive likelihoods of the mod-
els in this paper. The OOS periods for 30/60/100 as-
sets are 1971/01-2020/12, 1971/01-2020/12 and 1991/01-
2020/12, respectively.
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Table 3: Posterior Means of Parameters in MMS-DC

Parameter 30 assets 60 assets 100 assets

mbear: mean of µi in bear market -0.035 -0.017 -0.037

mbul: mean of µi in bull market 0.088 0.091 0.089

v2bear: variance of µi in bear market 0.018 0.011 0.010

v2bull: variance of µi in bull market 0.015 0.009 0.006

ζbear: mean of log(σi) in bear market 0.480 0.557 0.392

ζbull: mean of log(σi) in bull market -0.113 -0.106 -0.153

b2bear: variance of log(σi) in bear market 0.060 0.064 0.073

b2bull: variance of log(σi) in bull market 0.081 0.062 0.070

This table reports posterior means of hyper-parameters for the MMS-DC model in 30,
60 and 100 assets applications.

Table 4: Posterior Means of Transition Matrix in MMS-DC

P 30 =


0.80 0.04 0.09 0.06

0.05 0.82 0.01 0.13

0.10 0.01 0.65 0.24

0.02 0.03 0.07 0.88

 , P 60 =


0.84 0.05 0.06 0.05

0.07 0.74 0.01 0.17

0.14 0.02 0.57 0.27

0.01 0.04 0.01 0.94

 , P 100 =


0.55 0.17 0.02 0.27

0.31 0.54 0.02 0.13

0.03 0.05 0.53 0.40

0.05 0.01 0.02 0.92
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Table 5: Market Timing Portfolio - 30 Assets (Out-of-Sample: 1971/01-2020/12)

Model Mean St. Dev. Sharpe ratio ∆ (η = 5) ∆ (η = 10)

EW-30 0.0975 0.1668 0.3194

Panel A: Strategy I with τ = 0.5

UMS 0.0755 0.1550 0.2019 -134.94 -19.50

MMS 0.1056 0.1176 0.5222 363.47 731.80

MMS-CC 0.0943 0.1250 0.4007 218.45 547.50

MMS-IC 0.0987 0.1327 0.4105 220.88 496.84

MMS-DC 0.0971 0.1309 0.4044 215.68 504.61

Panel B: Strategy I with τ = 0.75

UMS 0.0622 0.1513 0.1193 -242.94 -94.75

MMS 0.0992 0.1156 0.4760 308.80 689.53

MMS-CC 0.1013 0.1149 0.4976 332.18 715.48

MMS-IC 0.0945 0.1299 0.3876 194.88 490.87

MMS-DC 0.0986 0.1279 0.4254 245.65 554.42

Panel C: Strategy II

UMS 0.0778 0.1471 0.2287 -62.99 116.09

MMS 0.0975 0.1100 0.4846 319.09 733.68

MMS-CC 0.0952 0.1129 0.4520 282.85 680.70

MMS-IC 0.0942 0.1248 0.4005 218.33 548.21

MMS-DC 0.0945 0.1223 0.4112 234.24 579.98

This table provides annual sample mean, standard deviation and Sharpe ratio
of market timing portfolio returns. The performance fees are annualized basis
points and are calculated using the index as the benchmark. The out of sample
period is from 1971/01 to 2020/12. A bold number means the optimal value in
the corresponding column and panel.
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Table 6: Market Timing Portfolio - 60 Assets (Out-of-sample: 1971/01-2020/12)

Model Mean St. Dev. Sharpe ratio ∆ (η = 5) ∆ (η = 10)

EW-60 0.0983 0.1577 0.3431 - -

Panel A: Strategy I with τ = 0.5

UMS 0.0862 0.1489 0.2826 -59.70 22.88

MMS 0.0914 0.1358 0.3478 62.45 239.14

MMS-CC 0.0921 0.1255 0.3821 126.60 376.38

MMS-IC 0.0987 0.1296 0.4206 172.67 396.62

MMS-DC 0.0916 0.1287 0.3682 105.94 336.17

Panel B: Strategy I with τ = 0.75

UMS 0.0725 0.1453 0.1947 -174.11 -59.70

MMS 0.0940 0.1349 0.3696 93.72 276.72

MMS-CC 0.0924 0.1241 0.3888 137.12 396.56

MMS-IC 0.0981 0.1279 0.4214 175.76 411.48

MMS-DC 0.0892 0.1285 0.3506 83.51 315.18

Panel C: Strategy II

UMS 0.0849 0.1429 0.2852 -36.91 93.28

MMS 0.0930 0.1303 0.3747 108.78 324.85

MMS-CC 0.0915 0.1178 0.4013 158.08 456.65

MMS-IC 0.0966 0.1232 0.4252 184.69 451.18

MMS-DC 0.0909 0.1237 0.3780 125.30 388.45

This table provides annual sample mean, standard deviation and Sharpe ratio
of market timing portfolio returns. The performance fees are annualized basis
points and are calculated using the index as the benchmark. The out of sample
period is from 1971/01 to 2020/12. A bold number means the optimal value in
the corresponding column and panel.
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Table 7: Market Timing Portfolio - 100 Assets (Out-of-sample: 1991/01-2020/12)

Model Mean St. Dev. Sharpe ratio ∆ (η = 5) ∆ (η = 10)

EW-100 0.1018 0.1521 0.5087 - -

Panel A: Strategy I with τ = 0.5

UMS 0.0907 0.1266 0.5233 -27.64 215.86

MMS 0.0946 0.1123 0.6254 135.23 411.31

MMS-CC 0.0731 0.0876 0.5554 23.20 430.73

MMS-IC 0.0688 0.0884 0.5022 -22.32 381.77

MMS-DC 0.0901 0.1001 0.6563 144.50 489.98

Panel B: Strategy I with τ = 0.75

UMS 0.0834 0.1195 0.4935 -9.24 226.24

MMS 0.0946 0.1123 0.6254 135.23 411.31

MMS-CC 0.0698 0.0866 0.5240 -5.80 406.42

MMS-IC 0.0703 0.0879 0.5221 -5.56 400.92

MMS-DC 0.0865 0.0983 0.6313 116.03 471.42

Panel C: Strategy II

UMS 0.0881 0.1149 0.5540 131.57 396.16

MMS 0.0956 0.1120 0.6357 252.16 532.18

MMS-CC 0.0726 0.0866 0.5557 202.87 616.99

MMS-IC 0.0754 0.0884 0.5763 207.35 613.34

MMS-DC 0.0882 0.0955 0.6678 303.31 675.53

This table provides annual sample mean, standard deviation and Sharpe ratio
of market timing portfolio returns. The performance fees are annualized basis
points and are calculated using the index as the benchmark. The out of sample
period is from 1991/01 to 2020/12. A bold number means the optimal value in
the corresponding column and panel.
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Table 8: Summary of Mean-Variance Portfolio Performance

Portfolio Global Minimum Variance Max Sharpe Ratio

Stdev Mean St. Dev Sharpe ratio

Panel A: 30 Assets

EW-30 0.1668 0.0975 0.1668 0.3194

MMS 0.1501 0.1580 0.3271 0.4830

MMS-CC 0.1431 0.1566 0.3109 0.5037

MMS-IC 0.1427 0.1703 0.3558 0.4785

MMS-DC 0.1434 0.1691 0.3672 0.4605

Panel B: 60 Assets

EW-60 0.1577 0.0983 0.1577 0.3431

MMS 0.1349 0.2835 0.4122 0.6371

MMS-CC 0.1333 0.2864 0.4426 0.6472

MMS-IC 0.1404 0.3182 0.6026 0.5280

MMS-DC 0.1345 0.3190 0.5489 0.5860

Panel C: 100 Assets

EW-100 0.1521 0.1018 0.1521 0.5087

MMS 0.1290 0.2217 0.4568 0.4854

MMS-CC 0.1112 0.1959 0.2737 0.7193

MMS-IC 0.1167 0.2143 0.2982 0.7187

MMS-DC 0.1182 0.2055 0.3380 0.6080

This table provides the annual standard deviation of the global minimum variance
portfolio and the mean, standard deviation and Sharpe ratio of the portfolio that
maximizes the Sharpe ratio. The OOS periods for 30/60/100 assets are 1971/01-
2020/12, 1971/01-2020/12 and 1991/01-2020/12, respectively. A bold number means
the optimal value in the corresponding column and panel.
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Table 9: Market Timing Portfolio using the S&P500 Index - 60 Assets

Model Mean St. Dev. Sharpe ratio ∆ (η = 5) ∆ (η = 10)

S&P500 0.0742 0.1528 0.1963 - -

Panel A: Strategy I with τ = 0.5

UMS-S&P500 0.0576 0.1433 0.0936 -105.48 -25.16

MMS 0.0796 0.1317 0.2691 176.18 335.40

MMS-CC 0.0821 0.1225 0.3099 248.59 468.10

MMS-IC 0.0873 0.1264 0.3412 281.70 477.14

MMS-DC 0.0829 0.1254 0.3085 242.17 443.89

Panel B: Strategy I with τ = 0.75

UMS-S&P500 0.0557 0.1420 0.0811 -117.00 -26.83

MMS 0.0828 0.1303 0.2963 214.85 383.00

MMS-CC 0.0812 0.1204 0.3080 250.88 484.45

MMS-IC 0.0884 0.1254 0.3526 297.74 499.70

MMS-DC 0.0796 0.1250 0.2833 211.43 416.00

Panel C: Strategy II

UMS-S&P500 0.0614 0.1376 0.1253 -35.35 86.47

MMS 0.0785 0.1265 0.2711 191.54 385.54

MMS-CC 0.0787 0.1147 0.3015 251.93 518.74

MMS-IC 0.0844 0.1203 0.3346 283.19 517.12

MMS-DC 0.0810 0.1205 0.3058 247.86 480.55

This table provides annual sample mean, standard deviation and Sharpe ratio of mar-
ket timing portfolio returns. The performance fees are annualized basis points and
are calculated using the index as the benchmark. The out of sample period is from
1971/01 to 2020/12. A bold number means the optimal value in the corresponding
column and panel.
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Table 10: Market Timing Portfolio - State-dependent mean v.s. constant mean

Model Mean St. Dev. Sharpe ratio ∆ (η = 5) ∆ (η = 10)

Panel A: Strategy I with τ = 0.5

MMS-CC 0.0921 0.1255 0.3821 126.60 376.38

MMS-CC (constant mean) 0.0896 0.1250 0.3637 104.16 357.40

MMS-IC 0.0987 0.1296 0.4206 172.67 396.62

MMS-IC (constant mean) 0.0931 0.1286 0.3807 122.33 353.46

MMS-DC 0.0916 0.1287 0.3682 105.94 336.17

MMS-DC (constant mean) 0.0936 0.1236 0.4003 152.07 415.09

Panel B: Strategy I with τ = 0.75

MMS-CC 0.0924 0.1241 0.3888 137.12 396.56

MMS-CC (constant mean) 0.0906 0.1239 0.3748 120.00 380.94

MMS-IC 0.0981 0.1279 0.4214 175.76 411.48

MMS-IC (constant mean) 0.0913 0.1281 0.3676 106.16 340.46

MMS-DC 0.0892 0.1285 0.3506 83.51 315.18

MMS-DC (constant mean) 0.0905 0.1226 0.3779 125.60 395.18

Panel C: Strategy II

MMS-CC 0.0915 0.1178 0.4013 158.08 456.65

MMS-CC (constant mean) 0.0905 0.1181 0.3920 146.93 444.26

MMS-IC 0.0966 0.1232 0.4252 184.69 451.18

MMS-IC (constant mean) 0.0918 0.1229 0.3879 138.40 406.79

MMS-DC 0.0909 0.1237 0.3780 125.30 388.45

MMS-DC (constant mean) 0.0921 0.1164 0.4115 171.16 478.40

This table provides annual sample mean, standard deviation and Sharpe ratio of market timing
portfolio returns. The performance fees are annualized basis points and are calculated using the
index as the benchmark. The results are based on 60 assets sample and the out of sample period is
from 1971/01 to 2020/12.

Table 11: Density Forecast of Return Vectors - Industrial Portfolios

Models Log predictive likelihoods
MMS -12443.22

MMS-CC -10835.84
MMS-IC -10451.14
MMS-DC -10589.17

This table provides log predictive likeli-
hoods of four multivariate models applied
to industrial portfolio returns. The out of
sample period is from 1972/11 to 2022/10.
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Table 12: Market Timing Performance - Industrial Portfolios

Model Mean St. Dev. Sharpe ratio ∆ (η = 5) ∆ (η = 10)

EW-30 0.1326 0.1689 0.5236

Panel A: Strategy I with τ = 0.5

UMS 0.1062 0.1568 0.3953 -173.24 -44.82

MMS 0.1019 0.1382 0.4176 -103.97 175.33

MMS-CC 0.1056 0.1370 0.4487 -59.93 227.63

MMS-IC 0.1110 0.1399 0.4775 -24.28 239.63

MMS-DC 0.1057 0.1374 0.4478 -61.46 223.13

Panel B: Strategy I with τ = 0.75

UMS 0.0953 0.1485 0.3440 -230.51 -30.72

MMS 0.0999 0.1378 0.4041 -122.09 160.08

MMS-CC 0.1064 0.1350 0.4610 -40.60 261.83

MMS-IC 0.1080 0.1375 0.4640 -39.44 244.37

MMS-DC 0.1101 0.1293 0.5101 27.05 368.80

Panel C: Strategy II

UMS 0.1066 0.1452 0.4303 -94.70 132.95

MMS 0.1065 0.1292 0.4824 -6.37 339.44

MMS-CC 0.1123 0.1289 0.5287 52.80 399.18

MMS-IC 0.1130 0.1325 0.5196 40.02 360.91

MMS-DC 0.1133 0.1278 0.5413 68.56 422.00

This table provides annual sample mean, standard deviation and Sharpe ratio
of market timing portfolio returns. The performance fees are annualized basis
points and are calculated using the index (buy and hold) as the benchmark. The
UMS model is applied to the average returns of the 30 industrial portfolios. The
out of sample period is from 1972/11 to 2022/10. A bold number means the
optimal value in the corresponding column and panel.

Table 13: Posterior Means of Parameters in Duration Distribution

κ ∼ G(4, 1) κ ∼ G(40, 10) κ ∼ G(60, 10) κ1 = κ2 = 4

θ ∼ G(0.1, 0.5) θ ∼ G(1, 5) θ ∼ G(1, 5) θ ∼ G(1, 5)

κ1 0.333 0.912 1.370 -

κ2 0.389 0.802 1.144 -

θ1 0.102 0.257 0.349 0.605

θ2 0.032 0.062 0.079 0.165

Duration (bear) 3.26 3.55 3.92 6.61

Duration (bull) 12.13 12.94 14.43 24.27

This table reports the posterior averages of duration distribution parameters and implied
bull and bear market durations under four priors.
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Figure 1: Scatter plot of sample means and variances of 30 assets in bull and bear regimes.
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Figure 2: Bull and bear regimes based on UMS by using the S&P500 index.
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Figure 3: Sample correlation of stock pairs in bull and bear regimes (30 assets case)
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Figure 4: Distribution of µibear and µibull from MMS-DC model (60 assets case).
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Figure 5: Distribution of σibear and σibull from MMS-DC model (60 assets case).
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Figure 6: Distributions of µibear, µibull from MMS-DC model in 30, 60 and 100 assets cases.
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Figure 7: Distribution of σibear, σibull from MMS-DC model in 30, 60 and 100 assets cases.
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Figure 8: Trace plot of the average of correlations in each regimes (60 assets case).
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Figure 9: Density estimates of pairwise correlation coefficients in each regime (60 assets
case).
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Figure 10: 30 asset case - smoothed probability of bull regime (from top to bottom: index
cumulative values, MMS-DC, MMS and UMS).
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Figure 11: 60 assets case - smoothed probability of bull regime (from top to bottom: index
cumulative values, MMS-DC, MMS and UMS).
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Figure 12: 100 assets case - smoothed probability of bull regime (from top to bottom: index
cumulative values, MMS-DC, MMS and UMS).
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A Appendix

A.1 Data

The datasets of 30, 60 and 100 assets are formed from the first 30, the first 60 and the
100 assets below, respectively.

Table 14: Equity List

PERMNO TICKER COMPANY NAME

1 10065 ADX ADAMS EXPRESS CO
2 10145 HON HONEYWELL INTERNATIONAL INC
3 10516 ADM ARCHER DANIELS MIDLAND CO
4 10866 CAL CALERES INC
5 10874 BC BRUNSWICK CORP
6 10890 UIS UNISYS CORP
7 11308 KO COCA COLA CO
8 11404 ED CONSOLIDATED EDISON INC
9 11674 DTE D T E ENERGY CO
10 11762 ETN EATON CORP PLC
11 11850 XOM EXXON MOBIL CORP
12 12036 GATX G A T X CORP
13 12052 GD GENERAL DYNAMICS CORP
14 12060 GE GENERAL ELECTRIC CO
15 12431 IR INGERSOLL RAND PLC
16 12490 IBM INTERNATIONAL BUSINESS MACHS COR
17 12503 NAV NAVISTAR INTERNATIONAL CORP
18 12570 ITT I T T INC
19 12650 KSU KANSAS CITY SOUTHERN
20 12781 SR SPIRE INC
21 13303 NL N L INDUSTRIES INC
22 13610 OLN OLIN CORP
23 13688 PCG P G & E CORP
24 13856 PEP PEPSICO INC
25 13901 MO ALTRIA GROUP INC
26 13928 COP CONOCOPHILLIPS
27 13936 PVH P V H CORP
28 13987 PW POWER REIT
29 14277 SLB SCHLUMBERGER LTD
30 14541 CVX CHEVRON CORP NEW
31 14752 TPL TEXAS PACIFIC LAND TRUST
32 14795 TKR TIMKEN COMPANY
33 14816 TR TOOTSIE ROLL INDS INC

Continued on next page
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Table 14 – continued from previous page
PERMNO TICKER COMPANY NAME

34 15069 MRO MARATHON OIL CORP
35 15202 VMC VULCAN MATERIALS CO
36 15456 FL FOOT LOCKER INC
37 15579 TXN TEXAS INSTRUMENTS INC
38 15720 EIX EDISON INTERNATIONAL
39 16432 GT GOODYEAR TIRE & RUBBER CO
40 16555 UVV UNIVERSAL CORPORATION
41 16600 HSY HERSHEY CO
42 16678 KR KROGER COMPANY
43 17005 CVS C V S HEALTH CORP
44 17144 GIS GENERAL MILLS INC
45 17478 SPGI S & P GLOBAL INC
46 17523 SPA SPARTON CORP
47 17726 CCK CROWN HOLDINGS INC
48 17750 KMB KIMBERLY CLARK CORP
49 17830 UTX UNITED TECHNOLOGIES CORP
50 17929 UGI U G I CORP NEW
51 17961 BGG BRIGGS & STRATTON CORP
52 18075 AP AMPCO PITTSBURGH CORP
53 18091 CW CURTISS WRIGHT CORP
54 18163 PG PROCTER & GAMBLE CO
55 18403 JCP PENNEY J C CO INC
56 18411 SO SOUTHERN CO
57 18438 SCX STARRETT L S CO
58 18542 CAT CATERPILLAR INC
59 18622 GAM GENERAL AMERICAN INVESTORS INC
60 18649 BCO BRINKS CO
61 18729 CL COLGATE PALMOLIVE CO
62 18956 TY TRI CONTINENTAL CORP
63 18964 PEO ADAMS NATURAL RESOURCES FUND INC
64 19166 FMC F M C CORP
65 19350 DE DEERE & CO
66 19393 BMY BRISTOL MYERS SQUIBB CO
67 19502 WBA WALGREENS BOOTS ALLIANCE INC
68 19561 BA BOEING CO
69 19721 VVI VIAD CORP
70 19828 WEN WENDYS CO
71 20204 CR CRANE CO
72 20415 LUK LEUCADIA NATIONAL CORP
73 20482 ABT ABBOTT LABORATORIES
74 20618 CRS CARPENTER TECHNOLOGY CORP
75 20626 DOW DOW CHEMICAL CO

Continued on next page
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Table 14 – continued from previous page
PERMNO TICKER COMPANY NAME

76 21020 AAL AMERICAN AIRLINES GROUP INC
77 21055 GCO GENESCO INC
78 21135 FOE FERRO CORP
79 21178 LMT LOCKHEED MARTIN CORP
80 21186 WRK WESTROCK CO
81 21207 NEM NEWMONT MINING CORP
82 21776 EXC EXELON CORP
83 21792 CNP CENTERPOINT ENERGY INC
84 21928 IDA IDACORP INC
85 21936 PFE PFIZER INC
86 22103 EMR EMERSON ELECTRIC CO
87 22111 JNJ JOHNSON & JOHNSON
88 22293 GLW CORNING INC
89 22509 PPG P P G INDUSTRIES INC
90 22517 PPL P P L CORP
91 22592 MMM 3M CO
92 22752 MRK MERCK & CO INC NEW
93 22779 MSI MOTOROLA SOLUTIONS INC
94 23026 FE FIRSTENERGY CORP
95 23042 EDE EMPIRE DISTRICT ELEC CO
96 23085 SCG SCANA CORP NEW
97 23229 CMS C M S ENERGY CORP
98 23536 WEC W E C ENERGY GROUP INC
99 23579 TXT TEXTRON INC
100 23712 PEG PUBLIC SERVICE ENTERPRISE GP INC

A.2 Market Timing Strategy Based on the S&P500 Index

Tables 15 and 16 report the performance of market timing strategy based on trading the

S&P500 index. For example, in the 30-asset case, the univariate MS model is applied to the

S&P500 index and the investor buys the S&P500 index if entering the market. These results

compliment Table 15 in the main text.
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Table 15: Market Timing Portfolio using the S&P500 Index - 30 Assets

Model Mean St. Dev. Sharpe ratio ∆ (η = 5) ∆ (η = 10)

S&P500 0.0742 0.1528 0.1963

Panel A: Strategy I with τ = 0.5

UMS-S&P500 0.0594 0.1429 0.1068 -84.71 -1.43

MMS 0.0972 0.1092 0.4858 459.58 753.73

MMS-CC 0.0889 0.1162 0.3848 347.90 606.82

MMS-IC 0.0870 0.1230 0.3481 295.80 513.10

MMS-DC 0.0865 0.1218 0.3476 297.08 521.95

Panel B: Strategy I with τ = 0.75

UMS-S&P500 0.0533 0.1399 0.0649 129.56 -23.76

MMS 0.0929 0.1068 0.4561 426.36 733.91

MMS-CC 0.0945 0.1060 0.4751 445.03 755.17

MMS-IC 0.0849 0.1200 0.3393 289.96 526.28

MMS-DC 0.0885 0.1186 0.3739 332.52 576.83

Panel C: Strategy II

UMS-S&P500 0.0607 0.1357 0.1221 -32.04 102.83

MMS 0.0855 0.1020 0.4046 372.94 706.49

MMS-CC 0.0854 0.1047 0.3942 361.01 680.20

MMS-IC 0.0824 0.1156 0.3312 286.27 549.10

MMS-DC 0.0836 0.1134 0.3477 308.05 583.46

This table provides annual sample mean, standard deviation and Sharpe ratio of mar-
ket timing portfolio returns. The performance fees are annualized basis points and
are calculated using the index as the benchmark. The out of sample period is from
1971/01 to 2020/12. A bold number means the optimal value in the corresponding
column and panel.
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Table 16: Market Timing Portfolio using the S&P500 Index - 100 Assets

Model Mean St. Dev. Sharpe ratio ∆ (η = 5) ∆ (η = 10)

S&P500 0.0810 0.1464 0.3867 - -

Panel A: Strategy I with τ = 0.5

UMS-S&P500 0.0776 0.1445 0.3683 -39.49 89.58

MMS 0.0888 0.1072 0.6004 274.79 532.62

MMS-CC 0.0659 0.0822 0.5045 142.80 522.48

MMS-IC 0.0604 0.0821 0.4376 88.27 468.95

MMS-DC 0.0828 0.0954 0.6123 263.92 583.19

Panel B: Strategy I with τ = 0.75

UMS-S&P500 0.0734 0.1394 0.3513 -70.44 119.94

MMS 0.0888 0.1072 0.6004 274.79 532.62

MMS-CC 0.0614 0.0801 0.4623 106.08 495.38

MMS-IC 0.0620 0.0816 0.4603 106.24 489.10

MMS-DC 0.0799 0.0946 0.5870 238.30 561.67

Panel C: Strategy II

UMS-S&P500 0.0749 0.1300 0.3880 30.50 153.31

MMS 0.0868 0.1072 0.5817 254.84 513.01

MMS-CC 0.0634 0.0804 0.4848 124.55 512.20

MMS-IC 0.0612 0.0825 0.4453 95.23 474.65

MMS-DC 0.0791 0.0917 0.5970 241.96 579.54

This table provides annual sample mean, standard deviation and Sharpe ratio of mar-
ket timing portfolio returns. The performance fees are annualized basis points and
are calculated using the index as the benchmark. The out of sample period is from
1991/01 to 2020/12. A bold number means the optimal value in the corresponding
column and panel.
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Figure 15: Smoothed probability of bull regime (MMS-CC-duration model under 4 priors)
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A.3 Inference from UMS

See Kim et al. (1999) Chapter 9.

A.4 Inference from MMS

Inference from MMS is standard. We only schetch the algorithm here.

1. Draw Mk from a multivariate normal distribution. Keep the values that satisfy the

bull and bear identification restriction.

2. Draw Σk from an inverse Wishart distribution.

3. Draw S by following Chib (1996).

4. Draw each row of P from a Dirichlet distribution.

5. Draw mk from a normal distribution.

6. Draw v2k from an inverse Gamma distribution.

7. Draw ζk from a normal distribution.

8. Draw b2k from an inverse Gamma distribution.

The details for the hierarchical parameter mk, v
2
k, ζk and b2k are identical as in Appendix A.6.

A.5 Comparing gLMC and M-H methods

The theory of gLMC is in Holbrook et al. (2018), so we do not repeat it. This section

provides evidence of the practicality of the gLMC method in comparison to the Metropolis-

Hastings method, which is probably the easiest and most flexible (not without its deficiency)

approach for posterior simulation. The comparison focuses on sampling large positive definite

matrices which is the bottleneck of computation in this paper.

In order to illustrate the benefits we consider a very simple multivariate normal model

as

yt ∼ N(0,Σ),

for t = 1, ..., T . The vectors {yt}Tt=1 have dimension N × 1 and are independent. There is

only one parameter, Σ, which can have a large dimension as N(N + 1)/2. We assume a

conjugate prior as

Σ ∼ IW (A0, a0),
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which returns a textbook analytic posterior distribution as

Σ | Y ∼ IW (A1, a1),

where a1 = a0 + T and A1 = A0 + Y ′Y with Y = [y1, y2, ..., yT ]
′. The analytic solution can

verify the convergence of the M-H and gLMC method, and then help us understand their

efficiency.

A.5.1 Metropolis-Hastings Method

Denote the posterior kernel density as p(Σ | ·), a random walk M-H method based on

an inverse Wishart proposal is set up as follows. Given an initial value Σ(0) and degree of

freedom parameter v > 0, repeat the following.

1. Given value Σ(g), draw a new value Σ∗ from an inverse Wishart distribution

Σ∗ ∼ IW (Σ(g)(v −N − 1), v),

which assures that E(Σ∗) = Σ(g).

2. Accept the new value and set Σ(g+1) = Σ∗ with probability

min

{
1,

p(Σ∗ | ·)q(Σ(g) | Σ∗)

p(Σ | ·)q(Σ∗ | Σ(q))

}
,

where q(·|·) is the proposal density in the previous step.

After discarding a burnin sample, we collect the remaining draws for posterior inference.

To reduce dependence in the chain we apply thinning by selecting every 100th iteration. The

thinning method is also helpful for saving the computer memory when N is large.

The degree of freedom parameter v plays an important role in the acceptance frequency.

In large dimensions we find it necessary to set a very large value of v which reduces the

variance of the IW draw. This means that the proposal Σ∗ can be quite close to the existing

value of the Markov chain Σ(g). This compromises sampling efficiency but still delivers the

correct posterior distribution compared to the analytic posterior distribution in a manageable

time.

A.5.2 gLMC

We use Algorithm 2 in Holbrook et al. (2018) to randomly draw Σ from the posterior

distribution. The detailed algorithm is in Appendix A.5.3 for interested readers. In this
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subsection, we discuss the link between gLMC and the Hamiltonian Monte Carlo (HMC)

method along with their benefit and cost.

The HMC relies on Hamiltonian dynamics to simulate values from the posterior dis-

tribution and is much faster in exploring the parameter space than a simple random-walk

approach. See (Neal et al. 2011) for an excellent survey as well as a practitioner’s guide.

The parameters are treated as the position of an object (imagine a surface if the number of

parameters is 2) with its potential energy represented by the negative log posterior kernel

density. Random shocks introduce fictitious “momentum” or kinetic energy. In other words,

this object is repeatedly and randomly “kicked” to suddenly have a speed. In a frictionless

world, it will move accordingly and its speed will change (magnitude and direction) during

its travel along the curly surface. For example, if the object goes up the hill, its speed tends

to decrease and its direction may revert eventually. Or, it may be diverted along a tilted

hill. The random shocks (randomness) work together with the surface (negative log posterior

kernel) would give a better chance for the object to reach the trough and its neighborhood

while allowing its exploration into further area.

For illustration, a simple Hamiltonian function is

H(θ, v) = U(θ) +K(v), (49)

where θ is the parameter of interest and U(θ) = − log π(θ | Y ) for a Bayesian model (the

posterior density π(θ | Y ) can be replaced by any posterior kernel density) is the potential

energy. The v is the velocity and K(v) = v′M−1v/2 is the kinetic energy with M being the

“mass matrix”. As M is typically diagonal or even a scalar times identity matrix, denote mi

as the ith diagonal element, we can write K(v) =
K∑
i=1

v2i
2mi

with K as the dimension of θ and

v. The system moves according to the Hamiltonian’s equations

dθi
dt

=
vi
mi

(50)

dvi
dt

= −∂U

∂θi
(51)

The Hamiltonian dynamic system is continuously timed. In practice, it is executed through
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a discrete approximation called the leap-frog algorithm with step size ε.

vi(t+ ε/2) = vi(t)− (ε/2)
∂U

∂θi
(θ(t)) (52)

θi(t+ ε) = θi(t) + ε
vi(t+ ε/2)

mi

(53)

vi(t+ ε) = vi(t+ ε/2)− (ε/2)
∂U

∂θi
(θ(t+ ε)) (54)

After repeating Step (52)-(54) for L times, a Metropolis-Hastings adjustment is performed in

the last step to safeguard any numeric error from approximation. The HMC is more efficient

than a random walk, if ignoring its computational cost, because it explores the shape of the

potential energy through the gradient as an direction.

The gLMC inherits HMC by using the Hamiltonian system, while being different in

two perspectives. First, instead of using a constant mass function M , the second order

information is exploited in each leap frog cycle ((52)-(54)) (see (Girolami & Calderhead

2011)). As a result, the mass function depends on the value of θ (in our simulation, Σ).

Second, the gLMC exploits the geodesic flow to guarantee positive definiteness. Heuristically,

for Step (53) in each iteration of the leap frog jump, the parameter space is cast to the

subspace of the positive definite matrices so that no movement could violate such restriction.

A generic HMC, however, may fail to provide a positive definite proposal without proper

restrictions.

The cost from using the gLMC lies in its additional evaluation of a large dimensional

gradient and large dimensional matrix operations associated with the varying mass function.

Whether the M-H or gMLC provides more efficient samples for a given time period is an

empirical issue.

A.5.3 gLMC Algorithm in Simulation Study

1. The energy function is

E(Σ, V ) = − log p(Σ | ·)− N + 1

2
log |Σ|+ 1

2
vech(V )G(Σ)vech(V )

.
=

T

2
log |Σ|+ 1

2
tr(Y ′Y Σ−1) +

a0 +N + 1

2
log |Σ|+ 1

2
tr(A0Σ

−1)

− N + 1

2
log |Σ|+ 1

2
vech(V )G(Σ)vech(V )

=
T + a0

2
log |Σ|+ 1

2
tr([A0 + Y ′Y ]Σ−1) +

1

2
vech(V )G(Σ)vech(V ),
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where G(Σ) = D′(Σ−1 ⊗ Σ−1)D and G−1(Σ) = D+(Σ ⊗ Σ)D+′
. Matrix D satisfies

vec(V ) = Dvech(V ) and D+ = (D′D)−1D′.

2. Choose step size ϵ, number of steps L and an initial value Σ.

3. Carry out the iteration below.

(a) Save Σ0 = Σ and draw

vech(V0) ∼ N(0, G−1(Σ)).

To draw V0, Cholesky decompose Σ

Σ = LL′

and draw

X ∼ N(0,Σ⊗ Σ)

with a Cholesky decomposition L⊗ L. A simple representation is

X = (L⊗ L)×N(0, IN2)

Then,

vech(V0) = D+X

Symmetrise V0.

(b) Set V = V0 and Σ = Σ0 and start the flow.

i.

vech(V ) = vech(V ) +
ϵ

2
G−1(Σ)vech

(
∂

∂Σ

[
log p(Σ | ·) + N + 1

2
log |Σ|

])
The derivative

∂

∂Σ

[
log p(Σ | ·) + N + 1

2
log |Σ|

]
=− ∂

∂Σ

[
T + a0

2
log |Σ|+ 1

2
tr([A0 + Y ′Y ]Σ−1)

]
=− T + a0

2

(
2Σ−1 − diag(Σ−1)

)
− 1

2

(
−2Σ−1[A0 + Y ′Y ]Σ−1 + diag(Σ−1[A0 + Y ′Y ]Σ−1))

)
=− (T + a0)

(
Σ−1 − 1

2
diag(Σ−1)

)
+

(
Σ−1[A0 + Y ′Y ]Σ−1 − 1

2
diag(Σ−1[A0 + Y ′Y ]Σ−1))

)
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ii.

Σ = Σ1/2 exp
(
ϵΣ−1/2V Σ−1/2

)
Σ1/2

and

V = V Σ−1/2 exp
(
ϵΣ−1/2V Σ−1/2

)
Σ1/2.

The exponential is matrix exponential based on the spectral decomposition.

Suppose

B = UDU ′,

then exp(B) = U exp(D)U ′ with exp(D) = diag
(
ed1 , ..., edN

)
. The square

root is defined as

B1/2 = UD1/2U ′,

where D1/2 = (d
1/2
1 , ..., d

1/2
N ).

Symmetrise V .

iii.

vech(V ) = vech(V ) +
ϵ

2
G−1(Σ)vech

(
∂

∂Σ

[
log p(Σ | ·) + N + 1

2
log |Σ|

])
iv. Repeat for l = 1, ..., L times.

(c) Accept new value Σ with probability

min (1, exp(E(Σ0, V0)− E(Σ, V ))) .

4. Repeat Step 3 many times and discard the initial burnin sample. The remaining G

samples are used for inference. Because the gLMC explores the posterior surface rather

efficiently, we do not use thinning and need significantly less simulations compared to

the M-H method.

We need to fine-tune the step size ϵ and number of leaps L. We monitor the posterior

density with respect to the true distribution, trace plot, and autocorrelation. Acceptance

rate is also monitored but not a key as long as it is not too low.

A.6 Inference from MMS-CC

For completeness, we repeat the model and prior below.

54



Rt | st = k ∼ N(Mk,∆kΛ∆k),

Λ = ΓQΓ, Γ = diag
(

1√
Q11

, . . . , 1√
QNN

)
,

P (st+1 = j|st = k) = pkj,

Mk = (µ1k, µ2k, . . . , µNk)
′ ,

µik ∼ N(mk, v
2
k),

mk ∼ N(0, 0.5),

v2k ∼ IG(5, 5),

∆k = diag (σ1k, σ2k, . . . , σNk) ,

log(σik) ∼ N(ζk, b
2
k),

ζk ∼ N(0, 0.5),

b2k ∼ IG(5, 5),

Q ∼ IW(Ψ, ν),

(p11, p12) and (p22, p21) ∼ Dir(pa, pb),

where k, j = 1, 2 and i = 1, ..., N .

The parameter space Θ includes Mk, ∆k, matrix Q, the transition matrix P and the

hyper-parameters mk, v
2
k, ζk, b

2
k for k = 1, 2. It also includes the regime indicator S =

{s1, s2, . . . , sT}. Let R1:T denotes the data over the sample period. A posterior kernel

density function is

p(Θ | R1:T ) ∝ p(P )p(Q)
2∏

k=1

p(mk)p(v
2
k)p(Mk | mk, v

2
k)p(ζk)p(b

2
k)p(∆k | ζk, b2k)

× p(S | P )p(R1:T | S,M,∆, Q),

where M = (M1,M2) and ∆ = (∆1,∆2).

The detailed sampling steps are shown as follows.

1. Mk|R1:T ,∆k, Q, S,mk, v
2
k for k = 1, 2.

Mk = (µ1k, µ2k, . . . , µNk)
′ is sampled by using a Gibbs sampler. Given prior µik ∼
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N(mk, v
2
k), the conditional posterior of Mk is

p(Mk | · · · ) ∝
∏
st=k

exp

{
−1

2

(
Rt −Mk)

′∆−1
k Λ−1∆−1

k (Rt −Mk)
)}

· exp
{
−1

2
(Mk −mkι)

′v−2
k (Mk −mkι)

}
∝ exp

{
−1

2

[
nkM

′
kΣ

−1
k Mk − 2

T∑
t=1,st=k

R′
tΣ

−1
k Mk

]
− 1

2

[
v−2
k M ′

kMk − 2
mk

v2k
ι′Mj

]}

∝ exp

{
−1

2

[
M ′

k(nkΣ
−1
k + v−2

k I)Mk − 2

(
T∑

t=1,st=k

R′
tΣ

−1
k +

mk

v2k
ι′

)
Mk

]}

Therefore,

Mk | · ∼ N(m,H),

where H = nkΣ
−1
k + v−2

k I and m = H
−1
(

mk

v2k
ι+ Σ−1

k

∑T
t=1,st=k Rt

)
. And nk is the

number of periods that st = k.

2. ∆k | R1:T ,Mk, Q, S, ζk, b
2
k for k = 1, 2.

Values log σik, i = 1, . . . , N , are sampled by using a Metropolis-Hasting algorithm with

random walk proposal. A single-move sampler is used first and a joint sampling ap-

proach is then applied later to improve efficiency. The initial results obtained from the

single-move sampler are used to construct the covariance matrix for the joint random

walk proposal.

The conditional posterior of log σik is

p(log σik | · · · ) ∝
T∏

t=1,st=k

|Σk|−
1
2 exp

{
−1

2
(Rt −Mk)

′Σ−1
k (Rt −Mk)

}
exp

{
−(log σik − ζk)

2

2b2k

}
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Its log version is

log p(log σik| · · · )
.
= −nk

2
log |Σk| −

1

2

T∑
t=1,st=j

(Rt −Mk)
′Σ−1

k (Rt −Mk)−
(log σik − ζk)

2

2b2k

.
= −nk

2
log |∆kΛ∆k| −

1

2

T∑
t=1,st=j

(Rt −Mk)
′Σ−1

k (Rt −Mk)−
(log σik − ζk)

2

2b2k

.
= −nk

2
log |∆kΛ∆k| −

1

2

T∑
t=1,st=j

(Rt −Mk)
′∆−1

k Λ−1∆−1
k (Rt −Mk)−

(log σik − ζk)
2

2b2k

.
= −nk log |∆k| −

1

2

T∑
t=1,st=j

(Rt −Mk)
′∆−1

k Λ−1∆−1
k (Rt −Mk)−

(log σik − ζk)
2

2b2k

Random walk proposal is used to simulate log σ̇ik and accept it with probability

min
(
1, p(log σ̇ik|·)

p(log σik|·)

)
3. Q|R1:T ,M,∆, ν

The geodesic Lagrangian Monte Carlo introduced in Holbrook et al. (2018) is applied

to sample Q in order to more efficiently explore the conditional posterior and ensure

the positive definiteness.

The prior of Q ∼ IW (Ψ, ν), the posterior of Q is

p(Q | · · · ) ∝
T∏
t=1

|Σt|−1/2 exp

{
−1

2
(Rt −Mst)

′Σ−1
t (Rt −Mst)

}
|Q|−

ν+N+1
2 exp

{
−1

2
tr(ΨQ−1)

}

∝
T∏
t=1

|∆stΓQΓ∆st |−1/2 exp

{
−1

2
(Rt −Mst)

′∆−1
st Γ

−1Q−1Γ−1∆−1
st (Rt −Mst)

}
|Q|−

ν+N+1
2 exp

{
−1

2
tr(ΨQ−1)

}
The log density is

log p(Q | ·) .
= −1

2

T∑
t=1

log |∆stΓQΓ∆st | −
1

2

T∑
t=1

(Rt −Mst)
′∆−1

st Γ
−1Q−1Γ−1∆−1

st (Rt −Mst)

− ν +N + 1

2
log |Q| − 1

2
tr(ΨQ−1)

.
= −T + ν +N + 1

2
log |Q| − T log |Γ| − 1

2
tr(ΨQ−1)

− 1

2

T∑
t=1

(Rt −Mst)
′∆−1

st Γ
−1Q−1Γ−1∆−1

st (Rt −Mst)
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The Hamiltonian is

E(Q, V ) = − log(p(Q|·))− N + 1

2
log |Q|+ 1

2
vech(V )TG(Q)vech(V )

=
T + ν

2
log |Q|+ T log |Γ|+ 1

2

T∑
t=1

(Rt −Mst)
′∆−1

st Γ
−1Q−1Γ−1∆−1

st (Rt −Mst)

+
1

2
tr(ΨQ−1) +

1

2
vech(V )TG(Q)vech(V ),

where vech(V ) is a N(N + 1)/2 × 1 vector to represent the momentum of the free

parameters of Q. Matrix G(Q) = D′(Q−1 ⊗ Q−1)D and G−1(Q) = D+(Q ⊗ Q)D+′
,

where D is the matrix satisfying vec(V ) = Dvech(V ) and D+ = (D′D)−1D′. Matrix

G(Q) is the Fisher information matrix for the Riemann Manifold Hamiltonian Monte

Carlo (RMHMC) in Girolami & Calderhead (2011). Holbrook et al. (2018) adapted it

to the covariance matrix sampling to safeguard positive definiteness.

The derivatives for each part are given as follows.

(a)
∂

∂Q

(
T + ν

2
log |Q|

)
=

T + ν

2
(2Q−1 − diag(Q−1))

(b)

∂

∂Q
(T log |Γ|) = ∂

∂Q

(
T log(Q

−1/2
11 ·Q−1/2

22 · · ·Q−1/2
NN )

)
=− T

2

∂

∂Q
(logQ11 + logQ22 + · · ·+ logQNN)

=− T

2
diag

(
1

Q11

,
1

Q22

, . . . ,
1

QNN

)
(c)

∂

∂Q

(
1

2
tr(ΨQ−1)

)
= −Q−1ΨQ−1 +

1

2
diag(Q−1ΨQ−1)

(d)

∂

∂Q

(
1

2

T∑
t=1

(Rt −Mst)
′∆−1

st Γ
−1Q−1Γ−1∆−1

st (Rt −Mst)

)

=
1

2

T∑
t=1

∂

∂Q

(
R∗′

t Γ
−1Q−1Γ−1R∗

t

)
,
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where R∗
t = ∆−1

st (Rt−Mst). Recall that Γ = diag
(

1√
Q11

, . . . , 1√
QNN

)
is a function

of Q. Proceed,

1

2

T∑
t=1

∂

∂Q

(
R∗′

t Γ
−1Q−1Γ−1R∗

t

)
=
1

2

T∑
t=1

(
∂R∗′

t Γ
−1

∂Q
Q−1Γ−1R∗

t

)
+

1

2

T∑
t=1

(
R∗′

t Γ
−1Q−1∂Γ

−1R∗
t

∂Q

)

+
1

2

T∑
t=1

(
R∗′

t Γ
−1∂Q

−1

∂Q
Γ−1R∗

t

)

=
1

2

T∑
t=1

diag

(
1

2
Q

−1/2
ii R∗

tiQ
−1
i. Γ

−1R∗
t

)
+

1

2

T∑
t=1

diag

(
R∗′

t Γ
−1Q−1

.i

1

2
Q

−1/2
ii R∗

ti

)

+
1

2

T∑
t=1

(
R∗′

t Γ
−1∂Q

−1

∂Q
Γ−1R∗

t

)

=
1

2

T∑
t=1

diag
(
Q

−1/2
ii R∗

tiQ
−1
i. Γ

−1R∗
t

)
+

1

2

T∑
t=1

(
R∗′

t Γ
−1∂Q

−1

∂Q
Γ−1R∗

t

)

=
1

2

T∑
t=1

diag
(
Q

−1/2
ii R∗

tiQ
−1
i. Γ

−1R∗
t

)
+

1

2

T∑
t=1

(
−2Q−1Γ−1R∗

tR
∗′
t Γ

−1Q−1 + diag
(
Q−1Γ−1R∗

tR
∗′
t Γ

−1Q−1
))

=
1

2
diag

(
Q

−1/2
ii (Q−1Γ−1)i.(R

∗′R∗).i

)
−Q−1Γ−1(R∗′R∗)Γ−1Q−1 +

1

2
diag

(
Q−1Γ−1(R∗′R∗)Γ−1Q−1

)
,

where R∗ = (R∗
1, R

∗
2, ..., R

∗
T )

′.

The Geodesic Lagrangian Monte Carlo is carried out as follows.

(a)

vech(V0) ∼ N(0, G−1(Q)),

where Q is the current value Q0. Matrix G(Q) = D′(Q−1⊗Q−1)D and G−1(Q) =

D+(Q⊗Q)D+′
. Matrix D satisifies vec(V ) = Dvech(V ) and D+ = (D′D)−1D′.

(b) Set V = V0 and Q = Q0. Send V and Q to the flow through the following steps.

For l = 1, ..., L, where L is the leapfrog length,
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i.

vech(V ) = vech(V ) +
ϵ

2
G−1(Q)vech

(
∂

∂Q

[
log p(Q | ·) + N + 1

2
log |Q|

])
ii.

Q = Q1/2 exp
(
ϵQ−1/2V Q−1/2

)
Q1/2

and

V = V Q−1/2 exp
(
ϵQ−1/2V Q−1/2

)
Q1/2

iii.

vech(V ) = vech(V ) +
ϵ

2
G−1(Q)vech

(
∂

∂Q

[
log p(Q | ·) + N + 1

2
log |Q|

])
And ϵ is the leapfrog stepsize.

(c) Accept Q with probability min (1, exp(E(Q0, V0)− E(Q, V ))).

4. S | M,∆, Q, P

The state variables S = {s1, . . . , sT} are randomly drawn by using the forward filtering

backward sampling method in Chib (1996).

5. P |S

Parametrise the prior of Pj, the jth column of the transition matrix P , as Dir(αj1, αj2)

for j = 1, 2. Its conditional posterior is given by

p(Pj | ·) ∼ Dir(αj1 + nj1, αj2 + nj2),

where vector (nj1, nj2) records the numbers of switches from state j to state 1 and 2,

respectively.

6. mk | Mk, v
2
k for k = 1, 2.

Parametrise the prior p(mk) ∼ N(m0, v
2
0). Its conditional posterior is

p(mk | ·) ∝p(mk)p(Mk | mk, v
2
k)

∝ exp

{
−(mk −m0)

2

2v20

}
exp

{
−
∑N

i=1(µik −mk)
2

2v2k

}
.

Therefore,

mk | · ∼ N(m, v2),
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where v2 =
(
v−2
0 +Nv−2

k

)−1
and m = v2

(
v−2
0 m0 + v−2

k

∑N
i=1 µik

)
7. v2k | Mk,mk for k = 1, 2.

Parametrise the prior p(v2k) ∼ IG(v0/2, s0/2). Its conditional posterior is

p(v2k | ·) ∝ p(v2k)p(Mk | mk, v
2
k)

Standard derivation shows

v2k | · ∼ IG(v/2, s/2),

where v = v0 +N and s = s0 +
N∑
i=1

(µik −mk)
2 .

8. ζk | ∆k, b
2
k for k = 1, 2.

Parametrise the prior ζk ∼ N(m0, v
2
0). Its conditional posterior is

p(ζk | ·) ∝ p(ζk)p(∆k | ζk, b2k)

∝ exp

{
−(ζk −m0)

2

2v20

}
exp

−

N∑
i=1

(log(σik)− ζk)
2

2b2k


Standard deviation shows

ζk | · ∼ N(m, v2),

where v2 =
(
v−2
0 +Nb−2

k

)−1
and m = v2

(
v−2
0 m0 + b−2

k

N∑
i=1

log(σik)

)
.

9. b2k | ∆k, ζk for k = 1, 2.

Parametrise the prior p(b2k) ∼ IG(v0/2, s0/2). Its conditional posterior is

p(b2k | ·) ∝ p(b2k)p(∆k | ζk, b2k)

Standard deviation shows

b2k | · ∼ IG(v/2, s/2),

where v = v0 +N and s = s0 +
N∑
i=1

(log(σik)− ζk)
2.

A.7 Inference from MMS-IC

The algorithm is very similar to that of MMS-CC in Appendix A.6. Some differences

are:
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1. Qk for k = 1, 2.

It is similar to drawing Q in Appendix A.6. The difference is that drawing Qk only

uses part of the data for st = k.

2. An additional array W = (w1, ..., wT ) as the state variables for the Markov process of

correlations. Same method is applied as in Chib (1996).

A.8 Inference from MMS-DC

The algorithm is very similar to that of MMS-CC in Appendix A.6. Some differences

are:

1. Drawing Mk and ∆k are similar as in Appendix A.6. A small difference is that drawing

M1 and ∆1 uses the data for st = 1 or 2, and M2 and ∆2 for st = 3 or 4.

2. Qk for k = 1, 2. It is similar to drawing Q in Appendix A.6. The difference is that

drawing Q1 only uses part of the data for st = 1 or 3, while Q2 for st = 2 or 4.

3. State vector S is drawn using the same method as in Chib (1996), but with 4 states

instead of 2.

4. Each row of the transition matrix has 4 elements and drawn from a Dirichlet distribu-

tion. It is similar as in Appendix A.6.
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