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Abstract

How does the interplay between natural selection, household education choices, and
R&D activities shape our macroeconomic trajectory? Delving deep into this question, we
present a novel innovation-driven growth model that intricately connects household het-
erogeneity in education ability with fertility and R&D-driven technological progress. Our
findings unravel a captivating paradox: while households with lower education abilities
might amass less human capital and choose to have more offspring, they gain a fleeting
evolutionary advantage. This advantage, however, exacts a significant toll, stifling R&D
and curtailing long-term economic growth. Our model not only theoretically reveals this
complex dynamic but validates it with cross-country data and an instrumental variable,
suggesting that education disparities can hamper R&D output, education outcomes, and
economic expansion in the long run. This research unveils crucial insights into the nuanced
relationships between natural selection, household education choices, and R&D.
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"Britons are becoming less educated and poorer because smart rich people are hav-
ing fewer children." The Telegraph (2022)1

1 Introduction

Modern macroeconomic models often feature a representative household or a fixed composi-
tion of heterogeneous households. However, when heterogeneous households choose to have
different fertility rates, their composition in the economy changes over time. This differential
reproduction of individuals is famously known as natural selection. In this study, we explore
how the heterogeneity of households and natural selection of heterogeneous households affect
the macroeconomy. Family attitudes toward the education of their children last long, and the
intra-family educational attitudes and human capital transmission abilities matter.2 Unfor-
tunately, not all households are equally endowed, so heterogeneity matters for human capital
accumulation. How does this heterogeneity affect fertility? And how would the resulting natural
selection influence technological progress and economic growth? To explore these questions, we
develop a novel growth model with endogenous fertility and natural selection of heterogeneous
households, which persistently differ in their propensity to educate their children.
Following the seminal unified growth theory of Galor (2005, 2011, 2022), we assume that

households differ in their ability to accumulate human capital. In this case, families that
are more able to provide high-quality learning focus on child quality and have fewer children
than less able families. This negative relationship between child quantity and quality during
the demographic transition is consistent with the empirical evidence in Becker et al. (2010),
Fernihough (2017) and Klemp and Weisdorf (2019).3 Naturally, this quality-quantity tradeoff
magnifies the share of less able families in the economy, at least temporarily. Therefore, in
an early stage of development, households that have a lower education ability accumulate less
human capital but choose to have more children and enjoy an evolutionary advantage. In
a later stage of development, households with a higher education ability choose to increase
their number of children as their human capital rises over time because their higher level of
human capital compensates for their lower fertility. In the long run, households with a higher
education ability end up having a higher level of human capital, and all households choose the
same steady-state fertility rate. Therefore, households’population share and human capital
converge to stationary distributions.
However, the evolutionary disadvantage of high-ability households during the transitional

dynamics implies that the population share of high-ability households decreases and the popu-
lation share of low-ability households increases towards the steady state. Although the level of
human capital rises over time due to all households accumulating human capital, the popula-
tion becomes less educated than the case without natural selection because the more educated
parents have fewer children. This finding resonates with the opening quote and shows that this
phenomenon may not be specific to Britain. The lower long-run share of high-ability house-
holds is due to a well-known property that a temporary growth effect has a permanent level

1https://www.telegraph.co.uk/news/2022/07/06/britons-evolving-poorer-less-well-educated/
2For example, Alesina et al. (2021) find that differences in family attitudes toward education persist and

rebound after even some of the most forceful attempts to eliminate differences in the population.
3See also Shiue (2017) and Bai et al. (2023) for evidence in pre-industrial China.
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effect. Suppose two variables start at an equal level. Then, one of them grows at a slower rate
temporarily before growing at the same rate as the other variable. In this case, the temporary
disadvantage of the former will endure forever. So, despite population trends being similar in
the long run, a temporarily lower population growth rate of the higher-ability households will
never be compensated.
The scale-invariant property of our model then implies that economic growth depends on the

average level of human capital in the economy and that the lower share of high-ability households
(relative to the case without natural selection) in the long run gives rise to a lower steady-state
equilibrium growth rate as a result of natural selection of heterogeneous households. Finally, we
show that the negative effects of this natural selection can be captured by the heterogeneity in
the ability to accumulate human capital and provide evidence that heterogeneity in education
indeed has adverse effects on education, innovation and economic growth in the long run. This
result remains robust when we use heterogeneity in ability test scores as an instrumental variable
for heterogeneity in education.
Central to this exploration is the link between natural selection, innovation, and R&D.

The interplay between household heterogeneity in education, fertility choices, and the effect on
R&D activities is a focal point of our study. This dynamic plays a significant role in shaping
technological progress, where the temporary disadvantage of high-ability households in early
stages can have lasting effects on R&D efforts and, consequently, long-term economic growth.
Our model sheds light on these complex interactions and how natural selection can influence the
broader R&D landscape, innovation, and growth trajectories. Such insights hold substantial
implications for both economic policy and the theoretical understanding of growth mechanisms.
This study relates to the literature on innovation and economic growth. The pioneering

study by Romer (1990) develops the seminal innovation-driven growth model; see also Aghion
and Howitt (1992), Grossman and Helpman (1991) and Segerstrom et al. (1990) for other early
studies. Some subsequent studies introduce endogenous fertility into variants of the innovation-
driven growth model to explore the relationship between economic growth and endogenous
population growth; see, for example, Jones (2001), Connolly and Peretto (2003), Chu et al.
(2013), Peretto and Valente (2015) and Brunnschweiler et al. (2021). This study contributes
to this literature by exploring the endogenous fertility decisions of heterogeneous households
and their evolutionary differences in an innovation-driven growth model.
This study also relates to the literature on endogenous takeoff and economic growth. An

early study by Galor and Weil (2000) develops the unified growth theory that explores the en-
dogenous transition of an economy from pre-industrial stagnation to modern economic growth;4

see Galor (2005) for a comprehensive review of unified growth theory and also Galor and Mount-
ford (2008), Galor, Moav and Vollrath (2009) and Ashraf and Galor (2011) for subsequent stud-
ies and empirical evidence that supports unified growth theory. Galor and Moav (2002), Galor
and Michalopoulos (2012) and Carillo et al. (2019) explore how natural selection of different
traits, such as the quality preference of fertility, the degree of risk aversion and the level of
family-specific human capital, affects the transition from stagnation to growth. Specifically,
Galor and Moav (2002) show that natural selection favors the quality type during the demo-

4Other early studies on endogenous takeoff and economic growth include Hansen and Prescott (2002), Jones
(2001) and Kalemli-Ozcan (2002).
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graphic transition and fosters technological progress,5 but the selective advantage is reversed to
favor the quantity type after the demographic transition.6 Although the present study does not
explore the interesting demographic transition in the pre-industrial era captured elegantly by
unified growth theory, it contributes to this literature by showing how natural selection of het-
erogeneous households with different ability to accumulate human capital affects the transition
of an economy from human capital accumulation to innovation-driven growth in the modern
era.
Therefore, this study also relates to a recent branch of this literature on the endogenous

transition from pre-industrial stagnation to innovation-driven growth. For example, Funke and
Strulik (2000) develop a growth model in which the economy experiences capital accumulation
and variety-expanding innovation in different stages of economic development. A more recent
study by Peretto (2015) develops a Schumpeterian growth model with the endogenous acti-
vations of variety-expanding innovation and quality-improving innovation. Subsequent studies
extend the model in Peretto (2015) to explore different mechanisms that trigger an endogenous
takeoff.7 This study contributes to this branch of the literature by introducing natural selection
of heterogeneous households to a tractable innovation-driven growth model with different stages
of economic development and an endogenous activation of innovation.
The rest of this study is organized as follows. Section 2 sets up the model. Section 3 presents

the two stages of economic development. Section 4 explores the implications of heterogeneous
households and natural selection. Section 5 provides empirical evidence. Section 6 concludes.

2 An R&D-based growth model with natural selection

To model natural selection, we introduce heterogeneous households and endogenous fertility
to the seminal Romer model. To keep the model tractable, we consider a simple structure
of overlapping generations and human capital accumulation.8 Each individual lives for three
periods. In the young age, the individual accumulates human capital. In the working age, the
individual allocates her time between work, fertility and education of the next generation. In
the old age, the individual consumes her saving.

2.1 Heterogeneous households

There is a unit continuum of households indexed by i ∈ [0, 1]. Within household i, the utility
of an individual who works at time t is given by9

5See Galor and Klemp (2019) for empirical evidence.
6Galor and Maov (2001) argue that this result is generalizable to the case of heterogeneity in ability.
7See for example, Chu, Fan and Wang (2020) on status-seeking culture, Chu, Kou and Wang (2020) on

intellectual property rights, Iacopetta and Peretto (2021) on corporate governance, Chu, Furukawa and Wang
(2022) on rent-seeking government, Chu, Peretto and Wang (2022) on agricultural revolution, and Chu, Peretto
and Xu (2023) on international trade.

8The formulation is based on Chu, Furukawa and Zhu (2016) and Chu, Kou and Wang (2022), who however
focus on homogeneous households and exogenous fertilty.

9de la Croix and Doepke (2003) consider a similar utility function by assuming η = γ, such that utility
depends on γ ln[nt(i)ht+1(i)].
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U t(i) = u [nt(i), ht+1(i), ct+1(i)] = η lnnt(i) + γ lnht+1(i) + ln ct+1(i), (1)

where ct+1(i) is the individual’s consumption at time t+1, nt(i) denotes the number of children
the individual has at time t, η > 0 is the fertility preference parameter, ht+1(i) denotes the
level of human capital that the individual passes onto each child, and γ is the quality preference
parameter. We assume that all individuals within the same household i have the same level of
human capital at time 0. Then, they will also have the same level of human capital for all t as
an endogenous outcome.
The individual allocates et(i) units of time to her children’s education. The accumulation

equation of human capital is given by10

ht+1(i) = φ(i)et(i) + (1− δ)ht(i), (2)

where the parameter δ ∈ (0, 1) is the depreciation rate of human capital that a generation passes
onto the next.11 As for the ability parameter φ(i) > 0 of household i,12 it is heterogeneous across
households and follows a general distribution with the following mean:13

φ ≡
∫ 1

0

φ(i)di.

The heterogeneity of households is captured by their differences in φ(i), which in turn give rise
to an endogenous distribution of human capital. We focus on heterogeneity in φ(i) because it
allows for a stationary distribution of the population share of different households in the long
run, whereas heterogeneity in other parameters, such as η or γ, imply that households with the
largest η or smallest γ would dominate the population in the long run.
An individual in household i allocates 1 − et(i) − σnt(i) units of time to work and earns

wt [1− et(i)− σnt(i)]ht(i) as real wage income, where the parameter σ ∈ (0, 1) determines the
time cost of fertility. For simplicity, we assume that there are economies of scale in the time
spent in educating children within a family, and the cost of having more children is reflected in
the time cost of childrearing.14

The individual devotes her entire wage income to saving at time t and consumes the return
at time t+ 1:15

ct+1(i) = (1 + rt+1)wt [1− et(i)− σnt(i)]ht(i), (3)

10Our specification differs from de la Croix and Doepke (2003), which in turn is based on Lucas (1988). In
the seminal Lucas model, human capital accumulation alone gives rise to long-run growth, so the addition of
technological progress causes exploding growth. In our model, human capital accumulation alone gives rise to a
higher level of output in the steady state, whereas long-run growth requires endogenous technological progress
driven by innovation.
11The quality-quantity tradeoff would still be present if (2) is replaced by ht+1(i) = φ(i)et(i) + (1 − δ)ht,

where ht is the average level of human capital in the society. However, the population would converge to a
degenerate distribution, in which households with the lowest φ(i) would dominate in the long run.
12Black, Devereux and Salvanes (2009) provide empirical evidence for a significant intergenerational transmis-

sion of IQ scores. See also Jones and Schneider (2006) for data on the variation of average IQ across countries.
13It is useful to note that φ is the unweighted mean which is exogenous, whereas the weighted mean changes

endogenously as the population share of households evolves over time.
14In de la Croix and Doepke (2003), childrearing also requires time as an input, but education costs income

instead. Our education time cost et(i) is equivalent to a reduction in income of et(i)wtht(i).
15Our results are robust to individuals consuming also in the working age; derivations available upon request.
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where rt+1 is the real interest rate. Substituting (2) and (3) into (1), the individual maximizes

max
et(i), nt(i)

U t(i) = η lnnt(i)+γ ln [φ(i)et(i) + (1− δ)ht(i)]+ln {(1 + rt+1)wt [1− et(i)− σnt(i)]ht(i)} ,

taking {rt+1, wt, ht(i)} as given. The utility-maximizing level of fertility nt(i) is

nt(i) =
η

σ(1 + η + γ)

[
1 + (1− δ)ht(i)

φ(i)

]
, (4)

which is decreasing in φ(i) but increasing in ht(i). In other words, households with a lower
ability to accumulate human capital and a higher level of human capital choose to have more
children. In (4), fertility nt(i) is decreasing in φ(i)/ht(i). As we will show, households with
higher φ(i) have higher ht(i) and also higher φ(i)/ht(i) before the level of human capital reaches
the steady state, at which point all households share the same φ(i)/ht(i). Therefore, households
with higher ability φ(i) generally have higher human capital ht(i) and lower fertility nt(i),
generating a negative relationship between these two variables. To understand this negative
relationship, we also derive the utility-maximizing level of education et(i) as16

et(i) =
1

1 + η + γ

[
γ − (1 + η)(1− δ)ht(i)

φ(i)

]
, (5)

which is increasing in φ(i) but decreasing in ht(i). In summary, for a given ht(i), households
with a larger φ(i) choose a higher level of education et(i) but a smaller number nt(i) of children,
reflecting the quality-quantity tradeoff.
Substituting (5) into (2) yields the autonomous and stable dynamics of human capital as

ht+1(i) =
γ

1 + η + γ
[φ(i) + (1− δ)ht(i)] , (6)

where ht+1(i) is increasing in φ(i) and ht(i). The total amount of human capital in the economy
at time t is

Ht =

∫ 1

0

ht(i)Lt(i)di,

where Lt(i) is the working-age population size of household i. The law of motion for Lt(i) is

Lt+1(i) = nt(i)Lt(i) =
η

σ(1 + η + γ)

[
1 + (1− δ)ht(i)

φ(i)

]
Lt(i), (7)

and the size of the aggregate labor force in the economy at time t is

Lt =

∫ 1

0

Lt(i)di.

Let’s define st(i) ≡ Lt(i)/Lt as the working-age-population (i.e., labor) share of household i.

16In (5), e0(i) = 0 if φ(i) < (1 + η)(1− δ)h0(i)/γ, and et(i) = 0 until ht(i) depreciates to a level that reverses
this inequality. Then, et(i) becomes positive and remains to be so even at the steady state.
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Lemma 1 The labor share st(i) of household i at time t ≥ 1 is given by

st(i) =

∏t−1
τ=0 nτ (i)L0(i)∫ 1

0

∏t−1
τ=0 nτ (i)L0(i)di

,

where the fertility decision nt(i) of household i at time t ≥ 1 is given by

nt(i) =
η

σ(1 + η + γ)

{
t−1∑
τ=0

[
γ(1− δ)
1 + η + γ

]τ
+

[
γ(1− δ)
1 + η + γ

]t [
1 + (1− δ)h0(i)

φ(i)

]}
,

which is a decreasing function of φ(i)/h0(i).
Proof. See Appendix A.

Notice that changes to nτ (i) in any one period will affect st(i) in all future generations. The
reason is general and does not depend on the specific assumptions of this model: a temporary
growth effect has a permanent level effect. Therefore, if the fertility rate of an ability group
drops temporarily, this group would ceteris paribus forever have a lower population share than
it would otherwise have had. As we will later see, if the high-ability household experiences a
temporary reproduction loss, the economy will have a lower share of high-ability people forever.
We will also show that this loss will permanently lower human capital, innovation and economic
growth.

2.2 Final good

Perfectly competitive firms use the following production function to produce final good Yt,
which is chosen as the numeraire:

Yt = H1−α
Y,t

∫ Nt

0

Xα
t (j)dj, (8)

where the parameter α ∈ (0, 1) determines production labor intensity 1− α, and HY,t denotes
human-capital-embodied production labor. Xt(j) denotes a continuum of differentiated inter-
mediate goods indexed by j ∈ [0, Nt]. Firms maximize profit, and the conditional demand
functions for HY,t and Xt(j) are given by

wt = (1− α)
Yt
HY,t

, (9)

pt(j) = α

[
HY,t

Xt(j)

]1−α
. (10)
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2.3 Intermediate goods

Each intermediate good j is produced by a monopolistic firm, which uses a one-to-one linear
production function that transforms Xt(j) units of final good into Xt(j) units of intermediate
good j ∈ [0, Nt]. The profit function is

πt(j) = pt(j)Xt(j)−Xt(j), (11)

where the marginal cost of production is constant and equal to one (recall that final good is the
numeraire). The monopolist maximizes (11) subject to (10) to derive the monopolistic price as

pt(j) =
1

α
> 1, (12)

where 1/α is the markup ratio. One can show that Xt(j) = Xt for all j ∈ [0, Nt] by substituting
(12) into (10). Then, we substitute (10) and (12) into (11) to derive the equilibrium amount of
monopolistic profit as

πt =

(
1

α
− 1

)
Xt = (1− α)α(1+α)/(1−α)HY,t. (13)

2.4 R&D

We denote vt as the value of a newly invented intermediate good at the end of time t. The
value of vt is given by the present value of future profits from time t+ 1 onwards:

vt =
∞∑

s=t+1

[
πs/

s∏
τ=t+1

(1 + rτ )

]
. (14)

Competitive R&D entrepreneurs invent new products by employingHR,t units of human-capital-
embodied labor. We specify the following innovation process:

∆Nt =
θNtHR,t

Lt
, (15)

where ∆Nt ≡ Nt+1−Nt. The parameter θ > 0 determines R&D productivity θNt/Lt, where Nt

captures intertemporal knowledge spillovers as in Romer (1990) and 1/Lt captures a dilution
effect that removes the scale effect.17 If the following free-entry condition holds:

∆Ntvt = wtHR,t ⇔
θNtvt
Lt

= wt, (16)

then R&D HR,t would be positive at time t. If θNtvt/Lt < wt, then R&D does not take place
at time t (i.e., HR,t = 0). Lemma 2 provides the condition for HR,t > 0, which requires R&D
productivity θ to be suffi ciently high in order for innovation to take place.

17See Laincz and Peretto (2006) for a discussion of the scale effect.
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Lemma 2 R&D HR,t is positive at time t if and only if the following inequality holds:∫ 1

0

[1− et(i)− σnt(i)]ht(i)st(i)di >
1

θ
. (17)

Proof. See Appendix A.

2.5 Aggregation

Imposing symmetry on (8) yields Yt = H1−α
Y,t NtX

α
t . Then, we substitute (10) and (12) into this

equation to derive the aggregate production function as

Yt = α2α/(1−α)NtHY,t. (18)

Using NtXt = α2Yt, we obtain the following resource constraint on final good:

Ct = Yt −NtXt = (1− α2)Yt, (19)

where Ct denotes aggregate consumption. Finally, the resource constraint on human-capital-
embodied labor is ∫ 1

0

[1− et(i)− σnt(i)]ht(i)Lt(i)di = HY,t +HR,t. (20)

2.6 Equilibrium

The equilibrium is a sequence of allocations {Xt(j), Yt, et(i), nt(i), ct(i), Ct, ht(i), Ht, HY,t, HR,t, Lt}
and prices {pt(j), wt, rt, vt} that satisfy the following conditions:

• individuals choose {et(i), nt(i), ct(i)} to maximize utility taking {rt+1, wt, ht(i)} as given;

• competitive firms produce Yt to maximize profit taking {pt(j), wt} as given;

• a monopolistic firm produces Xt(j) and chooses pt(j) to maximize profit;

• competitive entrepreneurs perform R&D to maximize profit taking {wt, vt} as given;

• the market-clearing condition for the final good holds such that Yt = NtXt + Ct;

• the resource constraint on human-capital-embodied labor holds such that HY,t + HR,t =∫ 1
0

[1− et(i)− σnt(i)]ht(i)Lt(i)di;

• total saving equals asset value such that wt
∫ 1
0

[1− et(i)− σnt(i)]ht(i)Lt(i)di = Nt+1vt.
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3 Stages of economic development

Our model features two stages of economic development. The first stage features only human
capital accumulation. The second stage features both human capital accumulation and inno-
vation.18 The activation of innovation and the resulting transition from the first stage to the
second stage are endogenous and do not always occur.

3.1 Stage 1: Human capital accumulation only

The initial level of human capital for each individual in household i is h0(i). Suppose the
following inequality holds at time 0:∫ 1

0

[1− e0(i)− σn0(i)]h0(i)s0(i)di =
1

1 + η + γ

∫ 1

0

[
1 + (1− δ)h0(i)

φ(i)

]
h0(i)s0(i)di <

1

θ
, (21)

which uses (4) and (5). In (21), both the initial labor share s0(i) ≡ L0(i)/L0 and initial human
capital h0(i) are exogenously given. Then, Lemma 2 implies that HR,0 = 0 and

HY,0 =
1

1 + η + γ

∫ 1

0

[
1 + (1− δ)h0(i)

φ(i)

]
h0(i)L0(i)di. (22)

In this stage of development, the economy features only human capital accumulation. Human
capital ht(i) accumulates according to the autonomous and stable dynamics in (6), and st(i)
evolves according to Lemma 1. However, so long as the following inequality holds at time t:∫ 1

0

[1− et(i)− σnt(i)]ht(i)st(i)di =
1

1 + η + γ

∫ 1

0

[
1 + (1− δ)ht(i)

φ(i)

]
ht(i)st(i)di <

1

θ
, (23)

we continue to have HR,t = 0 and

HY,t =
1

1 + η + γ

∫ 1

0

[
1 + (1− δ)ht(i)

φ(i)

]
ht(i)Lt(i)di. (24)

Substituting (24) into (18) yields the level of output per worker as

yt ≡
Yt
Lt

= α2α/(1−α)N0
HY,t

Lt
=
α2α/(1−α)N0
1 + η + γ

∫ 1

0

[
1 + (1− δ)ht(i)

φ(i)

]
ht(i)st(i)di, (25)

where N0 remains at the initial level and output increases as human capital accumulates.

18See Iacopetta (2010) who considers a model in which innovation occurs before human capital accumulation.
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3.2 Stage 2: Innovation and human capital accumulation

Equation (6) shows that human capital ht(i) converges to a steady state given by

h∗(i) =
γφ(i)

1 + η + γδ
, (26)

which is increasing in household i’s ability φ(i). Substituting (26) into (4) and (5) yields the
steady-state levels of education and fertility given by

e∗(i) = e∗ =
γδ

1 + η + γδ
, (27)

n∗(i) = n∗ =
η

σ(1 + η + γδ)
, (28)

where we assume positive population growth (i.e., n∗ > 1) by imposing η > (1 + γδ)σ/(1− σ).
Also, n∗ is the same across all households because they are independent of φ(i). In other words,
the negative effect of φ(i) and the positive effect of h∗(i) on n∗(i) cancel each other. As a result,
the distribution of the population share of different households is stationary in the long run. In
this case, Lemma 2 implies that if the following inequality holds:

(1− e∗ − σn∗)
∫ 1

0

h∗(i)s∗(i)di =
γ

(1 + η + γδ)2

∫ 1

0

φ(i)s∗(i)di >
1

θ
, (29)

then human capital accumulation eventually triggers the activation of innovation, under which
the R&D condition in (16) holds and R&D HR,t becomes positive.
We now derive the equilibrium growth rate in the presence of innovation. Substituting (18)

into (9) yields the equilibrium wage rate as

wt = (1− α)α2α/(1−α)Nt. (30)

Then, substituting (30) into (16) yields the equilibrium invention value as

vt
Lt

=
(1− α)α2α/(1−α)

θ
. (31)

The structure of overlapping generations implies that the value of assets at the end of time t
must equal the amount of saving at time t given by wage income at time t:

Nt+1vt = wt

∫ 1

0

[1− et(i)− σnt(i)]ht(i)Lt(i)di = wt(HY,t +HR,t), (32)

where the second equality uses (20). Substituting (30) and (31) into (32) yields

Nt+1 =
θNt

Lt
(HY,t +HR,t). (33)

Combining (15) and (33) yields the equilibrium level of HY,t as

HY,t

Lt
=

1

θ
(34)
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for all t. Substituting (4), (5) and (34) into (20) yields the equilibrium level of HR,t as

HR,t

Lt
=

∫ 1

0

[1− et(i)− σnt(i)]ht(i)st(i)di−
HY,t

Lt
=

1

1 + η + γ

∫ 1

0

[
1 + (1− δ)ht(i)

φ(i)

]
ht(i)st(i)di−

1

θ
.

(35)
We can now substitute (35) into (15) to derive the equilibrium growth rate of Nt as

gt ≡
∆Nt

Nt

=
θHR,t

Lt
=

θ

1 + η + γ

∫ 1

0

[
1 + (1− δ)ht(i)

φ(i)

]
ht(i)st(i)di− 1, (36)

which is also the equilibrium growth rate of output per worker yt = α2α/(1−α)Nt/θ. Finally, the
steady-state equilibrium growth rate of Nt and yt is

g∗ =
θγ

(1 + η + γδ)2

∫ 1

0

φ(i)s∗(i)di− 1. (37)

In the steady state, s∗(i) is also the population share of household i and still depends on the
initial distribution of h0(i) and the exogenous distribution of φ(i) as shown in Lemma 1.

4 Heterogeneous households and evolutionary differences

Equation (21) shows that the activation of innovation-driven growth occurs at time 0 if and
only if the following inequality holds:

1

1 + η + γ

∫ 1

0

[
1 + (1− δ)h0(i)

φ(i)

]
h0(i)s0(i)di >

1

θ
. (38)

Suppose we consider a useful benchmark of an equal initial labor share s0(i) = 1 and an equal
initial level of human capital h0(i) = h0 for all i ∈ [0, 1]. Then, the left-hand side of (38)
simplifies to

h0
1 + η + γ

[
1 + (1− δ)h0

∫ 1

0

1

φ(i)
di

]
>

h0
1 + η + γ

[
1 +

(1− δ)h0
φ

]
, (39)

where
∫ 1
0

[1/φ(i)]di > 1/φ due to Jensen’s inequality. In other words, the presence of hetero-
geneity in φ(i) makes the activation of innovation-driven growth more likely to occur at time
0 than the absence of heterogeneity (i.e., φ(i) = φ for all i ∈ [0, 1]) does. Due to heterogeneity,
some households supply more human capital for production and innovation while others supply
less. Equation (39) implies that the former effect dominates the latter effect such that the
initial amount of human capital available for production and innovation increases as a result of
heterogeneity. The intuition can be explained as follows.
Although some low-ability households may devote almost no time to education and most of

their time to work (and fertility), high-ability households always spend some time to work, as
the following shows:

1− e0(i)− σn0(i) =
1

1 + η + γ

[
1 +

(1− δ)h0
φ(i)

]
>

1

1 + η + γ
> 0.
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The convexity of 1/φ(i) in 1 − e0(i) − σn0(i) gives rise to the positive effect of heterogeneity
on the amount of human capital available for production and innovation. To put it differently,
the low-ability households being less willing to educate their children contribute to a larger
workforce, which in turn rewards the innovation pioneers with more profits extracted from a
larger market size of the economy. We summarize this result in the following lemma.

Lemma 3 Heterogeneity makes it more likely for innovation to be activated at time 0.

Proof. If the following inequality holds:

h0
1 + η + γ

[
1 + (1− δ)h0

∫ 1

0

1

φ(i)
di

]
>

1

θ
>

h0
1 + η + γ

[
1 +

(1− δ)h0
φ

]
, (40)

which is a nonempty parameter space due to
∫ 1
0

[1/φ(i)]di > 1/φ, then the takeoffof the economy
occurs at time 0 under heterogeneous households but not under homogeneous households.

Next we examine how the labor share of households evolves over time. Given the benchmark
of an equal initial labor share s0(i) = 1 and an equal initial level of human capital h0(i) = h0
for all i ∈ [0, 1], the fertility of household i at time 0 is

n0(i) =
η

σ(1 + η + γ)

[
1 + (1− δ) h0

φ(i)

]
,

which is decreasing in φ(i). For households with φ(i) > φ, their growth rate n0(i) would be
lower than n0(φ). However, they will have a higher level of human capital in the next period:

h1(i) = γ
φ(i) + (1− δ)h0

1 + η + γ
> γ

φ+ (1− δ)h0
1 + η + γ

.

This higher level of human capital gives rise to a higher growth rate n1(i) and reduces the differ-
ence between n1(i) and n1(φ). However, as shown in Lemma 1, nt(i) remains lower than nt(φ)
for φ(i) > φ until ht(i) converges to its steady-state level in (26) at which point the population
growth rate of all households i ∈ [0, 1] converges to n∗ in (28). Therefore, the population growth
rates of households with φ(i) > φ are lower than the population growth rates of households with
φ(i) < φ until ht(i) converges to its steady-state level in (26). This temporary evolutionary
disadvantage of high-ability households will never be compensated despite population trends
being equal across households in the long run.
The above analysis implies that there exists a threshold for φ(i) above (below) which s∗(i) <

1 (s∗(i) > 1). This in turn implies that19∫ 1

0

φ(i)s∗(i)di <

∫ 1

0

φ(i)di = φ, (41)

19See the proof of Proposition 1 in Appendix A.
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because the households with larger φ(i) end up having a lower steady-state population share
s∗(i). Therefore, we also have the following inequality:

g∗ =
θγ

(1 + η + γδ)2

∫ 1

0

φ(i)s∗(i)di− 1 <
θγ

(1 + η + γδ)2
φ− 1, (42)

where the right-hand side of the inequality is the steady-state equilibrium growth rate under
homogeneous households (i.e., φ(i) = φ for all i ∈ [0, 1]). In other words, the steady-state
growth rate g∗ becomes lower because the heterogeneity in households and the temporary
evolutionary disadvantage of the high-ability households reduce the average level of human
capital and consequently the level of innovation (recall that gt = θHR,t/Lt) in the long run. We
summarize the above result in the following proposition.

Proposition 1 The temporary evolutionary disadvantage of the high-ability households causes
a lower steady-state equilibrium growth rate g∗ than the case of homogeneous households.

Proof. See Appendix A.

4.1 An example

In this section, we provide a simple parametric example to illustrate our results more clearly.
We consider two types of households. Specifically, φ(i) = φ+ ς for i ∈ [0, 0.5] and φ(j) = φ− ς
for j ∈ [0.5, 1]. As before, the households own the same initial amount of human capital (i.e.,
h0(i) = h0 for i ∈ [0, 1]). Their initial population shares are also the same (i.e., s0(i) = 1 for
i ∈ [0, 1]); in this case, the mean of φ(i) is simply φ and the coeffi cient of variation in φ(i) is
ς/φ. Therefore, for a given φ, an increase in ς raises the coeffi cient of variation in φ(i).
From (26), their steady-state levels of human capital are different and given by h∗(i) =

γ(φ + ς)/(1 + η + γδ) for i ∈ [0, 0.5] and h∗(j) = γ(φ − ς)/(1 + η + γδ) for j ∈ [0.5, 1]. From
(42), the steady-state growth rate g∗ is given by

g∗ =
θγ

(1 + η + γδ)2
[
(φ+ ς)s∗H + (φ− ς)s∗L

]
− 1 =

θγ

(1 + η + γδ)2

{
φ+ ς

[
s∗H(ς

−
)− s∗L(ς

+
)

]}
− 1,

(43)
where s∗L ≡

∫ 1
0.5
s∗(j)dj = s∗(j)/2 is the steady-state population share of household j ∈ [0.5, 1]

with low ability φ(j) = φ− ς whereas s∗H ≡
∫ 0.5
0

s∗(i)di = s∗(i)/2 is the steady-state population
share of household i ∈ [0, 0.5] with high ability φ(i) = φ+ ς. We note that s∗H + s∗L = 1. Then,
from Lemma 1, we have

s∗L
s∗H

=

∏∞
t=0 nt(j)∏∞
t=0 nt(i)

> 1, (44)

where

nt(j) =
η

σ(1 + η + γ)

{
t−1∑
τ=0

[
γ(1− δ)
1 + η + γ

]τ
+

[
γ(1− δ)
1 + η + γ

]t [
1 + (1− δ) h0

φ− ς

]}
,

nt(i) =
η

σ(1 + η + γ)

{
t−1∑
τ=0

[
γ(1− δ)
1 + η + γ

]τ
+

[
γ(1− δ)
1 + η + γ

]t [
1 + (1− δ) h0

φ+ ς

]}
.
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Therefore, s∗L/s
∗
H is increasing in ς, which together with s

∗
H+s∗L = 1 implies that s∗L is increasing

in ς and s∗H is decreasing in ς as stated in (43).
In summary, an increase in ς leads to an immediate increase in the coeffi cient of variation

in φ(i) given by ς/φ and a subsequent decrease in the steady-state growth rate g∗ given by (43)
by reducing the average level of human capital and the level of innovation in the long run due
to the temporary evolutionary disadvantage of the high-ability households. In the next section,
we will test this theoretical prediction using cross-country data.
Any proportional shock λe > 1 to the household’s education abilities will scale up all φ(i),

but it will also emphasize differences. High-ability households’ability will become λe
(
φ+ ς

)
,

while low-ability households’ability will become λe
(
φ− ς

)
. Since φ − ς > 0, the effects on

fertility and on nt(j) and nt(i) are both negative. This result means that education facilities
and support will reduce population growth by increasing the family’s potential to educate.
For example, after decades of education policies, China’s fertility rate has dropped despite the
2016 abandonment of the single-child policy. Our model allows arguing that China’s recent
population decline is not easily revertible because the country’s fertility transition to quality
children is a by-product of its inclusive and meritocratic education tradition. Will it hamper
economic growth? According to our model, it will not. The reader can easily prove that

1 + (1− δ) h0
λe(φ−ς)

1 + (1− δ) h0
λe(φ+ς)

decreases in λe, which implies - by (44) - that s∗L/s
∗
H decreases as well, thereby leading to an

increase in g∗. Therefore, we can state that:

Corollary 1 A policy that proportionally raises all education abilities will lead to a decrease in
fertility and an increase in long-term economic growth.

5 Empirical evidence

The main result in this study is driven by the quality-quantity tradeoff in fertility transition
highlighted by Galor (2005, 2011, 2022) and others in the related literature.20 The core of
this transition is the parents’ decision to educate their children: education takes time and
resources, and hence, it cannot be effective on too many children. Using data from a sample
of 137 countries from 1955 to 2015, Figure 1 in Appendix B presents a well known negative
relationship between fertility and education. This well-documented quality-quantity tradeoff
implies that households with higher education experience an evolutionary disadvantage and
represent a smaller share of the population over time. This stylized fact is consistent with (4)
in our model, in which households with higher ability φ(i) generally have higher human capital

20See for example, Becker et al. (2010), Fernihough (2017) and Klemp and Weisdorf (2019).
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ht(i) and lower fertility nt(i), generating a negative relationship between these two endogenous
variables.21

In the previous section, we show that the negative effects of this natural selection can be
captured by the heterogeneity in the ability to accumulate human capital, which in turn reduces
the average level of education, innovation and economic growth in the long run. In this section,
we use cross-country data to test this theoretical result. Specifically, we use the coeffi cient
of variation in the level of education as a scale-invariant measure of heterogeneity in ability
and estimate its effects on education, innovation and economic growth in the long run. Our
regression equation is specified as follows:

yi,t+m = β0 + β1vari,t + β2hi,t + Zi,t + ϕt + εi,t,

where yi,t+m is the dependent variable (i.e., education, innovation or economic growth) in coun-
try i at time t + m, vari,t is the variation in education and hi,t is the level of human capital
in country i at time t. Zi,t is a vector of control variables including the log of population,
the log of GDP per capita, trade as a share of GDP, gross capital formation as a share of
GDP, and government expenditure as a share of GDP. In order to capture the long-run effect
of heterogeneity in education, all explanatory variables are lagged 25 years (i.e., m = 25). ϕt
denotes the year fixed effects, and εi,t is the error term. Our theory predicts that β1 < 0 and
β2 > 0. In other words, upon controlling for the level of human capital, heterogeneity in educa-
tion (reflecting heterogeneity in the ability to accumulate human capital) has a negative effect
on education, innovation and economic growth in the next period.22 Except for the variation
in education, the human-capital index, the number of researchers in R&D and the number of
patent applications, all other variables are from the Penn World Table. The human-capital
index, the number of researchers in R&D and patent applications are from the World Bank.
The variation in education is calculated from the Barro-Lee educational attainment dataset.23

We provide the summary statistics in Appendix B.
Table 1 reports our main empirical results with control variables, but our results are also

robust to excluding other control variables.24 In the first two columns, the dependent variables
are the share of the population with at least some primary education and the log of average
years of education, respectively. These two variables capture the average level of education. In
columns (3) and (4), the dependent variables are the log of the number of researchers in R&D
(per million people) and the log of the number of patent applications, respectively. These two
variables capture the rate of innovation. Finally, in the last column, the dependent variable is
the growth rate of GDP per capita, which captures economic growth. From Table 1, we see

21Note that φ(i)/ht(i) is increasing in φ(i) until ht(i) reaches its steady state h∗(i) in (26), at which point
φ(i)/h∗(i) = (1 + η + γδ)/γ for all i.
22For example, we use the annual growth rate of GDP per capita to capture economic growth. Then, in order

to capture the long-run effects of heterogeneity in education on economic growth, we examine the impact of the
variation of education on the annual growth rate of GDP per capita 25 years later.
23The Barro-Lee educational attainment dataset provides the fraction of each group completely or incom-

pletely having attained primary, secondary and higher education. The duration for primary education and
secondary education in each country is available from the UNESCO Statistical Yearbook. As in Barro and Lee
(2013), we use a duration of four years for higher education and assign two years to persons who entered tertiary
school but did not complete it. We compute the average years of education for each group and calculate their
standard deviation in each country.
24See Table 4 in Appendix B, which shows that our findings are not driven by the inclusion of control variables.
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that the coeffi cients of vari,t are all significantly negative, whereas the coeffi cients of hi,t are
mostly significantly positive. This finding implies that upon controlling for the level of human
capital, heterogeneity in education harms education, innovation and economic growth in the
long run, as predicted by our theoretical model. Additionally, in order to address potential
outliers, we depict a bin-scatter plot illustrating the residualized dependent variables plotted
against the residualized heterogeneity in education, as outlined in Table 1. Figures 2 to 4 in
Appendix B provide evidence suggesting that the observed negative relationship between any
pair of the two variables is not likely to be influenced by outliers.

Table 1: Effects of heterogeneity in education

Education Innovation Growth
(1) (2) (3) (4) (5)

Heterogeneity in education -20.187*** -0.381*** -0.679** -0.847*** -0.992***
(1.875) (0.039) (0.284) (0.158) (0.360)

Human capital 3.952 0.174*** 0.809*** 1.884*** 1.311**
(2.469) (0.053) (0.255) (0.268) (0.518)

log population 0.453 0.016** 0.227*** 1.336*** 0.278***
(0.365) (0.008) (0.058) (0.077) (0.087)

log GDP per capita 2.843*** 0.147*** 1.047*** 1.111*** -0.702***
(0.849) (0.022) (0.133) (0.153) (0.191)

Trade share to GDP 1.566 0.005 -3.121*** -0.100 -0.251
(1.812) (0.055) (0.752) (0.400) (0.457)

Capital formation share 8.206 0.267 0.934 1.977 0.793
(5.570) (0.167) (1.117) (1.265) (1.602)

Government expenditure share 3.950 0.320* 1.948* 1.903* 0.275
(5.869) (0.175) (1.065) (1.143) (1.697)

Year fixed effect Yes Yes Yes Yes Yes
R-squared 0.826 0.827 0.747 0.825 0.090
Observations 954 954 244 624 954
Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses are clustered by
country. The dependent variables correspond to the share of population with schooling and log
of average years of education respectively in the first two columns. The dependent variables
correspond to the log of the number of researchers in R&D (per million people) and log of the
number of patent applications respectively in the columns 3-4. The dependent variable is the
growth rate of GDP per capita in the last column. In all columns, we control year fixed effects.
All independent variables are lagged 25 years.

Table 1 uses the variation in education to represent differences in educational ability. How-
ever, it’s important to note that unlike education, educational ability cannot be directly ob-
served. Therefore, bias emerges when we employ heterogeneity in education as a proxy for
heterogeneity in educational ability. In order to address this issue, we employ the global stan-
dardized tests of students’academic ability as an instrumental variable. These tests capture
both individual intelligence and educational ability. There are two programs on tests of stu-
dents’ academic performance: the Trends in International Mathematics and Science Study
(TIMSS) and the Progress in International Reading Literacy Study (PIRLS).25 Angrist et al.

25The two programs evaluate students in both fourth and ninth grades. We focus on their tests of fourth-
grade students. Assessing fourth-grade students covers a larger number of students and offers a more accurate
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Table 2: Impacts of heterogeneity in education with an instrumental variable

Education Innovation Growth
(1) (2) (3) (4) (5)

Panel A: Total
Heterogeneity in education -25.740*** -0.470*** -2.103** -1.207* -1.888**

(3.287) (0.082) (0.991) (0.686) (0.873)
Human capital 2.437 0.114 0.355 1.848*** 1.221

(4.116) (0.074) (0.343) (0.292) (0.772)
R-squared 0.746 0.814 0.715 0.840 0.069
Observations 567 567 180 429 567
Panel B: Read
Heterogeneity in education -24.663*** -0.452*** -1.859** -1.208* -1.432**

(2.527) (0.070) (0.787) (0.659) (0.726)
Human capital 2.503 0.115 0.429 1.848*** 1.249*

(3.845) (0.071) (0.283) (0.291) (0.679)
R-squared 0.764 0.819 0.732 0.840 0.090
Observations 567 567 180 429 567
Panel C: Math
Heterogeneity in education -24.063*** -0.430*** -3.145* -1.294** -1.864**

(2.635) (0.065) (1.701) (0.612) (0.837)
Human capital 2.540 0.116* 0.041 1.844*** 1.223

(3.744) (0.068) (0.529) (0.303) (0.765)
R-squared 0.773 0.824 0.593 0.839 0.070
Observations 567 567 180 429 567
Panel D: Science
Heterogeneity in education -26.624*** -0.504*** -1.756** -1.111 -1.960**

(3.885) (0.098) (0.885) (0.717) (0.934)
Human capital 2.383 0.111 0.460 1.852*** 1.217

(4.326) (0.081) (0.321) (0.287) (0.789)
R-squared 0.729 0.801 0.738 0.841 0.064
Observations 567 567 180 429 567
Country-level controls Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes
Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses are clustered
by country. The dependent variables correspond to the share of population with schooling
and log of average years of education respectively in the first two columns. The dependent
variables correspond to the log of the number of researchers in R&D (per million people)
and log of the number of patent applications respectively in the columns 3-4. The depen-
dent variable is the growth rate of GDP per capita in the last column. In all columns, we
control year fixed effects.

(2021) demonstrate that the overall student performance across countries undergoes minimal
changes over time, yet substantial differences exist at the national level. Similarly, the varia-
tions in educational ability exhibit small changes over time and considerable differences across
countries.26 Table 2 presents the empirical findings resulting from instrumenting the varia-

representation of nationwide differences compared to ninth-grade students. TIMSS conducted math and science
tests every four years from 1995 to 2019, and PIRLS conducted tests in 2001, 2006, 2011, 2016 and 2021.
26The variation in science ability exhibited a modest change of only 1.79% from 2003 to 2019. Notably, at

the 90th percentile, the variation reaches 542.14, in stark contrast to 302.93 at the 10th percentile. A consistent

18



tion in education with the corresponding variation in educational ability. The conducted tests
are categorized into Reading, Math, and Science. From the obtained scores, we compute the
variations in educational ability concerning Reading, Mathematics, and Science, as well as the
overall ability (defined as the cumulative ability in Reading, Mathematics, and Science). Panel
A uses the variation in total ability, Panel B uses the variation in reading ability, Panel C
employs the variation in mathematical ability, and Panel D employs the variation in scientific
ability as the instrumental variable. As seen in Table 2, the coeffi cients of educational variation
are significantly negative across all columns, indicating a negative impact on innovation and
economic growth. Table 5 in Appendix B presents the first stage of regression with instrumen-
tal variables. As shown in the table, we observe a significant positive correlation between the
variation in ability and the variation in education.
We also calculate the coeffi cients of variation in education for the male and female popu-

lations, respectively. As shown in Table 6 in Appendix B, all main results still hold for both
samples.27 The coeffi cients of variation in education are all significantly negative (except for
the impact of heterogeneity in education on the number of researchers in R&D). Comparing
panel A and B, the negative impact of heterogeneity in the ability to accumulate human capital
is more significant for the male population with a larger magnitude of coeffi cients. This result
is possibly due to the advantages enjoyed by men in the economy (i.e., the employment gender
gap, women’s discrimination in senior positions, and their lower labor force participation).
Finally, to account for differences in countries’education systems, as depicted in Table 7,

we incorporate the proportion of public education expenditure and female enrollment rate into
the regression. This allows us to isolate a portion of the impact attributed to differences in
national education systems. Even after further controlling for these factors, our predictions
remain robust.

6 Conclusion

In this study, we have constructed an innovation-driven growth model with endogenous takeoff,
elucidating the natural selection of heterogeneous households, differentiated by their ability to
accumulate human capital. The followings are the core findings of our research. In terms of
short-run dynamics, we show that an unanticipated survival-of-the-weakest scenario emerges in
the short run, where high-ability households experience a temporary evolutionary disadvantage,
later offset by human capital accumulation. In terms of long-run implications, the temporary
disadvantage of high-ability households has a lingering negative impact on long-term economic
growth.

pattern is observed in both math and reading abilities. In math, the 90th percentile exhibits a variation of 454.05,
while the 10th percentile shows 308.75. In reading, the 90th percentile has a variation of 481.33, significantly
differing from 302.56 at the 10th percentile. Considering that both TIMSS and PIRLS were conducted in 2011,
we calculated the standard deviation of scores for each country in that year to serve as an instrumental variable.
Employing scores from other years for calculating ability variation would not impact our results.
27In Table 6 and 7, we present the second-stage regression results from instrumenting the heterogeneity in

education using the corresponding variation in ability test scores. Here, we use the variation in overall ability
(defined as the cumulative ability in Reading, Mathematics, and Science).
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As for empirical evidence, our cross-country data analysis affi rms the model’s predictions,
highlighting the adverse effects of educational heterogeneity on long-run education, innovation,
and economic growth. A caveat is that heterogeneity in education in the data may be also driven
by heterogeneity in preferences and other considerations. To partly mitigate this problem, we
adopt variation in ability test scores as an instrumental variable, but we acknowledge that
this may not completely resolve the issue. In terms of theoretical contributions, this work
introduces the novel concept of natural selection of heterogeneous households in innovation-
driven growth models, thereby enriching the existing literature on economic growth. While our
model yields several noteworthy insights, it also opens up intriguing avenues for future research.
One potential extension could involve a more granular examination of the policy implications.
Understanding how government interventions or institutional reforms might affect the complex
interplay between natural selection, human capital accumulation, and growth could further
refine the applicability of our model to real-world scenarios.
Additionally, the integration of other socio-economic factors, such as cultural attitudes, as

in Cozzi (1998) and Tabellini (2010), and their dynamics, as in Bisin and Verdier (1998, 2000,
2001 and 2017), could add layers of realism and relevance to the theory. The exploration of these
and other extensions could provide valuable insights into how the subtle dynamics of natural
selection within heterogeneous households shape macroeconomic outcomes. In conclusion, our
study not only contributes to the understanding of innovation-driven growth and endogenous
takeoff but also raises thought-provoking questions for subsequent research, emphasizing the
multifaceted nature of human capital, fertility choices, and economic development.
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Appendix A: Proofs

Proof of Lemma 1. The labor share of household i is st(i) ≡ Lt(i)/Lt, where

Lt(i) = nt−1(i)Lt−1(i) = nt−1(i)nt−2(i)Lt−2(i) = ... =
t−1∏
τ=0

nτ (i)L0(i). (A1)

From (4), the fertility choice at time 0 is given by

n0(i) =
η

σ(1 + η + γ)

[
1 + (1− δ)h0(i)

φ(i)

]
. (A2)

From (6), the level of human capital at time 1 is given by

h1(i) =
γφ(i)

1 + η + γ

[
1 + (1− δ)h0(i)

φ(i)

]
. (A3)

Substituting (A3) into (4) yields the fertility choice at time 1 as

n1(i) =
η

σ(1 + η + γ)

{
1 +

γ(1− δ)
1 + η + γ

[
1 + (1− δ)h0(i)

φ(i)

]}
. (A4)

Substituting (A3) into (6) yields the level of human capital at time 2 as

h2(i) =
γφ(i)

1 + η + γ

{
1 +

γ(1− δ)
1 + η + γ

[
1 + (1− δ)h0(i)

φ(i)

]}
. (A5)

Substituting (A5) into (4) yields the fertility choice at time 2 as

n2(i) =
η

σ(1 + η + γ)

{
1 +

γ(1− δ)
1 + η + γ

+

[
γ(1− δ)
1 + η + γ

]2 [
1 + (1− δ)h0(i)

φ(i)

]}
. (A6)

Then, we can continue the process to derive the fertility choice at time t ≥ 3 as

nt(i) =
η

σ(1 + η + γ)

{
1 +

γ(1− δ)
1 + η + γ

+ ...+

[
γ(1− δ)
1 + η + γ

]t−1
+

[
γ(1− δ)
1 + η + γ

]t [
1 + (1− δ)h0(i)

φ(i)

]}
,

(A7)
which can then be re-expressed using a summation sign as in Lemma 1.

Proof of Lemma 2. If (17) holds, then (35) shows that HR,t > 0. Now, let’s consider the
case in which ∫ 1

0

[1− et(i)− σnt(i)]ht(i)
Lt(i)

Lt
di <

1

θ
. (A8)

Recall that the value of assets at the end of time t must equal the amount of saving at time t
given by wage income at time t such that

Nt+1vt = wt

∫ 1

0

[1− et(i)− σnt(i)]ht(i)Lt(i)di. (A9)
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Substituting (A9) into (A8) yields

wt >
θNt+1vt
Lt

≥ θNtvt
Lt

, (A10)

where the second inequality uses Nt+1 ≥ Nt. Equation (A10) implies that ∆Ntvt = wtHR,t in
(16) cannot hold unless HR,t = 0.

Proof of Proposition 1. From Lemma 1, the steady-state population share of household i
is given by

s∗(i) =

∏∞
t=0 nt(i)∫ 1

0

∏∞
t=0 nt(i)di

,

where we have used L0(i) = L0 for all i. Lemma 1 shows that nt(i) is monotonically decreasing
in φ(i) before reaching the steady state n∗ in (28), which then becomes independent of φ(i).
Therefore, it must be the case that

s∗(i) < s∗(j)⇔ φ(i) > φ(j).

Given that
∫ 1
0
s∗(i)di = 1, there must exist a threshold for φ(i) above (below) which s∗(i) < 1

(s∗(i) > 1). Let’s define:

∆ ≡
∫ 1

0

φ(i)s∗(i)di− φ =

∫ 1

0

φ(i)s∗(i)di−
∫ 1

0

φ(i)di =

∫ 1

0

φ(i)[s∗(i)− 1]di.

We order the households such that φ(i) > φ(j) for any i < j. In this case, s∗(i) < 1 for i ∈ [0, ε]
and s∗(i) > 1 for i ∈ [ε, 1]. Therefore, we can re-express ∆ as

∆ =

∫ ε

0

φ(i)[s∗(i)− 1]di︸ ︷︷ ︸
<0

+

∫ 1

ε

φ(i)[s∗(i)− 1]di︸ ︷︷ ︸
>0

.

If φ(i) = φ(j) = φ(ε) for all i ∈ [0, ε] and j ∈ [ε, 1], then ∆ = 0 because

φ(ε)

∫ ε

0

[s∗(i)− 1]di+ φ(ε)

∫ 1

ε

[s∗(i)− 1]di = φ(ε)

∫ 1

0

[s∗(i)− 1]di = 0.

Otherwise, ∆ < 0 because φ(i) > φ(ε) > φ(j) for any i ∈ [0, ε) and j ∈ (ε, 1] such that∫ ε

0

φ(i)[s∗(i)− 1]di < φ(ε)

∫ ε

0

[s∗(i)− 1]di < 0,

φ(ε)

∫ 1

ε

[s∗(i)− 1]di >

∫ 1

ε

φ(i)[s∗(i)− 1]di > 0,

implying ∆ < φ(ε)
∫ 1
0

[s∗(i)− 1]di = 0. Therefore, (41) and (42) hold.
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Appendix B: Figures and Tables

Figure 1: The relationship between fertility and education

Notes: This figure depicts the inverse correlation between fertility and education. The vertical axis represents

the fertility rate, whereas the horizontal axis denotes the number of years of education.
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Figure 2: The relationship between heterogeneity in education and the
average level of education

Notes: This figure illustrates a negative association between the heterogeneity in education and the average

education level. In Panel A, the vertical axis represents the percentage of the population with at least some

primary education, whereas in Panel B, the vertical axis corresponds to the log of the average years of education.
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Figure 3: The relationship between heterogeneity in education and the
rate of innovation

Notes: This figure illustrates a negative relationship between heterogeneity in education and the rate of

innovation. In Panel A, the vertical axis represents the log of the number of researchers in R&D (per million

people), whereas in Panel B, the vertical axis corresponds to the log of the number of patent applications.
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Figure 4: The relationship between heterogeneity in education and the
growth rate of GDP per capita

Notes: This figure displays a negative relationship between heterogeneity in education and the growth rate

of GDP per capita.
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Table 3: Summary statistics
Variable Obs Mean S.D. Min Max
Share of population with schooling (%) 954 81.15 20.86 13.72 100
Years of education (logarithm) 954 1.895 0.509 -0.191 2.586
Number of researchers (logarithm) 244 6.728 1.665 2.003 8.952
Number of patent applications (logarithm) 624 5.313 2.829 0 13.78
Growth of GDP per capita (%) 954 1.949 4.889 -50.23 35.26
Coeffi cient of variation in education 954 1.140 0.822 0.220 8.075
Variation in education (male) 954 0.991 0.638 0.228 5.984
Variation in education (female) 954 1.432 1.409 0.209 17.71
Variation in educational ability (total) 567 1201 230.9 873.5 1669
Variation in educational ability (read) 567 418.9 71.72 315.0 578.2
Variation in educational ability (math) 567 398.5 64.68 291.5 521.8
Variation in educational ability (science) 567 436.6 110.3 292.7 636.2
Human capital 954 1.808 0.613 1.009 3.463
Log of population 954 1.883 1.686 -2.212 7.067
Log of GDP per capita 954 8.587 1.175 5.683 12.38
Trade share to GDP 954 -0.050 0.332 -8.188 0.860
Capital formation share 954 0.211 0.133 0.002 2.000
Government expenditure share 954 0.178 0.106 0.012 1.122
Education expenditure share 856 0.042 0.023 0.007 0.417
Gender disparities 954 1.134 0.223 0.145 1.745
Note: The coeffi cient of variation in education is calculated from the Barro-Lee
educational attainment dataset. The variation in educational ability is calculated
from the TIMSS and PIRLS for the Fourth Grade Combined International Database.
The human-capital index, the number of researchers in R&D and the number of
patent applications are from the World Bank. All other variables are from the Penn
World Table.

Table 4: Effects of heterogeneity in education (without controls)

Education Innovation Growth
(1) (2) (3) (4) (5)

Heterogeneity in education -22.744*** -0.504*** -2.727*** -1.451*** -0.503
(1.858) (0.047) (0.290) (0.337) (0.375)

Year fixed effect Yes Yes Yes Yes Yes
R-squared 0.798 0.721 0.467 0.119 0.049
Observations 954 954 244 624 954
Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses are clustered by
country. The dependent variables correspond to the share of population with schooling and log
of average years of education, respectively, in the first two columns. The dependent variables
correspond to the log of the number of researchers in R&D (per million people) and log of the
number of patent applications, respectively, in columns 3 and 4. The dependent variable is the
growth rate of GDP per capita in the last column. In all columns, we control year fixed effects.
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Table 5: Impacts of heterogeneity in education with an instrumental variable (First stage)

Education Innovation Growth
(1) (2) (3) (4) (5)

Panel A: Total
Variation in scores 0.001*** 0.001*** 0.001*** 0.001** 0.001***

(0.000) (0.000) (0.000) (0.000) (0.000)
R-squared 0.412 0.412 0.592 0.372 0.412
Observations 567 567 180 429 567
Panel B: Read
Variation in scores 0.005*** 0.005*** 0.002*** 0.003** 0.005***

(0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.452 0.452 0.617 0.387 0.452
Observations 567 567 180 429 567
Panel C: Math
Variation in scores 0.005*** 0.005*** 0.001* 0.003** 0.005***

(0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.415 0.415 0.558 0.373 0.415
Observations 567 567 180 429 567
Panel D: Science
Variation in scores 0.003*** 0.003*** 0.002*** 0.002** 0.003***

(0.001) (0.001) (0.001) (0.001) (0.001)
R-squared 0.400 0.400 0.613 0.369 0.400
Observations 567 567 180 429 567
Country-level controls Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes
Notes: *** p< 0.01, ** p< 0.05, * p< 0.1. Standard errors in parentheses are clustered
by country. In the first stage, the dependent variable is heterogeneity in education in
all columns. In the second stage, the dependent variables correspond to the share of
population with schooling and log of average years of education respectively in the
first two columns. In the second stage, the dependent variables correspond to the log
of the number of researchers in R&D (per million people) and log of the number of
patent applications respectively in the columns 3-4. In the second stage, the dependent
variable is the growth rate of GDP per capita in the last column. In all columns, we
control year fixed effects.
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Table 6: Impacts of heterogeneity in education with an instrumental variable (male vs female)

Education Innovation Growth
(1) (2) (3) (4) (5)

Panel A: Male
Heterogeneity in education -28.871*** -0.474*** -2.672** -1.563 -2.343**

(4.773) (0.101) (1.166) (0.963) (1.141)
Human capital -0.086 0.116** 0.314 1.868*** 1.331*

(3.396) (0.056) (0.324) (0.289) (0.793)
R-squared 0.662 0.777 0.735 0.839 0.065
Observations 567 567 180 429 567
Panel B: Female
Heterogeneity in education -17.917*** -0.381*** -1.525* -0.695 -1.235**

(2.574) (0.056) (0.843) (0.487) (0.555)
Human capital 10.853 0.204 0.388 1.982*** 1.258*

(6.658) (0.134) (0.387) (0.360) (0.741)
R-squared 0.622 0.774 0.675 0.837 0.047
Observations 567 567 180 429 567
Country-level controls Yes Yes Yes Yes Yes
Year fixed effect Yes Yes Yes Yes Yes
Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses are clustered
by country. In the first-stage regression (available upon request), we use the variation
in overall test scores as the IV for heterogeneity in education. Here, we only report
the second-stage regression results. The dependent variables correspond to the share of
population with schooling and log of average years of education respectively in the first
two columns. The dependent variables correspond to the log of the number of researchers
in R&D (per million people) and log of the number of patent applications respectively in
the columns 3-4. The dependent variable is the growth rate of GDP per capita in the last
column. In all columns, we control year fixed effects.
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Table 7: Impacts of heterogeneity in education with an instrumental variable (More controls)

Education Innovation Growth
(1) (2) (3) (4) (5)

Heterogeneity in education -25.285*** -0.462*** -1.956** -1.098* -1.355*
(2.635) (0.065) (0.792) (0.591) (0.707)

Human capital 2.815 0.148* 0.447 1.750*** 1.333**
(4.371) (0.079) (0.296) (0.331) (0.674)

Log of population 0.043 0.011 0.144** 1.288*** 0.157*
(0.376) (0.008) (0.070) (0.078) (0.092)

Log of GDP per capita 0.422 0.123*** 0.587** 0.800*** -0.978***
(0.994) (0.024) (0.272) (0.255) (0.292)

Trade share to GDP 4.449 0.065 -1.751* 0.273 0.701
(3.038) (0.082) (1.011) (0.426) (0.636)

Capital formation share 5.835 0.262 2.710** 2.263 3.482*
(6.929) (0.192) (1.243) (1.654) (2.021)

Government expenditure share 15.966 0.685** 3.958*** 2.139 2.562
(11.679) (0.321) (1.344) (1.339) (2.432)

Education expenditure share -0.419 -0.015 -0.071 0.021 -0.408***
(0.838) (0.019) (0.104) (0.086) (0.137)

Gender disparities 0.940 0.154** -0.026 -0.555 -0.548
(2.251) (0.072) (0.488) (0.519) (0.708)

R-squared 0.755 0.822 0.729 0.843 0.103
Observations 567 567 180 429 567
Notes: *** p < 0.01, ** p < 0.05, * p < 0.1. Standard errors in parentheses are clustered
by country. In the first-stage regression (available upon request), we use the variation in
overall test scores as the IV for heterogeneity in education. Here, we only report the second-
stage regression results. The dependent variables correspond to the share of population with
schooling and logarithm of average years of education respectively in the first two columns.
The dependent variables correspond to logarithm of the number of researchers in R&D (per
million people) and logarithm of the number of patent applications respectively in the columns
3-4. The dependent variable is the growth rate of GDP per capita in the last column. In all
columns, we control year fixed effects.
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