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ABSTRACT

This thesis presents a novel rolling GLS-based model to improve the precision of time-
varying parameter estimates in dynamic linear models. Through rigorous simulations, the
rolling GLS model exhibits enhanced accuracy in scenarios with smaller sample sizes and
maintains its efficacy when the normality assumption is relaxed, distinguishing it from tra-
ditional models like Kalman Filters. Furthermore, the thesis expands on the model to tackle
more complex stochastic structures and validates its effectiveness through practical appli-
cations to real-world financial data, like inflation risk premium estimations. The research
culminates in offering a robust tool for financial econometrics, enhancing the reliability of
financial analyses and predictions.
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Chapter 1

Introduction

1.1 Overview

The aim of this thesis is to address a significant challenge in financial econometrics: the ef-
ficient estimation of stochastic parameters, particularly time-varying parameters. The focus
is on employing a rolling Generalized Least Squares (GLS) type GMM model to minimize
the Root Mean Square Error (RMSE) from the estimation of these parameters.

The model setup involves assuming a linear state model, and a linear relationship between
the measurement and the underlying state:

yt = x⊤
t βt + εt (1.1)

βt =

p∑
j=1

Ajβt−j + νt (1.2)

A rolling window regression is used for estimation. Here, the "error" term is defined
with respect to the beta of interest. Normally, we would like to recover the average beta
for the full time series. However, here, we are interested in the beta for each time stamp
individually. In a causal model, this will be the last beta in the window. By contrast, in a
non-causal model, this will be the middle beta in the window.

GLS is an advanced approach that accounts for potential heteroskedasticity or auto-
correlation in the error terms. The GLS method aims to provide more efficient and unbiased
estimates compared to OLS, especially in the presence of non-constant variance in the error
terms. This is ideal for my application here, as error terms from different lags are indeed
correlated with each other.

This gives us the GLS estimator of

β̂t = (X⊤
t−k,tΩ

−1
t−k,tXt−k,t)

−1(X⊤
t−k,tΩ

−1
t−k,tyt−k,t) (1.3)

, where k is the maximum look-back period.
The primary challenge tackled in this thesis is deriving

Ωt−k,t = Var(ut−k,t|Xt−k,t,βt) (1.4)
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, where ut−j is the estimation error

ut−j = yt−j − x⊤
t−jβt (1.5)

As will be shown in the subsequent chapters, the GLS model presented in this study
demonstrates significant improvements, particularly in handling smaller sample sizes and
offering robust performance when normality assumptions are compromised, setting a new
benchmark in financial modeling.

Following this overview, the thesis unfolds over five additional chapters and two sections.
The rest of Chapter 1 summarizes the motivation for this thesis, as well as various method-
ologies previously applied in this field. In Chapter 2, I establish the foundational models
and estimators crucial for the subsequent empirical methodology. Chapter 3 details the
feasible application of the theoretical models, including the Method-of-Moments estimator
and the iterative estimator. Chapter 4 presents a series of simulations conducted to test
the robustness and efficacy of the proposed models under known and unknown parameters.
In Chapter 5, I apply the models to actual financial data to illustrate their practical utility
in portfolio construction, factor estimation, and inflation risk premium analysis. Finally,
Chapter 6 summarizes the findings and discusses potential avenues for future research.

1.2 Motivation

The motivation for this study stems from the need to enhance the precision and reliability
of financial models, especially in the context of rapidly changing market dynamics. Current
methods, while widely used, have limitations in handling the time-varying nature of modern
financial relationships. The proposed rolling GLS filter aims to address these shortcomings
by providing a more robust and dynamic framework for parameter estimation.

1.2.1 Factor Risk Premium

In the process of factor risk premium estimation, we observe changes in the characteristics
and factor loadings of firms over time. When a firm increases its leverage, its beta rises,
implying a higher sensitivity to market movements. Similarly, as a firm grows in size, its
loading on the size factor decreases, illustrating a shift in its risk profile relative to the
market.

Beyond these traditional metrics, the thesis also explores other factors that are less fre-
quently accounted for in standard models, such as the inflation factor. These factors represent
the unique aspects of a firm’s financial behavior that are not captured by conventional risk
factors.

1.2.2 Portfolio Construction

The construction of a portfolio requires efficient estimation of expected returns. This step is
critical for achieving an optimal allocation of assets that maximizes returns while minimizing
risk. The thesis delves into the methodologies used for estimating these expected returns,
particularly focusing on the application and implications of my proposed filter in this context.

14



1.2.3 Portfolio Evaluation

Evaluating a portfolio involves assessing the changing nature of its alpha, or excess return,
over time. It is observed that the alpha of a managed portfolio may vary, often exhibiting
low market beta during normal times and high market beta during crises. This phenomenon
highlights the need for dynamic models that can adapt to changing market conditions and
more accurately capture the risk-return profile of the portfolio across different market phases.

1.3 Existing Approaches

1.3.1 Equal-weighted Rolling Ordinary Least Square

One of the foundational methods for estimating time-varying parameters is the equal-weighted
rolling OLS. In practice, empirical approaches often rely on this method to estimate time-
varying parameters. It is given by:

β̂t =

(
k∑

i=0

xt−ix
′
t−i

)−1 k∑
i=0

xt−iyt−i, (1.6)

where xt−i, yt−i denotes the observed independent and dependent variable at time t− i,
and k is the number of periods in the rolling window. The equal-weighted rolling average
assumes that all observations within the window contribute equally to the estimation of the
current parameter value, βt. This method is particularly useful for its simplicity and ease of
computation.

However, it may not be ideal when recent observations are more indicative of the current
state, a scenario where weighted schemes could provide a more accurate reflection of the
parameter dynamics. What’s worse, the selected window horizon for estimation is often
based on the performance optimization of certain asset pricing models. Parameters estimated
in this manner can introduce significant biases. This ad hoc approach can lead to spurious
conclusions or “cherry-picking” results that do not accurately reflect the underlying financial
dynamics.

1.3.2 Linearly Decaying Rolling Weighted Least Square

The linearly decaying WLS refines the concept of the rolling OLS by assigning weights that
linearly decrease for observations further in the past. This method can be mathematically
represented as:

β̂t =

(
k∑

i=0

(k − i+ 1)xt−ix
′
t−i

)−1 k∑
i=0

(k − i+ 1)xt−iyt−i, (1.7)

where each observation is weighted by its lag index k − i+ 1, ensuring that more recent
data points have a larger influence on the estimate.

15



This filter is motivated by the Bartlett kernel adopted in the Newey and West 1987,
though we have a completely different problem here. It is more aligned with the belief that
recent observations may be more relevant in representing the current state.

However, it’s still not ideal. One reason being that the shape of the kernel is not well
justified. One would expect a better performance by moving towards non-linear kernels, such
as the Parzen Window, Tukey-Hanning Window and the Quadratic Spectral Kernel. More
importantly, we would still need to hand-pick the size of the estimation window, which again
leads to suspicious data mining.

1.3.3 Kalman Filter

The Kalman Filter is a recursive solution to the linear Bayesian filtering problem and is
widely used for estimating time-varying parameters in systems governed by linear stochastic
difference equations (Kalman 1960).

This is probably the most popular model adopted in these "Dynamic Linear Model"
set-ups. It is based on maximum-likelihood algorithms that evaluate the probability density
function (pdf) of the hidden state recursively in a Bayesian manner.

Its formulation is as follows:

β̂t|t−1 = Aβ̂t−1|t−1, (1.8)
Pt|t−1 = APt−1|t−1A

⊤ +Q, (1.9)
Kt = Pt|t−1H

⊤(HPt|t−1H
⊤ +R)−1, (1.10)

β̂t|t = β̂t|t−1 +Kt(yt −Hβ̂t|t−1), (1.11)
Pt|t = (I −KtH)Pt|t−1. (1.12)

Here, A represents the state transition matrix, Q the covariance matrix of the process
noise, H the observation matrix, R the covariance matrix of the observation noise, Kt the
Kalman gain, and P the covariance matrix of the estimated parameters.

The Kalman Filter’s strength lies in its optimality and efficiency. However, Kalman filter-
ing imposes several restrictive assumptions. First and foremost, in the "Bayesian Updating"
step, the Kalman filter assumes that errors are Gaussian, which is not widely true in practice.
In addition, the likelihood function may be poorly defined in non-stationary cases, leading
to non-vanishing priors. Addressing these challenges, the GLS model presented in this study
demonstrates significant improvements.

1.3.4 Kalman Smoother

The Kalman Smoother extends the Kalman Filter to provide smoothed estimates of past
states by incorporating all available observations. The key equations for the Kalman Smoother
are:

16



β̂t|T = β̂t|t + Lt(β̂t+1|T − Aβ̂t|t), (1.13)
Pt|T = Pt|t + Lt(Pt+1|T − Pt+1|t)L

⊤
t , (1.14)

Lt = Pt|tA
⊤P−1

t+1|t. (1.15)

Where T denotes the total number of observations, and Lt is the smoother gain. This
technique is particularly powerful for signal extraction and smoothing noisy data series. A
foundational reference for understanding the Kalman Smoother is the work by Rauch, Tung,
and Striebel 1965 on state estimation for linear systems subject to Gaussian noise, commonly
referred to as the RTS Smoother.

1.3.5 Hamilton Filter

The Hamilton Filter, is a pivotal tool in econometrics for analyzing nonstationary time series
with regime changes (Hamilton 1989). It is particularly effective in capturing the dynamics
of economic time series that exhibit phases such as growth and recession. The filter operates
within the framework of a Markov-switching model and can be represented as:

yt = β0 + β1St + εt (1.16)
S ∈ {0, 1} (1.17)
P (St = 1|St−1 = 0) = 1− q (1.18)
P (St = 1|St−1 = 1) = p (1.19)

where St is the state vector, yt the observed time series, and β the set of model param-
eters.

1.3.6 Particle Filters

Particle Filters, also known as Sequential Monte Carlo methods, are crucial in state esti-
mation for non-linear and non-Gaussian models. They utilize a set of random samples, or
particles, to approximate the posterior distributions of state variables. The weights of these
particles are updated based on their likelihood:

x̂t =
N∑
i=1

w
(i)
t x

(i)
t , (1.20)

where x
(i)
t are the particles and w

(i)
t their weights. For further details, see Doucet and

Johansen 2011 on particle filtering and smoothing.

1.3.7 Extended Kalman Filter

The Extended Kalman Filter (EKF) is designed for systems with non-linear dynamics. It
linearizes about the current estimate to handle non-linearities in the state and observation
models:

17



x̂t|t−1 = f(x̂t−1|t−1,ut), (1.21)
Pt|t−1 = FtPt−1|t−1F

⊤
t +Qt, (1.22)

with f(·) as the non-linear state transition function, and Ft its Jacobian. Julier and
Uhlmann 1997 provides an extensive discussion on EKF.

1.3.8 Unscented Kalman Filter

The Unscented Kalman Filter (UKF) addresses the shortcomings of EKF for highly non-
linear systems using a deterministic sampling approach:

χt = GenerateSigmaPoints(x̂t−1, Pt−1), (1.23)

x̂t|t−1 =
∑
i

w(i)
m f(χ

(i)
t ), (1.24)

Pt|t−1 =
∑
i

w(i)
c [χ

(i)
t − x̂t|t−1][χ

(i)
t − x̂t|t−1]

⊤ +Qt, (1.25)

UKF employs sigma points to approximate the mean and covariance of the state distri-
bution. Wan and Van Der Merwe 2000 offers a comprehensive explanation of UKF.

1.3.9 Hodrick-Prescott Filter

The Hodrick-Prescott (HP) Filter is a widely-used tool for extracting the cyclical component
of a time series from raw data (Hodrick and Prescott 1997). It is formulated as the solution
to the following optimization problem:

min
{µt}

{
T∑
t=1

(yt − µt)
2 + λ

T−1∑
t=2

[(µt+1 − µt)− (µt − µt−1)]
2

}
, (1.26)

where yt is the observed time series, µt the trend component, and λ the smoothing pa-
rameter. The HP filter differentiates between short-term fluctuations and long-term trends,
making it useful in macroeconomic analysis.

However, it should be treated with caution. HP Filter averages over today’s, yesterday’s
and tomorrow’s data. If we are interested in whether one series leads (or perhaps causes)
another, we may mess up the relationship by filtering. In addition, HP can generate spurious
cycles. Cogley and Nason 1995 generated random-walk data, applied HP, and found cycles.
Baxter-King Filter might also generate spurious cycles. In general, we know the theory of
these filters, but we don’t know their stochastic properties so well.

1.3.10 Baxter-King Filter

The Baxter-King Filter is another popular method used for extracting cyclical components
from time series data, especially in macroeconomic analysis (Baxter and King 1999). Unlike
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the Hodrick-Prescott Filter, the Baxter-King filter aims to approximate an ideal band-pass
filter that passes frequencies contained in a pre-specified band while attenuating frequencies
outside this band.

The mathematical formulation of the Baxter-King filter involves applying a moving av-
erage filter to the time series data. This filter is defined as follows:

B(L) =

q∑
j=−q

bjL
j (1.27)

where B(L) is the filter in terms of the lag operator L, and bj are the filter coefficients
designed to target specific cyclical frequencies.

The spectral density of the filtered series yt is related to the spectral density of xt through
the relationship:

Sy(ω) = Sx(ω)|B(eiω)|2 (1.28)

where Sy(ω) and Sx(ω) are the spectral densities of yt and xt, respectively, and ω represents
the frequency.

The key insight of the Baxter-King filter lies in its ability to provide an approximation to
the ideal filter that can be computed with finite data. This is particularly useful in empirical
analysis where the ideal filter would require an infinite amount of data. The Baxter-King
filter achieves this by truncating the infinite sum in the ideal filter to a finite number of
terms, determined by the chosen number of lags K, and adjusting the coefficients to satisfy
the condition B(1) = 0, which removes the deterministic trend from the series.

The filter coefficients bj are selected to minimize the difference between the actual fre-
quency response of the filter and the desired frequency response over the target range of
frequencies. This leads to the truncated filter that approximates the ideal response as closely
as possible given the constraints of finite data.

The effectiveness of the Baxter-King filter can be evaluated by comparing the gain of
the filter, |B(eiω)|2, against the desired frequency response. This comparison demonstrates
the filter’s ability to isolate the cyclical components associated with the business cycle from
other components, such as the trend and seasonal effects, in economic time series data.
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Chapter 2

Theoretical Derivation

This chapter is composed of several key sections, each delving into different aspects of the
theoretical framework underpinning this study. The chapter begins with an exploration of
the ’Simple Stochastic Mean Model,’ where the model’s set-up and estimator formulations,
both causal and non-causal, are discussed. This is followed by a similar analysis for the ’Gen-
eral Stochastic Mean Model.’ The chapter then progresses to a detailed examination of the
’VAR(1) Stochastic Beta Model,’ outlining its foundational principles and estimator strate-
gies. Finally, the ’General Stochastic Beta Model’ is presented, completing the theoretical
exploration.

2.1 Simple Stochastic Mean Model

2.1.1 Model Set-up

The simple stochastic mean model serves as a foundational framework for the exploration
of time-varying parameter estimations. The model encapsulates the core dynamics that will
be extended in more complex formulations discussed later in this thesis. It is defined by the
following equations:

yt = µt + εt, (2.1)
µt = µt−1 + νt, (2.2)

, where yt denotes the observed variable at time t, capturing the realizations of the
stochastic process. The term µt represents the stochastic mean, which is the principal time-
varying parameter of interest, highlighting the mean’s evolution over time. The noise compo-
nent εt accounts for random fluctuations around the mean, while νt signifies the incremental
stochastic shocks that drive the mean’s progression.

The stochastic properties of the noise and shock components are characterized by uncor-
related white noises, as specified below:

εt ∼ WN (0, σ2
ε), (2.3)

νt ∼ WN (0, σ2
ν), (2.4)

Cov(εt, νs) = 0 for all s, t, (2.5)
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, which ensures that the noise and the shocks are uncorrelated across time, maintaining
the integrity of the mean as a purely stochastic element devoid of systematic influence from
the noise.

Given these assumptions, the primary objective of my analysis is the robust recovery of
the time-varying parameter µt from the observable series yt. This task lays the groundwork
for the subsequent development of estimation techniques that can adeptly handle the intrinsic
variability characteristic of financial time series.

2.1.2 Causal Estimator Formulation

As is revealed from the overview, my GLS estimator for µt will be in the form of

µ̂t = (ι⊤Ω−1ι)−1(ι⊤Ω−1yt−k,t) (2.6)

The development of the GLS estimator for the stochastic mean µt is predicated on the
precise articulation of the variance of the estimation error, Ω. This variance is a corner-
stone in the implementation of the GLS methodology, as it encapsulates the error dynamics
essential for obtaining efficient estimates.

To elucidate the estimation of µt, I consider the observable y’s as functions of µt, leading
to a system of equations that defines the relationship between observed values and the
stochastic mean, coupled with the noise and underlying shocks:

yt = µt + εt (2.7)
yt−1 = µt−1 + εt−1 = µt − νt + εt−1 (2.8)
yt−2 = µt − νt − νt−1 + εt−2 (2.9)

· · · · · · (2.10)
yt−k = µt − νt − · · · − νt−k+1 + εt−k (2.11)

Subtracting µt from each observable yields the estimation errors, which are essentially
the discrepancies between the observed values and the stochastic mean:

ut = yt − µt = εt (2.12)
ut−1 = yt−1 − µt = −νt + εt−1 (2.13)
ut−2 = yt−2 − µt = −νt − νt−1 + εt−2 (2.14)

· · · · · · (2.15)
ut−k = yt−k − µt = −νt − · · · − νt−k+1 + εt−k (2.16)

The core of our estimator lies in the conditional variance-covariance matrix Ωu|µt , which
is structured as a block matrix to reflect the variances and covariances of the estimation
errors

[
ut ut−1 · · · ut−k

]
:

Ωu|µt =



σ2
ε 0 0 0 · · · 0
0 σ2

ε + σ2
ν σ2

ν σ2
ν · · · σ2

ν

0 σ2
ν σ2

ε + 2σ2
ν 2σ2

ν · · · 2σ2
ν

0 σ2
ν 2σ2

ν σ2
ε + 3σ2

ν · · · 3σ2
ν

...
...

...
...

...
0 σ2

ν 2σ2
ν 3σ2

ν · · · σ2
ε + kσ2

ν


(2.17)
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Finally, the GLS estimator µ̂GLS
t is obtained by applying the inverse of this matrix to

the vector of observed values, facilitating a Best Linear Unbiased Estimation (BLUE) of the
stochastic mean:

µ̂GLS
t = (ι⊤Ω−1

u|µt
ι)−1(ι⊤Ω−1

u|µt
yt−k,t). (2.18)

This formulation of the GLS estimator not only underscores the importance of accounting
for the variance-covariance structure in estimation, but also highlights the estimator’s ca-
pacity to harness this information for more precise inference in the presence of time-varying
parameters. Since the estimator is formulated under the GLS framework, the standard
GLS standard error can be applied to construct confidence intervals and perform hypothesis
testing.

2.1.3 Non-Causal Estimator Formulation

Another innovative aspect of this research involves the formulation of a non-causal estimator
that leverages both past and future information to estimate the stochastic mean µt. This
approach is also grounded in the derivation of Ω, the variance of the estimation error, which
is a critical component of the GLS estimator’s framework.

To establish the foundation for defining the estimation errors, we express all observable
variables yt−k:t+k as functions of the stochastic mean µt. The expressions are as follows:

yt−k = µt − νt − · · · − νt−k+1 + εt−k (2.19)
yt−1 = µt−1 + εt−1 = µt − νt + εt−1 (2.20)
yt = µt + εt (2.21)

yt+1 = µt+1 + εt+1 = µt + νt+1 + εt+1 (2.22)
yt+k = µt + νt+1 + · · ·+ νt+k + εt+k (2.23)

Subsequently, the estimation errors can be articulated as:

ut−k = yt−k − µt = −νt − · · · − νt−k+1 + εt−k (2.24)
ut−1 = yt−1 − µt = −νt + εt−1 (2.25)
ut = yt − µt = εt (2.26)

ut+1 = yt+1 − µt = νt+1 + εt+1 (2.27)
ut+k = yt+k − µt = νt+1 + · · ·+ νt+k + εt+k (2.28)

The construction of the conditional variance-covariance matrix of the estimation error
vector is intricate, as it involves a block diagonal arrangement:

Ωu|µt = blkdiag({Ω⊤′

sub, σ
2
ε ,Ωsub}), (2.29)

where the submatrix Ωsub is defined to capture the variances and covariances that evolve
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over different time horizons:

Ωsub =


σ2
ε + σ2

ν σ2
ν σ2

ν · · · σ2
ν

σ2
ν σ2

ε + 2σ2
ν 2σ2

ν · · · 2σ2
ν

σ2
ν 2σ2

ν σ2
ε + 3σ2

ν · · · 3σ2
ν

...
...

...
...

...
σ2
ν 2σ2

ν 3σ2
ν · · · σ2

ε + kσ2
ν

 (2.30)

This matrix’s unique structure, with variances that increase with the temporal distance
from the mean estimation period and constant covariances, is a reflection of the underlying
stochastic processes.

To ensure symmetry within the non-causal framework, consider the transpose of Ωsub

with respect to the anti-diagonal, noted as Ω⊤′

sub. This transformation is a non-standard
operation in matrix algebra but is indispensable for the non-causal estimator’s architecture.

The culmination of these derivations is, again, the GLS estimator, µ̂GLS
t , formulated as:

µ̂GLS
t = (ι⊤Ω−1

u|µt
ι)−1(ι⊤Ω−1

u|µt
yt−k,t+k). (2.31)

This estimator stands as a testament to the power of GLS methodology, offering an
efficient and unbiased estimation of µt by adeptly using the structured error variances en-
capsulated within the earlier derivations.

2.2 General Stochastic Mean Model

2.2.1 Model Set-up

In this model, we still observe yt, a variable comprising the stochastic mean µt and a noise
component εt. In addition, the noise component is uncorrelated with the stochastic mean at
all times.

However, as a general case, the stochastic mean can be any stationary time series, char-
acterized by an auto-covariance function γk. This is formalized as:

yt = µt + εt, (2.32)
µt is stationary with auto-covariance function γk, (2.33)

Cov(εt, µs) = 0 for all s, t. (2.34)

2.2.2 Causal Estimator Formulation

The causal estimator for µt still relies on the Generalized Least Squares (GLS) method. The
detailed derivation of the GLS estimator is beyond the scope of this section, but interested
readers are encouraged to contact the author for further insights.

The GLS estimator is expressed as:

µ̂GLS
t = (ι⊤Ω−1

u|µt
ι)−1(ι⊤Ω−1

u|µt
yt−k,t), (2.35)
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where Ωu|µt encapsulates the variances and covariances of the estimation errors, integrat-
ing the stationary properties of µt:

Ωu|µt = σ2
ε · Ik×k +


0 0 0 · · · 0
0 2γ0 − 2γ1 γ0 − γ2 · · · γ0 − γ1 + γk−1 − γk
0 γ0 − γ2 2γ0 − 2γ2 · · · γ0 − γ2 + γk−2 − γk
...

...
... . . . ...

0 γ0 − γ1 + γk−1 − γk γ0 − γ2 + γk−2 − γk · · · 2γ0 − 2γk

 .

(2.36)

This GLS estimator takes into account the stationarity of the stochastic mean, µt, and
the orthogonality of the noise term with respect to µt, thus enabling a precise recovery of
the underlying stochastic process driving the observed yt.

2.2.3 Non-Causal Estimator Formulation

Similar to Section 2.1.3, due to the inherent symmetry in time series, the non-causal two-
sided GLS estimator is expressed as:

µ̂GLS
t = (ι⊤Ω−1

u|µt
ι)−1(ι⊤Ω−1

u|µt
yt−k,t+k), (2.37)

where

Ωu|µt = σ2
ε · I(2k+1)×(2k+1) + blkdiag({Ω⊤′

sub, 0,Ωsub}), (2.38)

and

Ωsub =


2γ0 − 2γ1 γ0 − γ2 · · · γ0 − γ1 + γk−1 − γk
γ0 − γ2 2γ0 − 2γ2 · · · γ0 − γ2 + γk−2 − γk

...
... . . . ...

γ0 − γ1 + γk−1 − γk γ0 − γ2 + γk−2 − γk · · · 2γ0 − 2γk

 . (2.39)

2.3 VAR(1) Stochastic Beta Model

2.3.1 Model Set-up

In the Vector Autoregressive (VAR) Stochastic Beta Model, I model the observed variable
yt as a product of a time-varying parameter vector βt and a vector of regressors xt, with an
additive noise component εt with potential heteroskedasticity and auto-correlation:

yt = x⊤
t βt + εt, (2.40)

where E[ε|X] = 0,E[εε⊤|X] = Σε. (2.41)

The time-varying parameter βt is modeled to follow a process centered around a mean
vector β̄, with innovations νt:

βt − β̄ = A(βt−1 − β̄) + νt, (2.42)
where νt ∼ WN (0,Σν), (2.43)
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and the noise component εt is assumed to be uncorrelated with the innovation process
νs at all times:

Cov(εt,νs) = 0 for all s, t. (2.44)

This model complexity increases significantly compared to the simple stochastic mean
model, resembling the linear state-space structures assumed in Kalman Filter frameworks.

2.3.2 Causal Estimator Formulation

The derivation of the causal GLS estimator for βt is extensive and thus omitted here for
brevity. Interested readers may request detailed derivations from the author.

The estimator is presented as:

β̂GLS
t = β̄ + (X̃⊤

t,t−kΩ
−1
u|βt

X̃t,t−k)
−1(X̃⊤

t,t−kΩ
−1
u|βt

ỹt,t−k), (2.45)

where the adjusted variables ỹt,t−k and X̃t,t−k account for the mean structure of βt:

ỹt,t−k = yt,t−k −Xt,t−kβ̄, (2.46)

X̃t,t−k =


x⊤
t A

0

x⊤
t−1A

−1

...
x⊤
t−kA

−k

 , (2.47)

and the variance-covariance matrix Ωu|βt is constructed to reflect the uncertainty associ-
ated with both the noise εt and the innovations νt:

Ωu|βt = Σt,t−k
ε + diag(X̃⊤

t,t−k)Σ
Aug
ν diag(X̃t,t−k)

⊤. (2.48)

The block matrices Σt,t−k
ε and ΣAug

ν encapsulate the variances and covariances of the
noise and innovation processes, respectively, across different time lags. These are critical in
constructing Ωu|βt , which informs the GLS estimator, enabling the recovery of βt from the
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observed data yt, xt with consideration for the underlying VAR dynamics.

Σt,t−k
ε =


σ2
εt σεt,εt−1 · · · σεt,εt−k

σεt−1,εt σ2
εt−1

· · · σεt−1,εt−k

...
...

...
σεt−k,εt σεt−k,εt−1 · · · σ2

εt−k


(k+1)×(k+1)

(2.49)

diag(x̃⊤
t,t−k) =


x⊤
t A

0 0 · · · 0
0 x⊤

t−1A
−1 · · · 0

...
...

...
0 0 · · · x⊤

t−kA
−k


(k+1)×(kd+d)

(2.50)

ΣAug
ν =



0 0 0 0 · · · 0
0 Σν Σν Σν · · · Σν

0 Σν Σν + AΣνA
⊤ Σν + AΣνA

⊤ · · · Σν + AΣνA
⊤

0 Σν Σν + AΣνA
⊤ Σν+AΣνA⊤+

A2Σν(A2)⊤
· · · Σν+AΣνA⊤+

A2Σν(A2)⊤

...
...

...
...

...
0 Σν Σν + AΣνA

⊤ Σν+AΣνA⊤+
A2Σν(A2)⊤

· · · Σν+AΣνA⊤+
···+AkΣν(Ak)⊤


(kd+d)×(kd+d)

(2.51)

2.3.3 Non-Causal Estimator Formulation

Again, thanks to the inherent symmetry in time series, the GLS estimator is

β̂GLS
t = β̄ + (X̃⊤

t−k,t+kΩ
−1
u|βt

X̃t−k,t+k)
−1(X̃⊤

t−k,t+kΩ
−1
u|βt

ỹt−k,t+k), (2.52)

where all vectors are concatenated vectors in the causal estimator vnc =
[
v[k : 2] v[1] v[2 : k]

]
,

and matrices being a block-diagonal format with elements in the causal estimator, where
Anc = blkdiag{A[k : 2, k : 2], A[1, 1], A[2 : k, 2 : k]}.

2.4 General Stochastic Beta Model

2.4.1 Model Set-up

The General Stochastic Beta Model presents a versatile framework for capturing the dynamic
relationship between the observed variable yt and a set of explanatory variables xt. The
model structure is given by:

yt = x⊤
t βt + εt, (2.53)

where E[ε|X] = 0, E[εε⊤|X] = Σε. (2.54)

Here, βt is defined as a stationary process with a well-specified covariance structure:

βt is stationary with E[(βt+k − β̄)(βt − β̄)⊤] = Γk. (2.55)
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By Wold’s Decomposition Theorem, this represents all possible stationary processes,
affirming the model’s suitability for a wide range of stochastic processes.

Again, I assume that the noise εt is uncorrelated with all future and past innovations in
βt:

Cov(εt,νs) = 0 for all s, t. (2.56)

2.4.2 Causal Estimator Formulation

The GLS estimator for βt is a testament to the model’s adaptability and encompasses a
broad spectrum of dynamic behaviors:

β̂GLS
t = β̄ + (X⊤

t,t−kΩ
−1
u|βt

Xt,t−k)
−1(X⊤

t,t−kΩ
−1
u|βt

ỹt,t−k), (2.57)

where the modified response vector ỹt,t−k and the design matrix Xt,t−k are adjusted for
the mean structure of βt:

ỹt,t−k = yt,t−k −Xt,t−kβ̄, (2.58)

Xt,t−k =


x⊤
t

x⊤
t−1
...

x⊤
t−k

 . (2.59)

The variance-covariance matrix Ωu|βt integrates the noise and the stationary properties
of βt, ensuring that the estimator captures the full spectrum of potential correlations:

Ωu|βt = Σt,t−k
ε + diag(X⊤

t,t−k)Σ
Aug
ν diag(Xt,t−k)

⊤. (2.60)

The matrices Σt,t−k
ε and ΣAug

ν are meticulously constructed to reflect the covariance of
the noise and the auto-covariance of βt, respectively. Intuitively,

Σt,t−k
ε = Covariance matrix of ε over time, (2.61)
ΣAug

ν = Augmented covariance matrix capturing the dynamics of βt. (2.62)

27



More tediously, the exact mathematical formulae are

Σt,t−k
ε =


σ2
εt σεt,εt−1 · · · σεt,εt−k

σεt−1,εt σ2
εt−1

· · · σεt−1,εt−k

...
...

...
σεt−k,εt σεt−k,εt−1 · · · σ2

εt−k


(k+1)×(k+1)

(2.63)

diag(x⊤
t,t−k) =


x⊤
t 0 · · · 0
0 x⊤

t−1 · · · 0
...

...
...

0 0 · · · x⊤
t−k


(k+1)×(kd+d)

(2.64)

ΣAug
ν =



0 0 0 · · · 0

0 2Γ0 − Γ⊤
1 − Γ1

Γ0−Γ⊤
1

+Γ1−Γ2
· · · Γ0−Γ⊤

1
+Γk−1−Γk

0
Γ0−Γ1

+Γ⊤
1 −Γ⊤

2
2Γ0 − Γ⊤

2 − Γ2 · · · Γ0−Γ⊤
2

+Γk−2−Γk

...
...

...
...

0
Γ0−Γ1

+Γ⊤
k−1−Γ⊤

k

Γ0−Γ2

+Γ⊤
k−2−Γ⊤

k
· · · 2Γ0 − Γ⊤

k − Γk


(kd+d)×(kd+d)

(2.65)

This GLS estimator not only highlights the model’s broad applicability across different
temporal structures, but also its precision in estimating the intricate intertemporal relation-
ships inherent in the stochastic processes governing βt.
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Chapter 3

Empirical Methodology

Chapter 3 presents a detailed exploration of the feasible application of the theoretical models
developed in the previous chapter. It begins with Section 3.1, where the primary aims and
objectives of the empirical methodologies employed in this study are clearly outlined.

This is followed by Section 3.2, which is subdivided into two parts: Section 3.2.1, ’Fea-
sible GLS,’ delves into the specifics of the Feasible Generalized Least Squares method, its
implementation, and its relevance to the study. Section 3.2.2, ’Optimal Window Length for
OLS/WLS,’ discusses the determination of the optimal window length for Ordinary Least
Squares and Weighted Least Squares, a critical factor in enhancing the accuracy of parameter
estimation.

The chapter concludes with Section 3.3, where the development and application of an
iterative estimation method are discussed, demonstrating its effectiveness in refining the
estimation process.

3.1 Objective

Parameter Uncertainty

In this empirical analysis, I confront the challenge of parameter uncertainty, focusing on the
estimation of σ2

ν and σ2
ε as a motivating example. These parameters are central to our model

but their true values remain unknown, leading to complexities in our estimation approach.
This uncertainty is not just a mathematical inconvenience; it has substantive implications
for the way we interpret and apply our model results.

Consequences of Parameter Uncertainty

The presence of parameter uncertainty necessitates the adoption of a Feasible Generalized
Least Squares (fGLS) approach instead of the standard GLS method. Feasible GLS takes
into account the estimated nature of these parameters, adjusting the estimation technique
to mitigate potential biases and inaccuracies.

Additionally, parameter uncertainty complicates the determination of an optimal estima-
tion window size, particularly for rolling OLS and WLS. Choosing the right window size is
a delicate balance – too small, and the model may miss out on significant trends; too large,
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and it may become insensitive to recent changes. This selection process becomes increas-
ingly challenging without a clear understanding of the true parameter values, necessitating
a careful, data-driven approach to window size optimization.

Overall, the objective of this empirical methodology is to navigate these uncertainties
and complexities to provide robust, reliable estimations that can withstand scrutiny and
contribute meaningful insights to our field of study.

3.2 Method-of-Moment Estimator

The Method-of-Moment (MoM) Estimator is a fundamental statistical technique used to
estimate parameters in models where direct measurement isn’t feasible. It calculates param-
eter values by equating sample moments (like means, and variances) with their theoretical
counterparts. MoM is particularly relevant in this context for estimating parameters like σ2

ν

and σ2
ε , which are essential but unobservable in my model. By employing MoM, these pa-

rameters can be indirectly estimated from the observable data, thus enabling the application
of feasible GLS methods in my analysis. The utilization of MoM in this scenario facilitates
a more accurate and practical approach to handling parameter uncertainty in my empirical
methodology.

3.2.1 Feasible GLS

Estimation of σ2
ν and σ2

ε

Considering our earlier equations:

yt = µt + εt, (3.1)
yt−1 = µt − νt + εt−1, (3.2)

Let’s take the first differences for both equations:

∆yt = νt + εt − εt−1, (3.3)
∆yt−1 = νt−1 + εt−1 − εt−2. (3.4)

Analyzing the autocovariance function (ACVF) of (∆yt), we obtain:

γ0 = σ2
ν + 2σ2

ε , (3.5)
γ1 = −σ2

ε . (3.6)

This leads to the estimates:

σ̂2
ε = −γ̂1(∆yt), (3.7)

σ̂2
ν = γ̂0(∆yt) + 2γ̂1(∆yt). (3.8)

The feasible GLS estimator is then given by:

µ̂fGLS
t = (ι⊤Ω̂−1

u|µt
ι)−1(ι⊤Ω̂−1

u|µt
yt,t−k). (3.9)

This section highlights the practical application of the MoM Estimator in the context
of feasible GLS, elucidating the process of estimating critical parameters and subsequently
applying them in the GLS estimator.
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3.2.2 Optimal Window Length for OLS/WLS

The determination of the optimal window size, denoted as k∗, is crucial for ensuring the
accuracy of the naive rolling OLS or WLS estimators.

Under the correct model specification, the difference in consecutive estimates of µt should
converge in distribution to the true underlying distribution, with variance:

Var[∆µ̂t]
p−→ σ2

ν , (3.10)

, where σ2
ν represents the variance of the state innovations. The optimal window horizon

k∗ can be chosen such that it minimizes the difference between the estimated variance of
∆µ̂t and the estimated variance parameter σ̂2

ν . Formally, this can be expressed as:

k∗ = argmin
{∣∣∣V̂ar[∆µ̂t]− σ̂2

ν

∣∣∣} , (3.11)

, where σ̂2
ν is estimated by the method of moments as previously discussed.

This approach ensures that the chosen window length aligns closely with the underlying
statistical properties of the time series data, thereby enhancing the accuracy and reliability
of my estimations.

3.3 Iterative Estimator

Rationale for an Iterative Approach

The ratio σ2
ε/σ

2
ν is a significant factor in the model’s accuracy. In scenarios where σ2

ν is
small, an overestimation or underestimation of σ̂2

ν can lead to substantial discrepancies in
the model outcomes. Therefore, a more refined approach to estimate σ2

ν is imperative.

Alternative Estimation and Iterative Refinement

This methodology is motivated by the two-step estimation of the raw GLS model. In this
section, I would like to propose an alternative estimation method for σ2

ε/σ
2
ν , where the ratio

is estimated by the calculated variance from the first-step estimate of µ̂t:

σ̃2
ε

σ̃2
ν

=
V̂ar[yt − µ̂t]

V̂ar[∆µ̂t]
(3.12)

When the window size k is large enough, it yields a more stable estimation of σ2
ε/σ

2
ν . This

stability is crucial, especially in models where parameter changes are subtle yet significant.
Empirically, I show that this method produces estimates ofσ̃2

ε/σ̃
2
ν that are consistently less

biased compared to the initial model input of σ̂2
ε/σ̂

2
ν .

Iterative Procedure and Model Adaptability

The iterative procedure involves substituting this newly estimated σ̃2
ε/σ̃

2
ν back into the fea-

sible GLS estimator, re-estimating µ̂t, and re-evaluating σ̃2
ε/σ̃

2
ν . This process is repeated,
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further refining the estimate of the variance ratio. The adaptability of this iterative method
makes it a robust tool, particularly for models where traditional estimators may not per-
form optimally. It exemplifies an approach where the model dynamically adjusts to new
information, enhancing both the precision and reliability of the estimations.

In addition, this methodology can be easily adapted to fit more complex multi-variate
settings in the estimation of the state model or measurement equation. Its performance will
be examined in Section 4.3.
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Chapter 4

Simulation

Chapter 4 undertakes a detailed comparative analysis of various models under different sce-
narios, providing insights into their performance and applicability. The chapter commences
with Section 4.1, where the framework for the simulations is established. This section de-
tails the scenarios used for comparison, including known and unknown parameters and the
differentiation between causal and non-causal filters.

Following this, Section 4.2 evaluates the performance of several models, such as Rolling
OLS, Rolling WLS, the Kalman Filter, and the proposed Rolling GLS Model, with predeter-
mined parameter values. This section is instrumental in demonstrating the effectiveness of
these models under controlled conditions, offering a clear benchmark for their performance.

4.1 Simulation Set-up

The simulation aims to compare various models under four distinct scenarios: {Known
parameters, Unknown parameters} × {Causal filters, Non-causal filters}.

Causal Filter Comparison

In the realm of causal filters, the following models were compared:

1. Rolling Ordinary Least Squares (OLS),

2. Rolling Linear Decaying Weighted Least Squares (WLS),

3. Kalman Filter,

4. Proposed Rolling Generalized Least Squares (GLS) Model.

Non-causal Filter Comparison

For the non-causal setting, the models included:

1. Rolling OLS,

2. Rolling Linear Decaying WLS,
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3. Kalman Smoother,

4. Hodrick-Prescott Filter,

5. Baxter-King Filter,

6. Proposed Rolling GLS Model.

The chosen model for simulation is a homoskedastic stochastic mean model, described
by:

yt = µt + εt, (4.1)
µt = µt−1 + νt, (4.2)
εt ∼ WN (0, σ2

ε), (4.3)
νt ∼ WN (0, σ2

ν), (4.4)
Cov(εt, νs) = 0 for all s, t. (4.5)

This simple model was chosen for its compatibility with earlier naive models, like the
Hodrick-Prescott Filter.

4.2 Known Parameters

4.2.1 Causal Filters

In the simulation under the scenario of known parameters, I evaluated the performance of
various models with predetermined parameter values. These parameters were set as σ2

ν = 0.1,
σ2
ε = 1, and a total of T = 50, 000 observations.

Traditionally, in the realm of time-varying parameter estimation, the selection of an
appropriate window size is critical and is subject to a bias-variance trade-off. A window that
is too short may lead to an estimator that is unduly influenced by noise, as it captures only
the volatility of a small subset of data, mistaking random fluctuations for genuine variations.
Conversely, an overly extended window size can introduce significant bias, as it incorporates
stale data points that no longer reflect the current dynamics of the parameter, leading to
estimations that are systematically skewed.

However, due to the optimized weighting scheme for my proposed GLS-based model, this
is no longer a problem. One is free to choose an arbitrarily long estimation window, and my
model will still give the optimal estimations.

The results are shown in Figure 4.1 and Table 4.1. To begin with, for the rolling OLS
(EW) and rolling WLS (EW) model, we observe from the figure that the RMSE tends to
decrease and then increase, indicating a U-shaped relationship between window size and
estimation accuracy. This is consistent with our theory about the bias-variance trade-off.

34



Figure 4.1: RMSE Comparison Across Causal Filters with Known Parameters. This figure
illustrates the relationship between the window size and RMSE for various causal filters.
The curves represent different filters: ‘EW’ for Rolling OLS, ‘LD’ for Rolling WLS, ‘KF’ for
the Kalman Filter, and ‘GLS’ for the Proposed Rolling GLS Model. The x-axis denotes the
window size (k + 1), and the y-axis represents the RMSE.

Table 4.1: Performance Comparison of Causal Filters. The table summarizes the optimal
window length and the corresponding RMSE percentage for each filter. Notations used are
‘EW’ for Rolling OLS, ‘LD’ for Rolling WLS, ‘KF’ for the Kalman Filter, and ‘GLS’ for the
Proposed Rolling Generalized Least Squares model. An infinite window length (∞) indicates
that the model utilizes all available data points.

Model Alias Optimal Window Length Optimal RMSE (%)

Rolling OLS EW 6 57.06
Rolling WLS LD 8 53.45
Kalman Filter KF ∞ 52.37

Proposed Model GLS ∞ 52.37

In addition, Figure 4.1 also indicates that the proposed GLS-based filter outperforms
other models across varying window sizes. It maintains a consistently low RMSE, demon-
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strating robustness and efficiency in parameter estimation. It is true that the Kalman Filter
(KF) exhibits performance comparable to the GLS approach, but it still underperforms with
smaller window sizes. I suspect this underperformance is related with the lack of optimization
when initializing the priors µ1|0 and the variance P1|0.

This robustness to varying window sizes is particularly advantageous in macroeconomic
studies, where data availability and market conditions can fluctuate significantly. By offer-
ing optimal estimations regardless of the window length, the GLS model circumvents the
traditional bias-variance dilemma, providing a versatile and reliable tool for analysts dealing
with diverse and dynamic datasets.

In summary, the stability and lower RMSE of the GLS method across all window sizes
suggest it is the superior model in this simulation.

4.2.2 Non-Causal Filters

My simulation then explores the efficacy of various non-causal filters. The lambda and
frequency band settings for the Hodrick-Prescott Filter and Baxter-King Filter are cross-
validated so that they have the best out-of-sample (OOS) performance. The provided figure,
Figure 4.2, shows the Root Mean Square Error trends across different models as the window
size increases. Table 4.2 summarises the performance metrics.

With the parameters set to σ2
ν = 0.1 and σ2

ε = 1, we see a 13% decrease in value (or
24% decrease in relative percentage) of RMSE by moving to the non-casual two-sided filters.
The proposed GLS model and the Kalman Smoother (KS) still outperform other models,
achieving the lowest RMSE, which underscores the effectiveness of these methods in han-
dling parameter uncertainty. Again, Kalman Smoother demonstrates inferior performance
compared to the proposed model for small windows, thanks to the sub-optimal initialization.

The Hodrick-Prescott (HP) and Baxter-King (BK) filters show competitive performance,
yet they do not reach the efficiency of the GLS and KS methods, even for the selected
"optimal" lambda and frequency band settings after cross-validation.

Table 4.2: Performance of Non-Causal Filters. This table presents the optimal window length
and RMSE for different non-causal filters. The aliases are ‘EW’ for Rolling OLS, ‘LD’ for
Rolling WLS, ‘BK’ for Baxter-King Filter, ‘HP’ for Hodrick-Prescott Filter, ‘KS’ for Kalman
Smoother, and ‘GLS’ for the Proposed Model. The notation ∞ signifies an infinite window
length, implying the use of all data points.

Model Alias Optimal Window Length Optimal RMSE (%)

Rolling OLS EW 11 43.01
Rolling WLS LD 15 40.64

Baxter-King Filter BK ∞ 41.40
Hodrick-Prescott Filter HP ∞ 41.01

Kalman Smoother KS ∞ 39.91
Proposed Model GLS ∞ 39.91
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Figure 4.2: RMSE Across Non-Causal Filters with Known Variances. The figure depicts
the RMSE as a function of window size for various non-causal filters. Alias notations are
‘EW’ for Rolling OLS, ‘LD’ for Rolling WLS, ‘BK’ for Baxter-King Filter, ‘HP’ for Hodrick-
Prescott Filter, ‘KS’ for Kalman Smoother, and ‘GLS’ for the Proposed Model. The window
size is given by k + 1, and the RMSE is measured on the y-axis.

4.2.3 Robustness to Log-Normal Noise

In this part of the simulation, I assess the robustness of the proposed GLS model compared
to the Kalman Filter when the underlying noise distribution deviates from normality. Specif-
ically, I introduce log-normal noise, re-centered to ensure a mean of zero, to investigate the
models’ performances under a more realistic and challenging data distribution.

The GLS model, grounded in the Generalized Method of Moments, boasts flexibility by
relying solely on some moment conditions and is not constrained by distributional assump-
tions. This contrasts with the Kalman Filter, which typically presupposes joint normality
for the measurement and state innovation errors—a condition that may not hold in empirical
data.

Figure 4.3 illustrates the comparative performance of these models with the introduction
of log-normal noise. The GLS model demonstrates enhanced robustness, outperforming the
Kalman Filter, particularly in small samples. This suggests a marked superiority of the GLS
model, evidenced by a lower Root Mean Square Error (RMSE) across different window sizes.
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Figure 4.3: RMSE Comparison of Causal Filters under Log-Normal Noise. This figure
demonstrates the RMSE performance of various causal filters when subjected to log-normal
noise, highlighting the robustness of the models under more realistic data distribution sce-
narios. The filters are denoted as ‘EW’ for Rolling OLS, ‘GLS’ for the Proposed GLS Model,
‘KF’ for the Kalman Filter, and ‘LD’ for Rolling WLS. The x-axis specifies the window size
(k + 1), and the y-axis measures the RMSE.

4.3 Unknown Parameters

4.3.1 MoM Estimator-Scenario One

In our simulation exploring the scenario with unknown parameters, various models were
assessed based on their ability to estimate parameters that were not directly observable.
With σ2

ν = 0.1, σ2
ε = 1, and T = 50, 000, the models were tested for their estimation

precision.
Using the autocovariance function of ∆yt, the estimated values were σ̂2

ν = 0.11 and
σ̂2
ε = 0.99. To discern the optimal window size for OLS and WLS estimators, I examined the

variance of the changes in the estimated µt across a spectrum of window sizes k. The results,
depicted in Figure 4.4, suggested optimal window lengths for each model, as captured in the
subsequent table. Notably, the infinite window size for the fGLS and GLS models implies a
reliance on all available data, underpinning the models’ robustness to variations in window
length.
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Figure 4.4: Variance of ∆µ̂t Across Different Window Sizes. This figure plots the variance
of the estimated changes in µt against window sizes, highlighting the models’ sensitivity
to the window size in estimation. The legends ‘EW’, ‘fGLS’, ‘GLS’, ‘LinearDecay’, and
‘var_nu_hat’ correspond to Rolling OLS, Proposed Empirical Model, Proposed Theoretical
Model, a linear decaying approach, and the variance of re-estimated noise, respectively.

The estimated optimal window sizes for rolling OLS and rolling WLS models are sum-
marized in Table 4.3 below.

Table 4.3: Estimated Optimal Window Size with Unknown Parameters. This table reports
the estimated optimal window size (k+1) for each model along with the associated RMSE.
‘EW’ represents Rolling OLS, ‘LD’ stands for Rolling WLS, ‘fGLS’ is the Proposed Empirical
Model, and ‘GLS’ represents the Proposed Theoretical Model. The infinite symbol (∞)
indicates the use of all data points for estimation.

Model Alias Estimated Optimal Window Size (k+1)

Rolling OLS EW 5
Rolling WLS LD 7

Proposed Empirical Model fGLS ∞
Proposed Theoretical Model GLS ∞
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Subsequently, a comprehensive comparison of model performance was conducted. The
RMSE across models was illustrated in Figure 4.5, which presents a visual summary of the
predictive accuracy.

Figure 4.5: RMSE Comparison Across Models with Unknown Parameters. This figure com-
pares the RMSE for different estimation models under the scenario of unknown parameters.
The legends ‘EW’, ‘fGLS’, ‘KF’, and ‘LD’ denote Rolling OLS, Proposed Empirical Model,
Kalman Filter, and Rolling WLS, respectively. The x-axis shows the window size (k + 1),
and the y-axis shows the RMSE.

Table 4.4: Performance of Models with Unknown Parameters. The table presents the es-
timated optimal window size and the RMSE for models when parameters are unknown.
Aliases used include ‘EW’ for Rolling OLS, ‘LD’ for Rolling WLS, ‘KF’ for the Kalman
Filter, ‘fGLS’ for the Proposed Empirical Model, and ‘GLS’ for the Proposed Theoretical
Model. The symbol ∞ denotes an infinite window size.

Model Alias Estimated Optimal Window Size (k+1) RMSE (%)

Rolling OLS EW 5 57.18
Rolling WLS LD 7 53.64
Kalman Filter KF ∞ 52.43

Proposed Empirical Model fGLS ∞ 52.43
Proposed Theoretical Model GLS ∞ 52.37
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The proposed feasible GLS model still stochastically dominates all other models exam-
ined, for all window sizes. What’s more, the RMSE of the feasible model (52.43%) is very
close to its theoretical optimum of 53.37%, a testament to its robustness in the face of
parameter uncertainty.

4.3.2 MoM Estimator-Scenario Two

This scenario tested the adaptability of the models by reducing the stochastic term variance
to σ2

ν = 0.01 and maintaining σ2
ε = 1, across a broad set of T = 50, 000 observations. The

focus was on detecting the models’ robustness to smaller parameter fluctuations, which are
common in practical economics and financial time series analysis.

Figure 4.6: Variance of ∆µ̂t across Models for Scenario Two. This figure displays the variance
of the estimated changes in µ̂t as a function of window size for various models under a sce-
nario with reduced stochastic term variance. The lines ‘EW’, ‘fGLS’, ‘GLS’, ‘LinearDecay’,
and ‘var_nu_hat’ represent Rolling OLS, Proposed Empirical Model, Proposed Theoretical
Model, a linear decay strategy, and the variance of noise re-estimation, respectively.

Figures 4.6 and 4.7 reveal the outcomes of the simulation. In Figure 4.6 and Table 4.5,
the optimal window size for the OLS and WLS methodologies was evaluated, showing a
considerable deviation from the theoretical benchmark. Figure 4.7 further highlights the
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discrepancy, as the RMSE of the empirical model (fGLS) significantly diverges from the
theoretical counterpart (GLS), more noticeably with increased window sizes.

Figure 4.7: RMSE across Models for Scenario Two. The figure compares the RMSE across
different estimation models when faced with a scenario of decreased variance in the stochas-
tic term. Notations ‘EW’, ‘fGLS’, ‘GLS’, and ‘LinearDecay’ correspond to Rolling OLS,
Proposed Empirical Model, Proposed Theoretical Model, and a linear decaying method, re-
spectively. The window size is plotted on a logarithmic scale (k + 1) to better visualize the
RMSE over a wide range of values.
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Table 4.5: Performance of Empirical Model vs. Theoretical Model in Scenario Two. This
table contrasts the estimated optimal window size and the best RMSE percentage obtained
from the empirical model against the theoretical model. ‘EW’ stands for Rolling OLS, ‘LD’
for Rolling WLS, ‘fGLS’ for the Proposed Empirical Model, and ‘GLS’ for the Proposed
Theoretical Model. Theoretical window sizes and RMSEs reflect the model’s optimal per-
formance based on known parameter values.

Alias Est. Window Theo. Window Est. Best RMSE (%) Theo. Optimal RMSE (%)

EW 88 18 53.53 32.70
LD 122 26 49.01 30.84

fGLS ∞ 18 50.57 32.56
GLS ∞ ∞ 30.30 30.30

I observed a significant disparity between estimated and theoretical outcomes, prompting
a critical evaluation of the empirical methodology’s effectiveness in such a modified analytical
scenario.

The primary factor contributing to the performance gap was the estimation of σ̂2
ν and

σ̂2
ε . The MoM estimator calculated σ2

ν at an estimated 0.00037, a minute absolute error but
a substantial one in relative terms. This is especially pertinent given the GLS-based filter’s
reliance on the ratio σ2

ε/σ
2
ν , where the actual ratio of 100 contrasts sharply with the estimated

2730. Such a disparity is at the core of the empirical models’ suboptimal performance in
this scenario.

To address these estimation inaccuracies, I employed an iterative estimator as outlined
in Section 3.3. This approach incrementally refines the estimates of σ2

ν and σ2
ε , aiming to

reconcile them with their true values, thus enhancing the empirical model’s precision and
reliability.

4.3.3 Iterative Estimator

I introduce the iterative estimator to improve the precision of the critical parameters σ2
ν

and σ2
ε . The accuracy of these estimates is pivotal for the efficacy of the GLS-based filter.

My initial estimates indicated a significant relative error, which necessitated an iterative
correction mechanism to realign the estimates with their actual values.

For this simulation, set parameters were σ2
ν = 0.01, σ2

ε = 1, spanning T = 50, 000
observations. A substantial estimation window of k + 1 = 1500 was chosen to ensure a
comprehensive capture of the right tail anomalies. The robustness of the iterative model was
tested using markedly incorrect initial values for σ̂2

ν , specifically 0 and 1, in stark contrast
to the true value.

Figures 4.8a and 4.8b depict the model’s exponential convergence to the theoretical stan-
dard, validating the iterative estimator’s effectiveness. Notwithstanding the initial values’
significant deviation from the true parameters, the empirical model achieved rapid conver-
gence, stabilizing at robust estimates within about 40 iterations.

For practical applications, I recommend initializing the parameters in the measurement
and state models with the Method of Moments estimator or established Generalized Method
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of Moments estimators. Then, employing the iterative techniques expounded in Section 3.3
ensures a solid foundation of the iterative process, leading to efficient and accurate parameter
estimates.

(a) Iterative Estimation with σ̂2
ν Initialized at 1 (b) Iterative Estimation with σ̂2

ν Initialized at 0

Figure 4.8: Convergence of RMSE in the Iterative Estimator. Subfigure (a) shows the
convergence of RMSE for the fGLS and GLS models with the state variance σ̂2

v initialized
at 1, and Subfigure (b) displays the convergence with σ̂2

v initialized at 0. These graphs
demonstrate the impact of initial parameter values on the convergence rate and stability of
the iterative estimation process.
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Chapter 5

Real-World Applications

The empirical evidence and simulations have laid the groundwork for practical applications
of the proposed model. Let’s now turn our attention to real-world applications, particularly
in the asset pricing field.

This chapter is divided into three sections, each focusing on a different aspect of real-
world application. The first section delves into the use of the models in portfolio construction,
exploring their implications for optimizing portfolio strategies. The second section focuses
on factor estimation, assessing the application of the models in evaluating market trends and
risk factors. The final section addresses the models’ utility in understanding and forecasting
the inflation risk premium, a critical element in financial risk management.

Collectively, this chapter provides a comprehensive overview of the real-world relevance
and applicability of the developed models, bridging the gap between theoretical statistics
research and practical financial analysis.

5.1 Portfolio Construction

The endeavor begins with the task of constructing an optimal complete portfolio utilizing the
classical Markowitz 1952 model. The model considers an investor’s choice among a riskless
asset and N risky assets. The investor seeks to maximize a mean-variance objective function,
which, given the estimates of mean returns µ and covariance matrix Σ, yields the optimal
portfolio weights w∗.

w∗ =
1

γ
Σ−1µ, (5.1)

Note that ϕ2 = µ′Σ−1µ is the squared Sharpe ratio of the ex-ante tangency portfolio of
the risky assets.

However, in a real-world scenario, µ and Σ are not directly observable and must be
estimated from historical data. This estimation is traditionally performed using a rolling
window of returns data. For this study, a 60-month estimation window was employed. The
variance-covariance matrix is directly estimated from data in a native plug-in approach, and
the mean returns were estimated using a variety of filters including Rolling OLS, Kalman
Filter, and the model proposed in this thesis.
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The empirical evaluation period spanned from July 1963 to June 2023, with the initial 5
years dedicated to the estimation phase and the subsequent period serving as a backtest. The
analysis was conducted on various portfolios sourced from Kenneth French’s data library:

• Market Portfolio

• Three Portfolios Formed on Size

• Five Portfolios Formed on Operating Profitability

• Six Portfolios Formed on Size and Book-to-Market

The performance of the portfolios constructed using different estimation strategies was
assessed based on their annualized Sharpe Ratios.

Table 5.1: Annualized Sharpe Ratios for Portfolios Using Various Estimation Strategies. This
table compares the performance of portfolios constructed with different estimation methods
in terms of their annualized Sharpe Ratios. The models evaluated include Rolling OLS,
Kalman Filter, and the Proposed Model, across various portfolio compositions derived from
Kenneth French’s data library.

Composite Rolling OLS Kalman Filter Proposed Model

Market Portfolio 0.43 0.47 0.46
Size only 0.52 0.63 0.63

Operating Profitability only 0.58 0.67 0.64
Size and Book-to-Market 0.58 0.70 0.72

The results, summarized in Table 5.1, indicate that the proposed model demonstrates a
comparative advantage over the Rolling OLS approach and exhibits similar efficacy to the
Kalman Filter. This suggests that the proposed model can improve portfolio performance
metrics such as the Sharpe Ratio in a real-world setting.

5.2 Factor Estimation

In contemporary investment practices, accurately gauging systematic risk is of paramount
importance. Section 1.2.1 discusses how a firm’s systematic risk profile can shift in response
to operational changes, such as adjustments in leverage that manifest as fluctuations in mar-
ket beta. Traditional econometric models, along with more sophisticated machine learning
approaches, often fall short of capturing these dynamic variations. This deficiency paves the
way for the introduction of the model developed in this thesis, which adeptly addresses these
changes.

This research applies three model configurations to estimate systematic risk:
Stochastic Mean Model:

rt = µt + εt (5.2)
µt = c+ aµt−1 + νt (5.3)
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Market Model:

rt = αt + βtr
m
t + εt (5.4)[

βt

αt

]
= c+ A

[
βt−1

αt−1

]
+ νt (5.5)

Fama-French Three-Factor Model:

rt =
[
rmt SMBt HMLt 1

] 
βt

st
ht
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Each model progressively incorporates greater complexity and is posited to capture a
broader range of return variations.

Empirical tests were conducted on 25 Portfolios Formed on Size and Book-to-Market,
obtained from Kenneth French’s website. Monthly returns data span from July 1963 to June
2023, with the first five years earmarked for estimation and the remainder for backtesting.
The models were evaluated based on their annualized out-of-sample Root Mean Square Error
(RMSE):

Table 5.2: Annualized Out-of-Sample RMSE for Factor Models. This table displays the
RMSE of different factor models used in estimating systematic risk across 25 Portfolios
formed on Size and Book-to-Market. The comparison is made among the Rolling OLS,
Kalman Filter, and the Proposed Model, highlighting their predictive accuracy over the out-
of-sample period.

Model Rolling OLS Kalman Filter Proposed Model

Historical Mean 18.54% 16.83% 16.34%
Market Model 7.41% 5.67% 5.91%
FF 3 Factor 1.56% 1.22% 1.32%

Table 5.2 suggests that the proposed model achieves parity with the Kalman Filter and
surpasses the Rolling OLS in predictive accuracy, underscoring its potential in systematic
risk prediction within financial markets.

5.3 Inflation Risk Premium

The quantification of risk premia of non-traded macro factors stands as a pivotal aspect
of modern financial analysis, particularly within the context of asset pricing. This section
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delineates the application of the proposed GLS model to estimate the inflation risk premium
using an extensive dataset encompassing all U.S. stocks from CRSP, Fama-French factors,
and PCE deflator data from January 1963 to December 2022.

The proposed GLS model is particularly adept at estimating the inflation risk premium
due to its enhanced ability to handle smaller sample sizes and its robustness in scenarios
where the normality of data is not assumed. Unlike the Kalman Filter and Rolling OLS,
the GLS model’s sophisticated parameter estimation capabilities allow for more accurate
and dynamic adjustment to market changes, a crucial factor in accurately capturing the
inflation risk premium. This is especially pertinent in the analysis of non-traded macro
factors, where traditional models often struggle with the complexity and variability inherent
in inflation data. The GLS model’s flexibility and precision in handling such nuances make
it an invaluable tool in this context, providing deeper insights and more reliable predictions
than its counterparts.

Adhering to the Fama and MacBeth 1973 procedure, the first step employs the non-causal
GLS filter to estimate time-variant risk loadings via a four-factor model.

rit =
[
rmt SMBt HMLt πt 1

]

βi
t

sit
hi
t

pit
µi
t

+ εit (5.8)
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t−1

+ νi
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The subsequent step involves a rolling panel regression correlating returns with these
risk loadings, further refined through the non-causal GLS filter. Parameters are iteratively
estimated as suggested in Section 4.3.3.
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Figure 5.1 below illustrates the estimated inflation risk premium over time, with notable
peaks corresponding to periods of significant economic turmoil. For example, the first two
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peaks around 1974 and 1979 correspond to the two oil crises in the 1970s. The recent surge
following the COVID-19 pandemic highlights significant inflationary periods. By capturing
key economic events, the figure underscores the model’s responsiveness to market dynamics.

Figure 5.1: Estimated Inflation Risk Premium Over Time. This graph displays the an-
nualized estimated risk premium of inflation, derived from the proposed GLS model. The
timeline captures key economic events that influenced inflation expectations, with peaks
corresponding to periods of high inflation and economic stress, providing insight into the
model’s capability to capture inflation risk premium dynamics.
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Chapter 6

Conclusions and Further Directions

6.1 Conclusions

In conclusion, this study represents a significant advancement in financial econometrics
through the introduction of a novel rolling Generalized Least Squares (GLS) model for dy-
namic linear models. With varying levels of complexity, four theoretical models are derived,
encompassing both causal and non-causal versions to cater to distinct applications. For in-
stance, the one-sided causal version is ideal for forecasting, whereas the two-sided non-causal
version is more suitable for retrospective economic and financial research.

In addition, the iterative rolling feasible GLS approach derived herein represents a rele-
vant method for achieving optimal performance with unknown parameters, given the data.
What’s more, the strategic development of an optimal window size determination method-
ology further illustrates the thesis’s practical utility. This optimization provides a valuable
tool for practitioners in the field who prefer using heuristic methods, aiding in the more
accurate forecasting of risk and return.

Rigorous simulations show that the proposed strategy stochastically outperforms tradi-
tional passive models. When compared to established statistical and econometric models like
the Baxter-King Filter and the Kalman Filter, the new method consistently shows superior-
ity. To reiterate, the GLS model’s notable strengths in accommodating smaller sample sizes
and its resilience against deviations from normality assumptions mark it as a particularly
versatile and reliable tool in financial modeling.

This is corroborated by empirical results with real-world data, solidifying the model’s
universality, robustness, and efficiency. These findings underscore the potential of the rolling
GLS model to revolutionize the estimation of time-varying parameters.

6.2 Future Research

Building upon the promising results of the GLS model demonstrated in this study, the next
phase of research involves its broader application and a more detailed statistical analysis.

First, a subsequent step of this research will venture into applying the novel rolling GLS
model to a wider array of datasets across various domains, such as finance, economics, even
robotics and aerospace, thereby establishing its practical utility.
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Furthermore, developing a comprehensive statistical inference framework, which includes
confidence interval computation and hypothesis testing, is imperative to validate and sub-
stantiate the model’s estimates rigorously. This framework aims to bridge the gap between
theoretical econometric models and their pragmatic deployment in finance.

In summary, these advancements will not only solidify the understanding of the GLS
model’s efficacy in practical scenarios but also leverage its strengths in handling smaller
sample sizes and non-normality to enhance factor loadings estimation and portfolio man-
agement strategies. The ultimate aim is to provide a robust framework that enables both
financial and non-financial professionals to navigate complex and dynamic environments with
greater confidence and precision.
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