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Abstract

A common approach to analyze count time series is to fit models based on ran-

dom sum operators. As an alternative, this paper introduces time series models based

on a random multiplication operator, which is simply the multiplication of a variable

operand by an integer-valued random coefficient, whose mean is the constant operand.

Such operation is endowed into auto-regressive-like models with integer-valued random

inputs, addressed as RMINAR. Two special variants are studied, namely the N0-valued

random coefficient auto-regressive model and the N0-valued random coefficient multi-

plicative error model. Furthermore, Z-valued extensions are considered. The dynamic

structure of the proposed models is studied in detail. In particular, their correspond-

ing solutions are everywhere strictly stationary and ergodic, a fact that is not common

neither in the literature on integer-valued time series models nor real-valued random

coefficient auto-regressive models. Therefore, the parameters of the RMINAR model

are estimated using a four-stage weighted least squares estimator, with consistency and

asymptotic normality established everywhere in the parameter space. Finally, the new

RMINAR models are illustrated with some simulated and empirical examples.

Keywords: integer-valued random coefficient AR, random multiplication integer-

valued auto-regression, random multiplication operator, RMINAR, WLS estimators.

MSC: 60G10, 62M10, 62M20, 62F12, 62F30.

1 Introduction

Modeling low integer-valued time series data is, nowadays, an ongoing concern in time series

research. To this end, three common approaches are generally undertaken. The first assumes

a discrete conditional distribution whose conditional mean is a parametric function of past

observations. The resulting models are known as observation-driven in the terminology of

Cox (1981). The most known examples are the integer-valued Generalized ARMA model

(Zeger and Qaqish, 1988; Benjamin et al., 2003; Zheng et al., 2015) and, in particular, the

integer-valued GARCH (INGARCH) model (e.g. Reydberg and Shephard, 2000; Heinen,
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2003; Ferland et al., 2006; Fokianos et al., 2009; Zhu, 2011; Davis and Liu, 2016; Aknouche

and Francq 2021). The primary feature of observation-driven models is that the likelihood

function is explicit in terms of observations, which turns maximum likelihood estimation,

inference, and forecasting quite easy to investigate. Other M-estimation methods such as

quasi-maximum likelihood (QML) and weighted least squares (WLS) estimators are also

straightforward to derive. However, observation-driven models suffer from some limitations,

namely that they are often fully parametric and hence not robust to a distributional mis-

specification. Moreover, their probabilistic structures (e.g. ergodicity, tail behavior, extremal

properties) are inherently complex since they are not defined through equations driven by

independent and identically distributed (iid) innovation sequences.

The second approach is addressed as parameter-driven (Cox, 1981) and shares with the

first approach the fact that also requires the specification of a discrete conditional distribution

for the data. Nonetheless, this distribution is rather conditioned on a latent process since

the conditional mean has a proper dynamics in terms of its past (latent) values (Zeger, 1988;

Davis and Rodriguez-Yam, 2005; Davis and Wu, 2009). Parameter-driven models have in

general simple probability structures and are quite flexible to represent dynamic dependence

of count data (e.g. Davis and Dunsmuir, 2016). In particular, the conditional mean depends

on present shocks unlike INGARCH models for which the conditional intensity only depends

on past observations. Due to the latent process, however, their estimation is rather difficult

because the likelihood function cannot in general be obtained in a closed form and involves

cumbersome multidimensional integration. Moreover, QML and WLS estimators are not

simple to derive either, since the conditional mean is not explicit in terms of observations.

This difficulty also arises in inference and prediction which explains why parameter-driven

count models have received less attention than observation-driven ones.

The third approach considers appropriate stochastic difference equations driven by iid

inputs whose solutions are integer-valued sequences. The main concern of these models is

to handle integer-valued random operations on inputs to produce integer-valued outputs

that have similar features to real-world integer-valued data. Random sum operations, aka

3



thinning operations, are the best-known examples. The rule is that, given a positive constant

and an integer-valued random variable as operands, a random sum operation is the sum

of iid discrete variables whose mean and number are the constant and variable operands,

respectively. In particular, the binomial thinning operator (Steutel and van Harn, 1978)

produces a binomial distributed variable that is bounded from above by the operand variable.

Random sum operators not satisfying the latter feature are still called generalized thinning,

e.g. Poisson and negative binomial random sums (see e.g. Scotto et al., 2015).

The most elegant property of random sum-based equations is that the marginal distri-

bution of the output sequence is readily known and depends on the operator and input

distributions. For instance, the first order integer-valued auto-regressive process (INAR(1);

McKenzie, 1985; Al-Osh and Alzaid, 1987) based on binomial thinning and driven by a

Poisson iid innovation has a Poisson marginal. Since any random sum involves unobserved

summands, the likelihood calculation is cumbersome and requires high dimensional sum-

mations, just like parameter-driven models. This is the reason why some authors classify

thinning-based models as parameter-driven (e.g. Ahmad and Francq, 2016; Aknouche and

Francq, 2023). Furthermore, the conditional mean and variance are parametric functions of

past observations as in observation-driven models. In fact, the latent variables in a random

sum only intervene in model’s conditional distribution through their mean and variance as be-

ing unknown constant parameters. The same happens for random coefficient auto-regressive

models (RCAR; Nicholls and Quinn, 1982). In this respect, thinning-based models are more

similar to observation-driven models. In particular, QML and WLS estimators are quite

easy to derive and analyze. Thus, thinning-based and RCAR models can be seen as semi-

(or partially-) observation-driven models.

Numerous thinning-based count models have been emerged so far (e.g. Scotto et al.,

2015; Weiss, 2018). They differ fundamentally in the assumed distributions of the sum-

mands or/and the form of the stochastic equations. Note that the implicit form of the

random sum in terms of the operand variable makes the study of the corresponding equation

more complex than in conventional stochastic equations (e.g. ARMA, GARCH, RCAR).
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Most existing thinning specifications are based on simple pure auto-regressions (INAR) or

moving averages (INMA) with low orders. Only a few research works deal with integer-valued

ARMA (INARMA) equations or their multivariate forms due to their inherent complexity.

In particular, invertibility, tails behavior, asymptotic properties of maximum likelihood es-

timators, and forecasting remain an issue for INARMA-like models. Many other statistical

aspects of INARMA models are not as developed as in standard continuous-valued ARMA

models. Also, non-linear forms are not explored as much except in a few special cases. This

is why most thinning-based models are unable to reproduce various interesting features such

as high over-dispersion, multi-modality, persistence, etc. (e.g. Aknouche and Scotto, 2024).

As a simple alternative to random sum operators, this paper proposes a random multipli-

cation operator and shows how to build on it simple and analytically tractable integer-valued

time series models. An N0-valued random multiplication operator is in fact a random sum

with identical summands and constitutes the direct multiplication of an operand variable

by an integer-valued variable whose expected value (defined in R+) is precisely the constant

operand. An extended Z-valued random multiplication makes it possible to deal with the

constant and variable operands defined in R and Z, respectively. Compared to thinning

operators, the random multiplication is analytically simpler and can produce variables with

higher volatility even with Poisson multipliers. Actually, a random multiplication-based

model is nothing but a model with integer-valued random inputs (coefficients and innova-

tions). In particular, a random multiplication-based auto-regressive model with N0-valued

inputs (henceforth RMINAR) is a special case of the RCAR model but with N0-valued

random inputs. Likewise, a Z-valued RMINAR model is an RCAR with Z-valued random

inputs.

Continuous-valued RCAR models have been widely studied since the late 1970s and most

of their probabilistic and statistical properties are now well understood (e.g. Nicholls and

Quinn, 1982; Tsay, 1987; Schick, 1996; Diaconis and Freedman, 1999; Aue et al., 2006;

Aknouche, 2013-2015; Aue and Horvath, 2019; Trapani, 2021, Regis et al., 2022). Although

the proposed RMINAR model belongs to the general class of RCAR models, it holds sur-
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prising features that differ from those of the continuous-valued counterpart and of the afore-

mentioned integer-valued models. In particular, any RMINAR solution is strictly stationary

and ergodic regardless of its coefficients values, so it is useless testing strict stationary as in

the continuous-valued case (Aue and Horvath, 2011; Aknouche, 2013-2015). In other words,

RMINAR models are everywhere stationary and ergodic and thus can be strictly stationary

with infinite means. As a consequence, multi-stage WLS and QML estimators are consis-

tent and asymptotically Normal everywhere in the parameter space and for all parameter

components.

The rest of this paper is organized as follows. Section 2 sets up the random multiplication

operator and shows its main properties. Section 3 defines the RMINAR model for N0-

valued data, a Z-valued extension, and a multiplicative variant for N0-valued data. Section

4 proposes four-stage WLS estimators (4SWLSE) for the mean and variance of the random

inputs in the three models. A simulation study and two real applications with a N0-valued

and a Z-valued time series are given in Section 5. Section 6 summarizes the conclusions of

this work and the main proofs are left to an appendix.

2 Random operators: sum versus multiplication

This section overviews important properties of the random sum operator (RSO), denoted

by ◦s, and introduces the so-called random multiplication operator (RMO), denoted by ⊙m,

highlighting fundamental differences between these operators. A few examples are given for

the distribution of the random variable resulting from these random operations.

2.1 Random sum operation

Random sum operators also known as generalized thinning (Latour, 1998) are commonly

used in branching and INAR-like processes. In its general form a RSO, denoted by ◦s, is
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defined for any positive constant α and any integer-valued random variable X by

α ◦s X :=
X∑
i=1

ξi, (1)

where the integer-valued sequence (ξi) is iid with mean E (ξi) = α and variance σ2
ξ := V (ξi).

It is further assumed thatX and (ξi) are independent. The terms in (ξi) are called summands

or counting series (or also offspring sequence) while α and X are the constant and variable

operands, respectively. Thus, the operation α ◦s X is a random sum up to the operand

variable X where the common mean of the iid summands (ξi) is the constant operand α.

The first two moments of α ◦s X are

E (α ◦s X) = αE (X) and E (α ◦s X|X) = αX, (2)

V (α ◦s X) = σ2
ξE (X) + α2V (X) and V (α ◦s X|X) = σ2

ξX. (3)

An interesting property of the ◦s is that it generally inherits its distribution from those of

(ξi) and X. Indeed, the probability generating function of α ◦s X is

Gα◦sX (z) := E
(
zα◦sX

)
= GX

(
Gξ1 (z)

)
,

which shows that the probability law of α◦sX is uniquely determined from those of (ξi) and

X. The most commonly used RSO are as follows.

Example 2.1 i) Binomial thinning : The Bernoulli random sum, aka the binomial thinning

operator, and being denoted by ◦ (Steutel and van Harn, 1978), assumes (ξi) to be Bernoulli

distributed with mean α ∈ (0, 1). This implies that α ◦ X|X ∼ B (X,α) is conditionally

binomial distributed and α ◦X is stochastically smaller than X, that is

α ◦X ≤ X, (4)

hence the term thinning. For this operator,

V (α ◦X) = α (1− α)E (X) + α2V (X) and V (α ◦X|X) = α (1− α)X.

ii) Poisson random sum: When (ξi) are Poisson distributed with parameter α > 0, the

random sum ◦s is known as the Poisson generalized thinning and satisfies α◦sX|X ∼ P (αX)
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where P (αX) stands for the Poisson distribution with mean αX. In this case, the range

of α ◦s X ∈ N0 := {0, 1, . . . } is the set of integers and the above thinning property (4) is

no longer satisfied when α > 1, so the term thinning makes no sense. In fact, as the range

of α ◦s X is larger than that of X, the Poisson sum operator cannot be seen as a thinning

operator in the sense of (4). The variances in (3) reduce to

V (α ◦s X) = αE (X) + α2V (X) and V (α ◦s X|X) = αX.

iii) Negative binomial random sum: If (ξi) are geometric distributed with parameter 1
1+α

, the

geometric random sum ◦s is known as the negative binomial generalized thinning and α ◦s
X|X ∼ NB

(
X, 1

1+α

)
is the negative binomial distribution with dispersion X and probability

1
1+α

. As a consequence α ◦s X ∈ N0.

2.2 Random multiplication operation

Let Φ and X be two independent non-negative integer-valued random variables, and ϕ a

positive constant representing E (Φ) = ϕ > 0. The random multiplication operation (RMO)

is defined as

ϕ⊙m X := ΦX =
X∑
i=1

Φ =
Φ∑
i=1

X. (5)

Equality (5) is satisfied for all s ∈ Ω, assuming that all variables and sequences are defined

on a probability space (Ω,F , P )), and

[ϕ⊙m X] (s) =

[
X∑
i=1

Φ

]
(s) =

[
Φ∑
i=1

X

]
(s) = [ΦX] (s) .

Naturally, these everywhere or sure equalities (in the sense of being satisfied ∀s ∈ Ω) imply

the almost sure equalities
X∑
i=1

Φ
a.s.
=

Φ∑
i=1

X
a.s.
= ΦX,

which in turn implies that the equalities also hold in distribution. The converse, however, is

not true. The sure equalities in (5) are necessary to establish the almost sure convergence of

the estimators in Section 4. The ϕ ⊙m X operation can also be seen as a random sum (1),
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with the restriction of having identical summands, designated by Φ. The mean and variance

of ϕ⊙m X are given by

E (ϕ⊙m X) = ϕE (X) and E (ϕ⊙m X|X) = ϕX, (6)

V (ϕ⊙m X) = σ2
ΦE
(
X2
)
+ ϕ2V (X) and V (ϕ⊙m X|X) = σ2

ΦX
2. (7)

While the operations α ◦s X and ϕ ⊙m X share the same conditional mean structure, the

conditional variance is proportional to the operand variable X for the RSO (3) and is pro-

portional to X2 for the RMO (7). The variability implied by (7) is therefore allowed to be

larger than that in (3). Moreover, the range of the random multiplication ϕ⊙m X is

ϕ⊙m X|(Φ, X) ∈ {0, . . . ,ΦX} ,

so that ⊙m is not a proper thinning operation in the sense of (4).

The random multiplication (5) is much simpler and more tractable than the random

sum (1) since it consists of a direct multiplication by an integer-valued random coefficient.

However, what is gained in simplicity is lost in distributional reproducibility because the

distribution of α ◦s X is readily known while that of ϕ⊙m X is in general not usual. In fact,

although many well-known discrete distributions are stable under independent summation

(e.g. binomial, Poisson and negative binomial), this is not the case for the multiplication

operation. For example, the distribution of the product of two independent Poisson variables

is not Poisson distributed. This makes the distribution of ϕ⊙m X quite unusual except for

special cases (e.g. the class of Bernoulli distributions is stable under multiplication). For

other cases, the distributional properties of ϕ ⊙m X could easily be explored using direct

methods where specific distributions for the random operand Φ in the ϕ⊙m operation are of

interest, as in the following examples.

Example 2.2 i) Binomial random multiplication: For a binomial distributed Φ ∼ B
(
r, ϕ

r

)
with r ≥ 1, the operation ⊙m is called binomial multiplication. The variances in (7) translate

into

V (ϕ⊙m X) = ϕ
(
1− ϕ

r

)
E
(
X2
)
+ ϕ2V (X) and V (ϕ⊙m X|X) = ϕ

(
1− ϕ

r

)
X2.
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ii) Poisson random multiplication: When Φ ∼ P (ϕ) is Poisson distributed, the operation

⊙m is called Poisson multiplication. In this case, the variances in (7) simplify to

V (ϕ⊙m X) = ϕE
(
X2
)
+ ϕ2V (X) and V (ϕ⊙m X|X) = ϕX2.

Note that if X ∼ P (λ), then V (ϕ⊙m X) = ϕ
(
λ+ λ2

)
+ ϕ2λ is allowed to be larger than

V (α ◦s X) = αλ+ α2λ implied by (3) with α ◦s X|X ∼ P (αX) and X ∼ P (λ).

iii) Negative binomial I random multiplication: Assuming that Φ ∼ NB
(
rϕ, r

r+1

)
is

negative binomial distributed (denoted by NB1, see Aknouche et al., 2018), the operation

⊙m is called NB1 multiplication. The variances in (7) are thus

V (ϕ⊙m X) = ϕ
(
1 + 1

r

)
E
(
X2
)
+ ϕ2V (X) and V (ϕ⊙m X|X) = ϕ

(
1 + 1

r

)
X2.

iv) Negative binomial II random multiplication: If Φ ∼ NB
(
r, r

r+ϕ

)
(r > 0) has a

negative binomial distribution (usually denoted by NB2, see Aknouche et al., 2018; Aknouche

and Francq 2021), then the operation ⊙m is called NB2 multiplication. In this case, the

variances in (7) become

V (ϕ⊙m X) = ϕ
(
1 + 1

r
ϕ
)
E
(
X2
)
+ ϕ2V (X) and V (ϕ⊙m X|X) = ϕ

(
1 + 1

r
ϕ
)
X2.

Other constructions or extensions of the RMO can be considered including e.g. a Z-valued

extension of the random multiplication in (5) simply by assuming that X and Φ are Z-valued

random variables and ϕ ∈ R.

3 Random multiplication based auto-regressive models

This section presents a few examples of auto-regressive-like models constructed from the

new RMO. These models will be addressed as random multiplication INAR of order p and

designated as RMINAR(p).

3.1 N0-valued random multiplication AR (RMINAR) model

Let {Φit, t ∈ Z} (i = 1, . . . , p) and {εt, t ∈ Z} be mutually independent N0-valued iid se-

quences with ϕi := E (Φit) > 0, σ2
ϕi

:= V (Φit) > 0 (i = 1, . . . , p), µε := E (εt) > 0, and
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σ2
ε := V (εt) > 0. A N0-valued process {Yt, t ∈ Z} is said to be an integer-valued random

multiplication AR model, in short RMINAR(p), if Yt admits the representation

Yt =

p∑
i=1

ΦitYt−i + εt, t ∈ Z. (8)

Note that the RMINAR(p) model (8) can be rewritten as follows

Yt =

p∑
i=1

ϕi ⊙m Yt−i + εt, t ∈ Z.

The distribution of the input sequences {Φit, t ∈ Z} (i = 1, . . . , p) and {εt, t ∈ Z} can be

specified as in Example 2.2 (binomial, Poisson, negative binomial, etc.). Thus, (8) can be

seen as a random coefficient AR model (RCAR) in the sense of Nicholls and Quinn (1982) but

with N0-valued random inputs {Φit, t ∈ Z} (i = 1, . . . , p) and {εt, t ∈ Z}. The conditional

mean and variance of (8) are given by

E
(
Yt|FY

t−1

)
=

p∑
i=1

ϕiYt−i + µε and V
(
Yt|FY

t−1

)
=

p∑
i=1

σ2
ϕi
Y 2
t−i + σ2

ε, (9)

where FY
t is the σ-algebra generated by {Yt−u, u ≥ 0}. From (9) it is clear that the RMINAR(p)

model allows both conditional overdispersion and underdispersion. E.g. when the inputs Φit

and εt are Poisson distributed, then (9) becomes

E
(
Yt|FY

t−1

)
=

p∑
i=1

ϕiYt−i + µε and V
(
Yt|FY

t−1

)
=

p∑
i=1

ϕiY
2
t−i + µε,

and V
(
Yt|FY

t−1

)
> E

(
Yt|FY

t−1

)
as Yt ≤ Y 2

t for all t. Also, (9) can lead to V
(
Yt|FY

t−1

)
<

E
(
Yt|FY

t−1

)
e.g. when the inputs are binomial distributed with appropriate parameters.

Note that for p = 1 the model (8) reduces to

Yt = ΦtYt−1 + εt, t ∈ Z,

which is a homogeneous Markov chain with transition probabilities given by

P (Yt = j|Yt−1 = i) = P (ΦtYt−1 + εt = j|Yt−1 = i)

= P (Φti+ εt = j)

=


∑

k≤j, j−k
i

∈N0

P (εt = k)P
(
Φt =

j−k
i

)
, i > 0

P (εt = j) , i = 0

.
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The novel RMINAR(p) model (8) can be compared to the random coefficient INAR model

of Zheng et al. (2006, 2007), denoted as RCINAR(p) and defined as

Xt =

p∑
i=1

αit ◦Xt−i + ζt, t ∈ Z, (10)

where “ ◦ ” is the binomial thinning operator whereas {αit, t ∈ Z} (i = 1, . . . , p) and

{ζt, t ∈ Z} are mutually independent iid sequences valued in (0, 1) and N0, respectively.

Models in (8) and (10) share the same conditional mean structure and similar quadratic

conditional variances in terms of past observations. Note that (10) reduces to the INAR(p)

model of Du and Li (1991) (see also McKenzie, 1985; Al-Osh and Alzaid, 1987 for the case

p = 1) and thus the conditional mean and variance of (10) are

E
(
Xt|FX

t−1

)
=

p∑
i=1

αi◦Xt−i+ζ and V
(
Xt|FX

t−1

)
=

p∑
i=1

σ2
αi
X2

t−i+
(
αi (αi − 1)− σ2

αi

)
Xt−i+σ2

ζ ,

where αi := E(αit), σ
2
αi

:= V(αit), ζ := E (ζt) and V (ζt) = σ2
ζ > 0 (Zheng et al., 2006).

The probabilistic structure of (8) is already well known when the inputs are real-valued

(e.g.. Nicholls and Quinn, 1982; Feigin and Tweedie, 1985; Tsay, 1987; Diaconis and Freed-

man, 1999). In the integer-valued case, however, there are some surprising properties. Let

Yt = (Yt, . . . , Yt−p+1)
′ and Ξt = (εt, 0, . . . , 0)

′ be p-dimensional column vectors, and define

the p× p companion matrix

At =

 (
Φ1t, . . . ,Φ(p−1)t

)
Φpt

Ip−1 0(p−1)×1

 , (11)

where Ip and 0p×1 are the p-dimensional identity matrix and zero vector, respectively. Then

model (8) can be written in the following vector form

Yt = AtYt−1 +Ξt, t ∈ Z. (12)

For almost all common integer-valued time series models (observation-driven, parameter-

driven, random sum based), the conditions for strict stationary and mean stationary on the

auto-regressive parameter coincide. The formulation in (8), however, allows the output
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process {Yt, t ∈ Z} to be everywhere (i.e. for all parameter values) strictly stationary even

with infinite mean. In fact, the following result shows that any solution of (8) is everywhere

(i.e. universally) strictly stationary provided that P (Φit = 0) > 0 for all i = 1, . . . , p. For

simplicity in notation and readability, the latter condition is denoted as A0.

Theorem 1 Under A0, the series Yt :=
∞∑
j=0

j−1∏
i=0

At−iΞt−j converges absolutely a.s. for all

t ∈ Z and the process {Yt, t ∈ Z} given by Yt = (1, 0, . . . , 0)′ Yt is the unique (causal) strictly

stationary and ergodic solution to the RMINAR equation (8).

Proof. See Appendix A.

Most of the usual count distributions (binomial, Poisson, negative binomial, etc.) satisfy

A0 and thus guarantee that model (8) has a (causal) strictly stationary and ergodic solution

whatever the value of the inputs Φit and εt. Then, the RMINAR (8) is universally (or

everywhere) stable with respect to stationarity and ergodicity.

Remark 1 i) When A0 is not satisfied (e.g. for the truncated geometric distribution, mod-

eling the number of Bernoulli trials to get the first success, and taking P (Φ1t ∈ {1, 2, . . . }) =

1), assuming that E
(
log+ (εt)

)
< ∞ and E

(
log+ (Φit)

)
< ∞ (i = 1, . . . , p), a sufficient con-

dition for the existence of a strictly stationary and ergodic solution to (8) is that the largest

Lyapunov exponent γ (Furstenberg and Kesten, 1960; Kesten, 1973)

γ = lim
t→∞

1
t
log ∥A1A2 · · ·At∥ < 0 a.s.,

where log+(x) := max (log(x), 0), ∥.∥ is an operator norm on the space of square real matrices

of dimension p and Ai (i = 1, . . . , t) are p× p random matrices.

ii) When A0 is satisfied and p = 1, the Lyapunov exponent E (log (Φ1t)) = −∞ provided

that E
(
log+ (Φ1t)

)
< ∞ with the convention max(−∞, 0) = 0.

Using stochastic recurrence equations theory (Kesten, 1973; Vervaat, 1979; Goldie, 1991;

Grey, 1994), the tail behavior of model (8) can be easily revealed. Note that due to A0,

the distribution of log (Φit) given Φit ̸= 0 is non-arithmetic for all i = 1, . . . , p. Moreover,
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the equation (10) admits a strictly stationary solution whatever the value of γ. Therefore,

the following proposition states a result that is an obvious corollary of Theorems 3-5 of

Kesten (1973) (see also Theorem 1 of Grey (1994) when p = 1). For this reason the proof of

proposition 1 is omitted.

Proposition 1 Consider the RMINAR model (8) under A0 and E
(
log+ (Φit)

)
< ∞ (i =

1, . . . , p).

i) For p = 1, assume that

E
(
Φτ0

1t log
+ (Φ1t)

)
< ∞ and E (Φτ0

1t ) ≥ 1 , for some τ 0 > 0. (13)

Then there exists τ 1 ∈ [0, τ 0] such that E (Φτ1
1t ) = 1 has a unique solution. In addition, if

E (ετ1t ) < ∞ then

P (Yt ≥ y) → y−τ1 , as y → ∞. (14)

ii) For p > 1, assume there exists τ 0 > 0 such that

E

(
p∑

j=1

Φτ0
jt

)
≥ p

τ0
2 , E

(
∥At∥τ0 log+ ∥At∥

)
< ∞ and E (ετ1t ) < ∞, τ 1 ∈ [0, τ 0] . (15)

Then for all non-negative p-vector x such that ∥x∥ = 1,

P (x′Yt ≥ y) → y−τ1 , as y → ∞. (16)

Since the inputs of the RMINAR(p) model (8) have, in general, count distributions (binomial,

Poisson, negative binomial, double Poisson, etc.) for which all moments exists, the conditions

(13) and (15) are generally satisfied. Thus, the stationary solutions of (8) would have

regularly-varying tails in the sense of (14) and (16).

While the conditions of strict stationarity, ergodicity and regular variation for the RMI-

NAR model (8) are somewhat different from those of the real-valued RCAR case, the moment

conditions for the two cases are the same. These conditions for model (8) are stated in propo-

sition 2, the proof of which is very similar to that of Theorem 2.9 in Francq and Zakoian

(2019) and hence is omitted. The reader is further referred to Feigin and Tweedie (1985) for

more details (see also Tsay, 1987 and Ling, 1999 for similar models).
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Proposition 2 Suppose that E (Φm
it ) < ∞ and E (εmt ) < ∞ for some positive integer m.

Then the RMINAR model (8) admits a strictly stationary and ergodic solution with E (Y m
t ) <

∞ if

ρ
(
E
(
A⊗m

t

))
< 1, (17)

where A⊗m = A⊗ · · · ⊗A is the Kronecker product with m factors. If ρ
(
E
(
A⊗m

t

))
≥ 1 then

E (Y m
t ) = ∞.

From the result in (17) with m = 1, the RMINAR(p) model (8) admits a stationary and

ergodic solution with E (Yt) < ∞ if

ρ (At) < 1,

which is equivalent to
p∑

i=1

ϕi < 1. (18)

Under (18), the unconditional mean has the following expression

E (Yt) = µε

(
1−

p∑
i=1

ϕi

)−1

, (19)

which is the same as the mean of RCINAR(p) and AR(p) models. If
p∑

i=1

ϕi = 1 or
p∑

i=1

ϕi >

1 then the RMINAR(p) model (8) still admits a strictly stationary and ergodic solution

{Yt, t ∈ Z} (under A0), but with an infinite mean E (Yt) = ∞.

A sufficient condition for second-order stationary is given by (17) with m = 2. As an

example, for the RMINAR(1) the condition is

0 ≤ E
(
Φ2

1t

)
= σ2

ϕ1
+ ϕ2

1 < 1,

and the unconditional variance of the process is

V (Yt) =
σ2
ε + σ2

ϕ1
(E (Yt−1))

2

1−
(
σ2
ϕ1

+ ϕ2
1

) . (20)

For any p, V (Yt) can be given from (12) using the vector stacking operator vec. Let A :=

E (At), Ξ := E (Ξt), µ := E (Yt), ΓY := V(Yt) = E (Yt − µ) (Yt − µ)′ and ΓΞ := V (Ξt).
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Then

vec(ΓY ) = (I − E (At ⊗ At))
−1 ((E (At ⊗ At)− (A⊗ A)) vec (µµ′) + vec (ΓΞ)) .

In particular, for p = 2 it follows that

V (Yt) =
(1− ϕ2)

((
σ2
ϕ1

+ σ2
ϕ2

)
(E (Yt))

2 + σ2
ε

)
1−

(
ϕ2
1 + ϕ2

1ϕ2 − ϕ3
2 + ϕ2

2 + ϕ2 + (1− ϕ2)
(
σ2
ϕ1

+ σ2
ϕ2

)) .
On a final note, the RMINAR model is able to generate both (unconditional) over-dispersion

(e.g. with Poisson distributed inputs) and under dispersion (e.g. with binomial inputs).

3.2 A Z-valued RMINAR extension

The RMINAR(p) model (8) can be extended to address Z-valued time series simply by

considering Z-valued random inputs. Thus, let {Φit, t ∈ Z} (i = 1, . . . , p) and {εt, t ∈ Z}

be mutually independent Z-valued iid sequences with ϕi ∈ R (i = 1, . . . , p) and µε ∈ R

instead of being constrained to be positive values. A Z-valued RMINAR(p) writes as in (8)

as follows

Yt =

p∑
i=1

ΦitYt−i + εt, t ∈ Z, (21)

where the randommultiplication ΦitYt−i ≡ ϕi⊙mYt−i now acts on Z with ϕi ∈ R and Yt−i ∈ Z.

Many distributions supported on Z can be chosen for the inputs {Φit, t ∈ Z} (i = 1, . . . , p)

and {εt, t ∈ Z}. For example, a useful candidate is the Skellam distribution (Irwin, 1937;

Skellam, 1946) for the difference of two independent Poisson variables (or simply Poisson

difference, PD). Another useful choice with heavier tails is the negative binomial difference

(NBD) distribution (cf. Barndorff-Nielsen et al., 2012; Barra and Koopman, 2018).

The conditional mean and variance of model (21) are given exactly as (9). Many efforts

have been made to define Z-valued (or signed integer-valued) models following different ap-

proaches, namely thinning-based models (e.g. Kim and Park, 2008; Zhang et al., 2009; Alzaid

and Omair, 2014), parameter driven models (Koopman et al., 2017; Barra and Koopman,

2018), and observation driven models (Alomani et al., 2018; Cui et al., 2021). The result-

ing specifications, however, appear to be less straightforward than those of the Z-valued
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RMINAR(p) proposed in this work. In particular, the INGARCH-type models (Alomani

et al., 2018; Cui et al., 2021) only concern the conditional variance and not the condi-

tional mean. On the contrary, the RMINAR(p) approach (21) simultaneously addresses the

conditional mean and variance and is analytically much simpler. Furthermore, given the

connections between RMINAR(p) and RCAR(p), the existing real-valued RCAR(p) tools

(Nicholls and Quinn, 1982) can be adapted e.g. for the estimation of RMINAR(p) models.

The probability structure of (21) is similar to that of (8) as (21) can be written in the

vector form (12) with obvious notations. Furthermore, the universal ergodicity property for

the N0-valued RMINAR model (8) still holds for the Z-valued RMINAR model (21). Under

the assumption P (Φit = 0) > 0 (i = 1, . . . , p), which is condition A0 where Φit is Z-valued

instead of N0-valued (hereafter referred as condition A0*), Theorem 1 still holds true for

the Z-valued RMINAR model (21).

Theorem 2 Under A0* the conclusions of Theorem 1 remain true for the Z-valued RMI-

NAR model (21).

Remark 2 i) If A0* fails (e.g. P (Φ1t ∈ Z\ {0}) = 1), then assuming that E
(
log+ (|εt|)

)
<

∞ and E
(
log+ (|Φit|)

)
< ∞ (i = 1, . . . , p), the Z-valued RMINAR model (21) still admits a

unique strictly stationary and ergodic solution if γ < 0.

The tail behavior is much more difficult to analyze for the Z-valued RMINAR model (21)

than for the N0-valued RMINAR model (8). However, it can be easily unmasked for p = 1

by using the following Kesten-Goldie theorem (Kesten, 1973; Goldie, 1991). This result is

presented in proposition 3 which constitutes a corollary of Kesten’s theorem 5.

Proposition 3 Consider the Z-valued RMINAR(1) model (21) subject to condition A0*

and E
(
log+ (|Φ1t|)

)
< ∞. Suppose further that

E (|Φ1t|τ1) = 1, E
(
|Φ1t|τ1 log+ |Φ1t|

)
< ∞ and E (|εt|τ1) < ∞ , for some τ 1 > 0.

Then

P (Yt ≥ y) → c+y−τ1 and P(Yt < −y) → c−y−α, as y → ∞,
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if and only if P(ε1 + µε = (1− ϕ1)c) < 1 for any c ∈ R such that c+ + c− > 0.

Concerning the existence of moments for the Z-valued RMINAR(p) model (21) assume that

E
(
|εt|2m

)
< ∞, for m ≥ 1. Using again the results of Feigin and Tweedie (1985, Theo-

rems 4-5), a sufficient condition for the existence of a stationary and ergodic solution with

E(|Yt|2m) < ∞ is that

ρ
(
E
(
A⊗2m

t

))
< 1.

As for the N0-valued RMINAR(p) model (8), the marginal mean and variance of Z-valued

RMINAR(p) model (21) are given, respectively, by (19) and (20) for p = 1.

3.3 RMINAR model with multiplicative errors

The RMINAR(p) models can be combined together with a scheme of multiplicative errors

instead of additive ones. An example is the multiplicative thinning-based INGARCH model

(MthINGARCH) of Aknouche and Scotto (2024), which has been shown to be flexible in

representing many important features commonly observed integer-valued time series, such

as over-dispersion and heavy-tailedness. The MthINGARCH(p,q) process is defined as

Yt = λt εt and λt = 1 + ω ◦m+

p∑
i=1

αi ◦ Yt−i +

q∑
j=1

βj ◦ λt−j, (22)

where “◦” stands for the BTO. The multiplicative error (εt) is an iid integer-valued sequence

with E (εt) = 1 and variance σ2
ε := V (εt) while the random variable λt is such that λt ∈

N, as a consequence of (22). Given the restrictions on the BTO, the coefficients of the

MthINGARCH satisfy 0 ≤ αi < 1, 0 ≤ βj < 1 (i = 1, . . . , p, j = 1, . . . , q) and 0 ≤ ω ≤ 1,

being ω the expected value of the Bernoulli random variables (ξi) (i = 1, . . . ,m) underlying

the BTO. Finally, being m defined as a fixed positive integer then ω ◦m ∼ B (m,ω).

The MthINGARCH model (22) can be modified by replacing the BTO ◦ by the RMO ⊙m

in (5). This case considers i) the MthINGARCH framework (22) with βj = 0 (j = 1, . . . , q)

for simplicity and ii) the replacement of the random variable ω ◦ m by an integer-valued
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random coefficient ωt with E (ωt) = ω and σ2
ω := V (ωt) > 0. These specifications result in

the following RMINAR(p) model with multiplicative errors

Yt = λt εt =

(
1 + ωt +

p∑
i=1

ϕi ⊙m Yt−i

)
εt =

(
1 + ωt +

p∑
i=1

ΦitYt−i

)
εt, (23)

where the integer-valued iid sequences {ωt, t ∈ Z}, {Φit, t ∈ Z} (i = 1, . . . , p) and {εt, t ∈ Z}

are mutually independent. As before, ϕi := E (Φit) (i = 1, . . . , p) and σ2
ϕi

:= V (Φit) > 0. It

follows from the RMINAR(p) formulation (23) that

E
(
Yt|FY

t−1

)
= 1 + ω +

p∑
i=1

ϕiYt−i, (24)

V
(
Yt|FY

t−1

)
=

(
σ2
ε + 1

)
V
(
λt|FY

t−1

)
+ σ2

ε

(
E
(
Yt|FY

t−1

))2
, (25)

where

V
(
λt|FY

t−1

)
= σ2

ω +

p∑
i=1

σ2
ϕi
Y 2
t−i,

which highlights that the RMINAR(p) with multiplicative errors (23) presents the same

conditional-variance-to-mean relationship as that of the BTO-based MthINGARCH(p,0)

model (Aknouche and Scotto, 2024).

Under a similar assumption as A0, the ergodic properties of the RMINAR(p) model with

multiplicative errors (23) are obtained everywhere similarly to the above cases. The model

(23) can be written in the following vector form

Yt = AtYt−1 +Ψt, t ∈ Z,

with the definition of the p-dimensional column vectors Yt = (Yt, . . . , Yt−p+1)
′ and Ψt =

(εt (1 + ωt) , 0, . . . , 0)
′, and the p× p companion matrix

At =

 (
εtϕ1t, . . . , εtϕ(p−1)t

)
εtϕpt

Ip−1 0(p−1)×1

 .

Similarly to Theorem 1, the following result shows that under P (εt = 0) > 0 and P (Φit = 0) >

0 (i = 1, . . . , p) (which will be referred as condition A0**), any solution of the RMINAR(p)

model with multiplicative errors (23) is everywhere stationary and ergodic.
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Theorem 3 Under A0**, the series

Yt :=
∞∑
j=0

j−1∏
i=0

At−iΨt−j,

converges absolutely a.s. for all t ∈ Z. In addition, the process {Yt, t ∈ Z} given by Yt =

(1, 0, . . . , 0)′ Yt (t ∈ Z) is the unique strictly stationary and ergodic solution to (23).

The tail behavior of the RMINAR model with multiplicative errors (23) can be obtained

similarly to that of the N0-valued RMINAR model (8) using Kesten’s theorem. Proposition

4 states such result and its proof its omitted, given that it is an obvious corollary of Kesten’s

theorems 3-5 (Kesten, 1973).

Proposition 4 Under A0**, all conclusions of Proposition 1 hold for the RMINAR model

with multiplicative errors (23) while replacing Φit by εtΦit.

4 Four-stage WLS estimation

This section presents an estimation strategy for the parameters mean θ0 and variance Λ0

of the RMINAR models. For the N0-valued (8) and Z-valued (21) models, the parameters

are set as θ0 =
(
µ0ε, ϕ01, . . . , ϕ0p

)′
and Λ0 =

(
σ2
0ε, σ

2
0ϕ1

, . . . , σ2
0ϕp

)′
while for the model with

multiplicative errors (23), θ0 =
(
ω0, ϕ01, . . . , ϕ0p

)′
and Λ0 =

(
σ2
0ε, σ

2
0ω, σ

2
0ϕ1

, . . . , σ2
0ϕp

)′
. The

subscript 0 in the notation of θ0 and Λ0 aims at distinguishing the true parameters from

generic ones θ ∈ Θ and Λ ∈ Π, where Θ and Π represent the parameter spaces.

As the RMINAR models (8), (21) and (23) have similar conditional means, being linear

in the models’ parameters, this work provides a unified estimation procedure based on a four-

stage weighted least squares estimation (4SWLSE) approach (see e.g. Aknouche, 2015). Let

µt ≡ µt (θ0) := E
(
Yt|FY

t−1

)
and Vt ≡ Vt (Λ0) := V

(
Yt|FY

t−1

)
be, respectively, the conditional

mean and variance of the RMINAR process Yt in one of the three models (8), (21) or (23).

In some cases, Vt := Vt (θ0,Λ0) also depends on θ0 (as in the multiplicative model). The

principle and the rationale of the method are as follows. The 4SWLSE develops in 4 stages;
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firstly, θ0 is first estimated by θ̂1n from the regression Yt = µt + et, using a WLS estimator

weighted by the conditional variance Vt (Λ∗), evaluated at some arbitrarily and fixed known

vector Λ∗ ∈ Π. The sequence (et) is a martingale difference with respect to (FY
t ). Secondly,

Λ0 is estimated by Λ̂1n from the regression (Yt − µt)
2 = Vt + ut, where the conditional

variance residual (ut) is also a martingale difference with respect to (FY
t ). Thus, this step

makes use of a WLS estimator weighted by V 2
t (Λ∗) arbitrarily evaluated. The third stage

reestimates θ0 by θ̂2n from the WLS approach used in the first stage but considering the

estimated conditional variance as weights. The same reasoning is used in the fourth stage to

reestimate Λ0, where the weight is V 2
t (Λ̂1n). For any generic parameters θ ∈ Θ and Λ ∈ Π,

let et (θ) = Yt − µt (θ) and ut (θ,Λ) = e2t (θ) − Vt (θ,Λ), where Vt (θ,Λ) is the conditional

variance function in which the true Λ0 is replaced by a generic Λ. Naturally, et (θ0) = et and

ut (θ0,Λ0) = ut. Formally, the proposed 4SWLSE method is given by the following cascade

of four optimization problems

i) θ̂1n = argmin
θ∈Θ

n∑
t=1

e2t (θ)

Vt(Λ∗)
, ii) Λ̂1n = argmin

Λ∈Π

n∑
t=1

u2
t(θ̂1n,Λ)
V 2
t (Λ∗)

, (26)

iii) θ̂2n = argmin
θ∈Θ

n∑
t=1

e2t (θ)

Vt(Λ̂1n)
, iv) Λ̂2n = argmin

Λ∈Π

n∑
t=1

u2
t(θ̂2n,Λ)
V 2
t (Λ∗)

, (27)

where the estimators θ̂·n and Λ̂·n have the same notation as the corresponding target pa-

rameters, with an extra hat symbol and the n to refer to the sample size. Furthermore,

the subscript 1 or 2 is used to highlight if the step performs estimation or re-estimation,

respectively, of the corresponding parameter.

There is relevant literature connected with the 4SWLSE approach and the derivation of

the properties of the estimators in (26) and (27) with respect to consistency, efficiency and

asymptotic distribution. As an instance of that, Nicholls and Quinn (1982) proposed the

two-stage least squares estimation (2SLSE) approach based on

i) θ̂n = argmin
θ∈Θ

n∑
t=1

e2t (θ) and ii) Λ̂n = argmin
Λ∈Π

n∑
t=1

u2
t

(
θ̂1n,Λ

)
, (28)

to estimate θ0 and Λ0 in a consecutive manner. Schick (1996) studied the properties of θ̂1n

in (26) when Λ∗ is replaced by any consistent estimator Λ̂ of Λ0. For a RCAR(1) model,
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Aknouche (2015) proposed a four-stage WLSE similar to (26) considering the weights V 2
t (Λ∗)

and Vt

(
Λ̂1n

)
, respectively, for the second and fourth stages. The choice for the latter weights

results in an estimator for Λ0 with the same asymptotic variance as that of the Gaussian

QMLE. In our case, the 4SWLSE approach makes use of the latter weights in the second

and third stages leading to estimators that are everywhere consistent and asymptotically

Gaussian with a certain optimality. Moreover, it will be proved that θ̂2n and Λ̂2n (27) are

asymptotically more efficient than θ̂1n and Λ̂1n (26), respectively, and more efficient than the

2SLSE estimators θ̂n and Λ̂n (28) and any of the exponential family QMLE.

Note that for most usual discrete distributions, Λ0 is a function of θ0 and (possibly)

some additional parameters. E.g. Λ0 = θ0 when all coefficients are Poisson-distributed,

and Λ0 = θ0 ⊕ (11+p + θ0) when are geometric distributed, where 1p is a p-length vector

of ones and ⊕ stands for the Hadamard matrix product. These cases only require a two-

stage estimation procedure corresponding to the first and third stages of the 4SWLSE. If

the random coefficients Φit ∼ NB
(
ν0i,

ν0i
νi+ϕ0i

)
(i = 1, . . . , p) and ϵt ∼ NB

(
ν0,

ν0
ν0+ω0

)
are

negative binomial II distributed, then σ2
Φi

= ϕ0i

(
1 + 1

νi
ϕ0i

)
and σ2

ε = µϵ

(
1 + 1

ν0
µϵ

)
. Hence,

ν0 and ν0i > 0 are estimated by ν̂−1
n and ν̂−1

in , respectively, from the stage (iv) in (27) using

ν̂−1
n = σ̂2

2n−µ̂ϵn

µ̂2
ϵn

and ν̂−1
in =

σ̂2
Φin

−ϕ̂in

ϕ̂
2
in

, i = 1, . . . , p.

4.1 The N0-valued RMINAR model

Due to the mutual independence of the random sequences {Φit, t ∈ Z} (i = 1, . . . , p) and

{εt, t ∈ Z}, the conditional mean and variance of the RMINAR model (8) have the following

linear-in-parameters expressions

µt (θ0) = θ′0Yt−1 and Vt (θ0,Λ0) = Z ′
t−1Λ0, (29)

22



where Yt−1 = (1, Yt−1, . . . , Yt−p)
′ and Zt−1 =

(
1, Y 2

t−1, . . . , Y
2
t−p

)′
= Yt−1 ⊕ Yt−1. Then, the

estimators [θ̂1n, Λ̂1n, θ̂2n, Λ̂2n] in (26)-(27) have the more specific closed-form expressions

i) θ̂1n =

(
n∑

t=1

Yt−1Y ′
t−1

Z′
t−1Λ∗

)−1 n∑
t=1

Yt−1Yt

Z′
t−1Λ∗

, (30)

ii) Λ̂1n =

(
n∑

t=1

Zt−1Z′
t−1

(Z′
t−1Λ∗)

2

)−1 n∑
t=1

Zt−1
(Yt−Y ′

t−1θ̂1n)
2

(Z′
t−1Λ∗)

2 , (31)

iii) θ̂2n =

(
n∑

t=1

Yt−1Y ′
t−1

Z′
t−1Λ̂1n

)−1 n∑
t=1

Yt−1Yt

Z′
t−1Λ̂1n

, (32)

iv) Λ̂2n =

(
n∑

t=1

Zt−1Z′
t−1

(Z′
t−1Λ̂1n)

2

)−1 n∑
t=1

Zt−1
(Yt−Y ′

t−1θ̂2n)
2

(Z′
t−1Λ̂1n)

2 , (33)

where Λ∗ =
(
σ2
∗ε, σ

2
∗ϕ1

, . . . , σ2
∗ϕp

)′
> 0 is arbitrarily fixed. When all random coefficients are

Poisson or geometric distributed, then the estimation steps (31) and (33) are useless but

can be used to test the Poisson hypothesis H0 : θ0 = Λ0 or the geometric one H0 : Λ0 =

θ0 ⊕ (11+p + θ0).

The everywhere consistency and asymptotic normality of the estimators in (30)-(33) are

established in Theorem (4), with complete proof in Appendix B. Consider

Σ (Λ0,Λ∗) := A (Λ∗)
−1B (Λ0,Λ∗)A (Λ∗)

−1 and Ω (Λ∗) := C (Λ∗)
−1D (Λ∗)C (Λ∗)

−1 ,

with auxiliary matrices A,B,C and D defined as

A (Λ∗) := E
(

Yt−1Y ′
t−1

Z′
t−1Λ∗

)
, B (Λ0,Λ∗) := E

(
(Z′

t−1Λ0)
(Z′

t−1Λ∗)
2Yt−1Y ′

t−1

)
,

C (Λ∗) := E
(

Zt−1Z′
t−1

(Z′
t−1Λ∗)

2

)
, D (Λ∗) := E

(
u2
t

(Z′
t−1Λ∗)

4Zt−1Z ′
t−1

)
.

Note that B (Λ0,Λ0) = A (Λ0) implies Σ (Λ0,Λ0) = A (Λ0)
−1 and that D (Λ0) = C (Λ0) leads

to Ω (Λ0) = C (Λ0)
−1. Also, recall that the finiteness of E (ε2t ) and E (Φ2

it) holds by the

model’s definition.

Theorem 4 For the RMINAR model (8) under A0, for all Λ∗ > 0 it holds that

i) θ̂1n
a.s.→

n→∞
θ0, ii) θ̂2n

a.s.→
n→∞

θ0, iii) Λ̂1n
a.s.→

n→∞
Λ0, iv) Λ̂2n

a.s.→
n→∞

Λ0. (34)
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If, in addition, E (ε4t ) < ∞ and E (Φ4
it) < 1 (i = 1, . . . , p) then

i)
√
n
(
θ̂1n − θ0

)
D→

n→∞
N (0,Σ (Λ0,Λ∗)) , ii)

√
n
(
θ̂2n − θ0

)
D→

n→∞
N (0,Σ (Λ0,Λ0))

iii)
√
n
(
Λ̂1n − Λ0

)
D→

n→∞
N (0,Ω (Λ∗)) , iv)

√
n
(
Λ̂2n − Λ0

)
D→

n→∞
N (0,Ω (Λ0)) . (35)

Proof. See Appendix B.

The most surprising fact given by the above result is that the proposed 4SWLSE es-

timators are consistent and asymptotically normal everywhere, even when the RMINAR

model has an infinite mean. In addition, θ̂2n and Λ̂2n are more efficient than θ̂1n and Λ̂1n,

respectively, as Σ (Λ0,Λ0) ≤ Σ (Λ0,Λ∗) and Ω (Λ0) ≤ Ω (Λ∗) for all Λ∗. The finiteness of the

moments E (ε4t ) < ∞ and E (Φ4
it) < 1 (i = 1, . . . , p), required for the asymptotic normality to

hold, does not constitute a restrictive condition as most usual discrete distributions (Poisson,

binomial, negative binomial, etc.) have finite higher-order moments.

Finally, note that the main advantage of precisely including the weights
(
Z ′

t−1Λ∗
)2

and(
Z ′

t−1Λ̂1n

)2
in the second and fourth stages is to have the everywhere-consistency property

of the corresponding estimates Λ̂.n. However, while θ̂2n is optimal in the sense of Schick

(1996), the resulting estimate Λ̂2n is not asymptotically optimal in the class of all WLSEs.

In fact, the optimal weight in the sense of obtaining an estimate such that C (Λ0) and

D (Λ0) are proportional is E
(
u2
t |FY

t−1

)
= V

(
ut|FY

t−1

)
and the resulting estimate would be

more efficient than Λ̂2n. Nonetheless, the closed form expression of V
(
ut|FY

t−1

)
in terms of

model parameters is not always available and depends on the model distribution which is

not necessarily known in our framework. Moreover, V
(
ut|FY

t−1

)
may depend on some third-

and fourth-moment parameters that need to be specified. E.g. the RMINAR(1) model has

V
(
ut|FY

t−1

)
= E (Φ1t − ϕ01)

4 Y 4
t−1 + 6σ2

ϕσ
2
εY

2
t−1 + E

(
(εt − µε)

4)− (Z ′
t−1Λ0

)2
,

which requires specifying E (Φ1t − ϕ01)
4 and E

(
(εt − µε)

4) in the model’s definition. There-

fore, the above weight consisting of the squared conditional variance seems a reasonably

good choice, especially since for the ARCH model and the double auto-regression (DAR,

Ling, 2007) model,
(
Z ′

t−1Λ0

)2
and V

(
ut|FY

t−1

)
are proportional (see also Aknouche, 2012).
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4.2 The Z-valued RMINAR model

It is clear that the Z-valued RMINAR model (21) has a similar structure as its N0-valued

counterpart (8). In particular, the conditional mean and variance of (21) are the same

as those for (8) and are given by (29). Thus the general 4SWLSE procedure (26)-(27)

reduces for model (21) to (30)-(33). Keeping the same notations for the parameters, namely

θ0 =
(
µ0ε, ϕ01, . . . , ϕ0p

)′
and Λ0 =

(
σ2
0ε, σ

2
0ϕ1

, . . . , σ2
0ϕp

)′
, the estimators [θ̂1n, Λ̂1n, θ̂2n, Λ̂2n],

and the asymptotic matrices Σ and Ω in (35), the following result states that the same

conclusions of Theorem 4 hold for the Z-valued RMINAR model (21).

Theorem 5 For the RMINAR model (21) under A0*, the same conclusions of Theorem 4

hold for all arbitrarily and fixed known Λ∗ > 0.

Proof. See Appendix B.

4.3 The RMINAR model with multiplicative errors

For the RMINAR model with multiplicative errors (23), the conditional mean (24) is linear

in the parameter θ0 =
(
ω0, ϕ01, . . . , ϕ0p

)′
as in models (8) and (21) and rewrites as

µt (θ0) := E (Yt|Ft−1) = 1 + Y ′
t−1θ0.

In view of (25), however, it turns out that the conditional variance

Vt (Λ0, θ0) := V (Yt|Ft−1) =
(
σ2
ε + 1

) (
Z ′

t−1Λ0

)
+ σ2

ε

(
1 + Y ′

t−1θ0
)2

,

is not linear in the variance parameter Λ0 =
(
σ2
0ε, σ

2
0ω, σ

2
0ϕ1

, . . . , σ2
0ϕp

)′
, which contains an

extra parameter σ2
0ε. Hence, the first and third stages to estimate θ0 are given in closed-form

as for model (8) and (21), but the second and fourth stages are now iterative. Thus, the

general 4SWLSE procedure (26)-(27) reduces for model (23) to the following problems

i) θ̂1n =

(
n∑

t=1

Yt−1Y ′
t−1

Vt(θ∗,Λ∗)

)−1 n∑
t=1

Yt−1Yt

Vt(θ∗,Λ∗)
and ii) Λ̂1n = argmin

Λ∈Π
1
n

n∑
t=1

u2
t(θ̂1n,Λ)

V 2
t (θ∗,Λ∗)

, (36)

iii) θ̂2n =

(
n∑

t=1

Yt−1Y ′
t−1

Vt(θ̂1n,Λ̂1n)

)−1 n∑
t=1

Yt−1Yt

Vt(θ̂1n,Λ̂1n)
and iv) Λ̂2n = argmin

Λ∈Π
1
n

n∑
t=1

u2
t(θ̂2n,Λ)

V 2
t (θ̂2n,Λ̂1n)

, (37)

25



where Λ =
(
σ2
ε, σ

2
ω, σ

2
ϕ1
, . . . , σ2

ϕp

)′
∈ Π and Λ∗ =

(
σ2
∗ε, . . . , σ

2
∗ϕp

)′
> 0 are the generic and

the fixed known parameter vectors, respectively, and θ∗ is fixed and known.

Next, Theorem 6 establishes the consistency and asymptotic normality of the 4SWLSE

given by (36)-(37), relying on the assumptions that Λ ∈ Π is compact and Λ0 belongs to the

interior of Π. To state the result, further consider the matrices

Σ (θ∗,Λ∗) := A (θ∗,Λ∗)
−1B (θ∗,Λ∗)A (θ∗,Λ∗)

−1 and Ω (Λ∗) := C (Λ∗)
−1D (Λ∗)C (Λ∗)

−1 ,

where the auxiliary matrices A,B,C and D are defined as

A (θ∗,Λ∗) := E
(

Yt−1Y ′
t−1

Vt(θ∗,Λ∗)

)
, B (θ∗,Λ∗) := E

(
Vt(θ∗,Λ0)

Vt(θ∗,Λ∗)
2Yt−1Y ′

t−1

)
,

C (Λ∗) := E
(

1
V 2
t (θ0,Λ∗)

∂Vt(θ0,Λ0)
∂Λ

∂Vt(θ0,Λ0)
∂Λ′

)
, D (Λ∗) := E

(
u2
t (θ0,Λ0)

V 4
t (θ0,Λ∗)

∂Vt(θ0,Λ0)
∂Λ

∂Vt(θ0,Λ0)
∂Λ′

)
.

Theorem 6 Under model (23) subject to A0** and A1: Λ ∈ Π is compact,

i) θ̂1n
a.s.→

n→∞
θ0, ii) θ̂2n

a.s.→
n→∞

θ0, iii) Λ̂1n
a.s.→

n→∞
Λ0, iv) Λ̂2n

a.s.→
n→∞

Λ0. (38)

If, in addition, E (ε4t ) < ∞, E (Φ4
it) < 1 (i = 1, . . . , p) and A2: Λ0 belongs to the interior of

Π holds, then

i)
√
n
(
θ̂1n − θ0

)
D→

n→∞
N (0,Σ (Λ0,Λ∗)) , ii)

√
n
(
θ̂2n − θ0

)
D→

n→∞
N (0,Σ (Λ0,Λ0))

iii)
√
n
(
Λ̂1n − Λ0

)
D→

n→∞
N (0,Ω (Λ∗)) , iv)

√
n
(
Λ̂2n − Λ0

)
D→

n→∞
N (0,Ω (Λ0)) . (39)

Proof. See Appendix B.

For some particular cases, the estimators in (36)-(37) can be considerably simplified. This

is the case of the Poisson and the geometric distributions, for which the random coefficient

variances ∆0 :=
(
σ2
0ω, σ

2
0ϕ1

, . . . , σ2
0ϕp

)′
are functions of the random coefficient means θ0 with

no extra parameters. Indeed, only the variance σ2
0ε of the innovation sequence has to be

estimated in Λ0 = (σ2
0ε,∆

′
0), as the components in ∆′

0 are functions of the mean parameters

in θ0. Thus, the 4SWLSE procedure (36)-(37) simplifies to the triplet [θ̂1n, σ̂
2
εn, θ̂2n] where

σ̂2
εn is an estimator for σ2

0ε. Since the RMINAR model with multiplicative errors (23) shares
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the same variance-to-mean structure as the MthINGARCH model of Aknouche and Scotto

(2023), the same estimator is used for σ2
0ε. Rewrite (25) as follows

Vt := V
(
Yt|FY

t−1

)
= Vt (θ0,Λ0) =

(
σ2
ε + 1

)
δ2t + σ2

εµ
2
t ,

where δ2t ≡ δ2t (∆0) = V
(
λt|FY

t−1

)
= ∆0Z ′

t−1. Let µ̂t := µt

(
θ̂1n

)
= 1 + Y ′

t−1θ̂1n, and

δ̂
2

t := δ2t

(
∆̂n

)
where ∆̂n is a consistent estimator for ∆0 obtained as the corresponding

function of θ̂1n. Hence, (36)-(37) becomes

i) θ̂1n =

(
n∑

t=1

Yt−1Y ′
t−1

Vt(θ∗,Λ∗)

)−1 n∑
t=1

Yt−1Yt

Vt(θ∗,Λ∗)
, (40)

ii) σ̂2
εn = 1

n

n∑
t=1

(Yt−µ̂t)
2−δ̂

2
t

δ̂
2
t+µ̂2

t

, (41)

iii) θ̂2n =

(
n∑

t=1

Yt−1Y ′
t−1

Vt(θ̂1n,Λ̂1n)

)−1 n∑
t=1

Yt−1Yt

Vt(θ̂1n,Λ0)
, (42)

where Λ̂1n is the corresponding function of θ̂1n and (40) is directly obtained from Aknouche

and Scotto (2024, eq. 3.13). For this particular case, the consistency and distribution of the

resulting estimators are organized in the following corollary to Theorem 6.

Proposition 5 Under model (23) subject to A0**

i) θ̂1n
a.s.→

n→∞
θ0, ii) σ̂

2
εn

a.s.→
n→∞

σ2
0ε, iii) θ̂2n

a.s.→
n→∞

θ0.

In addition,

i)
√
n
(
θ̂1n − θ0

)
D→

n→∞
N (0,Σ (θ∗,Λ∗)) ,

ii)
√
n
(
σ̂2
εn − σ2

0ε

) D→
n→∞

N (0,Γ) ,

iii)
√
n
(
θ̂2n − θ0

)
D→

n→∞
N (0,Σ (θ0,Λ0)) ,

where

Γ := E
(

(Yt−µt(θ0))
2−(δ2t (∆0)+(δ2t (∆0)+µ2

t (θ0))σ2
0ε)

δ2t (∆0)+µ2
t (θ0)

)2

.
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5 Numerical illustrations

The behavior of the 4SWLSE in finite samples is assessed for the three above models via

simulation experiments. Furthermore, two real data applications are analyzed.

5.1 Simulation study

For the N0-valued RMINAR model (8) two instances are considered. Firstly, a RMINAR(4)

driven by Poisson inputs with three sets of parameters, namely: i) stationary RMINAR(4)

model with finite mean,
∑4

i=1 ϕ0i = 0.7 < 1, ii) stationary RMINAR(4) model with in-

finite mean and
∑4

i=1 ϕ0i = 1, and iii) stationary RMINAR(4) model with infinite mean

and
∑4

i=1 ϕ0i = 1.2 > 1 (cf. Table 1). The second instance (cf. Table 2), still con-

cerns a N0-valued RMINAR(3) model, but considering several distributions for the inputs,

namely εt ∼ Bin
(
5, µε

5

)
(binomial) Φ1t ∼ P (ϕ01) (Poisson), Φ2t ∼ NB

(
3, 3

3+ϕ02

)
(NB2),

and Φ3t ∼ NB
(
2ϕ03,

2
3

)
(NB1). As previously, two instances of parameters are considered:

the stationary model with finite mean
∑3

i=1 ϕ0i < 1 and the stationary model with infinite

mean,
∑3

i=1 ϕ0i > 1. Regarding the Z-valued RMINAR model, p = 3 is considered where

all inputs are Skellam distributed with two cases of stationary, namely stationary with finite

mean, corresponding to ρ (Φ) = 0.5761 < 1, and stationary with infinite mean and ρ (Φ) = 1,

where

Φ := E (Φt) =


ϕ01 ϕ02 ϕ03

1 0 0

0 1 0


and ρ (Φ) denoting the spectral radius of Φ (cf. Table 3). Finally, for the multiplicative

RMINAR(3) model, all inputs are Poisson distributed with three cases for the parameters

just like for the N0-valued RMINAR.

The 4SWLSE in (30)-(33) and (36)-(37) are run on 1000 simulated series generated

from the mentioned RMINAR models with sample-sizes 1000. For all instances, the means,

the standard deviations (StD), and asymptotic standard errors (ASE) of θ̂2n and Λ̂2n are

obtained over the 1000 replications (cf. Tables 1-3). For the third model, only θ̂2n and σ̂2
εn are
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obtained, since all inputs are Poisson distributed. The ASEs of all estimates are obtained

from the sample estimates of the asymptotic variances in (34)-(34) and (4.3), where the

expectations are replaced by their sample mean estimates.

(Table 1 here)

(Table 2 here)

(Table 3 here)

(Table 4 here)

From Tables 1-4 some general conclusions can be drawn. Firstly, the 4SWLE generates

fairly good estimates with small bias and small standard errors for the three models. In

particular, StDs and ASEs are quite close to each other. Secondly, the 4SWLE is convergent

regardless of the placement of the parameters in the strict stationary domain, which is the

entire parameter space. In particular, the estimates seem insensitive to the existence or not

of the model mean. Other unreported simulations show that the results are consistent with

the asymptotic theory in that the larger the sample size, the more accurate the results.

5.2 Application to the Euro-Pound sterling exchange rate data

The RMINAR model with either additive or multiplicative forms (8 and 22) is applied to

the number of ticks per minute changes in the Euro to British Pound exchange rate (ExRate

for short) on December 12, from 9:00 a.m. to 9:00 p.m.. The dataset is taken from Gorgi

(2020) who applied (heavy-tailed) observation-driven count models to it. The ExRate series

was also considered by Aknouche and Scotto (2024) using the MthINGARCH(1, 1) model.

The dataset contains 720 observations and is highly over-dispersed with a sample mean and

variance of 13.2153 and 224.2498, respectively (see Figure 1).
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Figure 1: (a) The ExRate series, (b) sample auto-correlation, (c) sample partial auto-

correlation, (d) sample auto-correlation of the Pearson residuals of the additive RMINAR(3)

model.

(Figure 1 here)

The first step in modeling the ExRate series consists of identifying the order p of the

RMINAR(p) models. Since the likelihood of the unspecified RMINAR(p) models is not

simple to obtain due to the model random coefficients, standard information-based criteria

(AIC, BIC, etc.) are out of reach. However, the additive and multiplicative RMINAR(p)

models (8) and (22), having an RCAR form, have the same auto-covariance structure as an

AR model since they are both a weak AR(p). Thus, the identification of p can be carried

out by inspecting the shape of the sample partial auto-correlation of the series (cf. Figure

1) and reinforced by other evocative criteria. For example, the generated unconditional

mean and variance (cf. (19) and (20), respectively) by the additive RMINAR(p) model

could be compared to the sample mean and sample variance of the series. Finally, the mean

absolute residual (MAR) defined as MAR:= 1
n

n∑
t=1

|Yt − µ̂t|, the mean square residual (MSR)

MSR:= 1
n

n∑
t=1

(Yt − µ̂t)
2, and the mean square Pearson residual, MSPR:= 1

n

n∑
t=1

(Yt−µ̂t)
2

V̂t
are
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also used. Note that the sample partial auto-correlation of the series (cf. Figure 5.1) shows

a pronounced cut-off after the lag p = 3, which suggests that p = 3 is an adequate choice,

but the values p = 1 and p = 2 are also possible. Table 5 displays the mean, variance, MAR,

and MSPR of the estimated additive and multiplicative RMINAR(p) models for p =∈ {1, 2}.

For the additive RMINAR(p) model, p = 3 leads to the smallest MAR and MSR while the

MSPR is comparable to those given by p ∈ {1, 2}. Additionally, p = 3 provides the generated

mean closest to the sample mean which is not the case for the generated variance. The

multiplicative RMINAR(3) model provides the smallest MAR and MSR while the best MSPR

is recorded for p = 1, which generates the closest mean. So the analysis proceeds with p = 3,

but following the parsimony principle, p ∈ {1, 2} are also considered for comparison. The

choice for optimal p will be based on the out-of-sample forecast ability of the RMINAR(p)

model in the set p ∈ {1, 2, 3}, as shown below (see Table 11 in the Supplementary material).

(Table 5 here)

The estimation of the RMINAR(p) parameters is performed with the WLS procedure de-

scribed in Section 4, where the scheme in (28) is directly applied for the additive RMINAR(p)

model. Regarding the multiplicative RMINAR(p) model, the procedure (26) is used for sim-

plicity and to inspect the impact of assuming a given variance-to-mean relationship for the

random parameters. In particular, the parameter variances are assumed proportional to the

parameter means, i.e.
(
σ2
ω, σ

2
α1
, . . . , σ2

αp

)
= c (ω, α1, . . . , αp) where the constant of propor-

tionality c = 0.135 was estimated as to minimize the |MSPR-1|. For instance, unreported

results showed that both the Poisson assumption
(
σ2
ω, σ

2
α1
, . . . , σ2

αp

)
= (ω, α1, . . . , αp) and

the geometric assumption
(
σ2
ω, σ

2
α1
, . . . , σ2

αp

)
= (ω, α1, . . . , αp) ⊕ (ω + 1, α1 + 1, . . . , αp + 1)

give bad MSPR values. Another reason for not applying directly the general nonlinear pro-

cedures (36 ii) and (37 ii) for estimating the variances of the multiplicative RMINAR(p)

model is that the estimates were sensitive to the choice of the initial parameter values in the

optimization routine.

The initial values for the weights used for the estimation procedure (28) follow the general

principle of starting the 4SWLSE with arbitrary weights. Therefore, the 4SWLE is applied
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as many times as possible to arrive at very close successive estimates. At each iteration,

the estimated variance parameters are injected as initial weights for the conditional variance

in the next iteration. It was concluded that all procedures stabilized at most at the sixth

iteration.

Table 6 displays the parameter estimates and estimated asymptotic standard errors for

the RMINAR(p) models with p ∈ {1, 2, 3}. All parameters are significant and the corre-

sponding models are stationary in mean. In addition, all estimated additive RMINAR(p)

models are second-order stationary (SSC) as the SSC condition (17) is verified. Note that

the selected additive RMINAR(3) model has, in general, better in-sample properties than

the MthINGARCH model (Aknouche and Scotto, 2024) since in the former case, the MAR

and MSR are smaller while the MSPR is closer to 1. In addition, the RMINAR(3) generates

an unconditional mean that is closer to the sample mean of the series. However, the uncon-

ditional variance of the RMINAR(3) is not the best out of the set of considered models, and

the RMINAR(1) is that providing a better variance than that of the MthINGARCH model.

(Table 6 here)

Finally, the out-of-sample forecasting ability of the RMINAR(3) models is examined and

compared to that of the MthINGARCH(1,1) (Aknouche and Scotto, 2024). The setting p = 3

is selected beause it yields the best out-of-sample forecast performance among the RMINAR

models (see the Supplementary material). The RMINAR(3) models were estimated using

the first nc observations of the series (1 < nc < n = 720). Then, the one-step ahead

forecasts, µ̂t, over the period (nc + 1, . . . , n) were computed. The evaluation was based on

i) the mean square forecast error given by MSFE = 1
n−nc

n∑
t=nc+1

(Yt − µ̂t)
2, ii) the mean

absolute forecast error, MAFE = 1
n−nc

n∑
t=nc+1

|Yt − µ̂t|, and iii) the mean squared Pearson

forecast error, MSPFE = 1
n−nc

n∑
t=nc+1

(Yt−µ̂t)
2

V̂t
. The estimated conditional variance is given by

V̂t := Z ′
t−1Λ̂n for the additive model and by V̂t := (σ̂2

n+1)Z ′
t−1∆̂n+σ̂2

nµ̂
2
t for the multiplicative

model. Table 7 displays MSFE, MAFE, and MSPFE for the RMINAR models estimated

from the series with sample size nc ∈ {300, 420, 520, 680, 700}. The corresponding results
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for the MthINGARCH(1,1) are directly taken from Aknouche and Scotto (2024). Note that

the additive and multiplicative RMINAR(p) models provide, in general, a comparable out-

of-sample ability to the MthINGARCH model. Specifically, for some values of nc, especially

those closer to the sample size n = 720, the RMINAR models provide better MSFE and

MAFE. In contrast, the MthINGARCH slightly outperforms the RMINARs for smaller nc

values. This could be explained by the fact that the MthINGACH model, having a moving

average component, is more persistent (and then has higher memory) than the RMINAR

models. Note also that the multiplicative RMINAR provides the worst MSPFE compared

to the remaining models due to the assumed variance-to-mean relationship.

(Table 7 here)

5.3 Application to the daily (integer-valued) stock return series

The second application concerns fitting the daily stock returns (Return) of Bank of America

from July 1, 2016 to September 28, 2018. The dataset with a total of 566 observations

is taken from Xu and Zhu (2022) who divided the returns by tick price to get a signed

integer-valued series. The sample mean and variance of the series are 0.1184 and 978.8231,

respectively, showing a strong overdispersion (see Figure 2). The authors proposed a Z-

valued (GARCH-like) conditional volatility model for the series. Such an approach could

ignore the conditional mean effect and, in contrast, the RMINAR model can represent both

the conditional mean and conditional volatility observed in the data.

(Figure 2 here)

The sample partial auto-correlation of the series shows a small and isolated peak at lag

3 while the remaining auto-correlations are fairly small. Thus, as in the above ExRate

example, the orders p ∈ {1, 2, 3} were considered. Table 8 shows some measures to support

the choice of the model order p. It can be seen that p = 1 gives the best mean and variance

approximations, while p = 3 provides the smallest MAR and MSR and simultaneously the

worst MSPR.
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Figure 2: (a) The Return series, (b) sample auto-correlation, (c) sample partial auto-

correlation, (d) sample auto-correlation of the Pearson residuals of the Z-valued RMINAR(1)

model.

(Table 8 here)

Parameter estimation is carried out using the algorithm (28) with results reported in Table

9. All estimated models are second-order stationary and all parameters are significant except

σ2
ϕ3

which is zero due to the artificial non-negative least squares constraint used. Thus the

random coefficient Φt3 is degenerated at ϕ̂3 = 0.1021 and since Φt3 should be integer valued

this implies it should be zero, which excludes the order p = 3. On the other hand, the

retained orders p = 1 and p = 2 provide comparable in-sample performance (cf. Table 8).

(Table 9 here)

The truncated series with nc ∈ {300, 350, 400, 450, 500} are used to analyze the out-of-

sample performance of the RMINAR(p) model. Table 10 shows that the order p = 2 provides

the smallest MSFE and MAFE, for the sizes nc ∈ {300, 350, 400, 550}. However, the order

p = 1 gives better measures when nc ∈ {450, 500}. Overall, there is no dominant order for

all sample sizes nc and p = 1 is be preferred following the parsimony principle.
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(Table 10 here)

6 Conclusion

This paper proposed a random multiplication operator (RMO) to construct integer-valued

time series models in both N-valued and Z-valued cases. Compared to the random sum

operator (RSO) which generally requires specifying the full distribution (e.g. binomial, ge-

ometric, Poisson, etc.), the RMO is semi-parametric in the sense that it only specifies the

mean and variance. Additionally, the RMO allows larger over-dispersion and can be more

heavy tailed but, more importantly, the variance does not necessarily have to depend on

the mean as is the case for most RSOs. This allows more flexibility in modeling since the

operator variance is estimated in a separate procedure independently of the operator mean.

Finally, the RMO is simpler than the RSO because it consists of the usual multiplication of

the constant and variable operands.

This paper also shows how to build up simple and tractable RMO-based integer-valued

time series models that consist of auto-regressive type models with integer-valued random

coefficients. Although random coefficient time series models have been well-known for a

long time, their use was entirely focused on real-valued random coefficients. In contrast,

integer-valued random coefficients make the underlying model universally (or everywhere)

stationary and ergodic when generated from stationary and ergodic inputs. An important

consequence is that most important M estimation methods such as quasi-maximum likelihood

and weighted least squares (WLS) are consistent and asymptotically Normal everywhere for

all parameter components. This makes the models more flexible than other existing classes

of integer-valued time series models mentioned in the introduction.

The RMINAR framework can be extended in many perspectives. Firstly, the persistence

ability of the RMINAR models could be improved by proposing INARMA models based on

random multiplications with some moving average dynamics. In particular, INGARCH-type

models based on thinning (Aknouche and Scotto, 2024) could be adapted while replacing the
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RSO with the RMO. Second, multivariate RMINAR forms could be easily introduced and

estimated using the methods in Nicholls and Quinn (1982) and Praskova and Vanecek (2011).

These models for both N-valued and Z-valued series could constitute very straightforward

alternatives to multivariate INGARCH models and multivariate INAR-type models.
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Appendices

Appendix A Proof of Theorem 1

The proof of Theorem 1 relies on Lemma 1 and the proofs of 2 and 3 follow similarly.

Lemma 1 Consider the stochastic recurrence equation

Zt = AtZt−1 +Bt, t ∈ Z,

driven by the iid sequence of pairs {(At,Bt) , t ∈ Z} such that At is the companion matrix

defined in (11) and {ait, t ∈ Z} (i = 1, . . . , p) are iid and mutually independent, satisfying

P
(
(a1t, . . . , apt)

′ = 0p×1

)
=

p∏
i=1

P (ait = 0) > 0. (43)

Then, the random series
∞∑
j=0

j−1∏
i=0

At−iBt−j, (44)
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converges absolutely a.s. for all t ∈ Z.

Proof. (Lemma 1)

For p = 1, the result in (44) directly follows from Vervaat (1979, Theorem 1.6 (c); Lemma

1.7). See also Brandt (1986, Theorem 1 and p. 215) for the case of stationary and ergodic non-

necessarily independent sequences. For p > 1, by (43), the iid property of {(At,Bt) , t ∈ Z},

the mutual independence of {ait, t ∈ Z} (i = 1, . . . , p), and the form (11) of the companion

matrix At, it follows that

P (AtAt−1 · · ·At−p+1 = 0p) =

p∏
i=1

P (ait = 0) > 0.

Indeed, it can be easily seen that the matrix AtAt−1 · · ·At−p+1 contains no element 1 and that

all of its elements are formed by algebraic operations of {(a1k, . . . , apk) , k = t− p+ 1, . . . , t}

vectors that satisfy (43). Therefore,

#

{
j ∈ N0 :

j−1∏
i=0

At−iBt−j = 0

}
= ∞ a.s.,

where #A ∈ N0 ∪ {∞} is the number of elements of the set A. Thus, the series in (44) has

only finitely many positive terms a.s., which implies its a.s. absolute convergence.

Proof. (Theorem 1)

The fact that
∞∑
j=0

j−1∏
i=0

At−iBt−j < ∞ a.s.,

immediately follows from Lemma 1. By definition, Yt :=
∞∑
j=0

j−1∏
i=0

At−iBt−j, t ∈ Z and then

{Yt, t ∈ Z} is a solution of the RMINAR model in the vector form (12). Such a solution is

unique and causal (i.e. future independent). Moreover, it is strictly stationary and ergodic

in view of the iid property of the random inputs of the RMINAR model (8).
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Appendix B Proof of Theorems 4, 5 and 6

The proof of Theorem 4 is first presented by introducing some lemmas (2-6) that support

the results in the theorem. Then, the proof of Theorem 5 is omitted as it is quite similar to

that of Theorem 4. The proofs of some results conveyed in Theorem 6 are also omitted as

they can be derived similarly as in the proof of Theorem 4.

Lemma 2 Consider the RMINAR model (8) under A0. For all positive real (ai) (i = 0, . . . , p)

and all integers r, s, k such that r + s ≤ 2k, it holds that

1
n

n∑
t=1

Y r
t−iY

s
t−j

(a0+a1Y 2
t−1+···+apY 2

t−p)
k

a.s.→
n→∞

E
(

Y r
t−iY

s
t−j

(a0+a1Y 2
t−1+···+apY 2

t−p)
k

)
, i, j = 1, . . . , p. (45)

Proof. (Lemma 2)

The result in (45) follows from the stationar and ergodicity of {Yt, t ∈ Z} under A0, the

a.s. boundedness of
Y r
t−iY

s
t−j

(a0+a1Y 2
t−1+···+apY 2

t−p)
k which entails E

(
Y r
t−iY

s
t−j

(a0+a1Y 2
t−1+···+apY 2

t−p)
k

)
< ∞ and

the ergodic theorem.

Lemma 3 Consider the RMINAR model (8) under A0. Then, for all Λ∗ > 0p+q+1,

1
n

n∑
t=1

Zt−1

(
(Yt−Y ′

t−1θ̂1n)
2

(Z′
t−1Λ∗)

2 − (Yt−Y ′
t−1θ0)

2

(Z′
t−1Λ∗)

2

)
= oa.s. (1) , (46)

1√
n

n∑
t=1

Zt−1

(
(Yt−Y ′

t−1θ̂1n)
2

(Z′
t−1Λ∗)

2 − (Yt−Y ′
t−1θ0)

2

(Z′
t−1Λ∗)

2

)
= op (1) , (47)

where oa.s. (1) and op (1) converge to zero, respectively, as n → ∞ a.s. and in probability.

Proof. (Lemma 3)

i) A Taylor expansion of the function g
(
θ̂1n

)
=
(
Yt − Y ′

t−1θ̂1n

)2
around θ0 gives

1
n

n∑
t=1

Zt−1
(Yt−Y ′

t−1θ̂1n)
2

(Z′
t−1Λ∗)

2 = 1
n

n∑
t=1

(Yt−Y ′
t−1θ0)

2

(Z′
t−1Λ∗)

2 + 1
n

n∑
t=1

2(Yt−Y ′
t−1θu)

(Z′
t−1Λ∗)

2 Y ′
t−1

(
θ̂1n − θ0

)
. (48)

Therefore, the result (46) follows from the a.s. boundedness of

2(Yt−Y ′
t−1θu)

(Z′
t−1Λ∗)

2 Y ′
t−1,
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which entails the finiteness of E
(

2(Yt−Y ′
t−1θu)

(Z′
t−1Λ∗)

2 Y ′
t−1

)
, the ergodic theorem and the strong

consistency of θ̂1n.

ii) One can write θ̂1n−θ0 =
1√
n
Op (1), where Op (1) denotes a term bounded in probability.

Hence (48) becomes

1√
n

n∑
t=1

Zt−1
(Yt−Y ′

t−1θ̂1n)
2

(Z′
t−1Λ∗)

2 = 1√
n

n∑
t=1

(Yt−Y ′
t−1θ0)

2

(Z′
t−1Λ∗)

2 + 1
n

n∑
t=1

2(Yt−Y ′
t−1θu)

(Z′
t−1Λ∗)

2 Y ′
t−1Op (1) ,

so the result (47) follows from the ergodic theorem, the consistency of θ̂1n and the fact that

θu is between θ̂1n and θ0.

Lemma 4 Consider the RMINAR model (8) under A0. Then,

1
n

n∑
t=1

Yt−1Yt

(
1

(Z′
t−1Λ̂1n)

2 − 1

(Z′
t−1Λ0)

2

)
= oa.s. (1) , (49)

1√
n

n∑
t=1

Yt−1Yt

(
1

(Z′
t−1Λ̂1n)

2 − 1

(Z′
t−1Λ0)

2

)
= op (1) , (50)

1
n

n∑
t=1

(
1

(Z′
t−1Λ̂1n)

2 − 1

(Z′
t−1Λ0)

2

)
Yt−1Y ′

t−1 = oa.s. (1) . (51)

Proof. (Lemma 4)

Similarly to the proof of condition (46), a Taylor expansion of the function g
(
θ̂1n

)
=

1

(Z′
t−1Λ̂1n)

2 around θ0 shows that I = oa.s. (1). The proofs of (50) and (51) follow in the

same way as for the result (49).

Lemma 5 Consider the RMINAR model (8) under A0. Then,

1
n

n∑
t=1

Zt−1

(
(Yt−Y ′

t−1θ̂2n)
2

(Z′
t−1Λ̂1n)

2 − (Yt−Y ′
t−1θ0)

2

(Z′
t−1Λ0)

2

)
= oa.s. (1) , (52)

1√
n

n∑
t=1

Zt−1

(
(Yt−Y ′

t−1θ̂2n)
2

(Z′
t−1Λ̂1n)

2 − (Yt−Y ′
t−1θ0)

2

(Z′
t−1Λ0)

2

)
= op (1) , (53)

1
n

n∑
t=1

(
1

(Z′
t−1Λ̂1n)

2 − 1

(Z′
t−1Λ0)

2

)
Zt−1Z ′

t−1 = oa.s. (1) . (54)
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Proof. (Lemma 5)

The proof of condition (52) uses the same device as that used in the proof of (49), giving

1
n

n∑
t=1

Zt−1

(
(Yt−Y ′

t−1θ̂2n)
2

(Z′
t−1Λ̂1n)

2 − (Yt−Y ′
t−1θ0)

2

(Z′
t−1Λ0)

2

)
= oa.s. (1) .

Results (53) and (54) follow using similar arguments.

Lemma 6 Consider the RMINAR model (8) under A0, E (ε4t ) < ∞ and E (Φ4
it) < 1 (i =

1, . . . , p) then, for all Λ∗ > 0p+q+1,

1√
n

n∑
t=1

Yt−1et
Z′

t−1Λ∗

D→
n→∞

N (0, B (Λ0,Λ∗)) , (55)

1√
n

n∑
t=1

Zt−1ut

(Z′
t−1Λ∗)

2

D→
n→∞

N (0, D (Λ∗)) . (56)

Proof. (Lemma 6)

i) By A0 and the ergodic theorem, it follows that

n∑
t=1

(
1√
n

Yt−1et
Z′

t−1Λ∗

)(
1√
n

Yt−1et
Z′

t−1Λ∗

)′
= 1

n

n∑
t=1

e2tYt−1Y ′
t−1

(Z′
t−1Λ∗)

2

a.s.→
n→∞

B (Λ0,Λ∗) ,

where B (Λ0,Λ∗) is finite by the a.s. boundedness of
Z′

t−1Λ0Yt−1Y ′
t−1

(Z′
t−1Λ∗)

2 and the finiteness of the

second moments of the random coefficients. Since {et, t ∈ Z} is square integrable martingale

difference with respect to
{
FY

t , t ∈ Z
}
, then (55) follows from the central limit theorem

(CLT) for square-integrable martingales (e.g. Billingsley, 2008; Hall and Heyde, 1980).

ii) Note that

n∑
t=1

(
1√
n

Zt−1ut

(Z′
t−1Λ∗)

2

)(
1√
n

Zt−1ut

(Z′
t−1Λ∗)

2

)′

= 1
n

n∑
t=1

u2
tZt−1Z′

t−1

(Z′
t−1Λ∗)

4

a.s.→
n→∞

D (Λ∗) .

Hence (56) is a consequence of the CLT for the square-integrable
{
FY

t , t ∈ Z
}
-martingale

difference {ut, t ∈ Z}.

Next, follows the proof of Theorem 4 based on the established lemmas 2 to 6.
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Proof. (Theorem 4)

a) For the proof of (34)-i, combining (8) and (30) leads to

θ̂1n − θ0 =

(
1
n

n∑
t=1

Yt−1Y ′
t−1

Z′
t−1Λ∗

)−1

1
n

n∑
t=1

Yt−1
et

Z′
t−1Λ∗

, (57)

so the result (34)-i follows from Lemma 2 while using the fact that

E
(
Yt−1

et
Z′

t−1Λ∗

)
= E

(
Yt−1

E(et|FY
t−1)

Z′
t−1Λ∗

)
= 0.

b) For the proof of (34)-ii, in view of (31), the regression

(
Yt − Y ′

t−1θ0
)2

= Z ′
t−1Λ0 + ut, (58)

and Lemma 3, it follows that

Λ̂1n − Λ0 =

(
1
n

n∑
t=1

Zt−1Z′
t−1

(Z′
t−1Λ∗)

2

)−1

1
n

n∑
t=1

Zt−1
ut

(Z′
t−1Λ∗)

2 + oa.s. (1) .

Therefore, the result (34)-ii follows from Lemma 2 and the fact that

E
(

ut

(Z′
t−1Λ∗)

2

)
= E

(
E(ut|FY

t−1)
(Z′

t−1Λ∗)
2

)
= 0.

c) The proof of (34)-iii is based on (32), (8) and Lemma 4, leading to

θ̂2n − θ0 =

(
1
n

n∑
t=1

Yt−1Y ′
t−1

Z′
t−1Λ0

)−1

1
n

n∑
t=1

Yt−1
et

Z′
t−1Λ0

+ oa.s. (1) ,

so the result follows from Lemma 2 in the same way as (34)-i.

d) The proof of (34)-iv follows by combining (32), (58) and Lemma 5 to obtain

Λ̂2n − Λ0 =

(
1
n

n∑
t=1

Zt−1Z′
t−1

(Z′
t−1Λ0)

2

)−1

1
n

n∑
t=1

Zt−1ut

(Z′
t−1Λ0)

2 + oa.s. (1)

and the result is a consequence of Lemma 2 using the same argument in proving (34)-ii.

e) For the proof of (35)-i, condition (57) is rewritten as

√
n
(
θ̂1n − θ0

)
=

(
1
n

n∑
t=1

Yt−1Y ′
t−1

Z′
t−1Λ∗

)−1

1√
n

n∑
t=1

Yt−1et
Z′

t−1Λ∗
,
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and the result follows from Lemma 2 and Lemma 6 while using Slutsky’s Lemma.

f) For the proof of (35)-ii, from (32) and Lemma 4, one obtains

√
n
(
θ̂2n − θ0

)
=

(
1
n

n∑
t=1

Yt−1Y ′
t−1

Z′
t−1Λ0

)−1

1√
n

n∑
t=1

Yt−1et
Z′

t−1Λ0
+ op (1) ,

and the result follows from Lemma 6 and Lemma 2.

g) For the proof of (35)-iii, consider the Lemma 3. One can write

√
n
(
Λ̂1n − Λ0

)
=

(
1
n

n∑
t=1

Zt−1Z′
t−1

(Z′
t−1Λ∗)

2

)−1

1√
n

n∑
t=1

Zt−1ut

(Z′
t−1Λ∗)

2 + op (1) ,

with obvious notation. Hence, the result (35)-ii follows from Lemma 6 and Lemma 2.

h) The proof of (35)-iv relies on (33) and Lemma 5. Then,

√
n
(
Λ̂2n − Λ0

)
=

(
1
n

n∑
t=1

Zt−1Z′
t−1

(Z′
t−1Λ0)

2

)−1

1√
n

n∑
t=1

Zt−1ut

(Z′
t−1Λ0)

2 + op (1)

and the result follows from Lemma 6 (or 56 with Λ∗ = Λ0) and Lemma 2. This concludes

the proof of the theorem.

The proof of the results conveyed in Theorem 6 is based on the intermediary results

stated in the following lemmas. Consider the following notation

Ln

(
Λ,Λ∗, θ̂1n

)
= 1

n

n∑
t=1

lt

(
Λ,Λ∗, θ̂1n

)
lt

(
Λ,Λ∗, θ̂1n

)
=

u2
t(θ̂1n,Λ)

V 2
t (θ̂1n,Λ∗)

=

(
(Yt−Y ′

t−1θ̂1n)
2
−Vt(θ̂1n,Λ)

)2

V 2
t (θ̂1n,Λ∗)

where Vt (θ0,Λ0) := V
(
Yt|FY

t−1

)
.

Lemma 7 Under A0**, it holds that

sup
Λ∈Π

∣∣∣Ln

(
Λ,Λ∗, θ̂1n

)
− Ln (Λ,Λ∗, θ0)

∣∣∣ a.s.→
n→∞

0.
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Proof. (Lemma 7)

It holds that ∣∣∣Ln

(
Λ,Λ∗, θ̂1n

)
− Ln (Λ,Λ∗, θ0)

∣∣∣
≤ 1

n

n∑
t=1

∣∣∣∣∣
(
(Yt−Y ′

t−1θ̂1n)
2
−Vt(θ̂1n,Λ)

)2

(Vt(θ̂1n,Λ∗))
2 −

(
(Yt−Y ′

t−1θ0)
2
−Vt(θ0,Λ)

)2

(Vt(θ0,Λ∗))
2

∣∣∣∣∣ .
Using the Taylor expansion of the function g1

(
θ̂1n

)
=

(
(Yt−Y ′

t−1θ̂1n)
2
−Vt(θ̂1n,Λ)

)2

(Vt(θ̂1n,Λ∗))
2 around θ0

as in Lemma 3, the result follows from the a.s. boundedness of ∂
∂θ′

g1 (θu) and the strong

consistency of θ̂1n.

Lemma 8 Under A0**, it holds that

i) E (lt (Λ,Λ∗, θ0)) < ∞,

ii) E (lt (Λ,Λ∗, θ0)) ≤ E (lt (Λ0,Λ∗, θ0)) for all Λ ∈ Π,

iii) E (lt (Λ,Λ∗, θ0)) = E (lt (Λ0,Λ∗, θ0)) =⇒ Λ = Λ0.

Proof. (Lemma 8)

i) The result obviously follows from the boundedness of
u2
t(θ̂1n,Λ)

V 2
t (θ̂1n,Λ∗)

.

ii) Standard arguments show that for all Λ ∈ Π

E (lt (Λ,Λ∗, θ0)) = E
(
(e2t−Vt(θ0,Λ0)+Vt(θ0,Λ0)−Vt(θ0,Λ))

2

V 2
t (θ̂1n,Λ∗)

)
= E

(
(e2t−Vt(θ0,Λ0))

2

V 2
t (θ̂1n,Λ∗)

)
+ E

(
(Vt(θ0,Λ0)−Vt(θ0,Λ))

2

V 2
t (θ̂1n,Λ∗)

)
≥ E

(
(e2t−Vt(θ0,Λ0))

2

V 2
t (θ̂1n,Λ∗)

)
= E (lt (Λ0,Λ∗, θ0)) . (59)

iii) Inequality (59) becomes an equality if and only if

E
(

(Vt(θ0,Λ0)−Vt(θ0,Λ))
2

V 2
t (θ̂1n,Λ∗)

)
= 0,

which holds if and only if

(Vt(θ0,Λ0)−Vt(θ0,Λ))
2

u2
t(θ̂1n,Λ∗)

= 0 ⇔ Vt (θ0,Λ) = Vt (θ0,Λ0)
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⇔ σ2
ε

((
Y ′

t−1θ0
)2

+ δ2t (∆)
)
+ δ2t (∆) = σ2

0ε

((
Y ′

t−1θ0
)2

+ δ2t (∆0)
)
+ δ2t (∆0)

⇔ σ2
ε

((
Y ′

t−1θ0
)2

+ Z ′
t−1∆

)
+ Z ′

t−1∆ = σ2
0ε

((
Y ′

t−1θ0
)2

+ Z ′
t−1∆0

)
+ Z ′

t−1∆0

⇔ σ2
ε

((
Y ′

t−1θ0
)2

+ Z ′
t−1∆

)
= σ2

0ε

((
Y ′

t−1θ0
)2

+ Z ′
t−1∆0

)
and Z ′

t−1∆ = Z ′
t−1∆0

⇔ σ2
ε = σ2

0ε and ∆ = ∆0 ⇔ Λ = Λ0.

Lemma 9 Under A0** for all Λ ̸= Λ0, there is a neighborhood V (Λ) such that

lim inf
n→∞

inf
Λ1∈V(Λ)

Ln

(
Λ1,Λ∗, θ̂1n

)
> lim inf

n→∞
Ln

(
Λ0,Λ∗, θ̂1n

)
a.s.

Proof. (Lemma 9)

For all Λ ∈ Π and k ∈ N∗, let Vk(Λ) be the open ball with center Λ and radius 1/k.

Since infΛ∈Vk(Λ)∩Π lt (Λ,Λ∗, θ0) is a measurable function of the terms of {Yt, t ∈ Z}, which

is strictly stationary and ergodic under A0, then
{
infΛ∈Vk(Λ)∩Π lt (Λ,Λ∗, θ0) , t ∈ Z

}
is also

strictly stationary and ergodic where, by Lemma 8,

E
(

inf
Λ∈Vk(Λ)∩Π

lt (Λ,Λ∗, θ0)

)
∈ [−∞,+∞[.

Therefore, in view of Lemma 7 and the ergodic theorem (Billingsley, 2008), it follows that

lim inf
n→∞

inf
Λ∈Vk(Λ)∩Π

Ln

(
Λ,Λ∗, θ̂1n

)
= lim inf

n→∞
inf

Λ∈Vk(Λ)∩Π
Ln (Λ0,Λ∗, θ0)

≥ E
(

inf
Λ∈Vk(Λ)∩Π

lt (Λ,Λ∗, θ0)

)
.

By the Beppo-Levi theorem, E
(
infΛ∈Vk(Λ)∩Π lt (Λ,Λ∗, θ0)

)
converges while increasing to

E
(
lt
(
Λ,Λ∗, θ0

))
as k → ∞. Hence, Lemma 9 follows from Lemma 8 ii).

Next, it follows the proof of the Theorem 6, based on the previous lemmas.

Proof. (Theorem 6)

a) The proof of (38)-i is based on the results in Lemma (7) and (9). It is shown that for

all Λ ̸= Λ0, there exists a neighborhood V
(
Λ
)
such that

lim inf
n→∞

inf
Λ∈Vk(Λ)∩Π

Ln

(
Λ,Λ∗, θ̂1n

)
≥ lim inf

n→∞
Ln

(
Λ0,Λ∗, θ̂1n

)
= lim inf

n→∞
Ln (Λ0,Λ∗, θ0) = E (lt (Λ0,Λ∗, θ0)) ,
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which concludes the proof.

b) The proof of (38)-ii is similar to that of (38)-i by replacing θ̂1n by θ̂2n. Similarly, the

proof of (38)-iii and (38)-iv is similar to that of (38)-i by replacing Λ∗ by Λ̂1n and Λ∗ by Λ̂2n,

respectively.

c) The proof of the results in (39) is similar to all estimators and thus only the consistency

for Λ̂1n is shown.

d) From standard arguments, the proof of the consistency of Λ̂1n is completed while using

the compactness assumption A1 of Π. Using again a Taylor expansion of

(
(Yt−Y ′

t−1θ̂1n)
2
−Vt(θ̂1n,Λ)

)2

(Vt(θ̂1n,Λ∗))
2 ,

around θ0, it holds that

√
n sup

θ∈Θ

∥∥∥Ln

(
Λ,Λ∗, θ̂1n

)
− Ln (Λ,Λ∗, θ0)

∥∥∥
≤ 1√

n

n∑
t=1

∣∣∣∣∣
(
(Yt−Y ′

t−1θ̂1n)
2
−Vt(θ̂1n,Λ)

)2

(Vt(θ̂1n,Λ∗))
2 −

(
(Yt−Y ′

t−1θ0)
2
−Vt(θ0,Λ)

)2

(Vt(θ0,Λ∗))
2

∣∣∣∣∣ = oa.s. (1) .

Now from A2 and (38)-i, the estimate Λ̂1n cannot be on the boundary of Π for a suffi-

ciently large n. Therefore, a Taylor expansion of
√
n

∂Ln(Λ̂1n,Λ∗,θ̂1n)
∂Λ

around Λ0 implies that

for some Λu ∈ Π between Λ̂1n and Λ0,

0 =
√
n

∂Ln(Λ̂1n,Λ∗,θ̂1n)
∂Λ

=
√
n

∂Ln(Λ̂1n,Λ∗,θ0)
∂Λ

+ oa.s. (1)

=
√
nLn(Λ0,Λ∗,θ0)

∂Λ
+
√
nLn(Λu,Λ∗,θ0)

∂Λ

(
Λ̂1n − Λ0

)
+ oa.s. (1) . (60)

Finally, given (60) the result is established while the following two lemmas are shown.

Lemma 10 Under A0**, A1, A2 and the finiteness of the fourth moments of the random

coefficients, then
√
nLn(Λ0,Λ∗,θ0)

∂Λ

L→
n→∞

N (0, D (Λ∗)) .
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Proof. (Lemma 10)

Clearly
{

∂lt(Λ0,Λ∗,θ0)
∂θ

, t ∈ Z
}
is a martingale difference with respect to

{
FY

t , t ∈ Z
}
where

∂lt(Λ,Λ∗,θ0)
∂θ

= −2∂Vt(θ0,Λ)
∂Λ

e2t−Vt(θ0,Λ)

u2
t (θ0,Λ∗)

and
√
nLn(Λ0,Λ∗,θ0)

∂Λ
=

n∑
t=1

1√
n
∂lt(Λ0,Λ∗,θ0)

∂Λ
.

By A1 and A2, it holds that E
(

∂lt(Λ0,Λ∗,θ0)
∂Λ

∂lt(Λ0,Λ∗,θ0)
∂Λ′

)
= D (Λ∗), and the lemma follows

from the martingale CLT.

Lemma 11 Under A0**, A1 and A2 it follows that ∂2Ln(Λu,Λ∗,θ0)
∂Λ∂Λ′

a.s.→
n→∞

C (Λ∗) .

Proof. (Lemma 11)

Let Vk(Λ0) (k ∈ N∗) be the open ball of center Λ0 and radius 1/k. Assume that n is large

enough so that Λu belongs to Vk(Λ0). From the stationarity and ergodicity of{
inf

Λ∈Vk(Λ0)

∣∣∣∂2lt(Λ0,Λ∗,θ0)
∂Λi∂Λj

− E
(

∂2lt(Λ0,Λ∗,θ0)
∂Λi∂Λj

)∣∣∣ , t ∈ Z
}
,

if follows that∣∣∣∂2Ln(Λu,Λ∗,θ0)
∂Λ∂Λ′ − C (Λ∗)

∣∣∣ ≤ 1
n

n∑
t=1

inf
Λ∈V(Λ0)

∣∣∣∂2lt(Λ,Λ∗,θ0)
∂Λi∂Λj

− E
(

∂2lt(Λ0,Λ∗,θ0)
∂Λi∂Λj

)∣∣∣
a.s.→

n→∞
E
(

inf
Λ∈Vk(Λ0)

∣∣∣∂2lt(Λ,Λ∗,θ0)
∂Λi∂Λj

− E
(

∂2lt(Λ0,Λ∗,θ0)
∂Λi∂Λj

)∣∣∣) .

Note that the Lebesgue-dominated convergence theorem entails

lim
k→∞

E
(

inf
Λ∈Vk(Λ0)

∣∣∣∂2lt(Λ,Λ∗,θ0)
∂Λi∂Λj

− E
(

∂2lt(Λ0,Λ∗,θ0)
∂Λi∂Λj

)∣∣∣)
= E

(
lim
k→∞

sup
Λ∈Vk(Λ0)

∣∣∣∂2lt(Λ,Λ∗,θ0)
∂Λi∂Λj

− E
(

∂2lt(Λ0,Λ∗,θ0)
∂Λi∂Λj

)∣∣∣) = 0,

which completes the proof of the result.
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(Table 11 here)
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n = 1000 (a)
∑4

i=1 ϕ0i = 0.7 < 1

θ̂2n

Mean

StD

ASE

µε = 2

2.1249

0.3399

0.2540

ϕ01 = 0.3

0.2913

0.0562

0.0526

ϕ02 = 0.2

0.1911

0.0514

0.0504

ϕ03 = 0.1

0.0946

0.0475

0.0449

ϕ04 = 0.1

0.0929

0.0462

0.0436

Λ̂2n

Mean

StD

ASE

σ2
ε = 2

1.9826

0.1321

0.0318

σ2
ϕ1

= 0.3

0.2829

0.0056

0.0019

σ2
ϕ2

= 0.2

0.1863

0.0078

0.0022

σ2
ϕ3

= 0.1

0.0901

0.0074

0.0020

σ2
ϕ4

= 0.1

0.0891

0.0076

0.0021

n = 1000 (b)
∑4

i=1 ϕ0i = 1

θ̂2n

Mean

StD

ASE

µε = 1

1.1151

0.2513

0.1567

ϕ01 = 0.4

0.3907

0.0574

0.0537

ϕ02 = 0.3

0.2932

0.0605

0.0539

ϕ03 = 0.1

0.0936

0.0462

0.0447

ϕ04 = 0.2

0.1963

0.0574

0.0497

Λ̂2n

Mean

StD

ASE

σ2
ε = 1

0.9455

0.0841

0.0130

σ2
ϕ1

= 0.4

0.3769

0.0083

0.0026

σ2
ϕ2

= 0.3

0.2818

0.0082

0.0028

σ2
ϕ3

= 0.1

0.0900

0.0076

0.0026

σ2
ϕ4

= 0.2

0.1823

0.0122

0.0032

n = 1000 (c)
∑4

i=1 ϕ0i = 1.2 > 1

θ̂2n

Mean

StD

ASE

µε = 0.1

0.1028

0.0190

0.0188

ϕ01 = 0.5

0.5087

0.0662

0.0635

ϕ02 = 0.2

0.2073

0.0540

0.0573

ϕ03 = 0.3

0.2892

0.0671

0.0639

ϕ04 = 0.2

0.2008

0.0592

0.0583

Λ̂2n

Mean

StD

ASE

σ2
ε = 0.1

0.0551

0.0141

0.0045

σ2
ϕ1

= 0.5

0.5048

0.0241

0.0043

σ2
ϕ2

= 0.2

0.1956

0.0295

0.0046

σ2
ϕ3

= 0.3

0.3147

0.0322

0.0046

σ2
ϕ4

= 0.2

0.1703

0.0430

0.0054

Table 1: Mean, StD and ASE of θ̂2n and Λ̂2n for a Poisson RMINAR(4) under (a) strict

stationarity with finite mean, (b)-(c) strict stationarity with infinite mean.
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n = 1000 (a)
∑3

i=1 ϕ0i = 0.6 < 1

θ̂2n

Mean

StD

ASE

µε = 2

2.0834

0.2228

0.2120

ϕ01 = 0.3

0.2952

0.0518

0.0538

ϕ02 = 0.2

0.1929

0.0467

0.0519

ϕ03 = 0.1

0.0866

0.0443

0.0480

Λ̂2n

Mean

StD

ASE

σ2
ε = 2

2.0834

0.2228

0.0390

σ2
ϕ1

= 0.3

0.2952

0.0518

0.0024

σ2
ϕ2

= 0.2

0.1929

0.0467

0.0037

σ2
ϕ3

= 0.1

0.0866

0.0443

0.0038

n = 1000 (b)
∑3

i=1 ϕ0i = 1.1 > 1

θ̂2n

Mean

StD

ASE

µε = 0.5

0.5261

0.0859

0.0711

ϕ01 = 0.3

0.2907

0.0501

0.0491

ϕ02 = 0.2

0.2019

0.0492

0.0481

ϕ03 = 0.6

0.6127

0.0757

0.0682

Λ̂2n

Mean

StD

ASE

σ2
ε = 0.45

0.4216

0.0425

0.0100

σ2
ϕ1

= 0.3

0.2975

0.0113

0.0026

σ2
ϕ2

= 0.2133

0.2075

0.0137

0.0038

σ2
ϕ3

= 0.9

0.8947

0.0227

0.0063

Table 2: Mean, StD and ASE of θ̂2n and Λ̂2n for a RMINAR(3) with εt ∼ Bin
(
5, µε

5

)
,Φ1t ∼

P (ϕ01) ,Φ2t ∼ NB
(
3, 3

3+ϕ02

)
and Φ3t ∼ NB

(
2ϕ03,

2
3

)
in both finite and infinite mean cases.
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n = 1000 (a)

µ1ε = 0.7, µ2ε = 0.3, ϕ11 = 0.1, ϕ21 = 0.3

ϕ12 = 0.2, ϕ22 = 0.1, ϕ13 = 0.4, ϕ23 = 0.2

ρ (Φ) = 0.5761 < 1

θ̂2n

Mean

StD

ASE

µε = 0.4

0.4020

0.0646

0.0658

ϕ01 = −0.2

−0.1954

0.0394

0.0408

ϕ02 = 0.1

0.0958

0.0365

0.0399

ϕ03 = 0.2

0.1978

0.0449

0.0457

Λ̂2n

Mean

StD

ASE

σ2
ε = 1

0.9904

0.0417

0.0079

σ2
ϕ1

= 0.4

0.3969

0.0116

0.0036

σ2
ϕ2

= 0.3

0.2945

0.0153

0.0041

σ2
ϕ3

= 0.6

0.5980

0.0117

0.0038

(b)

µ1ε = 0.3 = µ2ε, ϕ11 = 0.5, ϕ21 = 0.1

ϕ12 = 0.4, ϕ22 = 0.1, ϕ13 = 0.5, ϕ23 = 0.2

ρ (Φ) = 1

θ̂2n

Mean

StD

ASE

µε = 0

−0.0537

0.1403

0.0681

ϕ01 = 0.4

0.3917

0.0611

0.0450

ϕ02 = 0.3

0.2803

0.0709

0.0466

ϕ03 = 0.3

0.2767

0.0675

0.0516

Λ̂2n

Mean

StD

ASE

σ2
ε = 0.6

0.5809

0.0687

0.0104

σ2
ϕ1

= 0.6

0.5900

0.0183

0.0055

σ2
ϕ2

= 0.5

0.4939

0.0143

0.0033

σ2
ϕ3

= 0.7

0.6780

0.0297

0.0050

Table 3: Mean, StD and ASE of θ̂2n and Λ̂2n for a Z-valued RMINAR(3) with εt ∼

Skellam (µ1ε, µ2ε) ,Φit ∼ Skellam (ϕ1i, ϕ2i) , µ1ε = µ1ε − µ2ε, σ
2
ε = µ1ε + µ2ε, ϕ0i = ϕ1i − ϕ2i,

and σ2
ϕi

= ϕ1i + ϕ2i.
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n = 1000 (a)
∑4

i=1 ϕ0i = 0.7 < 1

(θ̂2n, σ̂
2
εn)

Mean

StD

ASE

ω0 = 1

0.9855

0.1521

0.1553

ϕ01 = 0.4

0.3981

0.0659

0.0683

ϕ02 = 0.3

0.3039

0.0620

0.0638

σ2
ε = 1

1.0042

0.1222

0.0287

n = 1000 (b)
∑4

i=1 ϕ0i = 1

(θ̂2n, σ̂
2
εn)

Mean

StD

ASE

ω0 = 1

1.0168

0.1609

0.1669

ϕ01 = 0.5

0.5008

0.0692

0.0738

ϕ02 = 0.5

0.5031

0.0814

0.0768

σ2
ε = 1

1.0064

0.1207

0.0273

n = 1000 (c)
∑4

i=1 ϕ0i = 1.1 > 1

(θ̂2n, σ̂
2
εn)

Mean

StD

ASE

ω0 = 1

1.0075

0.1579

0.1684

ϕ01 = 0.5

0.5013

0.0820

0.0727

ϕ02 = 0.6

0.6069

0.0817

0.0826

σ2
ε = 1

1.0472

0.1458

0.0304

Table 4: Mean, StD and ASE of θ̂2n and σ̂2
εn for a multiplicative RMINAR(4) with Poisson

inputs under (a) strict stationarity with finite mean, and (b)-(c) strict stationarity with

infinite mean.
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A p E (Y ) V (Y ) MAR MSR MSPR

1 13.2026 223.1584 9.3449 217.5623 1.0000

2 13.2793 254.0780 9.3048 213.7554 0.9996

3 13.2255 303.9467 9.2035 211.0007 1.0005

M p E (Y ) - MAR MSR MSPR

1 12.0650 - 9.3569 217.5965 0.9958

2 11.8887 - 9.3381 214.0984 1.1203

3 11.6881 - 9.2736 212.7709 1.2195

Table 5: Selecting the best order p, considering additive (A) or multiplicative (M)

RMINAR(p) models on the ExRate time series.

A p = 1 p = 2 p = 3 M p = 1 p = 2 p = 3

µ̂ε 11.1727
(0.2540)

9.3941
(0.3672)

8.2255
(0.4674)

µ̂ε 1.0029 1.0035 1.0082

ϕ̂1 0.1537
(0.0298)

0.1277
(0.0343)

0.1346
(0.0382)

ω̂ 9.9797
(0.8275)

7.9889
(0.8404)

6.9170
(0.8148)

ϕ̂2 - 0.1649
(0.0356)

0.1520
(0.0393)

α̂1 0.1728
(0.0457)

0.1610
(0.0495)

0.1854
(0.0544)

ϕ̂3 - - 0.0914
(0.0356)

α̂2 - 0.1670
(0.0524)

0.1441
(0.0516)

σ̂2
ε 212.4713

(8.5459)
157.1334
(8.0192)

112.2556
(7.4415)

α̂3 - - 0.0787
(0.0557)

σ̂2
ϕ1

0.0136
(0.0099)

0.0103
(0.0084)

0.0183
(0.0108)

σ̂2
ε 1.0143

(0.0733)
0.7118
(0.0508)

0.5585
(0.0390)

σ̂2
ϕ2

- 0.1854
(0.0290)

0.1519
(0.0266)

- - - -

σ̂2
ϕ3

- - 0.1882
(0.0293)

- - - -

SSC 0.0372 0.3701 0.5238 - - - -

Table 6: 4SWLSE estimates and asymptotic standard errors (in parenthesis) for the additive

(A) or multiplicative (M) RMINAR(p) models on the ExRate time series. The SSC stands

for second-order stationary condition.

57



nc 300 420 520 680 700

A RMINAR(3)

MSFE

MAFE

MSPFE

241.7308

9.4727

1.3535

295.1503

10.2364

1.7079

398.7492

11.7017

2.3473

309.7075

13.3228

1.2327

366.5074

13.1845

1.4226

M RMINAR(3)

MSFE

MAFE

MSPFE

241.1297

9.4708

1.6006

288.3198

10.0013

1.8979

396.5317

11.6276

2.3258

313.0352

13.3125

2.1731

369.2506

13.1978

2.1345

MthINGARCH

MSFE

MAFE

MSPFE

239.611

9.4884

1.1744

291.263

10.169

1.5721

395.830

11.769

2.2917

305.882

13.340

1.2246

363.530

13.319

1.6525

Table 7: Out-of-sample forecasting ability of the additive (A) RMINAR(3), the multiplicative

(M) RMINAR(3), and the MthINGARCH(1, 1) on the ExRate time series. The nc stands for

the number of observations used for parameter estimation. The MthINGARCH(1, 1) results

are obtained from Aknouche and Scotto (2024).

p E (Y ) V (Y ) MAR MSR MSPR

1 0.1596 999.885 21.9768 976.2304 0.9982

2 −0.0584 962.0471 21.8832 971.7091 0.9961

3 0.0484 904.8307 21.6772 951.4233 1.0972

Table 8: Selecting the best order p for the Z-valued RMINAR(p) model on the Return time

series.
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p = 1 p = 2 p = 3

µ̂ε −0.03067
(0.0733)

−0.0610
(0.0892)

0.0450
(0.1161)

ϕ̂1 0.1645
(0.0075)

−0.0120
( 0.0074)

−0.0092
(0.0091)

ϕ̂2 - −0.0322
(0.0097)

−0.0229
(0.0127)

ϕ̂3 - - 0.1021
(0.0092)

σ̂2
ε 783.9099

(41.9269)
671.1159
(41.9794)

535.3662
(38.0848)

σ̂2
ϕ1

0.2151
(0.0468)

0.1781
(0.0422)

0.2484
(0.0461)

σ̂2
ϕ2

- 0.1231
(0.0363)

0.1488
(0.0368)

σ̂2
ϕ3

- - 0.0000
(0.0158)

SSC 0.1741 0.2799 0.4004

Table 9: 4SWLSE results for the Z-valued RMINAR(p) model on the Return time series.

Same caption as in Table 6.

p nc 300 350 400 450 500 550

1

MSFE

MAFE

MSPFE

1404.3517

26.0506

2.2259

1581.2839

27.5554

2.5298

1854.6241

30.1032

2.9709

1042.7839

24.2280

1.2397

1106.3495

24.5137

1.2872

1203.23862

27.60783

1.37160

2

MSFE

MAFE

MSPFE

1413.7965

26.1138

1.9150

1582.6909

27.5715

2.5863

1843.1118

30.0951

2.7693

1060.6812

24.6735

1.3997

1122.3612

24.8328

1.4153

1196.0980

27.6674

1.5050

Table 10: Out-of-sample forecasting ability of the Z-valued RMNINAR(p) model on the

Return time series.
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nc 300 420 520 680 700

A RMINAR(1)

MSFE

MAFE

MSPFE

246.9545

9.4164

1.360

318.5958

10.4993

1.9864

413.4456

11.8362

2.7857

322.4681

13.5432

1.5346

377.6246

13.4922

1.8009

A RMINAR(2)

MSFE

MAFE

MSPFE

243.8918

9.4024

1.4137

314.6527

10.4726

2.0281

406.6413

11.7646

2.7375

316.6054

13.2168

1.7056

381.6725

13.1774

2.2566

A RMINAR(3)

MSFE

MAFE

MSPFE

241.7308

9.4727

1.3535

295.1503

10.2364

1.7079

398.7492

11.7017

2.3473

309.7075

13.3228

1.2327

366.5074

13.1845

1.4226

Table 11: Out-of-sample forecasting ability of the additive (A) RMINAR(p) models on the

ExRate time series.
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