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Abstract

We examine the fine microstructure of commuting in a game-theoretic

setting with a continuum of commuters. Commuters’ home and work

locations can be heterogeneous. A commuter transport network is ex-

ogenous. Traffic speed is determined by link capacity and by local

congestion at a time and place along a link, where local congestion at

a time and place is endogenous. The model can be reinterpreted to

apply to congestion on the internet. We find sufficient conditions for

existence of equilibrium, that multiple equilibria are ubiquitous, and

that the welfare properties of morning and evening commute equilib-

ria differ on a generalization of a directed tree. JEL numbers: L86,

R41 Keywords: Commuting; Internet traffic; Congestion externality;

Efficient Nash equilibrium
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1 Introduction

1.1 Motivation

Commuting is a ubiquitous feature of the urban economy. Although the clas-

sic literature has answered some basic questions in the field, such as whether

equilibrium commuting patterns are generally efficient, surprisingly some very

important questions remain open. Can traffic be improved simply by equilib-

rium selection rather than through congestion pricing? In contrast with most

of the literature, our model says that multiple equilibria are to be expected, so

this question has content. Do models without an explicit time clock give us

an accurate picture of traffic, in the sense that they can approximate behavior

in a truly dynamic model? Schrank et al (2019, p. 7, Exhibit 6) give evidence

that traffic delays vary greatly by time, whereas Malone et al (2017, Figure

7(a)) give analogous evidence for the internet. Finally, if travel delay depends

on endogenous local congestion rather than exogenous bottlenecks, what does

equilibrium look like?

There is an important application of our model to traffic and congestion

on the internet. Instead of cars, packets of information move over the net-

work, each with a given origin and destination. Both positive and normative

questions concerning route choice and departure time can be addressed with

our model.1 Interestingly, both the car and internet congestion literatures

began with discrete models (at different times), and eventually moved to con-

tinuous flow models for tractability reasons.2 Congestion on the internet can

be viewed as either packet loss or delay.3

The economic models employed in the commuting literature are often very

special and unrealistic; a literature review will be provided in the next subsec-

tion. One class of models features identical commuters, a very simple network

structure (for example a home, a workplace and one link between them), and

an exogenous bottleneck that results in queuing of traffic. It is not known to

1In general, one user will send out many packets. However, if these represent a negligible

proportion of the total number of packets, coordination of the strategy choices for these

packets is the same as no coordination for our purposes.
2The interesting work of Cominetti et al (2022) examines convergence of discrete model

Nash equilibria and welfare to continuous analogs in the context of what we call the static

model, where flows are not a function of time.
3For the internet application, it is useful to recall the “as-if” arguments for modeling in

economics, since researchers in other fields might not be familiar with them; see for example

Berg and Gigerenzer (2010).
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what degree the results derived in the literature rely on these or other strong

simplifying assumptions that generally provide a reduced form viewpoint. In

contrast, we study a new class of more natural models that allows arbitrary

heterogeneity in both commuters and network structure (for example allowing

cross-commuting), where congestion is endogenous and traffic slows in response

to congestion relative to road capacity. In the last subsection of the introduc-

tion, we will provide simple examples that display the contrast between the

existing literature and our class of models.

There are important differences in implications between our framework and

the existing literature, mainly due to the detailing of fine microstructure in our

work. What we mean by fine microstructure is not only a game where both

route and departure time are strategic choices of players, but also that time-

dependent events, such as cars catching up with others and slowing down, can

happen in the course of traversing a link. The reduced forms, such as an

exogenous congestion function (that gives delay time as a function of traffic),

used elsewhere are generally not supported by this microstructure, leading

to different results. Our model employs a microfounded, evolving congestion

concept that is suggested by the transportation engineering literature. Thus,

the conditions sufficient for existence of equilibrium are markedly different.

As we shall see in the examples, it is quite natural to have multiple equilibria

in our framework, whereas the goal of the existing literature is often to prove

that equilibrium is unique. Finally, as we shall illustrate, equilibria in our

framework are qualitatively very different from those derived in the rest of the

literature, mainly due to the fine microstructure.

1.2 Five Related Literatures

Before proceeding to our examples and analysis, we discuss the basic literature

on congestion. We divide this literature into 5 components: the transporta-

tion economics literature, the game-theoretic literature on congestion exter-

nalities, the transportation engineering literature, the mathematics of conser-

vation laws, and the electrical engineering literature on internet congestion.4

4These literatures tend not to cite each other, rendering literature reviews labor-intensive

and occasionally puzzling, due to terminological differences. For example, engineers like

to use the term “Price of Anarchy,” that is identical to the ratio of the utilitarian optimal

welfare to the worst Nash equilibrium utilitarian welfare (with an analogous expression for

costs); see Roughgarden (2016). To economists, this immediately prompts discussion of

Arrow’s theorem and the choice of a social welfare function. Each literature also has its

own preferred notation.
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We discuss these in turn. Our work is at the junction of all of these literatures.

In contrast with our work, the first two literatures tend not to study dynamic

micro behavior along roads. The second two literatures take individual be-

havior as fixed, so the models are mechanical. The last literature tends not

to examine Nash equilibrium, but rather other positive or normative ideas.

The older literature on transportation economics deals with models with no

time clock or with just one route or bottleneck where traffic queues. Wardrop

(1952) formulated and initiated research on route choice models. Beckmann et

al. (1956) provide a model of rush hour where traffic flows are constant. They

analyze optimum and equilibrium in a stylized model with no explicit time

clock, but with a representative commuter. Vickrey (1963, 1969)5 provided

the classical analysis of congestion externalities, pricing, and infrastructure in-

vestment. The basic economic problem detailed is that the choice to commute,

of its timing, and of its route by one commuter affects the commuting time of

others. Nash equilibrium is generally inefficient. Although the marginal time

cost of one additional commuter on another is small, when the marginal time

cost of an additional commuter is aggregated across all commuters, the cost of

(and optimal toll for) the externality can be large. Arnott et al. (1993) ex-

amine primarily welfare under various pricing schemes when there is only one

route or bottleneck, but allow elastic trip demand and use continuous time.

Traffic does not slow down due to congestion, but rather queues at a bottleneck

with limited capacity. In their conclusions (p. 177), they note: “In the con-

text of rush hour traffic congestion, for example, models should be developed

which derive hypercongestion (traffic-jam situations) from driving behavior,

solve for equilibrium on a congested network, and account for heterogeneity

among users...” This is what we attempt.

The contemporary literature on transportation economics uses the termi-

nology “dynamic traffic assignment problem” for the kind of model we shall

construct. Merchant and Nemhauser (1978) initiate the modern literature by

proposing a discrete time model with a single destination node where events

in a link of the transport network at a given time, namely the number of cars

entering the link, the cost of traversing the link as a function of traffic, and the

number of cars exiting a link as a function of traffic, are all exogenous black

boxes. They provide an example and examine algorithms for finding a social

optimum. Ross and Yinger (2000) embed a model of point congestion similar

to ours in a classic urban monocentric city model with both land consumption

5In the first of these papers, the automobile is called “our rubber-tired sacred cow.”
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and a symmetric radial road network. This is similar to a simple network with

only one commuting corridor. Traffic flow is continuous but not necessarily

smooth. They show that the only equilibrium in a general urban equilibrium

version of a commuting model with continuous departure times and flow con-

gestion but no bottlenecks is an unreasonable one with a never ending rush

hour. As we shall explain below, by allowing a large but finite number of de-

parture times and randomizing departures over small intervals between these

discrete departure times, with some effort we can overcome these difficulties.

In our context, traffic flow might not be continuous. Konishi (2004) considers

existence, uniqueness and efficiency of Nash equilibrium primarily in a static

model but also in a discrete time dynamic model with a simple network, em-

ploying Schmeidler’s (1973) theorem6 as we do. He uses bottlenecks whereas

we use speed reductions resulting from congestion. Konishi’s work is quite

complementary to ours, as we are not concerned with the issues he addresses,

namely existence of equilibrium in static models with a finite number of com-

muters, conditions sufficient for uniqueness of equilibrium in static models

with a continuum of commuters, and existence and uniqueness of equilibrium

in dynamic models of simple networks with exogenous bottlenecks.

An independent, modern literature in transportation economics examines

necessary conditions at a Nash equilibrium for the dynamic traffic assignment

problem. Heydecker and Addison (2005) consider what happens along a link

as a black box, and derive such a condition. Of course, if such a black box is

made more specific, the necessary condition can be refined. Zhang and Zhang

(2010) use a bottleneck model and obtain a more specialized condition.

In their survey, de Palma and Fosgerau (2011, p. 208) conclude: “The

extension of the dynamic model to large networks remains a difficult problem.

So far, existence and uniqueness of equilibrium have not been established (in

spite of many attempts).”

The game-theoretic literature on externalities, for example Sandholm (2001),

has the potential to be useful in our context.7 However, the strong symmetry

assumptions used, that yield strong and interesting conclusions, exclude almost

all of the games of interest to us. For example, they exclude the simple special

case of our model where there are two nodes called home and work with one

link between them, but two departure times. Hofbauer and Sandholm (2007)

6To apply Schmeidler’s work to obtain Nash equilibrium in pure strategies, it is important

that the set of pure strategies be finite. In our model, the interpretation is that the set of

departure time strategies is finite.
7Levinson (2005) examines two and three car congestion games.
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study congestion games with a continuum of players, but their assumptions on

congestion rule out the type of dynamic micro-interaction along a link that is

the focus of our work. Sandholm (2007) considers an evolutionary approach

to setting optimal tolls in the case where there is a finite number of iden-

tical commuters (so they have the same home and work locations) modified

by an idiosyncratic preference component, without the symmetry assumption

but with further structure on the evolutionary process.8 Hu (2010) explores

Nash equilibrium with continuous departures for a single commuting corridor

for one morning rush hour. It is shown that with a specific dynamic for equi-

librium selection, the equilibrium exists and is unique. As we shall illustrate

in the last subsection of the introduction, multiple equilibria are quite natural

in models of commuting.

The transportation engineering literature is naturally concerned more with

practical traffic issues than with the questions we pose; see, for example, Da-

ganzo (2008). Typically this literature takes the behavior of individuals,

namely their choice of routes and departure times, as exogenous. Thus, Nash

equilibrium is not studied.9 For example, Zhu and Marcotte (2000) use pre-

determined (exogenous) departure times. The closest relative to our model

in this literature is the cell transmission version of the Lighthill-Whitman-

Richards (LWR) model; see Daganzo (2008) section 4.4.6. There are some

important differences. First, the LWR model takes departures as exogenous

and possibly smooth, whereas we do not. Second, like most models of traffic,

the LWR model employs queues or bottlenecks when there is congestion. In

contrast, we assume that traffic slows as a function of traffic density. These

two important differences express themselves as differences in the equilibrium

behavior of the models.10 More recent examples include Han et al (2013)11

and Han et al (2015).

8It is also interesting to inquire how tolls would be implemented in practice in these

models, since in theory the toll is based on the overall strategy chosen, namely the route

and/or departure time. Would toll booths along the route be able to implement this?
9For example, the first appearance of a utility function in Daganzo (2008) is at the bottom

of p. 315. The body of the book ends at the top of p. 319.
10In other parts of the transportation engineering literature, existence and uniqueness of

Nash equilibrium is studied in the context of a bottleneck model, using an S-shaped wish

curve (defining ideal bottleneck exit times). In these models, it is unclear what happens if

an atom of commuters arrives at the bottleneck at the same time, or if the fragile condition

of an S-shaped wish curve is violated - the complement appears to be open and dense in the

set of wish curves.
11In addition to queues, this work also features a highly non-standard notion of Nash

equilibrium.
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Baillon and Cominetti (2008) investigate a model where traffic flows are

not time-dependent (so the model is static in our terminology), but the cost of

using a link is stochastic to each user. Commuters re-optimize at each node

as they progress, and employ a standard discrete choice model when they do.

Existence and uniqueness of a Markov equilibrium is demonstrated.

Turning next to the mathematics literature, our mathematical problem on

one link boils down to a conservation law coupled with a discontinuous dif-

ferential equation. Even with just one link between an origin and destination

with exogenous departure times and homogeneous commuters, existence and

uniqueness of the resulting traffic pattern is a difficult question that requires

interesting assumptions and techniques to resolve. A major issue is the exis-

tence and uniqueness of behavior of the system when the initial conditions can

be discontinuous. This is important to us, as we don’t want to place restric-

tions on the joint behavior of individuals when we eventually consider Nash

equilibrium. The mathematics were introduced in Bressan (2000, chapter 6)

and Garavello and Piccoli (2006); that work is based on Bressan (1988) and

Bressan and Shen (1998).12 The key paper for our purposes is the seminal

work of Strub and Bayen (2006), who remark in their conclusions (p. 564),

“However, results are still lacking in order to generalize our approach to a real

highway network. For such a network, PDEs are coupled through bound-

ary conditions, which makes the problem harder to pose.”13 Once we have

introduced notation and concepts, we shall remark further on both related

literature in mathematics and alternative approaches to solving the induced

mathematical problem.14 An important contribution of Strub and Bayen

12Although the motivation for Bressan (2000) is the simple traffic problem with one home

location, one work location, and one link, the mathematical problem solved in this book is

different from the economic problem that motivates it. This will cause us some headaches.

In particular, the initial condition used in the book is the traffic at various locations along

the link at time 0, trivially 0 in our model. Traffic is not allowed to enter the link after

time 0. We are much more interested in boundary conditions that, for an arbitrary time,

give the traffic entering a link at location 0. Nevertheless, the mathematics introduced in

this book are very useful.
13There are many challenges that we must address to extend their results from one link to

many. For example, it is difficult to prove that the link exit density has the same properties

as the link entry density, that is used as the entry density for another link. A secondary

challenge is that boundary conditions are formulated in terms of density (cars per mile)

when they should be formulated in terms of volume (cars per hour). Although we take the

proper approach for boundary conditions using volume, the technicalities can be simplified

some if we were to use density.
14We note in frustration that much of the literature cited here is motivated by mathematics
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(2006) is actually the definition of a solution to the mathematical problem

of determining flow in the one link system with exogenous departures, since

there were issues of either existence or uniqueness with many of the previous

attempts. The technical difficulties in the literature are partly the result of

working with functions of bounded variation with a two dimensional domain:

time and distance. The (discontinuous) conservation law tells us that cars are

not lost over a link, with initial condition zero cars on the link and boundary

conditions corresponding to the departure of cars. The conservation law is

coupled with a (discontinuous) differential equation that gives progress of a

car over the link. An important mathematical problem is relating properties

of functions on two dimensions that are of bounded variation to their variation

on each dimension separately. Part of our mathematical contribution here is

to relate the solution of the conservation law of Strub and Bayen (2006) to a

Carathéodory solution to the discontinuous ordinary differential equation by

applying Biles et al (2014). To accomplish this, we employ techniques initially

developed by Friedrich et al (2018), using properties of the Godunov scheme,

to obtain bounds on total variation of the solution to the conservation law for

each of time and space separately.15

In the end, we are able to embed the more elementary framework of Strub

and Bayen (2006) in a model with an arbitrary transport network, heteroge-

neous commuters and endogenous choice of departure times and routes, exam-

ining Nash equilibrium as well as Pareto optimum. Unfortunately, we cannot

apply their results directly, but must open up the details of their clever proof.

The final literature related to our work is the literature on internet conges-

tion. Although we interpret our model as traffic on roads for consistency of

exposition, it applies as well to packets on links in the internet. A fine survey

of this literature can be found in Jacobsson (2008). Due to the complexity of

the discrete model, a continuous model was developed by Kelly et al (1998),

forming a foundation for our work. Much of the literature has a focus on

exogenous departures and routes, not Nash equilibrium. Other parts of the

literature, such as Kelly et al (1998), focus on steady states of the dynamic

model with congestion pricing, or what we call a static model with congestion

pricing. There is likely an unexplored relationship with potential games, as

represented for example by Sandholm (2007).

rather than economics. Beyond Strub and Bayen (2006), to our knowledge there is no result

that applies directly even to the case of two nodes and one link.
15Since most of the examples of conservation laws come from physics, these results might

also be of use there.
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1.3 Preview

In summary, the main difference between our work and most of the literature

is that we use the fine microstructure from transportation engineering and the

mathematics of conservation laws to address more macro economic questions.

We do not use exogenous departure and route choices, nor do we employ

bottlenecks or queues. Instead we allow endogenous choice of departure times

and routes, but require that traffic slow down as a function of endogenous

congestion on an arbitrary transportation network. To our knowledge, this

represents a new class of models of commuting that has fewer black boxes (such

as delay functions in the standard literature) and, more importantly, different

properties compared with others.

Although the notation used to describe the models formally is burdensome,

we will give examples and intuition for the results in addition to the techni-

calities. We formulate both a static model, where time plays no role, and a

dynamic model, where it does play a role. We assume that commuters have

an inelastic demand for one trip per day to work. Future work should extend

this to elastic demand.

Our results and the outline of the balance of the paper are as follows.

Although classical results concerning Nash equilibrium and Pareto optimum

are replicated in our context, we highlight novelties. In the next subsection of

the introduction, we detail and preview our results with minimal notation by

using the simplest example, a network with two nodes and one link where all

commuters live at one node and commute to their jobs at the other. In Section

2, we give our notation and specify the general static (timeless) and dynamic

models. At this point, we prove classical results in our context, but also find

assumptions sufficient for existence and uniqueness of a traffic pattern over

time and across links given a set of boundary conditions (corresponding to a

fixed strategy profile) in the dynamic model. Moving on to Nash equilibrium,

we find conditions sufficient to prove it exists, and show that it is generally

not unique. Section 3 gives our applications. First, we show that the static

model cannot be viewed as a reduced form of the dynamic model, where time

is explicit. Then we study the welfare properties of Nash equilibrium in

the context of a generalization of a tree network in the dynamic model. Nash

equilibrium of the morning commute will generally be inefficient, whereas there

exists a Nash equilibrium of the evening commute that is efficient. Finally,

Section 4 gives our conclusions. All proofs are contained in an Appendix.
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1.4 Example

1.4.1 Our Basic Model

We begin with a simple example to illustrate how the model works and the

intuition behind our results. Consider measure 1 commuters uniformly dis-

tributed on the interval [0 1] with nodes 1 and 2. The length of the link

between the two nodes is 1. Each commuter commutes from node 1 to node

2 each day. For simplicity, we consider only the morning rush hour at this

juncture. Denote the capacity of the link in terms of volume (cars per hour)

by  ∈ R+. Suppose that the time it takes to travel the link at the speed

limit is (1 2) = 1. In the static model, the travel time is given by 1 if the

average number of travellers does not exceed free flow capacity  of the road,

and by 1

otherwise. This means that if road link capacity is exceeded, then

traffic slows down in proportion to the ratio of excess commuters to capacity,

max{1 1

}. For example, if  = 12, then the travel time for a commuter on

the link is 2. There really are no choices here for the commuters or a social

planner optimizing efficiency, since the route is fixed and the model is static;

there are no departure times to be chosen.

Now consider a dynamic version of the model. Route choice is still fixed,

but departure (and consequent arrival) times are a choice variable of the com-

muters. We model departure times in R+, and we call the required arrival

time at the destination node 2 (say 9 AM)  ∈ R+. There is no penalty for
arriving at work early, but the penalty for arriving at work late is ∞.16 This

is mainly for illustration. We shall consider more general penalties for both

early and late arrival in the remaining sections. They add some complications.

Again, in this simple model there is no route choice. But there is a choice of

departure time. First, we illustrate how, for any choice of departure times by

all commuters, the travel time to the destination node 2 can be computed. It is

assumed that the latter is minimized by each individual commuter at a Nash

equilibrium (given the choices of others), and the social planner maximizes

a utilitarian welfare function that is minus the integral of commuting times

subject to the arrival constraint.

The speed of a particular cohort of commuters who depart at the same time

is computed as follows. Begin with the local density of commuters on the road

at a particular place on the route and at a particular time. This local density

16Notice that for this example, if there is positive probability of arriving late to work, the

payoff is −∞ and the commuter is indifferent among all strategies with positive probability

of arriving late.
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at a given place and time is computed as the limit of neighborhoods on the

road of total (measure of) commuters in the neighborhood divided by the one

dimensional size of that neighborhood. The limit is taken as the length of the

neighborhood goes to zero. The result will be the density of commuters (with

respect to distance) at that place and time. Then, as in the static model,

traffic slows down in proportion to the ratio of excess commuter density to

capacity, where capacity is in terms of volume, namely commuters per hour.

In terms of notation, for our examples  = min
n
1 



o
, where  is speed and

 is density.

An example will help illustrate. Again consider the commuters uniformly

distributed on [0 1]. Suppose that all the commuters at 0 depart at time 0,

all the commuters at 1 depart at time 1, and so forth. Set the arrival time

 = 2. We compute traffic speeds (in this case, the arrival time constraint

will not bind). With these departure times, when road capacity is high so

that  ≥ 1, then capacity does not bind. The unit interval of commuters

moves from origin to destination at full speed and perfect synchrony, and the

local density of traffic is always 1 except for commuters with labels 0 and 1.

The density around them is 1
2
since there is nobody on one side of them (for

example the commuters with label 0 have nobody in front of them). But this

does not alter their speed, since they are already at the speed limit. In theory,

at least, commuters can catch up with those ahead of them (if the ones ahead

are travelling slower) and slow themselves down.

What if   1? We consider two simple patterns; for more concreteness,

for example one can take  = 12. Set the arrival time  = 2

. First, suppose

that commuters depart uniformly in the time interval [0 1

] with volume  and

density 1. Traffic slows down by a factor of 1

relative to the no congestion

case; thus, traffic speed for the commuters is uniform at , traffic density (cars

per mile) is 1, and traffic volume (cars per hour) is speed multiplied by density,

or .17 It takes 1

time to traverse the link, so the last commuters (labelled 1)

reach the destination at 2

. Call this the congested commuting pattern.

Now consider the same general departure pattern as in the preceding para-

graph, with commuters labelled 0 beginning travel at time 0, whereas com-

muters labelled 1 begin their trip at time 1

. Again set the arrival time  = 2


.

The local density of commuters on the route is , so all commuters travel at

the speed limit 1, and volume is . Thus, travel time for all commuters is

17Sharp readers will notice that the density in front of the commuters departing at time

0 is 0. But such commuters represent a set of measure 0.
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1. The last commuter arrives at time 1

+ 1  2


. Call this the uncongested

commuting pattern.18

These two simple commuting patterns, or strategy profiles, serve to illus-

trate the computation of local density, speed, and volume. Of course, the

calculations can be much more complicated in, for example, more intricate

commuting networks or for more intricate departure patterns. The simple

patterns also serve to illustrate the important role played by arrival time. It

is rather evident that for the fixed arrival time as specified at  = 2

, these

strategy profiles are Nash equilibria.19,20 Notice that all commuters reach work

by the arrival time  for either pattern, but travel time is longer for the con-

gested commuting pattern. Thus, welfare can differ across dynamic commuting

patterns even for this simple example. It is evident that the uncongested com-

muting pattern Pareto dominates the congested commuting pattern.21 The

“Price of Anarchy” in this example is 1

, whereas the “Price of Stability” is

1. Finally, it is vital to see that more than one departure density can be

consistent with a given departure volume.

1.4.2 The Classical Model with Queues

A crucial comparison is between our model, with endogenous congestion and

speed, and the classical models of the literature that use queues. We argue

that the equilibrium (or even disequilibrium) behavior of our model is different

and much more realistic, illustrated as follows.

First, consider the model detailed previously, but for simplicity set  =
1
2
. For the congested commuting pattern, it takes each commuter time 2 to

traverse the link. The first commuter arrives at time 2, whereas the last arrives

at time 4. For the uncongested commuting pattern, it takes each commuter

18There are more uncongested commuting patterns, for example when  = 12 and de-

partures are uniform on times [0 3]. The volume of departures at each time is 13. The

density  with respect to distance is 13 in locations and at times where there are com-

muters. Therefore, speed  = min(1 ) = 1. The travel time of each commuter is 1.

The last commuter arrives at 4.
19There are actually many other Nash equilibrium patterns associated with this example

that feature no congestion. We focus on these two patterns for simplicity.
20Rath (1994, 1998) studies refinements in a general framework that applies to our model.

Both the congested commuting pattern and the uncongested commuting pattern are proper

and perfect Nash equilibria in this example.
21It is important to point out that our basic example of a network is series-parallel and

even extension-parallel, but some Nash equilibria of the dynamic model are not weakly

Pareto efficient.

12



time 1 to traverse the link. The first commuter arrives at time 1, whereas the

last commuter arrives at time 3.

We turn next to a model with queuing. There are many variations on the

bottleneck model, particularly in continuous time. For example, Arnott et

al. (1993) assume that it takes no time to get from home to a bottleneck, and

that after exiting the bottleneck, the commuter immediately arrives at work.

The variation we use is closer to our model, and is due to Zhang and Zhang

(2010). A link consists of two parts, a main body first and then a queue at the

end. The main body has infinite capacity so traffic flows at the speed limit

independent of any congestion. The queue or bottleneck at the end of the

main body operates with limited capacity, using a first-in-first-out principle.

For our particular example, it takes time 1 for any commuter to traverse the

main body (independent of congestion), and the queue allows volume 1 to exit

the queue at any given time.

What does Nash equilibrium with a queue look like for this example?

Everyone leaves as soon as possible (at time 0), arrives at the bottleneck at

time 1, and the last commuter leaves the bottleneck at time 2. Here, we

assume that if everyone arrives at the bottleneck at the same time, the order

in which they proceed is random. This equilibrium does not resemble at all

the ones obtained using our model of endogenous congestion.

Koch and Skutella (2011) use the model with queues and a general network,

but with a fixed transit time across a link that is independent of traffic. They

obtain some unusual results, such as conditions under which the dynamic and

static models exhibit the same behavior, and conditions under which all Nash

equilibria are efficient.

1.4.3 Comparison of the Static and Dynamic Models

Consider next the comparison of the static with the dynamic model. The first

pattern, the congested commuting pattern, we study for the case   1 seems

to be the analog of the static case, since traffic speed is constricted. But the

second, uncongested pattern does not seem to have an analog. Thus, the static

and dynamic models have different Nash equilibrium predictions. Moreover,

if the dynamic analog of the static equilibrium is the congested commuting

pattern, it is Pareto dominated by another pattern present in the dynamic

model but disallowed by the static model.

In fact, we can say more. In section 3.1 below, we describe how to ex-

tend this example so that there is no equilibrium of the dynamic model even

13



remotely resembling the equilibrium of the static model.

1.4.4 Looking Ahead

With the model specified as we have outlined, generally a Nash equilibrium in

pure strategies or a pure strategy optimummight not exist. So in what follows,

for the dynamic model, we must simplify the problem. This is accomplished

by using a fixed, finite set of possible departure times that divide equally the

time scale in the model. When commuters choose a departure time, they are

distributed uniformly over the interval with midpoint their chosen departure

time, and length equal to the distance between allowable departure times.

With this structure, a Nash equilibrium in pure strategies and a pure strategy

optimum exist. Moreover, for our example, the congested and uncongested

commuting patterns we have specified are Nash equilibria of the model, and

the uncongested commuting pattern is Pareto optimal. Notice that in this

simple example, there is a Nash equilibrium that is Pareto optimal. This will

be generalized in Section 3.2.

It is important to note that, unlike much of the engineering literature, our

work does not rely on demonstrating (as in potential games) that equilibrium

flows can be found as a solution to a convex minimization problem. Rather,

our analysis uses fixed point techniques, which yield existence of a solution but

generally do not yield unique or welfare maximizing solutions.

What follows below just makes the ideas behind our simple examples for-

mal and general, for instance allowing an arbitrary commuting network where

commuters have various different origins and destinations. But we wish to

emphasize that this work is just a first step in this interdisciplinary research,

that we will make assumptions that limit the scope of the results, and that

much work remains. Our goal here is to clarify the issues, some of which are

subtle, that span several literatures.

Section 2 specifies the static and dynamic models, and provides the main

results on existence of equilibrium. Section 3 applies our framework to a

comparison of the static and dynamic models, and examines welfare properties

of equilibria. Section 4 contains conclusions and extensive suggestions for

further work, whereas an appendix contains proofs.
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2 The Commuting Model

Readers who wish to understand the content of the work through examples only

can focus on Examples 1-4 below and then skip to section 4.

2.1 The Static Model: Equilibrium and Optimum

Here we lay out the details of a game with an atomless measure space (con-

tinuum) of players; a finite set of nodes at which the players live, or to which

they commute, or through which they commute; and a finite set of transport

links between the nodes with exogenous capacity.

To begin, the measure space of commuters is given by ( C ) where  is

the set of commuters, C is a -algebra on , and  is a positive, non-atomic

measure.22 We assume that singletons of the form {} for  ∈  are in C; that
for all  ∈ , ({}) = 0; and 0  () ∞.
The origins and destinations in the commuting network are given by a

finite set of nodes, denoted by  = 1 2  . Let N = {1 2  }. The
commuting network itself is given by a finite set of links between nodes. The

capacity of any direct link (with no intermediate nodes) between nodes  and

 is given by  ∈ [0∞], whereas  =∞. If a direct link between nodes
 and  does not exist, then  = 0. The units attached to  are cars

per hour, or volume.

What remains is to specify the strategies and payoffs of the commuters.

In the static game, there is no choice of time of departure or arrival. There

is only route choice. We assume that each commuter has a fixed origin node

and a fixed destination node, with inelastic demand for exactly one trip be-

tween the origin and destination. Thus, there is an exogenous, measurable

origin map  :  → N and an exogenous, measurable destination map  :

 → N . Notice that there can be heterogeneity among commuters in origins
and destinations. This will create heterogeneity in the reduced form utility

functions of the commuters.

Let  be the map that projects a vector onto its coordinate . A route,

denoted by , is a vector of integer length  no less than 2. Next we define

22Skorokhod’s theorem implies that we could, with some loss of generality, restrict atten-

tion to the unit interval with Lebesgue measure.
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the set of all routes, R:

R =
©
 ∈ N  | for  = 1 2  − 1 ()+1()  0

ª
R ≡

∞[
=2

R

To avoid trivial situations, we assume that if there is a positive measure

of commuters with a particular origin and destination, that there is some

route between the nodes. A commuting length map is a measurable map

 :  → {2 3 }. A commuting route structure is a pair ( ) where  is a

commuting length map and  is a measurable map  :  → R such that for

 = 1 2  ()−1 ()(+1)  0, and almost surely for  ∈ , 1(()) = ()

and ()(()) = ().

Given a commuting route structure ( ), its flow  ∈ R2

+ is given by

the measure of commuters or cars using the link, () = ({ ∈  | ∃ ∈
{1 2  ()−1}with (()) =  and +1(()) = }) for = 1 2  .

We assume that the length of the link between nodes  and  is () ≥ 0
for  = 1 2  . If the link is congested, then the travel time increases.

For our examples, it increases in proportion to the excess of commuters above

free flow capacity , max
n
1

()



o
.23 Here,  has units cars per hour.

For instance, if the number of commuters is twice the capacity of a link, then

the travel time is doubled. We ask that the reader bear this special case in

mind, since we use it in all of our examples to give concrete intuition.

More generally, we can allow traffic to slow down according to any well-

behaved function of the number of commuters at a distance on a link and

link capacity. Therefore, we specify the function  : R+ × R+ → R++ where

 ( ) is the speed of traffic with usage  on a link with capacity . We

assume that for fixed ,  is continuous and non-increasing in  . For our

examples, average speed on a link  is given by link length divided by time

spent on link, namely  ( ) ≡ ()

max{1 

} = () ·min

n
1 



o
.

23There is an issue of normalization here, namely whether  is divided by  or not. In

essence, it depends on whether a link that is twice as long is half as congested for the same

number of commuters on the link. This depends on the interpretation of the static model,

whether congestion is viewed as a pulse of commuters or whether they are uniformly spread

out over the link. In this paper, we take the view that in the model without time, twice as

many commuters on a link results in twice the congestion, no matter the length of the link.

However, if one takes the view that length of the link matters, the result is simply division

of our  by , and this makes no essential difference in the the results we obtain. As we

show in Section 3.1, interpretation of the static model is difficult.
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Although it is difficult to discuss travel time in a model that is inherently

atemporal, equilibrium in this model is to be viewed as a sort of steady state.

Under this interpretation,  is the measure of commuters (repeatedly) passing

through the link on their route.

This should not be construed as an endorsement of the static model.24 In

fact, the static model has many flaws. However, it is the dominant model

in the literature and used in many of the papers we have cited, so we must

discuss it for the purpose of comparison. The particular functional form we

use for commuting time in our examples is a slight generalization of the one

typically used for the Braess (1968) paradox in the static model.

The time cost of a commuting structure ( ) for commuter  is

(  ) = (1)X
{()∈N×N|(())=+1(())= for some 0≤≤()−1}

()

 (()) )

Thus, − is the objective or payoff function for each commuter. The utilitarian
welfare function for the static model is

( ) = −
Z


(  )()

A Nash equilibrium of the static model is a commuting structure ( ) such

that almost surely for  ∈ , there is no route  of length  for commuter 

such that

(  ) 
X

{()∈N×N|()=+1()= for some 0≤≤−1}

()

 (() )

Existence of Nash equilibrium in pure strategies can be proved by applying

Schmeidler (1973, Theorems 1 and 2). Rosenthal (1973) proves that a Nash

equilibrium in pure strategies exists even when there is a finite number of

commuters. Sandholm (2001) shows that equilibrium exists and is unique

under additional conditions, primarily that speed is strictly decreasing in link

usage  .

Next we prove (informally) that an optimum exists. The problem can

easily be reduced to optimization of the utilitarian welfare function over a

compact set as follows. Notice first that there is a finite number of types of

commuters, defined by their origin-destination pairs. Instead of using route

choice for each commuter, employ as control variables the measure of each

24I come to bury the static model, not to praise it.
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type following each route. Thus, the social planner controls a finite number

of variables in a compact set using a continuous objective, so a maximum is

attained.

Example 1: We note that due to the congestion externality, the Nash equi-

libria are unlikely to be Pareto (or utilitarian) optimal. To see this informally,

consider an example with 3 nodes where each link has length 1. All commuters

travel between nodes 1 and 3. There is a direct route, and an alternate route

that runs via node 2; see Figure 1. The alternate route takes longer than

the direct route for each fixed number of commuters below capacity because

it requires a longer distance of travel. For example, each road has capacity 1

and takes 1 unit of time to cross when running below capacity, so the longer

route uses 2 units of time when running below capacity, whereas the shorter

route takes 1 unit of time when running below capacity.

2

·
% &

1 · −→ · 3

Figure 1: Nash equilibrium is not Pareto optimal

Suppose that there is measure 5
2
of commuters. A Nash equilibrium of this

model has the direct route running above capacity, with measure 2 commuters

using it for a total travel time of 2, and the indirect route running below

capacity (5 measure, with a total travel time of 2) such that the travel time

to work for each commuter is the same. To create a Pareto improvement over

the Nash equilibrium, simply move some commuters (say measure 5) from the

direct to the indirect route. The travel time on the indirect route (namely 2)

is the same as at the Nash equilibrium, even for the commuters switched to

that route, whereas the travel time for those on the direct route decreases (to

15).25

2.2 The Dynamic Model: Equilibrium and Optimum

The basics of the dynamic model are the same as those for the static model.

To differentiate the notation, we will add “dynamic” to the names and add

time  as an argument of functions. In the dynamic model, each commuter

25Notice that in this example, even though the Nash equilibrium is not Pareto efficient, it

is weakly Pareto efficient.
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chooses both a departure time (from their origin node) and a route. Routes

were discussed in the previous subsection. We allow a commuter to depart at

any time  ∈ [0  ]. As we shall see shortly, it is important that this set be
bounded.

It is vital to reinterpret some of the variables used in the static model in

terms of dynamics. In the static model,  represents the measure of commuters

using a link. In the dynamic model,  will represent the density of cars per

unit distance at a particular place and time on the link. The free flow capacity

for our examples, , will continue to have units cars per hour.

A dynamic commuting route structure is a triple (  ) where  :  →
[0  ] is a measurable function giving departure times for all commuters,  is

a commuting length map and  is a measurable map  :  → R such that

almost surely for  ∈ , 1(()) = () and ()(()) = ().

At this juncture, there is an issue concerning the detail in which we model

congestion on each link in the dynamic model. It varies in the literature

we have cited. The simplest way to model this is to look only at average

congestion on a link. More complicated is to assume that as traffic ebbs and

flows, the congestion at the end of the link determines traffic speed on the

entire link. The most detailed model allows cars to catch up with each other

over the course of a link. We use this most detailed model, but assume that

link capacity is constant across the link. This is without loss of generality,

provided that capacity changes only a finite number of times on a link. In

that case, we just add more nodes and links with different capacities in series.

We shall define commuter progress from origin to destination through a

differential equation in distance. But first we must define progress on each

component of a route in a dynamic route structure. Fix a dynamic route

structure (  ). The basic idea is this. From departure time to the end

of the first link, we follow the differential equation for congestion for the first

link, and then begin on the second link, and so forth. A crucial assumption

made here and in most of the literatures we cite is that cars cannot pass. For

notational simplicity, for  = 1  (), define  () to be the time that node

(()) is reached. Evidently,  1() = ().

Given a dynamic commuting route structure (  ), we shall associate

with it a function (() ) that gives as its value the distance travelled

on link  by commuter  at time  who begins travel on link  at time

().
26 In the end, this function will be increasing in its second argument

26A formal definition of this function will be given in (6) below.
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but decreasing in its first argument. Does such a function exist, and is it

unique? Fix such a function b. To ease notation, compute inductively

 +1() = inf{ 0  0 | b(())+1(())( ()  0) = ((()) +1(())}
(2)

Then we can compute its density at time  on link  at distance ∆, calledb : N 2 × R2+ → R+, and written as b(  ∆).27 It is the density of

commuters (per unit distance) at time  and at distance ∆ along link ,

and it is given by the (possibly discontinuous) partial differential equation or

conservation law :

 b(  ∆)


+

©( b(  ∆))

∆
= 0 (3)

where

©(  ∆) ≡ 
³ b(  ∆) 

´
· b(  ∆) (4)

is defined to be the flux.28 The flux is the volume of commuters passing

through a point per unit of time. We abuse notation slightly and sometimes

write

©() =  ( ) · 
For our example, note that © = min { }.
Equation (3) is actually the fundamental conservation law of transportation

economics applied to this model. As explained in Bressan (2000, equation 1.2),

if we fix an interval of locations on a link, the measure of commuters inside

this interval can only change over time from inflows into the interval from the

left and outflows from the interval to the right. Another interpretation of

equation (3) states that the change with respect to time in commuter density

at a given place and time can be found by looking at the change in the flux

(commuters per hour) at preceding locations nearby.

Next we compute

b(() )


= 

³ b(  b(() )) 

´
(5)

This describes the progress made by commuters on each link of the entire

dynamic commuting route structure for any time  . Equation (5) is the

coupled discontinuous differential equation discussed in the introduction.

27In terms of notation,  will be a scalar representing an arbitrary value of the density,

whereas b is a density function.
28The literatures we have cited use inconsistent definitions for the terms “flow” and “flux”

in this context. Here we are using definitions from the mathematics of conservation laws.
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Unfortunately, the coupled system defining b and b, namely (2), (3), and
(5), is technically challenging. The reason is that we cannot restrict ,

the function defining the departure strategies of players, beyond assuming

that it is a measurable function. Each individual makes a choice, and this

is not necessarily coordinated. Discontinuities in departures can result in

discontinuities in b that rule out our ability to use standard techniques

from the theory of ordinary differential equations as well as the contraction

mapping theorem. Instead, we use Biles et al (2014).

Even if we can retrieve a well-defined b for each  function, the issue

then becomes the fact that there might not exist a Nash equilibrium in pure

strategies, since the space of pure strategies is a continuum. Schmeidler (1973)

relies heavily on the fact that the number of pure strategies available to players

is finite.

We address the problems of discontinuities in boundary conditions and an

infinite number of strategies at once by simplifying the dynamic model. Fix

 where  is an even integer, and define the departure strategy space to

be {  3   ( − 1)}. This makes the strategy space finite. We assume
that all the commuters who choose, say,  will be randomly and uniformly

distributed on (0 2), those who choose the strategy 3 will be randomly and

uniformly distributed on (2  4), and so forth. The examples in the introduc-

tion fit this framework because they use a uniform distribution of departure

times. Moreover, they survive as Nash equilibria no matter how fine the grid,

even in the limit where commuters can choose their precise departure time.

We view  as a commuter’s intended departure time, where the actual depar-

ture time is the intended time plus a small random variable. The constant 

can be small.29

Having addressed these initial challenges, we come upon another that is

generated by the mathematics of conservation laws. Consider the simple

one link model used in the introduction where link capacity is 1; the cohort

departing at times (0 2) has low density, say 12, and hence high speed; and

29The classical problem with addressing this issue is that, in the limit with no restrictions

on departure time choice, the Nash equilibrium might be in mixed strategies. It is doubtful

that an equilibrium in mixed strategies is useful in the applied context here. In fine but

finite departure grids, this corresponds to extreme oscillations (say between 0 and 1) in

adjacent grid elements. The weak limit would be a strategy profile that is constant at 12.

Utilities could easily be weakly discontinuous, and thus the Nash equilibrium would be in

mixed strategies. An alternative, used in the stochastic games literature, is to perturb

utilities. In our context, this does not seem very natural.
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the cohort departing at times (2  4) has high density, say 32. Common

sense and observation of the real world says that the first cohort will begin at

high speed whereas the second cohort will begin at lower speed. A distance gap

with no commuters will form between them and expand along the link. This

is not only the common sense solution, but will also obtain in the solution

proposed in the literature if there is an   0 start time gap between the

cohorts.

Surprisingly and unfortunately, that is not the solution in the case where

there is no such starting time gap. The solution in this case involves the

initiation of a third step between the first two, with further step initiation

possibly following. There is no distance gap between the cohorts. This can

be found in unnumbered equations in Bressan (2000, p. 110, Case 2) and

Strub and Bayen (2006, p. 559). More detail can be found in Section 4.5

of Bressan (2000), in particular Figure 4.5 and especially Figure 4.6. Thus,

there is a discontinuity in the solution along a link as  → 0. Since we do not

consider the solution at  = 0 to be the right one, we are forced to take limits

of solutions as  → 0.30

It should be obvious by now that we cannot simply apply the LWR model,

that relies on the mathematics of conservation laws, as suggested in the trans-

portation engineering literature.

We begin by giving the intuition for speed calculations, and then provide a

formal proof of existence and uniqueness of the function b , from which every-
thing else can be calculated. For example, b can be calculated from

(5) once b is known. The intuition we give for the evolution of the system over
time and the speed of commuters on a link will be justified because Theorem 1

will tell us that b is unique on (0 )×(0 ()) for a given departure pattern,

and the evolution of the system and speeds we propose will be a solution.

For speed calculations, it is useful to define some concepts. A threshold is

a location on the network where the speed of commuters is different on the two

sides of the threshold at a given time. An important example of a threshold is

a node. Of course, a node is a form of a stationary threshold, since it doesn’t

move over time. Next we will investigate thresholds that move, appear and

disappear. An example of a threshold of this type is the boundary between

two cohorts, where a cohort is defined as a group of commuters with the same

30As we shall see later in the paper, in Theorem 1 specifically, given departure times and

routes, the solution b to the problem we pose for each link is unique almost surely on the

interior of the product of the time and distance (on the link) domains. This indeterminacy

issue arises on the boundary, namely where distance on the link is zero.
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route and departure time choices.

Fix a dynamic commuting route structure (  ). Let b(  0) = ()+

 0, where  0 is a random variable uniformly distributed on (−  ), denote the
actual departure time of commuter , that differs from the chosen departure

time () by at most  as described just above. To reduce the notational

burden, we shall generally suppress the second argument ( 0) in any functionb . Then b 1() = b(). In general, given b , we will define inductively b +1.
Fix any origin node  and destination node  6= . On each segment ,

define a subset of commuters who travel together on link  as:

() ≡ {0 ∈  | (0) = (); for some  ≤ (),

1(()) = 1((
0)),, −1(()) = −1((

0));

−1(()) = −1((
0)) = , (()) = ((

0)) = }

Assume for now that © is strictly increasing in  . Then the default speed

for commuter  is given by

() = 
¡
©−1 ((())2)  

¢
The appearance of ©−1 here will be discussed in detail in Remark 6 below.

At this point, it is useful simply to note that we must translate departure

volume (cars per hour) to departure density (cars per mile). The literatures

we have surveyed do not account for this.

The default speed might be counterfactual, but it is a useful construct.

At the default speed, intervals of commuters never overlap with each other.

When they never overlap, the time on this link is exactly ()(), sob +1() = b ()+()(). Similarly, (b () ) = () · [ −b ()]
where (()) = . But there are two other possibilities beyond this first

case. The second case is when commuters using different routes blend with

each other or separate beginning at a node; this is actually a generalization

of the concept of default speed. The third case is if a segment of commuters

catches up with another along a link. We consider each of these in turn.

The second case that is possible in the model is when commuters using

different routes blend or separate at a node. For the case where they separate,

if they are not combined with commuters using other routes, they move at the

default speed on the link. But this is just to give intuition. To ease notation,

define 0(()) ≡ 1(()) for all routes  and almost all commuters , and

define b 0() ≡ b 1() for almost all commuters . Formally, defining the set of
23



commuters approaching link  from link 0 at the same time:31

0( ) ≡ {0 ∈  | b −1(0) ∈ (b ()− b () + );

(()) = , +1(()) = ;

((
0)) = , +1((

0)) =  and −1((
0)) = 0 }

The speed of commuters is given by:

∗() = 

Ã
©−1

ÃX
0∈N

lim
→0

(0( ))

2

!
 

!

Provided that they don’t catch up with anyone else, their time on the link is ex-

actly ()∗(), so b +1() = b ()+()∗()whereas (b () ) =
() · [ − b ()] where (()) = .

On each segment , we say that commuter  catches up with commuter

0 on link  if

(()) = ((
0)) = , +1(()) = +1((

0)) = b (0)  b ()
()

∗()− ∗(
0)
 b ()− b (0)

The slower commuter 0, who is unaffected, continues on at the same speed

as before the faster one  catches them. If commuter  catches up with

commuter 0 on link , define the catch up time, for (()) = ((
0)) =

, +1(()) = +1((
0)) = , as  ∗ = b ()+∗(

0)·[()− (0)]
∗()−∗(

0) . At the first

time when a member of one cohort (defined above) catches up with a member

of another cohort along a link, a new threshold is created at this time and

distance. As it crosses the threshold, the traffic in the faster cohort slows down

to the speed of the cohort immediately in front of them by increasing its density

at the threshold to match that in the slower cohort. Thus, for all 00 ∈  with

((
00)) = , +1((

00)) = , then b+1(00) =  ∗ + ()−( ()∗)
∗(

0)

whereas (b(00) ) = (b ()  ∗) + [ −  ∗] · ∗(
0) for all    ∗ on

this link.

To abbreviate notation, let b(  ∆)− ≡ lim→0 b(  ∆ − ) andb(  ∆)+ ≡ lim→0 b(  ∆+). A threshold on link is defined by

( ∆) ∈ [0  ] × [0 ()] such that b(  ∆)− 6= b(  ∆)+. The

31The notational simplification allows us to model those beginning their first link as 0 =
.
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threshold itself moves along the link at speed


³ b(  ∆)+

´
−
b(  ∆)− · 

³ b(  ∆)−
´

b(  ∆)+
.

We shall remark on this further after a formal statement of the first result.

Here we have given heuristic details of the behavior of commuters at a

departure node and along a link. What we will need for the formal analysis

is how the departure density and its composition at the start of a link relate

to the exit density and composition at the end of a link. This will be given

formally in equation (19) of the appendix.

To prepare for the first result, let us make explicit the assumptions we will

use.

Assumption 1: For each fixed , speed 0   ( ) ∞ is Lipschitz

continuous and non-increasing in  .

Assumption 1 means that car speed with no congestion is bounded, speed

is a continuous (though not necessarily smooth) function of congestion, and

speed does not increase with more cars. As an alternative to assuming that 

is Lipschitz, we could directly assume that © is Lipschitz, as that is what we

use. But since both  and  are bounded (see below after Assumption 2), 

Lipschitz implies that © is Lipschitz.

Next, we need some preparation for Assumption 2. Eventually, we will

need a bound on the total variation of boundary conditions at the start of a

link that is uniform across links. The purpose is to have a compact space

that we will use to find a fixed point. A sufficient (and weakly necessary)

condition is a hierarchy of links that we will specify next. Let the set of links

be denoted by:

L ≡ {() ∈ N ×N |  6= }
We postulate a complete preorder on L denoted by º, with its asymmetric
part denoted by Â. Recall that R is the set of all possible routes. Next, we

shall restrict routes to R ⊆ R. For  = 2 3   , define

R ≡©
 ∈ R | For all  = 2 3  − 1, (() +1()) Â (−1() ()), () 6= () for  6= 

ª
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Assumption 2: Routes  are restricted to:32

 ∈ R ≡
[
=2

R

There are two pieces to this assumption. First, we have restricted route

length to  or less. In fact, all that is needed is a finite upper bound on

route length. We choose  for simplicity. The assumption that nodes are not

repeated along a route makes indexing progress along the route easy. These

assumptions are made mainly to keep notation simple.

The second piece is more interesting. Let us begin with the mathematics.

The purpose of this assumption is to provide a uniform upper bound on total

variation (across time) of boundary or entry conditions for the node at the

start of a link. Without this upper bound, we lose both compactness of the

space of initial conditions and the ability to solve the differential equation (5).

We need compactness for a fixed point theorem, and the ability to solve the

differential equation in order to compute travel times and payoffs.

To obtain such an upper bound, we must examine behavior when cohorts

merge at a node and travel the next link together. Variation in density in

one cohort can be transmitted to the other at the initial node. For example,

consider two cohorts that merge at a node. If one has a constant entry density

over time, but the other has either an increase or decrease in entry density,

the density of the first cohort will generally not be constant once it enters the

link. Thus, total variation can build up. Even if commuters don’t travel in

circles, the variation that is transmitted can build up along links that form a

closed loop. So to prevent this, we impose a hierarchy on links.

Turning next to the economics of this assumption, it means that commuters

(or packets for the internet) must not be travelling on links that form circles.

However, travel in opposite directions on links or routes is fine; in fact, this is

common for both the internet and commuting applications. For example, if

there is a central business district, then one way to satisfy the assumption is to

have commuters from each suburb travel towards it during morning rush hour

and away from it in the evenings. Circular roads or links forming a circle are

also fine, as long as the circle is not completed by overlapping commuters. In

the context of the internet, the assumption provides a warning concerning the

32Technically, Assumption 2 means that a dynamic route structure is restricted: () ∈ R
almost surely.
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potential build up of total variation in circles on the internet, even if no set

of packets travels in a circle, due to the transmission of total variation across

cohorts that travel the same link at the same time.

All of our examples (including a generalization of directed trees used in

section 3.2) satisfy this assumption.

Milchtaich (2006) is a classic examination of efficiency of Nash equilibrium

in the static model, so it important to relate assumptions in that work to our

Assumption 2 in particular. The major distinction is that our Assumption 2

applies to directed links, whereas the assumptions in that paper refers to nodes.

In particular, links between two nodes in opposite directions are different in

our framework. For example, Proposition 3 of Milchtaich (2006) states that:

“A two-terminal network G is series-parallel if and only if the vertices can be

indexed in such a way that, along each route, they have increasing indices.”

Theorem 1 of that paper states: “Braess’s paradox does not occur in a two-

terminal network G if and only if G is series-parallel.” It is obvious that the

classical Braess paradox example, given in Figure 1 of that paper, satisfies our

Assumption 2 but is not series-parallel.

Turning next to analysis of the system, there are two immediate, use-

ful consequences of bounding the commuting route length by  . First, the

set of routes that are possible for a commuter to choose, henceforth called

R, is finite. Second, we can examine bounds on our endogenous functionb(  ∆). Evidently, b(  ∆) ≥ 0. Now consider upper bounds.

An upper bound for departure density is ©−1

³
()

2

´
. But it is useful to have

a uniform bound on density beyond departure density. As we have seen, when

one cohort of commuters catches up with a slower cohort ahead of it, this co-

hort of commuters slows down by building up density so it is the same as that

of the slower cohort. Thus, this does not change the upper bound on density.

Where density can build up is at nodes, where cohorts can combine. It is

important to note also that boundary conditions at the origin of any route are

stated in terms of volume (cars per hour) rather than density (cars per mile).

Thus, an upper bound on endogenous density is given by the maximal density:

 =  ·max©
−1


³
()

2

´
.

Definition: Let  be an upper bound on the time it will take until the last

commuter reaches the end of their route:

 =  + · max
∈N , 6=

"
()


¡
 

¢#

27



This time will be finite as long as   0.

At this point, there is an important but technical issue that must be ad-

dressed. We shall use Schauder’s theorem33 to show that for any choice of

strategies by commuters, namely the choice of route and departure time for

each, the density on each link of commuters in space and time as well as total

commuting time are well-defined, namely such a density exists and is unique.

This requires some continuity of commuting times in initial conditions on a

link. Moreover, we employ Schmeidler’s theorem to prove existence of Nash

equilibrium for the dynamic commuting game. One of the requirements of

Schmeidler’s results is that utility is continuous (in the weak topology on 1)

in the strategy profile of all commuters. For the dynamic model as stated,

there is an important type of discontinuity that must be addressed.

The discontinuity is related to moving thresholds. In particular, if a thresh-

old moves backward through a node, a discontinuity in commuting times and

payoffs can result. Consider the following example represented in Figure 2:

· 

  %
· =⇒ ·

&
· 

Figure 2: A discontinuity

Traffic moves from left to right, with origin at node  through a node

represented by . After passing through the node, some traffic heads up and

to the right on route , whereas other traffic heads down and to the right

on route . Suppose that after passing through node , traffic heading

down and to the right on route  travels at high speed, and the traffic

volume and density are steady. Suppose further that a large, slow cohort

passes through the node and heads up and to the right on route , but is

followed along the same route by a faster cohort that catches up to the slower

one along the upper right link , after node . Thus, a threshold is formed

and the faster cohort slows down to match the speed and density of the slower

one. If the volume of this faster cohort is so large that the threshold34 backs

up along the upper right link  and through node  to the left link , we

33See Smart (1974).
34Notice that the cars themselves always have positive speed.
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claim that a discontinuity in the speed and payoffs of traffic heading down and

to the right on route  can occur. The speed of the steady traffic heading

down and to the right is reduced to the speed of traffic at the threshold, thus

increasing in a discrete manner its density and the time needed to travel the

link down and to the right, . This can happen despite the fact that much

of the traffic on the first link  proceeds up and to the right, because the

density of traffic using the lower link  jumps up when the threshold passes

backward through node  to the left link .

A sufficient (but not necessary) condition to prevent this type of disconti-

nuity would be one that prevents thresholds from moving backwards, whether

through a node or not. Thus, we assume:

Assumption 3: ©() is a non-decreasing function of  .

This assumption prevents thresholds from moving backwards, because it

says that the volume of consumers moving past a given point will not decrease

if density goes up. The direction of movement of thresholds is governed by

local volume (cars per unit time), not by local density (cars per unit distance).

With this additional assumption to address the discontinuity, commuting times

and payoff functions will be shown to be continuous in strategies.

For our examples, note that ©() = min { } satisfies this assump-
tion.

Actually, there is a much more compelling reason than the one given above

to impose Assumption 3. One of the main points of Strub and Bayen (2006)

is that boundary conditions for the conservation law (on the one link they use)

can only be satisfied in a weak, not a strong sense. To see this, consider the

case of a strictly concave flux function where flux is decreasing somewhere.

Next we rewrite equation (4) of their paper, giving the weak left boundary

condition on the link where () is the entry density, in our notation:⎧⎪⎨⎪⎩
( 0 ) = () or

©((0))


≤ 0 and ©(())


≤ 0 or

©((0))


≤ 0 and ©(())


≥ 0 and © (( 0 )) ≤ © (())

The first line would be considered the usual boundary condition, stating that

the density of cars at distance zero and time  on a link is equal to the density

entering the link. That line alone is called the strong boundary condition.

The other two options involve the potential loss of cars and volume at the

entry node for the link. Example 2 of their paper shows that the strong
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boundary condition, namely the one given on the first line, cannot always be

satisfied.35 In their example, departure density is higher than specified by the

boundary condition, but volume is lower. In fact, this example also justifies

first proving existence of a solution in the case of a strictly increasing flux

function, and turning later to the case of a weakly increasing flux function.36

In this framework, when density  increases, () weakly decreases whereas

©() weakly increases. Thus, speed and volume are (weakly) monotoni-

cally related. This rules out some interesting cases of hypercongestion, where

there are multiple speeds that will accommodate the same volume. Although

it is more complicated, we conjecture that an extension of the model could

accommodate these cases by eliminating Assumption 3 and allowing payoff

discontinuities at nodes using the following technique. Strub and Bayen (2006)

allow a boundary condition at the end of a link as well as the beginning of a

link, and this can combined with Khan’s (1989) generalization of Schmeidler

(1973) to upper semicontinuous payoff functions to obtain existence of Nash

equilibrium. However, as Strub and Bayen (2006, section 2) note, boundary

conditions on both ends of a link can cause inconsistencies (or gridlock) in the

density on a link, and the possibility of no solution. That is a second reason

why they use a weak formulation of boundary conditions that allows violation

of strong boundary conditions under certain circumstances. The extension

to allow more general flux functions would require weak boundary conditions,

and thus the potential loss of cars.

A final issue concerning a decreasing flux function is that standard concave

flux functions that are decreasing for high traffic densities generally have a

density ∗ at which ©(
∗) = 0, and traffic comes to a halt. This could be

permanent and part of an equilibrium, for example if a high enough density

leaves home at the first opportunity.

We state origin departure boundary conditions (cars entering a link per

hour) in terms of volume rather than density (cars per mile). This is a very

important distinction. A strategy profile of commuters determines initial

volume, namely departures per hour, and not departure density, unless density

is completely determined by volume. In general, both departure volume and

departure density must be specified in Nash equilibrium.

35The boundary condition at the right endpoint of the link is immaterial to this example.
36Of course, it would be possible to use the weak boundary condition and allow more

general flux functions.
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Definitions: Let

Ω ≡
n
(b  ) ∈ £0 ¤2 |  ≥ bo (6)

D ≡
©
 : Ω→ [0 ()] measurable | for (b  )  ¡b 0  0¢ ∈ Ω: (b b) = 0,¯̄

 (b  )− 

¡b 0  0¢¯̄ ≤ (0) · ¡¯̄b − b 0¯̄+ | −  0|¢ª
D ≡

Y
=1, 6=

D

We use square block metric for the Lipschitz condition as a matter of con-

venience.

The following definition comes from Strub and Bayen (2006), adapted to

our context. Interpretations immediately follow the definitions. For further

discussion, see also Bressan (2000).

Definition: A collection of measurable functions
nb( · ·)b

o
=1, 6=

,

where b( · ·) : [0 ]× [0 ()]→ [0  ] and b ∈ D, is called a so-

lution to the conservation law (3) with initial and boundary conditions if, for

every  and  ( 6= ), for every  ∈ R, for every 1 function  : (0 )→
R+ with compact support, for every 1 function  : (0 )× (0 ())→
R+ with compact support, the following hold:

0 ≤
Z ()

0

Z 

0

¯̄̄ b(  0 0)− 
¯̄̄
· (

0 0)


(7)

+
³ b(  0 0)− 

´
·
h
©

³ b(  0 0)
´
−©()

i
· (

0 0)


 00

and there exist 2( − 1)2 sets of Lebesgue measure zero: 0
 ⊆ [0 ()],


 ⊆ [0 ], such that for all  = 1   ,  6= ,

lim
→0,  ∈0

Z ()

0

¯̄̄ b(   0)
¯̄̄
0 = 0

lim
→0, ∈



Z 

0



³ b(  0 ) (
0)
´
( 0) 0 = 0

where

 ( ) ≡ sup
∈()

((− ) · [©()−©()])

 ( ) ≡ [inf( ) sup( )] (8)

b(b  ) = Z 

 
³ b(  0b(b   0)) 

´
 0
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() ≡ (9)

©−1

Ã
({ ∈  | 1(()) = , 2(()) = ,

¯̄
()− 

¯̄
 })

2
+

X
0=1, 0 6=

©0

³ b(0   (0))
´!

Remark 1: The crucial but subtle connection between the functions b andb is through equation (9), called the boundary condition, and definition (2).
Condition (9) gives entry into a link by those just departing from their origin

node and those continuing their travel through the node from other links. We

shall (temporarily) make the assumption that © is strictly increasing, so

that its inverse is well-defined.

Remark 2: What we call a solution is actually a refinement of other solution

concepts used in the literature that are more obviously related to equation (3).

The least restrictive of these is the concept of distributional solution, followed

by the more restrictive weak solution. The (yet more restrictive) solution

concept we use is generally called an entropy weak solution in the literature.

Motivation for using this solution is that although we have existence theorems

for all of these solution concepts, uniqueness holds only for the entropy weak

solution concept. There is also intuition for the refinement in terms of stability,

usually called admissibility conditions, in the mathematics literature we have

cited.

Remark 3: It is important to provide at least a heuristic explanation,

part of the folklore in the literature, about why this represents a solution

to the partial differential equation or conservation law (3), since there is no

obvious connection between the partial differential equation and what we call a

solution.37 Suppose that  can be chosen so that



is close to an indicator

function for some set in [0 ] × [0 ()] and



is close to an indicator

function for that same set multiplied by 1

( ())
, so that we can focus

on the integrand in inequality (7). If we can choose another function so

that these derivatives are close to −1 multiplied by these functions,38 then
37Evidently, this is one of the barriers to entering this literature.
38Notice that these restrictions are on the derivatives of  rather than on  itself, so

it is possible to make the derivatives negative while satisfying the non-negativity constraint

on . To be consistent with compact support, this requires an approximation to jumps in

the derivative for example close to  = 0 or  = 0.
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inequality (7) implies: ¯̄̄ b(   )− 
¯̄̄
+


³ b(   )− 

´
·
h
©

³ b(   )
´
−©()

i
· 1


³ b(   ) 

´ = 0
Dividing by 

³ b(   )− 
´
, we obtain³ b(   )− 

´
+
h
©

³b(   )
´
−©()

i
· 1


³ b(   ) 

´ = 0
Now choose  = b(  − 1


 ) for  = 1 2 3  Then dividing by 1


and

taking limits as →∞ yields

 b(   )


+©0

³ b(   )
´
· 
b(   )


· 1


³b(   ) 

´ = 0
This expression is the same as (3).

Theorem 1: Suppose that  satisfies Assumption 1 (so that © is Lip-

schitz) and that feasible routes are restricted to satisfy Assumption 2. Sup-

pose further that for all  ∈ N ( 6= ) flux © satisfies  −  0 ≤  ·
[©()− ©(

0)] for    0, where   0,39 and that both ©−1

³
()

2

´
6= ∅ 40

and ©(0) = 0. Then to each dynamic commuting route structure (
  ),

there corresponds a unique solution
nb( · ·)b

o
=1, 6=

.41

Remark 4: The case where © is weakly increasing and Lipschitz, as in

the examples, will be dealt with when existence of equilibrium is considered.

For technical reasons, it is easiest to consider this case as a limit of the cases

where © satisfies the conditions of Theorem 1. Bressan (2000, p. 2) suggests

an example where © is strictly increasing:

©() = 1

µ
ln

2



¶
 (0 ≤  ≤ 2)

39A sufficient condition is: Φ is 
1 with Φ0  0.

40This condition is sufficient, but not necessary, as illustrated by the example in the

introduction.
41Given the definitions of a solution to the conservation law both here and in the math-

ematics literature, the solution b( · ·) is only unique up to sets of measure zero in
[0 ]× [0 ()]. This is important but rarely noted.
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Remark 5: One issue concerning our system is how we define a solution.

Our system in b is generally rather discontinuous, so it requires special treat-
ment. There are alternatives to the technique we use, which we consider to

be the most straightforward given our framework. One such alternative is

to assume that the flux function © is smooth and either strictly convex or

strictly concave.42 The conservation law is then called strictly hyperbolic; see

Bressan (2000), particularly section 10.2. We can then define a Filippov so-

lution (Filippov, 1973) to this problem, that was introduced into economics

by Ito (1979).43 Colombo and Marson (2003) and particularly Marson (2004)

can be applied to obtain existence and uniqueness of a solution.44 However,

we do not place further restrictions on the flux.

Remark 6: It is important to discuss the assumption ©−1

³
()

2

´
6= ∅. We

are taking departure strategies as times of departure. This leads naturally to

boundary conditions for the initial link of a route that are phrased in terms of

cars per hour, or traffic volume. To start cars on a route, we must rephrase

this in terms of density, cars per mile, so that the conservation law (3) can

be applied. Since volume at zero density must be zero by definition (4),

this assumption ensures that for every volume that is possible as a boundary

condition for the initial link, there is a density that will generate it. In the

case where the density ©−1 (·) is not unique, the density selected from the

inverse must be specified as part of the equilibrium concept.

Remark 7: There is an interesting conceptual issue regarding the tran-

sition between links on a route at nodes. Depending on what one wants to

conserve in passing from one link to the next, either volume (cars per hour)

or density (cars per mile), the transition could be different or even impossi-

ble. We note that some of the literature takes the position that it is density,

not volume, that should be conserved, since boundary conditions are always

phrased in terms of density. Consider, for example, () = 

. Then volume

is constant at , whereas density can be any positive number. For this ex-

ample, transitions between links with differing  that preserve volume could

42Notice that the triangular flux function, often used in transportation engineering, is

neither smooth nor strictly concave.
43Formally speaking, we could introduce the general definition of a Filippov solution and

then show that there exists one with finite total variation, but here we follow Columbo and

Marson (2003) and Marson (2004) who skip this step because this fact is already well-known.
44In fact, Strub and Bayen (2006) use a strictly concave flux function in their application

in section 5 to the I-210 in Los Angeles. Thus, they could have used a Filippov solution

instead of a weak entropy solution for their application.
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be impossible. Nevertheless, we take the position here that it is volume that

is conserved when passing through a node, as given in (9), as it seems more

natural and appropriate. Thus, speed functions such as () = 

are excluded

by the assumption ©(0) = 0.
45

The proof of Theorem 1 can be found in the Appendix. Formally, we prove

that for given departure times and route choices the system behavior given byn³b( · ·)b(· ·)
´o

=1
exists and is uniquely defined. To accomplish

this, we apply Schauder’s theorem in a slightly unorthodox manner to the set

of boundary conditions for each node, where the boundary conditions lie in the

space of functions of bounded variation with respect to time. More precisely,

the boundary conditions give the density of cars at the start of a link at a

particular time, as in (9) or b( · 0). We could alternatively use volume

for the fixed point instead of density, but since volume and density are in

one-to-one correspondence under the assumptions of Theorem 1, there is little

difference. An added complication in the proof is that although we consider

only step functions as admissible boundary conditions at the start of any route,

we do not know a priori (before Theorem 1 is proved) that the profile of arrivals

at the end of a link, used as part of the boundary condition for the next link

on a route, is a step function.46 Thus, to prove that a solution exists, we must

define the fixed point map for any boundary condition of bounded variation,

not just step functions.

Next we examine existence of Nash equilibrium in pure strategies in our

dynamic model.

The time cost of a dynamic commuting structure (  ) for commuter

 is
R 
−

 ()()−(()+)
2

 . This is the expected time cost taken over all

perturbations of departure time.

Fix an arrival time  ∈ [0∞]. Next we introduce the arrival penalty

function  : R+ → R+. To give intuition, think of  =  ()(). The general

arrival penalty47 is a function given by

 () ≥ 0 where  () = 0
Next, we turn to some examples. In the introduction we required that:

Almost surely for  ∈ , b ()() ≤ 

45There might also be some interesting, unexplored duality between links/density on the

one hand, and nodes/volume on the other.
46With links of varying length and capacity, even these step functions can be very complex.
47It would be interesting to extend our results to commuter-specific arrival penalties. This

adds notation and complication, so we leave this to future work.
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Thus,  () = 0 for  ≤  whereas  () = ∞ for   . It is actually

more common in the literature to use an asymmetric linear penalty function;

see Arnott et al (1993). Such a specification will be used in Example 2 below.

We can allow further generalization, for example heterogeneous required arrival

times , but at the cost of messier notation. Note that in the framework

with a finite number of departure times, the penalty is actually the expectation

of  for the given choice of strategy, since commuters are randomly assigned

using a uniform distribution over a small departure time interval. We make

this precise in equation (10) next.

The individual payoff function for the dynamic model is thus:

(;   ) ≡ −
Z 

−

b ()(  0)− (() +  0) +  (b ()(  0))
2

 0 (10)

The utilitarian welfare function for the dynamic model is

(  ) =

−
Z


Z 

−

[b ()(  0)− (() +  0) +  (b ()(  0))]
2

 0()

A Nash equilibrium in pure strategies of the dynamic model48 is a dynamic

commuting structure (  ) with associated solution49
nb( · ·)b

o
=1, 6=

such that almost surely for  ∈ , there is no route  of length  ≤  and

departure time 0 for commuter  such that, computing arrival times b 0 as in
Theorem 1 for the new route and departure time,Z 

−

b ()(  0)− (() +  0) +  (b ()(  0))
2

 0 
Z 

−

b 0(  0)− (0 +  0) +  (b 0(  0))
2

 0

We note that due to the congestion externality, the Nash equilibria are

unlikely to be Pareto (or utilitarian) optimal. Example 2 below will make this

precise.

Next, in Theorem 2, we shall prove existence of Nash equilibrium in pure

strategies for our model with discrete and finite departure times by applying

Schmeidler (1973, Theorems 1 and 2). For the model with a continuum of

48Tilman Börgers has pointed out that commuters might change their minds about their

route once they are on their way to work. This is not due to uncertainty about their travel

in the context of our model, since there is none, but rather a reason to refine our equilibrium

concept to subgame perfect Nash equilibria in the context of a continuum of players and

continuous time. We leave this interesting idea to future work.
49In the case where Φ is not strictly increasing, the definition of a solution must be

modified slightly as detailed just below.
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departure time strategies, we can only obtain existence of -equilibrium in pure

strategies. It is also worth noting that since © will not be required to be

strictly increasing, we must modify (9) to:

() ∈ ©−1

Ã
({ ∈  | 1(()) = , 2(()) = ,

¯̄
()− 

¯̄
 })

2
+

X
0=1, 0 6=

©0

³ b(0   (0))
´!

This adds another layer of complication to Nash equilibrium in the case where

© is not strictly increasing. We shall return to this important issue after

Example 2, where it will be made less abstract.

Theorem 2: Under Assumptions 1-3, if the penalty function  is contin-

uous50 and for all  ∈ N ( 6= ) ©−1

³
()

2

´
6= ∅ and ©(0) = 0, there

exists a Nash equilibrium in pure strategies.

One can prove that a utilitarian optimum exists for the discrete departure

time model under the assumptions of Theorem 2. Instead of looking at a

continuum of individual strategies, give the social planner the control vari-

ables that are the measure of commuters using each route at each departure

time. The control vector is finite-dimensional. Assume, to begin, that © is

strictly increasing in  . Under the assumptions used in Theorem 1, densities

and utility levels are well-defined for each departure and route strategy profile.

In the proof of Theorem 2, found in the Appendix, it is shown that destina-

tion arrival times are continuous in the departure and route strategy profile.

Thus, the utilitarian objective is continuous as a function of the measure of

commuters using each route and departure time, so an optimum exists.

Consider next the case where © is non-decreasing in  . As usual, take

a sequence of initial conditions converging to the supremum. These initial

conditions are in terms of volumes and routes, but there exists associated

departure densities (per mile instead of per minute) associated with these

volumes such that the supremum is approached. In the proof of Theorem

1, the only use made of © strictly increasing in  is to prove that b is
unique, so there is an associated sequence of densities such that the optimum

is approached. Following the remainder of the proof of Theorem 2 (that proves

50Although some of our examples, such as the one in the introduction, feature a discon-

tinuous  , a nearby continuous  with sufficiently steep slope just after the arrival time

would work just as well, but would distract from the point of the example.
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continuity of the objective in the strategy profile), and applying the dominated

convergence theorem, the optimum will be achieved in the limit.

Example 2: What does Nash Equilibrium look like in the case of a linear

penalty function? This is important for applications, as much of the literature

uses such a specification. It is actually quite interesting. Suppose that

 () =

(
 · ( − ) if  ≥ 

 · ( − ) if  ≥ 

where ,   0. Notice that the late work arrival penalty  should generally

be larger than the early arrival penalty . It would be logical to flip these

coefficients for the commute home, but in some cases it might also make sense

to use departure penalties rather than arrival penalties for the commute home.

(a) To fix ideas, we consider the example from the introduction, with

one link and two nodes, modified for this penalty function. Capacity of the

link is  = 1, whereas travel time on the uncongested link is 1. At a Nash

equilibrium, utility must be equalized across commuters, for otherwise everyone

will imitate the happiest ones only. Fortunately for urban economists, this

is a familiar condition. There is mass 3
2
of identical commuters. Consider

an example with 2 departure times, 1
2
and 3

2
. Those who choose departure

time 1
2
actually leave at a random time distributed uniformly between 0 and

1, whereas those who choose departure time 3
2
actually leave at a random time

distributed uniformly between 1 and 2. Let  = 7
2
and  =  ≤ 1

3
. It

will turn out that in a Nash equilibrium, the commuters who choose departure

time 1
2
travel at the speed limit, whereas the commuters who leave at time 3

2

travel slower and arrive later. The volume © of departures will be 1
2
on [0 1]

but 1 on [1 2]. Suppose the density of commuters who choose departure time
1
2
is 1

2
, whereas the (endogenous) density of commuters who leave at time 3

2

is called 0  1. For those who choose departure time 1
2
, their travel time

is 1 whereas their expected early arrival penalty is 2. For those departing

at time 3
2
, their travel time is 0 whereas their expected early arrival penalty

is  · (7
2
− (0 + 3

2
)). Setting these negative utilities equal to each other, we

obtain 0 = 1
1− . Notice that, similar to Example 1, we can create a Pareto

improvement by reducing the density of agents departing at time 3
2
from 0

to 3
4
. Their volume decreases to 3

4
and their speed increases to 1. Density

and volume for those departing at time 1
2
increase from 1

2
to 3

4
, but their speed

remains 1. The payoff to those departing at time 1
2
remains − (1 + 2), but

the payoff to those departing at time 3
2
increases to − (1 + ). This disrupts

the equal utility condition.
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(b) To examine determinacy of Nash equilibrium, consider next the case

where the total measure of consumers is 2. Nash equilibrium volume will be

constant at 1 on [0 2]. Density and speed are 1 for commuters departing on

[0 1]. Density for commuters departing on [1 2] is 1
1− , so speed is 1−. More

generally, keeping volume the same, we can increase the density on [0 1] to

 ≥ 1,  ≤ 3
2
− 

1− . Then the payoff to commuters departing in that interval

is − ((1− ) + 3). Nash equilibrium density for departures on [1 2] will

be  + 

1− , so there is a continuum of Nash equilibria indexed by . The

equilibria are Pareto ranked, and the equilibrium with  = 1 is best. To

examine how equilibrium depends on the grid, we modify the example to allow

any choice of departure time. Take  =  ≤ 1
5
. Nash equilibrium volume will

again be constant at 1 on [0 2], but starting density will vary; it is 1+ 

1− · for
 ∈ [0 2]. The total cost of travel for a commuter departing at time  inclusive
of penalty is 1+ 

1− ·+(72−−(1+ 

1−)) = 1+
5
2
+( 

1−−− 2

1− ) = 1+
5
2
,

independent of departure time  . If the last arrival is to occur exactly at 7
2
(so

the constraint on departure times does not bind), take  = 1
5
. More generally,

other equilibria have departure density as + 

1− · for  ≥ 1. There remains
a large number of equilibria. The payoff to every agent is −( (1− ) + 7

2
),

so equilibria are again Pareto ranked. If the last arrival is to occur exactly at
7
2
, then  and  satisfy  = 3

2
− 2

1− .

(c) To explore further the nature of equilibria for this example, notice that

if we allowed departures at time 52, each commuter would unilaterally deviate

to this departure time, since travel time would be 1 whereas the penalty would

be 0, so net utility would be higher than equilibrium utility. One way to

rectify this is to impose a arrival penalty of at least 12 for all arrivals at or

after time 72. This would allow the equilibria detailed in (b) above to persist

even under more general departure times.51 An alternative to this penalty

function would employ a larger mass of agents and a single peaked departure

density with the peak at time 2. In that case, the late arrival penalty  trades

off against a lower density for later departure times. The commuters departing

after time 2 will catch up to the commuters departing before them and slow

down. However, their commuting time will be shorter than those departing

at time 2 due to a lower initial density. Calculations for this modification are

quite messy either with continuous or discrete departure times, as they involve

51The reader will notice that this is not quite true, since the choice of departure time 5
2

implies randomization over the departure time interval [2 3]. But inclusion of randomization

in this argument simply requires that the penalty for late arrival be increased to at least 1.
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moving thresholds.52

Note that the static model cannot generate equilibria that feature departure

density monotone increasing in time.

The dynamic commuting game and the Nash equilibrium concept in our

context has more in common with those of a generalized game than standard

games; see Debreu (1952) for the origin of generalized games. The reason

is that, given a strategy profile for all players, departure volumes and routes

are determined, but if volume and density are not one to one, then departure

density can be any density that yields the given departure volume. This is

highlighted in Example 2. In other words, the choice of (pure) strategy by all

players does not completely determine their payoff. The way to address this

issue is to include a departure density (consistent with departure volume) in the

equilibrium concept, as we have done, so that commuters can calculate their

payoff for any strategy they choose given the aggregate departure volume and

density. An individual commuter’s choice does not alter either the departure

volume or density. This is a big advantage of using a non-atomic model of

commuters.

Frascaria and Olver (2022) explore a model with arrival penalties but a

fixed link transit time independent of traffic in a dynamic model. They explore

Nash equilibrium with tolling that results in an optimum.

3 Applications

3.1 Can the Static Equilibrium be Supported by a Dy-

namic Equilibrium?53

Given identical exogenous data for the static and dynamic commuting games,

are Nash equilibrium densities in the static and dynamic models the same?

In other words, is the static model a reduced form of the dynamic model?

This is important for addressing the issue of whether the static model makes

sense. For if the answer to this question is negative, then there should be no

interest in the static model, since its equilibrium behavior is different from the

52An interesting proposal for equilibrium selection for the model in part (b) is to allow

departures at negative times, and take the limit as the allowable negative departure times

tends to zero. This would select the equilibrium where the.departures at time 0 must travel

at the maximum speed.
53The ideas in this subsection owe much to Anas (2007) and to discussions with Alex

Anas.
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analogous dynamic model, and the real world is dynamic.

For simplicity, we return now to the examples used in the introduction,

namely where there is no penalty for early arrival and an infinite penalty for

late arrival. One could imagine that the static model represents some sort

of steady state of the dynamic model, where commuters are introduced at

constant volumes and densities at all the nodes, and the densities in the links

are constant over time. But with a fixed arrival time (say 9 AM), a steady

state does not make sense. The time profile of equilibrium departures will

generally not be constant over time, since everyone must get to work by the

arrival time. Even if arrival time varied by commuter, one would not expect

to see a steady state attained.

For brevity in examining the equilibria of the static and dynamic models,

we use the example in the introduction and compare equilibrium speeds and

travel times in the two models.

Example 3: Take  = 1
2
for the example in the introduction, and take the

arrival time to be  = 3. For the static model, speed is 1
2
and time on the link

for each commuter is 2. For the dynamic model, the congested commuting

pattern is no longer a Nash equilibrium, because the last commuter arrives at

time 4. The uncongested commuting pattern remains a Nash equilibrium, but

features speed 1 and travel time 1.54

There is a clear trade-off in constructing the dynamic model, the point of

this short subsection. Do we want a model closer to the static model in terms

of equilibrium, or do we want a model closer to reality?

Verhoef (1999) studies a similar problem in a very different class of models,

and concludes (p. 365) that, “For static models of peak demand, it was argued

that for such models to be dynamically consistent, rather heroic assumptions

on the pattern of scheduling costs have to be made.”

3.2 Welfare Properties of Nash Equilibrium

Equilibrium selection is an important issue in one shot congestion games with

Pigouvian congestion taxes. Under such taxes, there can be multiple Nash

equilibria, only some of which are efficient.55 As remarked in the introduction,

54Without an arrival time, it’s easy to argue that neither the static nor the dynamic model

is a reasonable model of the morning commute.
55We do not provide an example here, both because they are available in the literature

(for more macro models) and because, as will be apparent from Theorem 3, examples in our
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Sandholm (2007) shows that with a finite number of commuters, an evolution-

ary process, and Pigouvian taxes, the outcome will be efficient. A major

limitation of this work is the assumption of a common utility function with

idiosyncratic perturbations, which seems to rule out heterogeneous origins and

destinations.

Although that approach is clearly interesting, we take a completely differ-

ent approach here, motivated by our examples. A major advantage of our

approach is that we can compare non-trivial commutes (home to work) with

their reverses (work to home), to our knowledge absent in the literature. As

we wish to focus on departure times rather than routes in the dynamic model,

we discuss the following restrictions:56

Definitions: An outbound shrubbery network is a set of routes R ⊆
R such that for any  ∈ R∩R, 0 ∈ R0 ∩R, 1() = 1(

0) and there do

not exist 1     and 1  0  0 with −1() 6= 0−1(0) and () = 0(
0).

An inbound shrubbery network is a set of routes R ⊆ R such that for any
 ∈ R ∩R, 0 ∈ R0 ∩R, () = 0(

0) and there do not exist 1    

and 1  0  0 with () = 0(
0) and +1() 6= 0+1(

0).

These are generalizations of inbound and outbound (directed) tree net-

works. The difference is simply that we allow only the outermost node to be

the same for two or more branches, possibly forming a loop. Simple examples

will be given below.

In terms of commuting, an inbound shrubbery network might be a reason-

able model of commuting from home to work, whereas an outbound shrubbery

network might be a reasonable model of commuting from work to home. In

terms of electronic networks, this might not be a good model of the internet,

but tree structures are often used in local area networks. The property of

interest for an outbound shrubbery network is preventing mergers of routes at

nodes where traffic continues together along the next link.

Why are we introducing a restrictive condition like this? It is one way to

sort out the efficiency properties of Nash equilibrium in our dynamic model.

What is perhaps strange but interesting is that on a two way network, commut-

ing to work may be inefficient, whereas commuting to home might be efficient.

In other words, reversing the commute on a directed network can change the

efficiency properties of Nash equilibrium.

framework with non-constant (or non-zero) Pigouvian taxes will have relatively complicated

route structures. For instance, a one link example won’t work.
56Extensions will be discussed at the end of this subsection.
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Notice that both types of shrubbery networks satisfy Assumption 2: R ∩
R ⊆ R, R ∩R ⊆ R.
We wish to examine the similarities and differences between commuting

from home to work and commuting from work to home. Since networks are

arbitrary in our general framework, we focus on shrubbery, and begin our

analysis with an example. Most of the intuition can be gleaned from this

example. What is important for our purposes is asymmetry.

Example 4: First, consider the commute from a common home location 

on the right to a common work location  on the left, via through either node

 or node  followed by a merge at node , as represented in Figure 3:

· 

. -
· ⇐= ⇐= · · 

  - .
· 

Figure 3: Example of an inbound shrubbery network

For expositional clarity, consider the path  to be just one link, and

similarly for; we have inserted nodes and only to distinguish between

the two paths. Suppose that rush hour is from time 0 to time 1 with two

possible departure times: 14 and 34, where commuters choosing the first

departure time are uniformly distributed over actual departure times [0 12]

and commuters choosing the second departure time are uniformly distributed

over actual departure times [12 1]. The length of links  and  is 1,

whereas the length of link  is 2. Speed on links between nodes  and  is

given by min
n
1

 1
o
. Speed on the link between nodes  and  is given by

min
n
1

 1
o
+ 1

8
. There is no arrival time penalty; it’s not very natural when

comparing a commute and its reverse, though the examples and theorem can

likely be extended in this direction. There is measure 2 commuters travelling

from node  to node .

Let’s first examine Nash equilibrium. Consider the symmetric strategy

profile where measure 12 commuters choose route  and choose depar-

ture time 14 and thus are uniformly distributed with volume 1 over [0 12],
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whereas measure 12 commuters choose route  and choose departure

time 34 and thus are uniformly distributed with volume 1 over [12 1]. As

always, we must be careful about how volume (cars per hour) translates into

density (cars per mile), particularly at nodes. In this case, we set density

 = 1, so speed is 1. Similarly, commuters choosing route  are split:

measure 12 choose departure time 14 and are uniformly distributed over

[0 12] with volume 1, whereas measure 12 choose departure time 34 and

are uniformly distributed over [12 1] with volume 1. Again, density  = 1.

At the merge node , volume is 2. On the link , set density  = 8, so

speed is 1
4
. Each commuter experiences a total travel time of 9: travel time

is 1 on the initial link, and 8 on the link between node  and node .

Next consider the following slightly asymmetric strategy profile that will

not be a Nash equilibrium. The volume and density departure schedule for

commuters who use link  remains the same as above. Commuters who

use link  will have the following departure schedule. Measure 1
2
depart at

time 14. For those who depart at time 14, volume is 1, the departure density

is 2, and initial speed is 1
2
. Measure 1

2
depart at time 34. For those who

depart at time 34, volume is 1, the departure density is 2, so initial speed is 1
2
.

The first cohort to arrive at node  will be those using link  who depart

in [0 12], and who arrive at node  at times in the interval [1 32]. Next

are the commuters using link  who depart in [12 1], and who arrive at

node  at times in the interval [32 2]. The next commuters to arrive are the

commuters using link  who depart in the interval [12 1] and who arrive

at node  at times in the interval [2 52]. Finally, the cohort of commuters

using link  in [12 1] arrive at node  at times in the interval [52 3].

Notice that the overlap in arrival times at node  is of measure zero. At the

merge node , volume is 1, in contrast with the Nash equilibrium, where it

is 2. So traffic can travel faster along this segment; set density  = 8
9
and

speed at 9
8
. Therefore, in the end, travel time for all commuters using link

 is 1 + 9
4
= 13

4
 9, whereas travel time for the commuters using link

 is 2 + 9
4
= 17

4
 9. Clearly, this strategy profile Pareto dominates the

Nash equilibrium strategy profile, but is not a Nash equilibrium itself since

commuters using link  receive a lower utility level than those using link

.57

Next we reverse the commute. The structure of permissible departure

57If the utility function is linear in money, the Pareto efficient allocation could be imple-

mented by charging a toll at node  that is equal to the difference in travel time between

the two routes.
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times and speed as a function of density are the same. The new diagram is

represented in Figure 4:

· 

% &
· =⇒ =⇒ · · 

  & %
· 

Figure 4: Example of an outbound shrubbery network

A Nash equilibrium and utilitarian optimal strategy profile has measure

12 of each type (for a total of 1) departing work at node  at each of the

two departure times. The departure volume is 2, the departure density is 8,

whereas initial speed is 1
4
. Travel time on link  is 8. Volume on the second

link (either  or ) is 1 whereas density is 1, so the speed is 1. Time

spent on the second link is 1, so the total travel time of each commuter is 9.

The next theorem makes this example more general:

Theorem 3: With an outbound shrubbery network, suppose that for all

 0 ∈ R ∩R, −2() = −2(0), −1() 6= −1(0), () = (
0) implies

−2()−1() = −2(0)−1(0) and −1()() = −1(0)(0). Under Assump-

tion 1, assuming58 


 0, for all  ∈ N ( 6= ), ©−1

³
()



´
6= ∅,59

©(0) = 0, and  = 0, there is a Pareto optimal60 strategy profile that is also

a Nash equilibrium. Thus, there exists an efficient Nash equilibrium.

The proof of Theorem 3 is in the Appendix. Thus, under these additional

assumptions, efficiency can be achieved not through taxes, but by equilibrium

selection. In other words, the “Price of Stability” is 1. Prisoners’ dilemma

problems are ruled out by the structure of the game, specifically these ad-

ditional assumptions. The first half of Example 4 is an inbound shrubbery

58Sharp-eyed readers will notice that this condition is not satisfied by Example 4. We

can weaken this condition to: 
 +

| 0, where + denotes the right-hand derivative of the
function and | denotes evaluation of the derivative at the departure time profile that assigns
equal volume and density to all departure times and routes for a given type of commuter.
59As in Theorem 1, this condition is sufficient but not necessary.
60Although we have not defined it formally, Pareto optimum is the usual concept in our

context of a continuum of agents.
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network that has no efficient Nash equilibrium, so an analog of Theorem 3 for

an inbound shrubbery network is impossible.

Since the simple example with two nodes and one link from the introduction

is trivially an outbound shrubbery network, it cannot be generally true that

all Nash equilibria are efficient, so the “Price of Anarchy” is generally greater

than 1. For such a simple example as well as for outbound shrubbery networks

(the evening commute) more generally, congestion pricing is unnecessary if

equilibrium can be selected, for example by using flow control. In contrast,

congestion pricing seems necessary for other commutes.

The result can likely be extended, for example allowing limited asymmetry

in the final links of routes. It would be interesting to extend the result to

allow multiple employment subcenters; see McMillen and Smith (2003), who

evaluate which cities are monocentric and which ones are polycentric.

Finally, the larger implications of this subsection are important for the

comparison of the dynamic and static frameworks. It is hard to imagine an

analog of Example 4, that relies on flexible departure times, in a static model.

In fact, for the specific networks used in Example 4, Milchtaich (2006) Theorem

2 applies, so every Nash equilibrium is weakly Pareto efficient for the static

model. For the dynamic model, it depends on the direction of commute. As

should be apparent from the examples, the normative properties of the dynamic

and static models as well as the number and variety of equilibria differ. A great

deal of work remains to be done on empirical and experimental approaches to

the comparison of the models, for example in equilibrium selection.

4 Conclusions

We have asked and answered several questions about commuting using two

models, one static and one dynamic. For each model, we have shown that a

Nash equilibrium in pure strategies exists for the one shot game, that a Pareto

optimum exists, and that Nash equilibrium is generally not Pareto optimal.

Beyond that, we have shown that all Nash equilibria of the static model can

look very different from any Nash equilibrium of the dynamic model. Since

the static model features behavior unlike the dynamic one, we reject the former

as a reduced form of the latter and stick with the dynamic model. Finally, we

have examined the welfare properties of Nash equilibrium in the particular case

of a shrubbery network, and found that equilibrium might not be efficient for

the morning commute, but under some conditions there always is an efficient
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Nash equilibrium for the evening commute. Thus, congestion pricing is more

important for the morning commute, whereas equilibrium selection (perhaps

via flow control) is more important for the evening commute. Further effort

should be devoted to discovering the welfare properties of Nash equilibrium

on specific directed networks. In sum, what we have shown is that a model of

congestion using microfounded behavior has very different properties from the

reduced form models used in the literature.

Our commuting model can be reinterpreted as a model of internet con-

gestion. In this context, local area networks often have a tree or shrubbery

structure, so for example the results on efficiency of Nash equilibrium and

the consequences for congestion tolls can be reinterpreted in this framework.

Much work remains to flesh out the application to the internet. At the mi-

cro level, routes are chosen by the TCP/IP software as a proxy for the user,

though the user chooses the time of day. At the macro level, whereas we have

only considered small users, it is likely that the supply side involves strategic

and competitive large players, such as internet service providers and content

providers. Moreover, there is likely asymmetric information, for example the

reason why internet speed might be slow might be unknown to some end users.

Malone et al (2017) offers some interesting insights into these issues. Ques-

tions about equilibrium and optimum, like those put forth here, should be

addressed.

A natural question is: Are the Nash equilibria of the model stable under

finer departure grids? The equilibria that have a uniform distribution of

departures and arrival penalties survive no matter how fine the time grid is,

even in the limit when commuters can choose their precise departure time.

This includes the examples in the introduction, Example 3 and Example 4. It

also includes the cases addressed in Theorem 3, with an outbound shrubbery

network but no arrival time.

For simple examples, the Nash equilibria of our model can be solved ana-

lytically. For more complex examples, the proof of Theorem 1 indicates that

a numerical solution technique involves nesting the solution of a discontinuous

system of differential equations inside a fixed point solution algorithm. Turn-

ing to empirical estimation, Bertsimas et al (2015) provide general estimation

techniques for nonparametric structural models that include standard static

commuting models as a special case. Strub and Bayen (2006. Section 5)

provide a technique for the dynamic model with one link. We conjecture that

it would be possible to combine these to address our dynamic model.
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In a companion paper to this research, Berliant (2024) examines the set

of Nash equilibria in the infinitely repeated versions of both the static and

dynamic commuting games, and the folk theorem is used to obtain these large

sets. There we present some preliminary evidence from the shutdown of an

expressway in St. Louis that commuters do not always play one shot Nash

equilibrium. We also discuss the application of the anti-folk theorem to our

specific game, namely conditions under which the Nash equilibria of the infi-

nitely repeated game are the Nash equilibria of the one shot game.

Self-driving cars would represent another interesting application of the

model. Given the detailed microstructure of the model, a centralized sys-

tem of self-driving cars could compute and implement an efficient allocation.

A more decentralized system could have some cars that are self-driving and

others that are driven by humans. Nash equilibrium could be explored in this

context. A useful reference for these issues, with an emphasis on ride-sharing

and tolls, is Ostrovsky and Schwarz (2018).

In the same vein, the supply side of our model is passive. We have already

mentioned how strategic behavior in the internet application on the supply side

might be studied. Similarly, platform markets for ride services in the commut-

ing application would allow strategic behavior, for example a monopoly. This

would affect not only the characteristics of Nash equilibrium, but equilibrium

selection as well. One might view ride matching and routing as a constrained

planning problem. This can also be applied to bus times and routes, where

the local government has market power.

Our model could be extended to allow elastic demand for travel to or from

work. The extension of the model to allow land markets and endogenous

choice of household residence and job location would also be interesting. The

extension to multiple lanes of traffic and passing would be useful. In part,

this can be accomplished by introducing more links between a pair of nodes,

as in Example 4, but this alteration does not allow lane changes. Multiple

modes of transport could potentially be handled by making non-unique links

between the same nodes mode-specific, for example trains and cars.

The dynamic model should be applied to real world commuting. Since it

can accommodate an arbitrary (exogenous) route structure, it has both pos-

itive and normative content, especially regarding Pareto improvements. For

example, it can be used to perform cost benefit analysis with respect to chang-

ing infrastructure and mass transit. More specifically, it could be used to

examine adding lanes (increasing capacity ), adding public transit to re-
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duce road demand, and tolling links. A prerequisite would be to incorporate

elastic demand for trips into the model, since all of these alterations to the

model could have large effects on demand. A first step would be the calcula-

tion of comparative statics in each of the exogenous variables.
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5 Appendix: Proofs

5.1 Proof of Theorem 1

Preliminaries: We want to find a unique fixed point in initial conditions at

the start of a link over time, that we will call , and progress along a link that

we have defined as . The main issue is consistency of the commuting pattern

with boundary values on links, namely the density of departures along a link

from a node over time.61 These initial conditions are partly exogenous, due

61For the proof of Theorem 1, we have assumed that volume is strictly increasing in

density, so initial conditions can be phrased in terms of either.
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to the fixed choice of departure times and routes for Theorem 1 (in contrast

with Theorem 2), and partly endogenous, for nodes along a commuter’s route

that are not the point of origin. So we employ a fixed point on this data; it

will be in a subspace of functions of bounded variation.

We have already defined the space where  lives; see (6). Notice that for

Theorem 1, flux © is one to one. Recalling that each permissible route can

go through a given node at most once (see Assumption 2), next we define the

space of all possible boundary conditions, G:

Definitions: Let  be the Lipschitz constant for © and let  ≡
max . Fix , 0   ≤ 1


. For  : [0 ] → R+, the total variation

norm is defined as:

 () ≡ sup
(

X
=0

|()− (−1)|
¯̄
 ≥ 1,  ∈ [0 ], 0  1  · · ·  

)

Next, define the lower bound on departure density different from zero:62

 ≡ min
(
©−1

Ã
({ ∈  | ()) = ,

¯̄
()− 

¯̄
 })

2

!¯̄̄̄
¯ = 1 2   ;

 ∈ R  ∈ [0 ] 1(()) = 2(()) =  ({ ∈  | ()) = 
¯̄
()− 

¯̄
 })  0

¾
 0

Number the equivalence classes of links defined by the relation º, from the

bottom class up, using the index  = 1 2  ≤ 2 −  . Define 1 ≡
( + 1) ·  and define inductively

+1 ≡ 2 · |R| · ( + 1) ·  +
 · 2 · 


+  ·

µ
2 · 2 +  ·  ·  · ©

©

¶
(11)

where © ≡ max


©

¡

¢
and © ≡ min


©

¡

¢

for  = 1 2   − 1. For link , define () as the equivalence class to

which it is assigned. Define:

G ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
½
©−1

µ
({∈|()=, |()−|})

2

¶¾
if 1() = , 2() = ;n

(·) measurable on [0 ] | 0 ≤ (·) ≤  , () = 0,  (

(·)) ≤ ()

o
if () = , +1() =  for some   1

62The reason we can define  in this way is that, given that volume is strictly increasing

in density, density cannot decrease from the start of a route, though it can increase.
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Finally, define:

G ≡
Y
=1

Y
{∈R|()= for some }

G

We shall be searching for a fixed point in G. So the next step is to define
the map from G into itself.
We begin by fixing some  ∈ G. For reasons explained in the text below

equation (5), we alter it by inserting a small gap of size   0 after every

downward jump, namely where (
−)  (

+) To keep notation from

getting out of hand, we will index  by  only at the end when we let  → 0.63

The 2 in (11) accounts for the insertion of these gaps.

Definitions: For each link ,  6= , we define

( ·) ≡
X

{∈R|()=, +1()= for some ≥1}
(·)

To simplify notation, define

 ≡ ()

Notice that  (( ·)) ≤ . After some preparation, we shall define

the map T : G → G. We will call T () ≡ b. Next we begin preparations for
defining this map.

Given the initial condition

b( 0∆) = 0 ∀ ∆ ≥ 0

and the left boundary condition on each link ,  6= : b(   0) =

( ), Strub and Bayen (2006) yields existence of a unique solution (as we

have defined it) called b(  ∆) of bounded variation on (0 )×(0 ()).

We must be a little careful here, specifically at the right boundary ().

Although they only use the solution on (0 )× (0 ()), as they remark, it

is in fact defined on [0 ] × [0 ()]. All we need is that it is defined on

(0 )× (0 ()]. Next, to make the right boundary condition non-binding,

we simply set (in their notation) () = 0. Then the right boundary condition

becomes vacuous.64 The initial (in contrast with the boundary) condition is:

63As detailed in the main text, one might prefer the use of the classical solution to the

conservation law when there are no gaps inserted. In this case, less dense traffic does not

separate itself from denser traffic that follows. Then we can set  = 0.
64In fact, this is where we use Assumption 3 (or the stronger version in the statement of

Theorem 1), implying that traffic congestion does not backup onto a link at the endpoint of

that link. In particular, we ignore behavior outside the link when we solve the conservation

law for traffic on a link.
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at time 0, the density of traffic along the link is 0. Only the left boundary

condition will apply in a significant way.

Next we define a unique (b  ) ∈ D associated with b . To accomplish
this, we shall apply Biles et al (2014) Theorem 1 to the (discontinuous) ordinary

differential equation:65

(b  )


= 
³ b(   (b  )) 

´
(12)

This will require us to delve a little into the clever proof of existence of a

solution b used by Strub and Bayen (2006)66 in order to integrate it with the
structure of Biles et al (2014).67 These ideas will also be useful shortly in

order to prove that b ∈ G.
We know from Strub and Bayen (2006), p. 560, that for each∆ ∈ [0 ()],b( ·∆) is of bounded variation. But for our purposes, it will be useful

to prove the stronger assertion: For each ∆ ∈ [0 ()],

 ( b( ·∆)) ≤ 

That is next on the agenda.68

Strub and Bayen (2006) use an approximation, generally called the Go-

dunov approximation, to construct the solution that we call b( · ·). In

their notation, they consider only one link and thus drop  and . To reduce

notation, we also drop these indexes temporarily. The discrete approximation

they use is called  , where  denotes a time cell and  denotes a location cell,

65Our first attempts, before finding Biles et al (2014), tried to apply Bressan (1988,

Theorem 1). It is of some interest to see why the latter result cannot be applied. For

that Theorem, the natural upper bound on speed is the limit on speed as density tends

to zero. But then, given a simple discontinuity in b , where b is for example piecewise
constant, we can leapfrog back and forth over the discontinuity using changes in both time

and distance. This creates, in the terminology of Bressan (1988), unbounded variation in

the cone Γ . Thus, the result cannot be applied, since bounded variation in the cone Γ

is a key assumption of the Theorem.
66The keys to this proof are the Godunov construction and the Courant-Friedrichs-Lewy

(CFL) condition.
67Since there are notational conflicts between the two papers as well as with our notation,

integration requires some notational changes.
68A method for proving this, different from the one we use, would directly employ the fact

that b( ·∆) is of bounded variation for each ∆ ∈ [0 ()], with possibly different

bounds across ∆; then show that there is a uniform bound.
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and where  and  are integers. Specifically, the cells are defined as follows:

 =

∙


M ·
µ
− 1

2

¶



M ·
µ
+

1

2

¶¸
 =

∙


M ·
µ
− 1

2

¶



M ·
µ
+

1

2

¶¸
where  is the length of the link, M denotes the number of location cells

( = 1 2 M),  indexes time cells ( = 1 2 K) where K is the smallest
integer strictly larger than M


, and   0 is an arbitrary constant. The cell

sizes tend to zero (M→∞) as the approximation converges. It is important
to note that, from the uniqueness result of Strub and Bayen (2006), the limit

is actually independent of choice of .

The boundary condition is given by:

0 =
M

·
Z


( )

The next issue, both difficult and important, is to show that  ( b( ·∆)) ≤
. This is important because we must show that the exit density from a

link (as a function of time) has a uniform bound on variation so that we have

compactness and we can apply a fixed point theorem. It is a stronger require-

ment than simply showing that the exit density has bounded variation for each

given . The reason this issue is difficult is due to the Godunov scheme. As

Friedrich et al (2018, p. 8) note, “In particular, the Godunov type scheme also

does not fit into the classical assumptions of total variation diminishing (TVD)

schemes, as the total variation may slightly increase (as it is the same for the

analytical solution).” Although we wish we could directly apply their results

on bounded variation in section 3.3 of their paper, we cannot. Our framework

is simpler (as we use local flux),69 but the big hazard with the mathematics

literature on conservation laws that also applies here is that they address the

initial value problem rather than the boundary value problem. So we must

alter their clever argument substantially.

To begin, the key equation system from Strub and Bayen (2006, p. 559) is

as follows:70⎧⎨⎩ 
+1

2

is an element  of (  

+1) such that (


+1 −  ) · ©() is minimal

+1 =  −  ·
³
©(

+ 1
2

)− ©(
− 1

2

)
´

(13)

69It is easy to see how our work can be generalized to non-local flux, in the spirit of

Friedrich et al (2018).
70The definition of  can be found in (8).
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Then noting that in our particular traffic context, 
+ 1

2

=  and 
− 1

2

= −1,

and employing (13),

+1+1 − +1 = +1 −  · ¡©(+1)−©( )¢− −1+1 +  · ¡©(−1+1 )−©(−1 )
¢

=  · £©( )− ©(−1 )
¤
+
£
+1 − −1+1

¤
+  · £©(−1+1 )− ©(+1)

¤
(14)

Now consider two cases: +1 ≥ −1+1 and +1  −1+1 . In the first case,

using (14),

+1+1 − +1 =  · £©( )−©(−1 )
¤
+
£
+1 − −1+1

¤
+  · £©(−1+1 )−©(+1)

¤
=  · £©( )−©(−1 )

¤
+
¯̄
+1 − −1+1

¯̄
−  ·

¯̄
©(+1)−©(−1+1 )

¯̄
Using the fact that  ≤ 1,

¯̄
+1 − −1+1

¯̄
−  ·

¯̄
©(+1)− ©(−1+1 )

¯̄
≥ 0. Then

taking absolute values,¯̄
+1+1 − +1

¯̄
≤  ·

¯̄
©( )− ©(−1 )

¯̄
+
¯̄
+1 − −1+1

¯̄
−  ·

¯̄
©(+1)− ©(−1+1 )

¯̄
Turning to the second case, multiplying both sides of (14) by −1,

+1 − +1+1 =  · £©(−1 )−©( )
¤
+
£
−1+1 − +1

¤
+  · £©(+1)−©(−1+1 )

¤
=  · £©(−1 )−©( )

¤
+
£
−1+1 − +1

¤−  · £©(−1+1 )−©(+1)
¤

Taking absolute values, in a similar fashion we obtain:¯̄
+1 − +1+1

¯̄
≤  ·

¯̄
©(−1 )−©( )

¯̄
+
¯̄
−1+1 − +1

¯̄
−  ·

¯̄
©(−1+1 )−©(+1)

¯̄
Thus, the following holds in either case:¯̄
+1+1 − +1

¯̄
≤  ·

¯̄
©(−1 )−©( )

¯̄
+
¯̄
−1+1 − +1

¯̄
−  ·

¯̄
©(−1+1 )−©(+1)

¯̄
Next, summing terms:

M−1X
=1

K−1X
=0

¯̄
+1+1 − +1

¯̄
≤  ·

M−1X
=1

K−1X
=0

¯̄
©( )− ©(−1 )

¯̄
+

M−1X
=1

K−1X
=0

¯̄
+1 − −1+1

¯̄
−  ·

M−1X
=1

K−1X
=0

¯̄
©(−1+1 )−©(+1)

¯̄
Moving the second set of terms on the right hand side to the left and elimi-

nating common elements,

K−1X
=0

¯̄
M+1 − M−1

+1

¯̄
−
K−1X
=0

¯̄
1+1 − 0+1

¯̄
≤ ·

ÃM−1X
=1

¯̄
©(0)−©(−10 )

¯̄
−
M−1X
=1

¯̄
©(K)−©(−1K )

¯̄!
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Therefore,

·
M−1X
=1

¯̄
©(K)− ©(−1K )

¯̄
+

K−1X
=0

¯̄
M+1 − M−1

+1

¯̄
≤ ·

M−1X
=1

¯̄
©(0)−©(−10 )

¯̄
+

K−1X
=0

¯̄
1+1 − 0+1

¯̄
Now if we have chosen  large enough so that all commuters have arrived at

their destinations (at the positive minimal speed) before that time, then for

M sufficiently large,

K−1X
=0

¯̄
M+1 − M−1

+1

¯̄
= 0. In addition, the only location for

which
¯̄
1+1 − 0+1

¯̄
 0 is  = 0, and then it is bounded by  . Hence,

 ·
M−1X
=1

¯̄
©(K)−©(−1K )

¯̄
≤  ·

M−1X
=1

¯̄
©(0)− ©(−10 )

¯̄
+ 

and therefore,

M−1X
=1

¯̄
©(K)−©(−1K )

¯̄
≤

M−1X
=1

¯̄
©(0)−©(−10 )

¯̄
+





Applying the Lipschitz conditions,

1


·
M−1X
=1

¯̄
K − −1K

¯̄
≤

M−1X
=1

¯̄
©(K)− ©(−1K )

¯̄
≤

M−1X
=1

¯̄
©(0)−©(−10 )

¯̄
+





≤  ·
M−1X
=1

¯̄
0 − −10

¯̄
+





Summarizing,

M−1X
=1

¯̄
K − −1K

¯̄
≤  ·  ·

M−1X
=1

¯̄
0 − −10

¯̄
+

 · 


(15)

In fact, this inequality holds not just for location cell K, but for any location
∆ ∈ (0 ()), by setting the limit of the various sums to the location cell

containing ∆, called (∆M), rather than to K − 1. Recall that the entry

density for this link is:

 ( b( · 0)) ≤ 

and thus

M−1X
=1

¯̄
0 − −10

¯̄
≤ . Strub and Bayen (2008) show that a subse-

quence of , which is implicitly indexed byM, converges strongly (and thus
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almost surely) in 1
¡
(0 ())× ¡0 ¢¢ to the unique solution that is of

bounded variation. Since this is not pointwise convergence (and {()} ×£
0 
¤
is of measure 0 in [0 ()]× £0 ¤), it is possible that M−1X

=1

¯̄
K − −1K

¯̄
does not converge to 

³b( · ())
´
. To obtain the exit density

from this link, take a sequence {∆}∞=1 with ∆  () and lim→∞∆ =

(), and for each  construct the sequence
n
(∆M)

o∞
=1
. Then using

(15),

M−1X
=1

¯̄̄
(∆M) − −1

(∆M)

¯̄̄
is (uniformly) bounded. Applying Helly’s the-

orem, for each fixed  construct the function e( ·∆) as a pointwise limit

of a subsequence of
n
(∆M)

o∞
=1

asM → ∞. Then apply Helly’s theorem
again to obtain the pointwise limit of a subsequence of e( ·∆) as  →∞,
and call this density b( · ()). This exit density (as a function of

time) will form the basis for entry density on succeeding links. Notice that

 ( b( · ())) ≤  ·  ·  +
 · 

. (16)

By remark 2.1 of Bressan (2000), we can take it to be right continuous in .

Next, we examine whether this exit density is unique, at least among func-

tions of bounded variation that satisfy  (( ·∆)) ≤  ·  ·  +
 ·

.

Suppose that there are two different exit limits of bounded variation; call theme( · ()) and b( · ()). Now we already know from Strub

and Bayen (2006) that e( · ·) = b( · ·) a.s. (∆). The next argu-

ment parallels Strub and Bayen (2006, pp. 558-559) where they argue that

their solution is unique; we abuse notation slightly, as in Strub and Bayen

(2006, p. 558), and write  as a function of location only, independent of

time.71 We know for 1  : (0 ) → R+ with compact support and 1

 : (0 ())→ R+ with compact support,Z ()

0

Z 

0

¯̄̄ e( ∆)− b( ∆)
¯̄̄
(∆)0()+ (17)


³ e( ∆)− b( ∆)

´
·
³
©
³ e( ∆)

´
−©

³ b( ∆)
´´
· 0(∆)()∆

≥ 0
71Implicitly, this uses the idea that the indicator function on [0 ] can be approximated

by 1 functions with compact support on (0 ).
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For  approximating the indicator function of [0 ], we have:

lim sup
→0

Z ()

0

¯̄̄ e( ∆)− b( ∆)
¯̄̄
(∆)∆

− lim inf
→

Z ()

0

¯̄̄ e( ∆)− b( ∆)
¯̄̄
(∆)∆

≥ −
Z ()

0

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³b( ∆)
´´
· 0(∆)∆

Taking  to approximate the indicator function of [0 ()],

≥ lim sup
∆→()

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³ b( ∆)
´´



− lim inf
∆→0

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³ b( ∆)
´´



In sum, we have:

lim sup
→0

Z ()

0

¯̄̄ e( ∆)− b( ∆)
¯̄̄
∆

− lim inf
→

Z ()

0

¯̄̄ e( ∆)− b( ∆)
¯̄̄
∆

≥ lim sup
∆→()

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³ b( ∆)
´´



− lim inf
∆→0

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³ b( ∆)
´´



From the conditions on links at times 0 and , the left hand side (the first two

terms) are zero, we obtain:

lim inf
∆→0

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³ b( ∆)
´´



≥ lim sup
∆→()

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³ b( ∆)
´´


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As in Strub and Bayen (2006, p. 558), the left hand side is 0. The right hand

side is non-negative (recall that flux © is increasing in density). Hence,

lim sup
∆→()

Z 

0


³ e( ∆)− b( ∆)

´
·
³
©
³ e( ∆)

´
−©

³ b( ∆)
´´



= 0

Now since © is strictly increasing in  , we know that

lim sup
∆→()

°°° e( ·∆)− b( ·∆)
°°°
1
= 0,

implying that e( · ()) = b( · ()) a.s. (). Both e( · ())

and b( · ()) are of bounded variation, so by Lemma 2.1 and Remark

2.1 of Bressan (2000), by taking right continuous versions, they are in fact

equal.

Although we used the argument just above to obtain a well-defined exit

density, if we replace () with an arbitrary distance ∆, 0  ∆  (),

the same argument applies and we have that for any sequence
©
∆

ª∞
=1

with

lim→∞∆ = ∆, lim→∞ b( ·∆) = b( ·∆) a.s. (), where

 ( b( ·∆)) ≤  ·  ·  +
 · 

.

Taking the right continuous version, it follows that lim→∞ b( ·∆) =b( ·∆) pointwise.
The next step in our analysis is to examine existence and uniqueness of

Carathéodory solutions to (12), given that we have a unique solution to the

conservation law. Theorem 1 of Biles et al (2014) employs as one sufficient

condition that the number of discontinuities in b(   ·) is countable for
each  . To prove this, we first show that for each  ,  ( b(   ·))  ∞.
We shall repeat some of the arguments above with the space domain in place

of the time domain.

From (13),

+1 − +1−1 =  − −1 −  · ¡©( )− ©(−1)¢+  · ¡©(−1)−©(−2)¢
Again, we consider two cases:  ≥ −1 and   −1. In the first case,

+1 − +1−1 =
¯̄
 − −1

¯̄
−  ·

¯̄
©( )−©(−1)

¯̄
+  · ¡©(−1)−©(−2)¢

Taking absolute values and using the fact that 0   ≤ 1

, implying

¯̄
 − −1

¯̄
−

 ·
¯̄
©( )− ©(−1)

¯̄
≥ 0,¯̄

+1 − +1−1
¯̄
≤
¯̄
 − −1

¯̄
−  ·

¯̄
©( )−©(−1)

¯̄
+  ·

¯̄
©(−1)−©(−2)

¯̄
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In the second case,   −1, and

+1 − +1−1 =  − −1 −  · ¡©( )− ©(−1)¢+  · ¡©(−1)−©(−2)¢
Multiplying both sides by −1,

+1−1 − +1 = −1 −  −  · ¡©(−1)−©( )¢+  · ¡©(−2)−©(−1)¢
Taking absolute values,¯̄

+1 − +1−1
¯̄
≤
¯̄
 − −1

¯̄
−  ·

¯̄
©( )−©(−1)

¯̄
+  ·

¯̄
©(−1)−©(−2)

¯̄
In either case,¯̄

+1 − +1−1
¯̄
≤
¯̄
 − −1

¯̄
−  ·

¯̄
©( )−©(−1)

¯̄
+  ·

¯̄
©(−1)−©(−2)

¯̄
Next, fixM0 integer, 1 ≤M0≤M. Summing terms:

M0−1X
=0

K−1X
=1

¯̄
+1 − +1−1

¯̄
≤

M0−1X
=0

K−1X
=1

¯̄
 − −1

¯̄
−  ·

M0−1X
=0

K−1X
=1

¯̄
©( )−©(−1)

¯̄
+ ·

M0−1X
=0

K−1X
=1

¯̄
©(−1)−©(−2)

¯̄
Moving the first set of terms on the right hand side to the left and eliminating

common elements,

K−1X
=1

¯̄̄
M

0
 − M

0
−1
¯̄̄
−
K−1X
=1

¯̄
0 − 0−1

¯̄
≤ − ·

M0−1X
=0

¯̄
©(K−1)−©(K−2)

¯̄
≤ 0

Now
¯̄
0 − 0−1

¯̄
= 0 except for  = 1, and then it is bounded by  . Hence

 ( b(   ·))  ∞, and by Bressan (2000, Lemma 2.1), b(   ·) has
only countably many discontinuities.

With this fact in hand, Biles et al (2014) Theorem 1 and the discussion

following for the scalar case implies there exists a Carathéodory solution to

(12), and the set of all such solutions form a funnel. We take the minimum

(speed) of these, corresponding to the maximal density, since we do not allow

passing. Using the result in that paper, it is unique.

Next, we apply the arguments elaborated above to define, and discover

properties of, the map T : G → G. Let b( · ·) be the unique solution
to the conservation law on link  with initial condition 0 and boundary

condition ( ·).
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Let (b  ) be the corresponding (unique) solution to the differential
equation (12). Define:

b() = −1(· )(()) (18)

Notice that since speed   0, (b  ) is strictly decreasing in b , so b()

is well-defined.

With this preparation, we can define the image T () = b, that will depend
on both , through the solution on a link b as defined above, and , through

its inverse image b .

b() ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
©−1

µ
©(


(()))

{0∈R|for som e  (0)=, +1(0)=} ©(0(()))
· ©

³ b(   ())
´¶

if ∃  ≥ 3 with −1() = , () = ;

©−1

µ
({∈|())=, |()−|})

2

¶
if 1() = , 2() = 

(19)

The argument that b ∈ G is as follows.
First, for the case 1() = , 2() = , by definition

 (b()) = 

Ã
©−1

Ã
({ ∈  | 1(()) = ,

¯̄
()− 

¯̄
 })

2

!!
≤ (+1)·
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In all other cases,

 (b(·)) = 

Ã
©−1

Ã
© (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

·©

³ b(   ())
´ ¶¶

= sup
≥1, ∈[0], 01···

(
X
=1

¯̄̄̄
¯©−1

Ã
© (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

·©

³ b(  ())
´ ¶

−©−1

Ã
© (


(b(−1)))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b(−1)))

·©

³ b( −1 ())
´ ¯̄̄̄¾

≤ sup
≥1, ∈[0], 01···

(
X
=1



¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

·©

³ b(  ())
´

− © (

(b(−1)))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b(−1)))

· ©

³ b( −1 ())
´¯̄̄̄¯
)

≤ sup
≥1, ∈[0], 01···



(
X
=1

© (

(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

·
¯̄̄
©

³b(  ())
´
−©

³ b( −1 ())
´¯̄̄ ¾

+ sup
≥1, ∈[0], 01···



(
X
=1

¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

− © (

(b(−1)))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b(−1)))

¯̄̄̄
¯ · ©

³ b( −1 ())
´)

≤  ( b( · ()))

+ sup
≥1, ∈[0], 01···



(
X
=1

¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

− © (

(b(−1)))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b(−1)))

¯̄̄̄
¯
)
· ©

¡

¢
(20)

To simplify this expression further, we focus on the second term. For nota-
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tional brevity, define:

Ξ ≡ 1hP
{0∈R|∃  s.t. (0)=, +1(0)=}© (

0
(b()))

i ·
1hP

{0∈R|∃  s.t. (0)=, +1(0)=}© (
0
(b(−1)))

i
¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

− © (

(b(−1)))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b(−1)))

¯̄̄̄
¯

= Ξ ·
¯̄̄̄
¯̄
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´⎤⎦ · © (

(b()))

−© (

(b(−1))) ·

⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b())

´⎤⎦¯̄̄̄¯̄
≤ Ξ ·

⎛⎝⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´⎤⎦
· |© (


(b()))−© (


(b(−1)))|

+© (

(b(−1))) ·

¯̄̄̄
¯̄
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´⎤⎦
−
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b())

´⎤⎦¯̄̄̄¯̄
⎞⎠

≤ |© (

(b()))−© (


(b(−1)))|hP

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

i
+

1hP
{0∈R|for some  (0)=, +1(0)=}© (

0
(b()))

i ·
¯̄̄̄
¯̄
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´⎤⎦
−
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b())

´⎤⎦¯̄̄̄¯̄
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≤ 1hP
{0∈R|for some  (0)=, +1(0)=}© (

0
(b()))

i ·
µ

|© (

(b()))−© (


(b(−1)))|+¯̄̄̄

¯̄
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´⎤⎦
−
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b())

´⎤⎦¯̄̄̄¯̄
⎞⎠

Similarly, ¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

− © (

(b(−1)))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b(−1)))

¯̄̄̄
¯

≤ 1hP
{0∈R|for some  (0)=, +1(0)=}© (

0
(b(−1)))

i ·
µ

|© (

(b()))−© (


(b(−1)))|

+

¯̄̄̄
¯̄
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´⎤⎦
−
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b())

´⎤⎦¯̄̄̄¯̄
⎞⎠

Hence, ¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

− © (

(b(−1)))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b(−1)))

¯̄̄̄
¯
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≤
⎛⎝max

⎧⎨⎩
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b())

´⎤⎦ 
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´⎤⎦⎫⎬⎭
⎞⎠−1

·
µ¯̄̄̄

© (

(b(−1)))− © (


(b()))

¯̄̄̄

+

¯̄̄̄
¯̄
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b())

´⎤⎦
−
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´⎤⎦¯̄̄̄¯̄
⎞⎠ (21)

The key point from the last inequality is that as long asX
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b())

´
 0

or X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´
 0

then

max

⎧⎨⎩
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b())

´⎤⎦ 
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´⎤⎦⎫⎬⎭ ≥ ©

¡

¢

If both are 0, then we can ignore this term in the calculations of  (b(b(·)))
and 

³P
{0∈R|for some  (0)=, +1(0)=}©

¡


0
(b(·))

¢´
, since the differ-

ence is 0, so this term in the calculation of  is 0.

Therefore, from (20),

 (b(·)) ≤  (( · ()))

+©
¡

¢

sup
≥1, ∈[0], 01···

(
X
=1

¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

− © (

(b(−1)))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b(−1)))

¯̄̄̄
¯
)
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From (16) and (21),

≤ 2 · 2 ·  +
 · 2 · 



+©
¡

¢
sup

⎧⎨⎩
⎛⎝max

⎧⎨⎩
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b())

´⎤⎦ 
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´⎤⎦⎫⎬⎭
⎞⎠−1 ·

Ã
X
=1

|© (

(b(−1)))−© (


(b()))|

+

X
=1

¯̄̄̄
¯̄
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b())

´⎤⎦
−
⎡⎣ X
{0∈R|for some  (0)=, +1(0)=}

©

³


0
(b(−1))

´⎤⎦¯̄̄̄¯̄
⎞⎠

¯̄
 ≥ 1,  ∈ [0 ], 0  1  · · ·  

)

≤ 2 · 2 ·  +
 · 2 · 



+
 ·  · © ¡¢
©
¡

¢

⎡⎣ ((b(·))) + 

⎛⎝ X
{0∈R|for some  (0)=, +1(0)=}


0
(b(·))

⎞⎠⎤⎦
≤ 2 · 2 ·  +

 · 2 · 


+
 ·  · © ¡¢
©
¡

¢

⎡⎣ ((·)) + 

⎛⎝ X
{0∈R|for some  (0)=, +1(0)=}


0
(·)

⎞⎠⎤⎦
To bound this expression, note that if 1() = ,  ((·)) ≤ ( + 1) ·
 = 1. More generally, if there is some  with () = , +1() = ,

 ((·)) ≤  and 
³P

{0∈R|for some  (0)=, +1(0)=} 
0
(·)

´
≤ ( −

1) · . Hence by (11), for any  ∈ R with +2() = 0,  (b(·)) ≤ (0)

and b ∈ G.
The set G is obviously convex as a product of convex sets. Imposing the

1 norm topology on each component G, Helly’s theorem implies that G is
compact and hence G is compact as a product of compact sets. What remains
is to show that T is continuous. Here we use intensively its definition (19).
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Let {(·)}∞=1 ⊆ G where lim→∞ (·) = (·), and thus lim→∞ (·) =
(·) for all  ∈ R and  such that () =  for some . We must show

that lim→∞ T ((·)) = T ((·)). To prove this, we must examine each node

in each admissible route independently. So let us focus on node  (subscript)

in route  (superscript) for the calculations.

Let b( · ·) be the (unique) solution to the boundary value problem
with boundary conditions given by

( ·) ≡
X

{∈R|()=, +1()= for some ≥1}
(·)

Let b() be the corresponding solution to (18). Next we show that in 1,b( · ·) = lim→∞ b( · ·) exists and is a solution at boundary condi-
tions (·). The proof traces back through Strub and Bayen’s (2006) proof that
a solution exists, detailed above, and uses an interchange of limits as follows.

The boundary condition at each link  for the Godunov approximation is

given by:

0 =
M

() · 
Z


( ·)

0 =
M

() · 
Z


( ·)

Evidently, 0 → 0 by the dominated convergence theorem. All of the pieces

of the proof in Strub and Bayen (2006) rely on 0 as well as equalities or

weak inequalities. So if they hold for every element of the sequence, they also

hold for the limit. Thus, b( · ·) = lim→∞ b( · ·) exists and is the
(unique) solution at initial conditions (·).72
Next, we check continuity of the sequence of solutions to the differential

72An alternative proof uses the definition of a solution as given in section 2.2. The

sequence satisfies the definition, and what is to be shown is that the limit satisfies it. Since

there is convergence in norm, the tricky part is dealing with the exceptional sets of measure

zero.
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equation implied by the sequence of solutions to the conservation law.Z 

0

¯̄̄̄
¯©−1

Ã
© (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

!

·©

³ b(   ())
´ ¶

−©−1

Ã
© (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

·©

³ b(   ())

´ ´¯̄̄


≤ 

Z 

0

¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

· ©

³ b(   ())
´

− © (

(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

· ©

³ b(   ())

´¯̄̄̄¯ 
≤ 

Z 

0

¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

· ©

³ b(   ())
´

− © (

(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

· ©

³ b(   ())
´¯̄̄̄¯

+

¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

· ©

³ b(   ())
´

− © (

(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

· ©

³ b(   ())

´¯̄̄̄¯ 

≤ 

Z 

0

¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

− © (

(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

¯̄̄̄
¯ · ©

¡

¢

+
¯̄̄
©

³ b(   ())
´
−©

³ b(   ())

´¯̄̄


= ©

¡

¢ ·  Z 

0

¯̄̄̄
¯ © (


(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

(22)

− © (

(b()))P

{0∈R|for some  (0)=, +1(0)=}© (
0
(b()))

¯̄̄̄
¯ 

+

Z 

0

¯̄̄
©

³ b(   ())
´
− ©

³ b(   ())

´¯̄̄

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We consider each of the two terms in (22) separately. For the first term, note

that ̇ is bounded above by  (0 )  ∞, so b() and b()

are both bounded away from 0 by 1 (0 ). Hence, sets of measure 0

in time  are mapped to sets of measure 0 in the images of b(·) andb. Using Ascoli’s theorem and passing to a subsequence if necessary,b(·) → b(·) uniformly. For if not, then lim→∞ b(·) 6= b(·),
and there are two solutions to the differential equation (12), a contradic-

tion. Since lim→∞ (·) = (·) in 1 norm, the convergence is a.s. Hence

(b(·)) → (b(·)) a.s. By Lebesgue’s dominated convergence theo-

rem, the first term converges to 0.

For the second term in (22), recall that b( · ()) is defined uniquely.

Now suppose that lim→∞ b( · ()) 6= b( · ()). Then by

Helly’s theorem, we can find a subsequence of {( · ())}∞=1 con-
verging to, say, e( · ()) 6= b( · ()), where convergence is

pointwise and e( · ()) is of bounded variation. By a uniqueness ar-

gument given above, it must be that b( · ()) is not the exit density

for a solution. From (17),

Z ()

0

Z 

0

¯̄̄ e( ∆)− b( ∆)
¯̄̄
(∆)0()

+
³ e( ∆)− b( ∆)

´
·
³
©
³ e( ∆)

´
−©

³ b( ∆)
´´
· 0(∆)()∆

≥ 0

For  approximating the indicator function of [0 ], we have:

lim sup
→0

Z ()

0

¯̄̄ e( ∆)− b( ∆)
¯̄̄
(∆)∆

− lim inf
→

Z ()

0

¯̄̄ e( ∆)− b( ∆)
¯̄̄
(∆)∆

≥ −
Z ()

0

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³b( ∆)
´´
· 0(∆)∆
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Taking  to approximate the indicator function of [0 ()],

≥ lim sup
∆→()

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³ b( ∆)
´´



− lim inf
∆→0

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³ b( ∆)
´´



In sum, we have:

lim sup
→0

Z ()

0

¯̄̄ e( ∆)− b( ∆)
¯̄̄
(∆)∆−

lim inf
→

Z ()

0

¯̄̄ e( ∆)− b( ∆)
¯̄̄
(∆)∆

≥ lim sup
∆→()

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³b( ∆)
´´



− lim inf
∆→0

Z 

0


³e( ∆)− b( ∆)

´
·³

©(( ∆))−©
³ b( ∆)

´´


Since the left hand side (the first two terms) are zero, we obtain:

lim inf
∆→0

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³ b( ∆)
´´



≥ lim sup
∆→()

Z 

0


³ e( ∆)− b( ∆)

´
·³

©
³ e( ∆)

´
−©

³ b( ∆)
´´



As in Strub and Bayen (2006, p. 558), the left hand side is 0. The right

hand side is non-negative (recall that flux © is strictly increasing in density).

Hence,

lim sup
∆→()

Z 

0


³ e( ∆)− b( ∆)

´
·
³
©
³ e( ∆)

´
−©

³ b( ∆)
´´



= 0
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Now since © is strictly increasing in  , then we know that

lim sup
∆→()

°°° e( ·∆)− b( ·∆)
°°°
1
= 0,

implying that e( · ()) = b( · ()) a.s. (). Both e( · ())

and b( · ()) are of bounded variation, so by Lemma 2.1 and Remark

2.1 of Bressan (2000), by taking right continuous versions, they are in fact

equal, a contradiction. Therefore, the second term in (22) converges to zero,

so the whole expression converges to zero, and we have continuity of T .
Next we let  → 0. Existence of a limit solution (in terms of exit densities)

follows from Helly’s theorem. Uniqueness follows from the fact that for each

  0 the Godunov approximation converges in 1 to a limit: The approxi-

mations differ only by 1 distance at most  · on link . So if there are

two solutions with different Godunov approximation subsequences converging

in 1 to different limits with positive 1 distance between them, then choosing

 small enough, we obtain a contradiction.

Next, apply Schauder’s theorem to the space G with the 1 norm and the

mapping T . This yields existence of at least one fixed point. To show that

it is unique, find the earliest time at which the two solutions diverge. Observe

that for given boundary conditions, behavior within a link is well-defined. So

if two solutions exist and the earliest divergence between them occurs within

a link, we have a contradiction. Thus, the divergence must occur at a node.

Finding the earliest time at which such a divergence occurs, the boundary

conditions must be ill-defined, a contradiction.

5.2 Proof of Theorem 2

Proof: A mixed strategy is a measurable map  :  → [0 1]|R|×(−1). We

use the notation  to denote a vector component of , so we impose the obvious

condition
P|R|×(−1)

=1 () = 1 almost surely in .

First, we can define a strategy distribution as
R

 ≡

|R|×(−1)Q
=1

R

().

Second, we notice that the proof of Theorem 1 does not use the exact dynamic

commuting route structure, but rather the strategy distribution induced by

a dynamic route structure. In other words, the proof of Theorem 1 implies

that for any given strategy distribution, there exists a unique traffic pattern.

Information about which commuter plays each strategy is irrelevant.
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Third, we define the utility of a commuter for a mixed strategy and any

strategy distribution. Fix  ∈ . The utility function (;   ) was given

in (10). For pure strategy  corresponding to () () (), this is written asb( R

) = (;   ). We have argued that in the end the traffic pattern

depends only on the strategy distribution. For technical reasons, it is useful

here to define (
R

) ≡ −∞ if 1(()) 6= () or ()(()) 6= ();

utility was undefined for this circumstance. Then for commuter  ∈ , we

can write the utility from the use of pure strategy  (a route and time of

departure) given an aggregate strategy profile
R

, as b( R


) and b( ) =

|R|×(−1)Q
=1

b( R

), where the dynamic route structure (  ) generates

the strategy distribution
R

. For this to be well-defined, we are using the

fact that the utility will depend only on the strategy distribution generated by

the dynamic commuting route structure, and the fact that the dynamic route

structure can now be chosen arbitrarily subject to the strategy distribution

since we no longer stick to the requirement that the origin and destination

nodes are pre-specified. Finally, we can define the utility of commuter  from

using mixed strategy () by () · b( ).
It is clear from this set of definitions that our model satisfies two of the

assumptions of Schmeidler (1973), namely the measurability assumption (b)

and the fact that utility depends only on the strategy distribution, not on

individual strategies. Assumption (a), regarding the continuity of b in its
second argument, remains to be verified.

We take a sequence of mixed strategies {}∞=1 such that lim→∞  =  in

the 1 weak topology, and prove that for each  ∈ , lim→∞ b( ) = b( ).
Our hypothesis implies lim→∞

R

 =

R

. Let  ∈ G be the fixed point

associated with the strategy profile ,73 and let  ∈ G be the fixed point
associated with the strategy profile . Thus, we have an associated sequence

{(·)}∞=1 ⊆ G where for each , (·) = T ((·)). Since G is compact,
there is a converging subsequence. Now pass to any converging subsequence,

call it
©
(·)

ª∞
=1
⊆ G, where lim→∞ (·) = b(·). By continuity of T ,b(·) = T (b(·)). Hence, b = , and lim→∞  = . We use an analogous

argument below for both density and progress along a link.

73Although  represents a mixed strategy, as we have noted, all that matters is the the

distribution over routes and departure times, so arrival times can be found uniquely for each

mixed strategy profile using Theorem 1.
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Define

F ≡
nb( · ·) measurable on [0 ]× [0 ()]

| 0 ≤ b( · ·) ≤  a.s., b( 0∆) = 0 ∀ ∆ ≥ 0
o

Then we can define:

F ≡
Y

=1, 6=
F

We denote a typical element of F by b = ³b( · ·)
´
=1, 6=

.

Now for each  there exists a unique solution b ∈ F associated with

boundary conditions . There is also a unique density b ∈ F associated with
. Impose the weak* topology on the densities as a subset of ∞. Applying the

Banach-Alaoglu theorem, there is a converging subsequence. Now pass to any

converging subsequence, call it
nb(·)o∞

=1
⊆ F , where lim→∞ b(·) = e(·),

and where convergence is pointwise a.s. in ( ∆). As in the proof of Theorem

1, it must be that b = e a.s.() for each fixed ∆ and a.s.(∆) for each fixed .

Now for each  there exists a unique solution  ∈ D associated with flow b.
There is also a unique solution  ∈ D associated with b . Impose the uniform
topology on the solutions as a subset of 0. Applying Ascoli’s theorem, there

is a converging subsequence. Now pass to any converging subsequence, call it©
(·)

ª∞
=1
⊆ D, where lim→∞ (·) = b(·).

Next define b(b  ) ≡ b(   (b  )). The function b fol-
lows a cohort that begins at b along link . Since density can only rise

along a link,


³b( · (b  ·))´ ≤ 

So applying Helly’s theorem and passing to a further subsequence if necessary,

lim
→∞

b(b  ) = b(b  ) (23)

where convergence is pointwise in  and  (b( ·b)) ≤  .

So for each ,

(b )


= 
¡
(   (b  )) 

¢
= 

¡b(b  )  

¢
so

lim
→∞

(b  )


=  (b(b  ) ) (24)
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Next suppose that lim→∞
()


6= ()


on a set of positive measure in

 . Hence, by the fundamental theorem of calculus and Lebesgue’s dominated

convergence theorem, there exists  0 such that

b(b   0) =

 0Z
0

b(b  )


 =

 0Z
0

lim
→∞

(b  )




= lim
→∞

 0Z
0

(b  )


 6=
 0Z
0

b(b  )


 = b(b   0)
This is obviously a contradiction. So lim→∞

()


=
()


a.s. In

fact, from (24), continuity of , and (23) we know convergence is pointwise in

 . Hence,

b(b  )


=  (b(b  ) )

From (6) we know that (b b) = b(b b) = 0, so by uniqueness of the

solution to (5), b(·) = (·).
Fix a route  of length  and a departure time b . Define

 ∗(b) ≡ min
©
0 ≤  ≤  | (b  ) = ()

ª
= −1(())(b)

The function  ∗(b) can be viewed as a relatively simple implicit function.
Since

()


≥ ( )  0 and
()

 ≤ −(0 )  0, 
∗
(b) is well-

defined, strictly increasing, and continuous.74 Now let  and 0 be origin

departure time choices for route , and let  and  0 be associated perturbations,

where b = +  and b 0 = 0+  0. Thus, arrival time at the final destination

can be written as: b  ¡ +  0
¢
=  ∗(−1)()

³
 ∗(−2)(−1)

³
· · · ∗(1)(2)

¡
 +  0

¢ · ··´´.
Define

Υ ≡
n b  : [0  ]→ [0 ] measurable |

¯̄b  ¡ + 
¢− b  ¡0 +  0

¢¯̄
≤
µ
max


½
(0 )

( )

¾¶−1
·
¯̄
 +  − 0 −  0

¯̄)
By Ascoli’s theorem, Υ is a compact subset of 0.

For each  there is a unique (·) and thus a unique b  (·). There is

also a unique b  (·) ∈ Υ associated with (·). So there is a converging

74This can either be proved directly or a non-1 version of the implicit function theorem

can be used.
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subsequence associated with {(·)}∞=1. Now take any converging subsequence
of
nb  (·)o∞

=1
, call it

nb  (·)o∞
=1
. It has a limit: b 0 (·) ∈ Υ. Suppose

that b 0 (·) 6= b  (·). Now since ©(·)ª∞=1 converges uniformly to (·), for each
 +  0 ∈ [0  ], lim→∞ b  ¡ +  0

¢

= b  ¡ +  0

¢
, so in fact b 0 (·) = b  (·),

a contradiction.

Apply Schmeidler (1973), theorems 1 and 2, there exists a Nash equilibrium

in pure strategies.

Finally, consider the case where © is non-decreasing (instead of strictly

increasing) in  , and as always ©() ≡ () ·  . Let b() = () + , where

  0 is small. Then since () is non-increasing in  , so is b(). Moreover,b©() ≡ b() ·  = (() + ) ·  = ©() +  ·  , so b©() is strictly increasing
in  . Apply our results to the modified game using b() and b©() to obtain
an equilibrium in pure strategies for each . As the number of strategies

is actually finite, we can find an accumulation point of the strategy profile as

→ 0. Using continuity of the payoffs (as demonstrated above), by a standard

argument the accumulation point is an equilibrium profile for  = 0.

5.3 Proof of Theorem 3

Proof: Given an outward bound shrubbery network, the only possible route

choice is at the third to last node on a route. The strategy profile we propose

as a Pareto efficient Nash equilibrium is to distribute each type of commuter,

where type is defined as an origin-destination pair, uniformly across all depar-

ture times and across possible routes from that type’s origin to destination.

This creates equal volume. We choose the minimal density consistent with

this volume (since volume is continuous, such a density exists). Clearly this

is a Nash equilibrium, as all commuters of a given type have the same travel

time and thus receive the same utility. Now suppose that there is a strategy

profile that Pareto dominates the Nash equilibrium profile. Thus, it must be

that there is some departure time and route that has a higher than average

volume. Since volume ©() =  · (), and () is strictly decreasing, for

this departure time, there is some type that has a higher than average density

(where the average is over departure times and routes for this type). The

commuters of this type with this departure time will have a longer commute

than at Nash equilibrium, contradicting that the alternative strategy profile

Pareto dominates the Nash equilibrium profile.
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