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1. INTRODUCTION 
 
The purpose of this paper is to present a novel approach in discrete choice 
modelling based on artificial neural networks and is an excerpt of the doctoral 
thesis of the author. Research is mainly focussed on the distribution 
assumptions of the random component of the utility function to model 
correlations among alternatives in the choice set due to unobserved 
alternative attributes. Only a few works deal with the subject of nonlinear utility 
functions partly because of the difficulties arising in determining a priori the 
form of nonlinearity of the utility function. Box-Cox and Box-Tukey 
transformations (see e.g. Maier et al. 1990, pp. 126ff.) enable to model some 
limited forms of nonlinear utility functions. 
 
Some research has been done in combining discrete choice models with 
artificial neural networks to model a nonparametric nonlinear utility function. 
Bentz and Merunka (Bentz et al. 2000) and Gelhausen (Gelhausen 2003) 
describe two different ways to build a logit-model as an artificial neural 
network. This approach shows significant better empirical results than a 
standard logit-model with a linear utility function (Bentz et al. 2000; Hruschka 
et al. 2002; Probst 2002). An implementation of a nested logit-model with an 
arbitrary nesting structure is possible (Wilken et al. 2005), but because of the 
complexity of the resulting network severe estimation and performance 
problems occur. 
 
The Generalized Neural Logit-Model enables to model a nonparametric 
nonlinear utility function and arbitrary correlations among alternatives in the 
choice set due to unobserved attributes. Correlations among alternatives are 
modelled similar to the dogit-model. An efficient implementation of the 
Generalized Neural Logit-Model is possible as it is close to standard artificial 
neural networks. 
 
The outline of this paper is as follows: 
 
Chapter 2 explains the concept of alternative groups in discrete choice models 
as already introduced in Gelhausen et al. (2006). This concept facilitates 
complexity reduction and the development of a model, which is applicable to 
alternatives outside the estimation data set. 
 
Chapter 3 describes the theory of the Generalized Neural Logit-Model and its 
implementation as artificial neural network. 
 

 1



 

The Generalized Neural Logit-Model is evaluated empirically by means of an 
application case in chapter 4. The chosen application case is airport and 
access mode choice in Germany and the benchmark is a nested logit 
approach (Gelhausen et al. 2006). 
 
The paper ends with a summary and conclusion. 

 2



 

2. GROUPING OF ALTERNATIVES IN DISCRETE CHOICE MODELS 
 
The fundamental hypothesis of discrete choice models is the assumption of 
individual utility maximisation. Alternatives are evaluated by means of an utility 
function and the one with the highest utility is supposed to be chosen. From 
an external point of view the utility of an alternative for a specific individual is a 
random variable, so that the utility Ui for alternative i is composed of a 

deterministic component Vi and a random component εi (Maier et al. 1990, p. 
100): 
 
(2.01) 

iii VU = + ε
 
The random component of the utility function is introduced for various 
reasons, e.g. a lack of observability of the relevant attributes of the 
alternatives or their incomplete measurability (Maier et al. 1990, pp. 98f.). 
 
From an external point of view, only evidence in terms of the probability of an 
alternative being the one with the highest utility can be given, because of the 
random component in the utility function. Specific discrete choice models 
differ in terms of their assumptions of the random component. The most 
prominent member of this class of models is the logit-model with 
independently and identically distributed random components. The choice 
probability of an alternative i is computed as (Train 2003, p. 40): 
 
 

( )(2.02) 
 
 
As a consequence of the independently and identically distributed random 
components of the utility functions the ratio of two choice probabilities is only 
dependent on the utility of those two alternatives (Ben-Akiva et al. 1985, p. 
108): 
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(2.03) 
 
 
 
This property of the logit-model is called “Independence from Irrelevant 
Alternatives” (IIA) and it is both a weakness and a strength of the model. Due 
to the distribution assumptions of the random component of the utility function 
it is not possible to model correlations among alternatives owing to 
unobserved factors. A major advantage of the IIA-property is the possibility to 
estimate the model parameters, excluding alternative-specific variables, on a 
subset of the alternatives (McFadden 1974, p. 113; McFadden 1978, pp. 87ff.; 
Ortuzar et al. 2001, pp. 227f.; Train 2003, pp. 52f.) and the possibility of an 
evaluation of new alternatives without the need to re-estimate alternative-
unspecific model parameters (Domencich et al. 1975, pp. 69f.). The problem 

 3



 

of estimating alternative-specific variables from a subset of alternatives will be 
discussed below. 
 
The nested logit-model relaxes the IIA-restriction to some extent without 
losing the closed-form expression of the choice probabilities. For this purpose 

the random component in (2.01) is split up into a part , which varies over all 

alternatives i and a part , which is identical for all alternatives of a nest k 

(Maier et al. 1990, pp. 154f.): 

a

iε
c

kε

 
 
(2.04) 
 
 
It is possible to model correlations due to unobserved factors among subsets 
of the alternatives, so that the choice set is partitioned into clusters with highly 
correlated alternatives. (2.05) is an example of a covariance matrix for four 
alternatives partitioned into two clusters with the first two belonging to cluster 
one and the last two assigned to cluster two. 
 
 
 
(2.05) 
 
 
 
Each cluster k is characterized by an individual scale parameter  and an 

identical non-negative covariance for all alternatives i within a cluster k. 
Alternatives of different clusters are assumed not to be correlated. 

c

kμ

 
For technical reasons the choice probabilities P(ai = aopt) are decomposed into 
an unconditional choice probability P(ck = copt) that cluster k is chosen, and a 

conditional choice probability P(ai = aopt | ai ∈ ck), that alternative i from cluster 
k is chosen (Maier et al. 1990, p. 156): 
 
 
(2.06) 
 
 
The conditional choice probabilities comply with the logit-model and the 
choice set is restricted to the alternatives of the appropriate nest. The choice 
probability of a nest k is determined by its maximum utility  (Maier et al. 

1990, p. 157): 
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The choice probability of an alternative i in nest k can be written as (Maier et 
al. 1990, p. 158): 
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The hierarchical structure of (2.08) does not imply a sequential decision 
process. An extension to more than two levels is possible (see e.g. Ben-Akiva 
et al. 1985, pp. 291ff.). 
 
In the nested logit-model the IIA-property holds only for two alternatives of the 
same cluster: 
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(2.09) 
 
 
 
 
 
 
The ratio of the choice probabilities for two alternatives of different clusters 
depends on the characteristics of all alternatives of those two clusters: 
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(2.10) 
 
 
 
 
 
 
 
 
As the nested logit-model lacks the IIA-property for some pairs of alternatives, 
model estimation on a subset of the choice set equal to the logit-model is not 
possible. 
 
If it is feasible to form groups of at least approximately similar clusters and to 
assign an identical covariance matrix for all clusters of the same group, an 
estimation of alternative-unspecific model-parameters equal to the logit-model 
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on a subset of alternatives is possible. Each group of clusters must be 
represented by at least one member in this subset to enable the estimation of 
all cluster-specific scale parameters. (2.11) shows a covariance-matrix for six 
alternatives belonging to three groups, with two alternatives per group. Figure 
2.1 shows the dependence between a group and a cluster for this example. 
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(2.11) 
 
 
 
 
The letters A, B and C represent the covariance structure of a cluster. Same 
letters indicate an equal covariance structure for different clusters. Figure 2.01 
illustrates the assignment of clusters to groups. 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.01: Dependence between Clusters and Groups 

 
If identical alternative-specific model-parameters, especially alternative-
specific constants, can be assumed reasonably well for different clusters of 
the same group, an estimation of all model-parameters is feasible on a subset 
of all alternatives as described above. 
 
Applying the concept of grouping in the logit-model is possible, however, 
serves only to estimating alternative-specific variables, as there are no 
different scale parameters due to independently and identically distributed 
random components in the utility function. 
 
The main advantage of this approach does not only lie in the reduction of 
computational costs for very large choice sets, as many econometric software 
packages limit the maximum number of clusters and alternatives for nested 
logit estimations, but also in a better way of developing a more generally 
applicable choice model beyond the alternatives of the estimation data set, 
e.g. in the context of scenario analysis. 
 
A less popular member of discrete choice models is the dogit-model. 
Correlations among alternatives in the choice set are modelled by means of a 

 6



 

functional combination of the utility functions of each alternative with an 

alternative-specific parameter θi (Gaudry et al.1979, p. 105): 
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Dogit- and logit-model are equal for all θI being zero so that the IIA-property 

holds for arbitrary pairs of alternatives. The vector of parameters θ describes 
to what extend the IIA-property does not hold. 
 
In some empirical cases the dogit-model is superior in terms of model fit to a 
logit approach (see e.g. McCarthy 1997). However, the IIA-property does not 

hold in a systematic way in a genuine dogit-model with a nonzero vector θ so 
that the aforementioned concept of alternative groups is not applicable. 
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3. THE GENERALIZED NEURAL LOGIT-MODEL 
 
3.1 Theory of the Generalized Neural Logit-Model 
 
In the Generalized Neural Logit-Model the distribution assumptions of the 
random component of the utility function are the same as those of the logit-
model. Correlations among alternatives due to unobserved attributes are 
modelled by means of a combination of the utility functions of each 
alternative. This approach shows some similarities to the dogit-model, 
however, it offers more flexibility in terms of modelling correlations among 
alternatives. 
 
An essential part of the Generalized Neural Logit-Model is a linear 
combination of the utility functions of each alternative: 
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 : Coefficient of the linear combination of the alternatives i and j ijγ
 

Alternatives in a subset  of the total choice set AI are correlated. The 

correlation structure among alternatives is modelled by means of a hierarchy 
of utility functions. This approach shows some similarities to the nested logit-
model. Due to the linear dependence between utility functions of different 
levels a two-stage hierarchy is sufficient. The choice probabilities are 
computed the same way as in the logit-model with (3.01) being the utility 
function: 
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The Generalized Neural Logit-Model belongs to the class of General Extreme 
Value-Models, so that utility maximising behaviour is modelled. The derivation 
of the model is identical to the logit-model with (3.01) being the utility function 
(Train 2003, p. 97f): 
 
The function G is defined as: 
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Inserting G and its first derivation Gi in 
 
 

( )(3.05) 
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(3.06) 
 
 
(3.06) equals (3.02). 
 

The definition of the subsets  depends on the correlations among the 

alternatives to be modelled. Four cases are distinguished: 
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• No correlations (logit-model) 

• Correlations among all alternatives in the choice set 

• Correlations among alternatives in disjoint clusters 

• Limited correlations among all alternatives in the choice set 
 
 No correlations (logit-model) 
 

Each subset  equals exact one alternative and all coefficients  are set 

to a value of one. The IIA-property holds for arbitrary combinations of 
alternatives. 
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 Correlations among all alternatives in the choice set 
 

There is only one subset , which equals the total choice set. The 

coefficients can take any value. The IIA-property does not hold for any 
combination of alternatives. 
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 Correlations among alternatives in disjoint clusters 
 

In this case alternatives are grouped in disjoint clusters  similar to the 

nested logit approach to model arbitrary correlations among alternatives in 
each subset. The IIA-property does only hold on the cluster level. The 
aforementioned concept of alternative groups can be applied. Clusters of the 
same group have an identical matrix of coefficients of linear combination 
instead of an identical covariance matrix: 
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 with 
 

 : Coefficient of linear combination of the alternatives i and j of a cluster 

of group g 

g

ijγ

 
 Limited correlations among all alternatives in the choice set 
 
In this case all alternatives may be correlated, so that the IIA-property does 
not hold for any pair of alternatives, but the coefficients of linear combination 
underlie a systematic structure, which enables model estimation on a subset 
of the complete choice set. Structural groups of alternatives and clusters can 
be identified according to the logit- and nested logit-model. Their definition is 
problem-dependent. In this study correlations among alternatives of the same 
cluster and between alternatives of different cluster groups are considered. 
Therefore, this approach is a medium between case two and case three. The 

alternative subsets  are composed of the cluster of the considered 

alternative and all clusters of different groups. 
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A group-dependent coefficient of linear combination  is assigned to every 

alternative i of the cluster k and alternative m of the cluster l. This coefficient 
is identical for two pairs of alternatives (a, b) and (c, d), if (a, c) and (b, d) 
belong to different clusters of the same group. 
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The number of coefficients  equals the square of the number of 

alternatives on the lowest level of the cluster structure. Because of the identity 
of certain coefficients every cluster of group g has an identical matrix of 
structural coefficients of linear combination: 
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The assignment of elements of matrix (3.08) to the coefficients  results 

from the grouping of the clusters: 
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The coefficients  and  receive the value zero in the case of an 

assignment of two different clusters to the same group, as this kind of 
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correlations among alternatives are not considered in this study. This fact is 

pointed out above in the definition of the subsets . LK

pA

 
Matrix (3.07) is a special case of (3.08). 
 
In the cases one, two and three formula (3.01) contains only non-equivalent 
alternatives. Two alternatives are equivalent, if they are on the same position 
in the cluster structure and their clusters belong to the same group. They have 
the same index m in (3.09). 
 
In case four the above mentioned does not have to hold. By a normalisation of 
the coefficients the value of (3.01) is according to the other three cases only 
dependent on the quality of non-equivalent linear combined alternatives and 
independent from the number of equivalent alternatives. For this purpose the 

coefficients  and  have to be divided by the number equivalent 

alternatives in (3.01) for model estimation and model application: 
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 with 
 

G

mN : Number of equivalent alternatives m of different cluster of the same 

group G in (3.01) 
 
Model estimation on a subset of the total choice set by means of the IIA-
property equal to the logit- and nested logit-model is not possible, because the 
IIA-property does hold neither on cluster- nor on alternative-level. However, 
identical coefficients being independent from the number of summands in 
(3.01) are assigned to certain alternatives because of the grouping of clusters 
and the normalisation of coefficients. According to a random sample model 
estimation is possible in the case of every cluster group being represented at 
least with one member. 
 
3.2 The Generalized Neural Logit-Model as Artificial Neural Network 
 
The Generalized Neural Logit-Modell as artificial neural network is composed 
of different modules, which have to be configured and put together problem-
specific: 
 

• Utility functions 

• Linear combinations 

• Logit-function 
 
 Utility function 
 
For the problem considered a three-layer multilayer perceptron is sufficient for 
universal function approximation (Hornik et al. 1989, pp. 359ff.; Fausett 1994, 
p. 329). 
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The activation function of the input and output neurons constitutes the 
identical function. Hidden neurons have a tangens hyperbolicus function as 
activation function. The linear part of the utility function is described by means 
of the direct connections from the input to the output neurons marked in blue. 
This represents a linear perceptron in itself. The nonlinear part of the utility 
function is modelled by means of the connections between the neurons 
marked in black. The input neurons correspond to alternative attributes and 
the output neurons match the utility of an alternative. Figure 3.01 displays a 
nonlinear utility function as artificial neural network in an abstract way. The 
box in the upper part of the figure shows the kind of activation function for the 
appropriate layer of the artificial neural network. 
 
 

 x tanh(x) x 
 

i,1x

i,kx

i,Kx

iV

 
 
 
 
 
 
 

Figure 3.01: Nonlinear Utility Function as Multilayer Perceptron 

 
 Linear Combinations 
 
Linear combinations are modelled by means of a two-layer linear perceptron. 
The identical function is the activation function for the input and output 
neurons. The input neurons correspond to utility values of an alternative and 
the output neurons match the alternative-specific linear combinations of those 
utility values. The connection weights correspond to the coefficients of linear 
combination. Connections marked in red are constrained to a value of one. 
 
Figure 3.02 displays the aforementioned four cases of correlation among the 
alternatives of the choice set as artificial neural network. 
 
A possible grouping structure of clusters is indicated by an appropriate 
highlighting of the connections in black and blue. A possible grouping 
structure of clusters is easily identifiable because of the structure of the 
subsequent figures as only one cluster per group is displayed. An additional 
indexing of utility functions relating to the clusters is omitted for reasons of 
clearness. 
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Figure 3.02: Linear Combination as Artificial Neural Network 

 
 Logit-Function 
 
The logit-function is modelled by means of a three-layer multilayer perceptron. 
The activation function of the input neurons is f(x)=ex and the function f(x)=1/x 
is assigned to the hidden neurons as activation function. The output neurons 
posses the identical function as activation function with (3.11) being the net 
input function. This is a multiplicative combination instead of the usual 
summation of the inputs into a neuron. 
 
 

∏(3.11) =
i

iijj o*wnet
 
 with 
 
 wij: Connection weight between neuron of layer i and neuron of layer j 
 oi: Output of neuron of layer i 
 
This type of neuron is called “combiner neuron” (NeuroDimension 2005, p. 
276f). The input neurons represent the linear combinations of the utility values 
and the output neurons conform to the choice probabilities of the alternatives 
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in the choice set. Figure 3.03 shows the logit-function as artificial neural 
network. The connections marked in red are constrained to a value of one. 
 
 

e
x

1/x x
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Figure 3.03: Logit-Function as Artificial Neural Network 

 
 Generalized Neural Logit-Model 
 
Figure 3.04 to 3.07 display the Generalized Neural Logit-Model for all four 
aforementioned cases. For reasons of clearness of the implementation 
alternatives and clusters are grouped although this is not necessary for the 
cases one and two. The number of utility functions and output neurons equals 
the number of alternatives on the lowest level of the cluster structure. Identical 
utility functions in terms of connection structure and weights can be achieved 
by weight sharing (Bishop 2003, p. 349, LeCun et al. 1989, pp. 542ff., 
Rumelhart et al. 1986, p. 349) in the case of all alternatives being evaluated 
by means of the same utility function. In the case of endogenity of exogenous 
factors due to unobserved alternative attributes (Bhat 2003, pp. 16f.) a 
dependence of the utility function in terms of the considered alternative is 
possible as alternative attributes are evaluated differently dependent on the 
relevant alternative. 
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Figure 3.04: Generalized Neural Logit-Model for Case 1 
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Figure 3.05: Generalized Neural Logit-Model for Case 2 
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Figure 3.06: Generalized Neural Logit-Model for Case 3 
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Figure 3.07: Generalized Neural Logit-Model for Case 4 
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4. APPLICATION CASE: AIRPORT AND ACCESS MODE CHOICE 
 
4.1 Introduction 
 
The chosen application case for an empirical evaluation of the Generalized 
Neural Logit-Model is airport and access mode choice of air travellers. A 
nested logit approach with a linear utility function serves as benchmark in 
terms of model fit. The available database, airport categories, model definition 
and model estimation of the nested logit-model is discussed in great detail in 
Gelhausen and Wilken (2006, pp. 10ff.). Only some fundamental facts are 
introduced briefly below. A full discussion of these issues would be beyond 
the scope of this chapter. Purpose of this chapter is to discuss both 
approaches concerning model quality and some conclusions relating to choice 
behaviour in airport and access mode choice. 
 
Figure 4.02 shows the full alternative set of the database (Gelhausen et al. 
2006, p. 11). Only the access mode “car” includes parking at the airport for the 
duration of the journey. For “kiss and ride” the number of trips is doubled 
compared to all other access modes as the car is parked at the trip origin. The 
“taxi” alternative includes taxis and private bus services operating on demand 
only. The access mode “bus” contains scheduled public-transit buses. “Urban 
transit” and “train” are distinguished in terms of the tariff paid. If the tariff of the 
Deutsche Bahn applies, it is a train, otherwise it is an urban railway 
(Gelhausen et al. 2006, p. 11). 
 

 Car Kiss and Ride Rental Car Taxi Bus Urban Transit Train 

Berlin x x x x x x  

Bremen x x x x  x  

Dortmund x x x x x   

Dresden x x x x x x  

Düsseldorf x x x x x x x 

Erfurt x x x x x   

Frankfurt a. M. x x x x x x x 

Frankfurt Hahn x x x x x   

Friedrichshafen x x x x x x  

Hamburg x x x x x   

Hannover x x x x x x  

Karlsruhe-Baden x x x x x   

Köln/Bonn x x x x x   

Leipzig/Halle x x x x x  x 

Lübeck x x x x x   

München x x x x x x  

Münster/Osnabrück x x x x x   

Niederrhein x x x x x   

Nürnberg x x x x x x  

Paderborn/Lippstadt x x x x x   

Saarbrücken x x x x x   

Stuttgart x x x x x x  

 
Figure 4.01: Airports and Available Access Modes 
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According to the length and purpose of a journey different market segments 
are defined (Gelhausen et al. 2006, pp. 10f.): 
 

• Journeys to domestic destinations, subdivided into private (BRD P) 
and business (BRD B) trip purpose 

• Journeys to European destinations for business trip purpose (EUR B) 

• Journeys to European destinations for private short stay reasons up 
to four days (EUR S) 

• Journeys to European destinations for holiday reasons for five days 
or longer (EUR H) 

• Journeys to intercontinental destinations, subdivided into private (INT 
P) and business (INT B) trip purpose 

 
Figure 4.02 displays the alternative attributes employed and their definitions 
(Gelhausen et al. 2006, p. 12). 
 

Variable (Abbreviation) Definition 

Access Cost (COST) Cost in € per Person incl. Parking Fees, Double Trip 
Length 

Access Time (TIME) Time in Minutes, Double Trip Length 

Waiting Time (WAIT) Inverse of the Daily Frequency 

Inverse of the Population Density (INVPD) Inverse of Residents per km
2
 

Inverse of the Competition on a Direct Flight 
Connection(COMP) 

Inverse of the Number of Alliances and Independent 
Airlines 

Quality of Terminal Access (AAS) binary (good/bad) 

Existence of a Direct Flight Connection (DIRECT) binary (good/bad) 

Frequency of a Direct Flight Connection (DFREQ) Number Flights per week 

Existence of a Low-Cost Connection (LC) binary (yes/no) 

Frequency of a Low-Cost Connection(LCFREQ) Number Low-Cost Flights per week 

Existence of a Charter Flight Connection (CC) binary (yes/no) 

Frequency of a Charter Flight Connection (CCFREQ) Number Charter Flights per week 

 
Figure 4.02: Definition of Alternative Attributes 

 
Airports are categorised from a demand-oriented point of view by means of 
Kohonen’s Self-Organizing Maps to form groups of clusters consisting of one 
airport category and all access modes (Gelhausen et al. 2006, pp. 14ff.). 
Figure 4.03 shows the chosen attributes for distinguishing airport categories 
(Gelhausen et al. 2006, p. 12). 
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Attributes (Abbreviation) Definition 

Number of Domestic Low-Cost Flights (LCBRD) Flights per Week 

Number of Domestic Charter Flights (CCBRD) Flights per Week 
Number of Domestic Full Service Flights (LBRD) Flights per Week 
Number of European Low-Cost Flights (LCEUR) Flights per Week 
Number of European Charter Flights (CCEUR) Flights per Week 
Number of European Full Service Flights (LEUR) Flights per Week 
Number of Intercontinental Low-Cost Flights (LCINT) Flights per Week 
Number of Intercontinental Charter Flights (CCINT) Flights per Week 
Number of Intercontinental Full Service Flights (LINT) Flights per Week 
Number of Domestic Destinations(NUMBRD) Number of Destinations 

Number of European Destinations (NUMEUR) Number of Destinations 
Number of Intercontinental Destinations (NUMINT) Number of Destinations 

 
Figure 4.03: Attributes for Airport Categorization 

 
Figure 4.04 displays the airports of the German Air Traveller Survey (Berster 
et al. 2005), which was used as database for model estimation, and the 
appropriate category for each of those airports. 
 

Category Airport (IATA-Code) 

AP 1 Frankfurt a. M. (FRA) 

AP 1 München (MUC) 

AP 2 Düsseldorf (DUS) 

AP 2 Hamburg (HAM) 

AP 2 Köln/Bonn (CGN) 

AP 2 Stuttgart (STR) 

AP 3 Bremen (BRE) 

AP 3 Dortmund (DTM) 

AP 3 Dresden (DRS) 

AP 3 Erfurt (ERF) 

AP 3 Frankfurt Hahn (HHN) 

AP 3 Friedrichshafen (FDH) 

AP 3 Hannover (HAJ) 

AP 3 Karlsruhe/Baden (FKB) 

AP 3 Leipzig/Halle (LEJ) 

AP 3 Lübeck (LBC) 

AP 3 Münster/Osnabrück (FMO) 

AP 3 Niederrhein (NRN) 

AP 3 Nürnberg (NUE) 

AP 3 Paderborn/Lippstadt (PAD) 

AP 3 Saarbrücken (SCN) 

 
Figure 4.04: Assignment of Airports to Categories 

 
Figure 4.05 and 4.06 illustrates the properties of the identified three airport 
categories both in percentages and in absolute values (Gelhausen et al. 2006, 
p. 17). 
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 LCBRD CCBRD LBRD LCEUR CCEUR LEUR LCINT CCINT LINT NUMBRD NUMEUR NUMINT 

AP 1 3.18 0.43 20.39 0.87 5.83 55.81 0.00 1.24 12.25 8.31 60.27 31.42 

AP 2 8.97 0.58 28.27 11.65 11.76 37.24 0.02 0.71 0.79 16.23 74.62 9.16 

AP 3 1.29 0.86 39.22 32.57 15.57 10.05 0.02 0.42 0.00 19.94 78.90 1.16 

  
Figure 4.05: Properties of Airport Categories (in %) 

 

 LCBRD CCBRD LBRD LCEUR CCEUR LEUR LCINT CCINT LINT NUMBRD NUMEUR NUMINT 

AP 1 106 16 756 32 225 2138 0 49 517 19 144 83 

AP 2 104 7 348 129 153 487 0 11 11 17 80 12 

AP 3 3 1 80 47 25 39 0 0 0 6 22 1 

  
Figure 4.06: Properties of Airport Categories (absolute) 

 
Figure 4.07 illustrates the nesting structure of each cluster group consisting of 
one airport category and all access modes (Gelhausen et al. 2006, p. 20). 
 
 Alternative Abbreviation 

AP 1/Car AP1CAR 

AP 1/Kiss and Ride AP1KAR 

AP 1/Rental Car AP1RC 

AP 1/Taxi AP1TAXI 

AP 1/Bus AP1BUS 

AP 1/Urban Railway AP1UR 

AP 1/Train AP1TR 

AP 2/Car AP2CAR 

AP 2/Kiss and Ride AP2KAR 

AP 2/Rental Car AP2RC 

AP 2/Taxi AP2TAXI 

AP 2/Bus AP2BUS 

AP 2/Urban Railway AP2UR 

AP 2/Train AP2TR 

AP 3/Car AP3CAR 

AP 3/Kiss and Ride AP3KAR 

AP 3/Rental Car AP3RC 

AP 3/Taxi AP3TAXI 

AP 3/Bus AP3BUS 

AP 3/Urban Railway AP3UR 

AP 3/Train AP3TR 

 

 
 
 
 
 

 
 APi 

PRi PUi 

APiCAR APiKAR APiRC APiTAXI APiBUS APiUR APiTR

i=1, 2, 3 … …

 
 
 
 
 
 
 
 
 
 
 

Figure 4.07: Nesting Structure 

 
For model estimation the estimation data set is partitioned into several disjoint 
data subsets. Each data subset contains only a subset of the full set of airport-
access mode alternatives, namely one airport of each category and its access 
modes. Each data subset includes observations of individuals, who have 
chosen one of the alternatives of the reduced alternative set. By a suitable 
definition of data subsets, it is possible to estimate a model with the full set of 
seven access modes for all three airport categories. For this purpose, the 
inclusion of the airports Frankfurt/Main, Düsseldorf and Leipzig/Halle is 
necessary, as these are the only airports of their category with an access via 
train in 2003. The individual data subsets are merged into a single new 
estimation data set. The number of alternatives is reduced from 122 to 21. By 
weighting each observation the estimation data set is statistically 
representative. Figure 4.08 shows the definition of the data subsets. The 
nearest airport of each category is assigned to each data set marked in 



 

different colours. Every subset is named according to its airport of the third 
category (Gelhausen et al. 2006, p. 18). 
 

Data Subset Airport (IATA-Code)

BRE FRA, HAM, BRE

DTM FRA, DUS, DTM

FDH MUC, STR, FDH

FKB FRA, STR, FKB

HHN FRA, DUS, HHN

LBC FRA, HAM, LBC

LEJ FRA, HAM, LEJ

NUE MUC, STR, NUE

PAD FRA, DUS, PAD

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.08: Data Subsets and Assignment of Airports 

 
After selecting the airports and access modes for a specific application case, 
they are assigned to categories with the appropriate model parameters. The 
model can be applied to any number of airports. An application of the 
estimated model to other airports and airport/access mode combinations than 
those of the estimation data set is possible as a result of the grouping of 
clusters. Figure 4.09 summarises the general process of the model estimation 
and its application (Gelhausen et al. 2006, pp. 18f.). 
 

Grouping of Alternatives 

Definition of Data Subsets and 
a Reduced Set of Alternatives 

Merging of Data Subsets into a 
new Estimation Data Set 

Estimation of Group-Specific 
Model Parameters 

Selection of Airports and 
Access Modes 

Assigment of Airports and 
Access Modes to Groups 

Model Application 

Model Estimation Model Application 

Specific Application Case 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.09: Estimation and Application of Airport and Access Mode Choice Model 
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The deterministic part of the utility function of the nested logit-model is linear 
(Gelhausen et al. 2006, p. 19): 
 

∑+=
k

i,kkii x*baltV(4.01) 
 
with 
 
 alti: Alternative-specific constant of alternative i 
 bk: Coefficient of attribute k 
 xk, i: Value of attribute k for alternative i 
 
Figure 4.10 displays the estimated coefficients of the alternative attributes, 
scale parameters, goodness-of-fit measures and the likelihood-ratio test 
statistics for all seven market segments (Gelhausen et al. 2006, p. 28). Scale 
parameters are normalised on the lowest level of the nesting structure to a 
value of one. For the alternative-specific constants, p- and t-values and the 
standard deviation of the estimated coefficients see Gelhausen and Wilken 
(Gelhausen et al. 2006, pp. 21ff.). 
 

Variable BRD P BRD B EUR S EUR H EUR B INT P INT B 

COST -0.0263035 -0.0204609 -0.0199987 -0.0173617 -0.0216885 -0.0138527 -0.00936472 

TIME -0.0081889 -0.0152572 -0.0061063 -0.00857067 -0.00795957 -0.00541014 -0.00535887 

WAIT -28.8061 -18.935 -8.33078 -4.40982 -9.94709 -18.7546 -35.7591 

INVPD -187.86 -21.8829 -215.876 -235.641 x -25.6109 -32.2589 

COMP -0.158635 x -1.22176 -1.13258 -0.182127 x x 

AAS 0.920627 1.12781 0.20336 0.46823 0.504623 0.840462 0.382595 

DIRECT 2.29637 3.64119 3.63327 3.31697 1.43564 1.85847 0.439344 

DFREQ 0.00682913 0.00601159 0.0104684 0.0153856 0.0177437 x x 

LC x x 0.0863075 0.563633 0.275153 x x 

LCFREQ x x 0.0631856 x 0.0761092 x x 

PR1 1.07092 1.02375 0.764486 0.61189 0.808397 1.13266 1.03073 

PU1 0.745385 0.978059 0.593257 0.3847 0.386155 0.983045 0.32899 

PR2 0.492518 1.00829 0.767123 0.570138 0.783306 1.06067 1.3532 

PU2 0.390636 0.992109 0.543582 0.437515 0.708662 0.927296 0.832438 

PR3 0.817955 1.00988 0.821821 0.610065 0.937914 0.813943 0.91783 

PU3 0.428619 0.999286 0.395656 0.551239 0.805435 0.137029 0.718249 

AP1 1.81029 1.01119 1.80601 1.65075 1.61072 1.10489 2.10553 

AP2 2.10174 1.00887 1.76862 1.92646 1.67197 1.19742 1.16102 

AP3 2.35248 1.01164 1.74828 1.99236 1.77295 1.23031 1.73837 

pseudo-R
2
(null) in % 57.41 54.10 52.40 52.29 48.58 48.89 47.46 

pseudo-R
2
(const) in % 43.82 40.47 41.94 38.22 35.96 32.86 28.30 

LR (MNL) 82414 8740 43774 349740 311756 599974 131576 

α=0.5% 25.19 23.59 23.59 23.59 23.59 23.59 23.59 

 
Figure 4.10: Overview Estimation Results per Market Segment 

 
4.2 Generalized Neural Logit-Model 
 
The Generalized Neural Logit-Model is estimated on the same data set as the 
aforementioned nested logit approach and the grouping structure is identical. 
The subdivision of access modes in private and public modes of travel is 
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omitted as a two-stage hierarchy is sufficient. Case 4 is chosen in terms of 
correlation among alternatives as this approach is more flexible than a nested 
logit model yet it enables the development of a model, which is applicable to 
alternatives outside the estimation data set. The selection of explanatory 
variables is based on the nested logit model because of the possibility of 
statistical significance tests and simple plausibility checks. To consider 
endogenity of exogenous factors no weight sharing is applied. Figure 4.11 
exemplifies the structure of the Generalized Neural Logit-Model for the case of 
private journeys to domestic destinations (BRD P). 
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Figure 4.11: Structure of the Generalized Neural Logit-Model for the Market Segment BRD P 
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The method of network structure specification follows the idea of Miller, Todd 
and Hedge (Miller et al. 1989). The estimation data set is split up into a 
training set and a cross-validation set with a share of 85% and 15%, 
respectively. Different network topologies are generated by a genetic search 
being trained on the training set and evaluated on the cross-validation set in 
terms of their ability to generalise. After the best network topology in terms of 
a minimal cross-validation error has been found the network is trained on the 
entire estimation data set without an early stopping of training, so that a 
maximum of information is available for the final estimation of the connection 
weights. This ensures a maximum of statistical efficiency (Anders 1997, p. 
116). The ability of an artificial neural network does not decline in the case of 
an appropriate network structure (Anders 1997, pp. 117f.). The method of 
least squares is employed for the estimation of connection weights with 
conjugate gradients being the numerical optimisation method. Input variables 
are scaled on the interval [-1; 1]. Figure 4.12 summarises the training 
parameters. 
 

Estimation Method Least Squares 

Optimisation Method Conjugate Gradients 

Scaling yes, [-1; 1] 

Genetic Search  

Share of Cross-Validation 15% 

Population Size 10 

Selection Rule Roulette 

Cross-over Multi-Point 

P(Cross-over) 0.9 

P(Mutation) 0.01 

Coding Direct Encoding 

 
Figure 4.12: Training Parameters 

 
Because of computational costs the population size is chosen small. An 
optimal network topology is found within ten generations. 
 
Model quality in terms of model fit is assessed by means of the pseudo-R2. 
Benchmark is a model without any variables (R2null) and a market share 
model (R2const). Figure 4.13 illustrates the pseudo-R2 by market segment for 
the Generalized Neural Logit-Model (GNL) and the nested logit approach 
(NL). 
 

 R2(null) in %   R2(const) in %  

Market Segment NL GNL Diff. to NL NL GNL Diff. to NL 

BRD P 57.41 61.35 3.94 43.82 49.74 5.92 

BRD B 54.10 58.13 4.03 40.47 47.16 6.69 

EUR S 52.40 58.09 5.69 41.94 49.99 8.05 

EUR H 52.29 56.51 4.22 38.22 45.10 6.88 

EUR B 48.58 51.96 3.38 35.96 41.79 5.83 

INT P 48.89 55.10 6.21 32.86 42.01 9.15 

INT B 47.46 56.01 8.55 28.30 41.26 12.96 

 
Figure 4.13: Comparison of Model Fit 
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Especially for the market segments of intercontinental journeys for both 
private and business purpose the Generalized Neural Logit-Model shows a 
clear increase in model fit compared to the nested logit approach. The 
increase of R2(const) is about 45% for the market segment INT B compared 
to the nested logit model. The pseudo-R2 is more evenly distributed over the 
market segments and lies between 41% and 49% in the case of R2(const). 
This corresponds to an R2 of linear regression of 82% and 92% (Domencich 
et al. 1975, p. 124). 
 
Figure 4.14 contrasts relative alternative frequencies and computed choice 
probabilities for the market segment EUR S. 
 
Alternative Relative Logit-Model  NL-Model  GNL-Model  

 Frequency  abs. Diff.  abs. Diff.  abs. Diff. 

AP1CAR 4.7068 5.7485 1.04 5.4012 0.69 5.2468 0.54

AP1KR 9.1049 9.9923 0.89 10.0309 0.93 9.4534 0.35

AP1RC 0.1929 0.1543 0.04 0.1543 0.04 0.2043 0.01

AP1TAXI 2.7006 2.8549 0.15 2.7392 0.04 2.7109 0.01

AP1BUS 0.5401 0.4630 0.08 0.5015 0.04 0.4558 0.08

AP1UR 5.5170 6.2500 0.73 6.4429 0.93 6.2622 0.75

AP1TR 1.3503 1.7361 0.39 1.7747 0.42 2.3327 0.98

AP2CAR 9.9537 9.4907 0.46 9.3364 0.62 9.9918 0.04

AP2KR 16.4738 14.1204 2.35 14.1975 2.28 15.1639 1.31

AP2RC 0.3472 0.2315 0.12 0.1929 0.15 0.2491 0.10

AP2TAXI 6.5201 6.5972 0.08 6.5972 0.08 6.6302 0.11

AP2BUS 2.1219 2.7778 0.66 2.6620 0.54 2.3235 0.20

AP2UR 4.2438 5.0154 0.77 5.3627 1.12 4.2061 0.04

AP2TR 4.4753 3.5880 0.89 3.7809 0.69 3.8147 0.66

AP3CAR 16.3580 16.7052 0.35 16.2423 0.12 17.5289 1.17

AP3KR 11.0725 10.0309 1.04 9.7994 1.27 9.6736 1.40

AP3RC 0.1157 0.0772 0.04 0.0772 0.04 0.1048 0.01

AP3TAXI 2.4306 2.7778 0.35 2.7392 0.31 2.1798 0.25

AP3BUS 1.2731 0.9259 0.35 1.3889 0.12 0.9809 0.29

AP3UR 0.4244 0.4244 0.00 0.5401 0.12 0.4718 0.05

AP3TR 0.0772 0.0386 0.04 0.0386 0.04 0.0149 0.06

E(abs. Diff.))   0.51  0.50  0.40

σ(abs. Diff.)   0.54  0.55  0.45

 
Figure 4.14: Relative Alternative Frequencies and Computed Choice Probabilities for EUR S 

 
Airport and access mode choice behaviour is governed by a complex 
nonlinear utility function and correlations among alternatives beyond the 
capabilities of a nested logit approach with a linear utility function as the clear 
increase in model fit demonstrates. 
 
Figure 4.15 and 4.16 illustrate the dependency between two selected 
alternative attributes and the choice probability of one alternative. There is a 
clear nonlinear relationship between access time, access cost and the choice 
probability of the appropriate alternative in domestic air travel for business 
purpose. These travellers are very access time-sensitive. This relationship is 
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of more linear form with a greater importance of access cost in the market 
segment of intercontinental air travel for private reasons. 

BRD B

COST (AP2CAR) TIME (AP2CAR) 

 
Figure 4.15: Analysis of the Utility Function for BRD B 

 

INT P

COST (AP1CAR) TIME (AP1CAR) 

 
Figure 4.16: Analysis of the Utility Function for INT P 
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5. SUMMARY AND CONCLUSIONS 
 
This paper presents a novel approach in discrete choice modelling called 
“Generalized Neural Logit-Model”. This approach is based upon the General 
Extreme Value-framework and is implemented as artificial neural network. Its 
main advantages lie in a nonparametric nonlinear utility function and the 
capability to model arbitrary correlations among alternatives in the choice set. 
 
The first part of this paper deals with the concept of alternatives and cluster 
groups. It enables the development of discrete choice models applicable to 
alternatives outside the estimation data set. 
 
The next chapter introduces the Generalized Neural Logit-Model. The first part 
is about the theoretical framework followed by an implementation as artificial 
neural network. 
 
The Generalized Neural Logit-Model is evaluated empirically by means of an 
application case. The chosen application case is airport and access mode 
choice in Germany and a nested logit approach based on the concept of 
cluster groups serves as a benchmark. To form cluster groups airports are 
categorised from a demand-oriented point of view by means of Kohonen’s 
Self-Organizing Maps. 
 
The Generalized Neural Logit-Model is superior to the nested logit approach 
in terms of model fit as the considered problem is governed by a complex 
nonlinear utility function and correlations among alternatives beyond the 
nested logit approach with a linear utility function. The pseudo-R2 based on a 
market share model as a benchmark is in the range of 41% to 49% and lies 
up to 45% above the nested logit approach depending on the market 
segment. This corresponds to an R2 of linear regression of 82% to 92%, so 
that a model of very good quality can be obtained for all market segments. 
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