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Abstract

Discounts during Thanksgiving and Christmas are common in a variety of retail

markets. In this article, we examine whether holiday discounts extend to the airline

industry. In contrast to many retail markets where purchased goods are meant for

immediate consumption (e.g., groceries), goods in airline markets are often consumed

in the future due to advance purchases. Exploiting a unique panel of almost 22 mil-

lion fares, we find that fares purchased on a holiday for flights in the sixty-day period

following the holiday are 1.9% cheaper, supporting the conjecture that airlines price

discriminate when demand is lower than average or when the mix of purchasing pas-

sengers makes demand more elastic. These holiday discounts also do not vary with the

level of competition, indicating that market structure has no impact on the magnitude

of the holiday purchase discount.
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1 Introduction

Sales during holiday periods are common in a variety of retail markets. For example, Cheva-

lier et al. (2003) and MacDonald (2000) document that grocery prices are lower during the

Thanksgiving and Christmas holidays while Warner and Barsky (1995) find that prices for

consumer appliances are lower in the period preceding Christmas.1 Moreover, Levy et al.

(2010) find that price decreases are more common than price increases during holiday periods.

Although classical economic theory predicts that prices should increase during periods

of high aggregate demand (such as the period surrounding Thanksgiving and Christmas),

previous studies assert that prices fall during these seasonal demand peaks because consumers

are more price elastic.2 For example, MacDonald (2000) argues that high seasonal demand

reduces the cost of informative advertising, which in turn increases buyers’ price sensitivity.

Warner and Barsky (1995) suggest that consumers are better informed in high demand states,

resulting in retailers perceiving their demand to be more elastic. Similarly, Chevalier et al.

(2003) argue that consumers may search more intensively for low prices during periods of

high demand because the expected returns from search are larger during these periods.3

In this article, we examine whether holiday discounts extend to the airline industry. In

contrast to many retail markets where purchased goods are meant for immediate consumption

(e.g., the consumer appliance and grocery markets mentioned above), goods in airline markets

are often consumed in the future because consumers purchase tickets in advance of departure.

Hence, the holiday occurs prior to the actual date of travel in our setting due to advance

purchase behavior.

1For a witty review of the economics surrounding Christmas, see Birg and Goeddeke (2016).
2Other explanations have also been offered. For example, Rotemberg and Saloner (1986) suggest that

prices fall because firms are not able to sustain tacit collusion in high demand periods. In other words, the
temptation to cheat from a collusive agreement is highest during a temporary demand spike because the
gain from cheating is increasing in current demand whereas the loss from punishment is increasing in future
demand. Alternatively, Lal and Matutes (1994) and Hosken and Reiffen (2004) suggest that multiproduct
retailers may discount highly demanded products during peak periods to facilitate greater store traffic.

3This explanation is consistent with Varian (1980), who argues that sales are a form of price discrimination
in which firms effectively offer lower prices to consumers with superior information or lower search costs.
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We offer two explanations for why airlines may discount fares on federal holidays. Fore-

most, demand may be more elastic on holidays because price inelastic business travelers are

unlikely to purchase outside of normal business hours.4 Second (and in contrast to the retail

case), holidays may coincide with lower than average airline demand. For example, Thanks-

giving and Christmas are holidays when consumers typically travel to visit family. Because

individuals away from home may not be ready to plan another vacation after having just

incurred significant travel expenses, airlines may have to offer substantial discounts to entice

consumers to purchase at these times. As a result, federal holidays provide an opportunity

for airlines to price discriminate by offering discounts to passengers who purchase on these

dates.

Price discrimination may result in higher profits if firms are able to agree on which types of

consumers are price elastic (Borenstein, 1985; Colombo, 2018; Holmes, 1989; Liu and Serfes,

2004). However, even if airlines agree that passengers purchasing on a federal holiday are more

price elastic or that demand is lower on federal holidays, they may still avoid discriminatory

pricing. For example, Corts (1998) shows that price discrimination may result in “all-out

competition” where prices are lower for all consumers than under uniform pricing. In this

competitive environment, the ability to price discriminate results in a prisoner’s dilemma in

which each firm has a dominant strategy to price discriminate even though profits would be

higher for all firms if discrimination were not possible.

Furthermore, recent work by Ciliberto and Williams (2014) and Ciliberto et al. (2019)

suggests that airlines may be tacitly colluding when setting fares. If airlines are colluding,

they may coordinate to avoid certain types of discriminatory pricing. For example, if fewer

airline tickets are purchased on holidays relative to other periods, the theoretical models in

Haltiwanger and Harrington Jr (1991) and Rotemberg and Saloner (1986) suggest that collu-

4Escobari et al. (2019) find that airfares are higher during business hours and lower in the evening. We
also expect demand to be more elastic on adjacent “shopping holidays” such as Black Friday, Christmas Eve,
and New Year’s Eve because many public and private sector employees either receive or request these days
off from work.
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sive prices may increase. Coordination is also expected to be easier in the consolidated United

States airline industry where American, Delta, Southwest, and United currently control over

80% of the domestic market. Therefore, although we hypothesize that federal holidays pro-

vide an opportunity to price discriminate by discounting fares, it is also possible that fares

may increase.

To determine if airlines offer discounts on federal holidays, we exploit a unique panel of

almost 22 million fares collected over a seven-month period. Our fare data is comprehen-

sive, encompassing many densely traveled routes across the continental United States (U.S.).

Tracking the price of each flight in the sixty-day period prior to departure, we find that fares

published on a major holiday for flights in the sixty-day period following the holiday are

1.9% cheaper on average. Allowing for heterogeneity in discounts across holidays, we find

that the holiday booking discount ranges from 1.5% on Thanksgiving to 5.9% on Christmas

Day. Moreover, we find that the largest holiday discounts are offered for flights that are

within one-week of departure (flights typically purchased by business travelers), consistent

with the conjecture that airlines discount fares on federal holidays because price inelastic

business travelers are unlikely to purchase on these dates. However, because we do not find

evidence that holiday discounts are larger on routes with more business travel and because

the largest discounts occur on Christmas when many consumers are away from home, lower

than average airline demand may explain the majority of holiday purchase discounts observed

in our sample.

Further decomposing our results, we examine how holiday booking discounts are affected

by market structure. As discussed in Borenstein (1985), Holmes (1989), and Chandra and

Lederman (2018), the relationship between competition and price discrimination is ambiguous

in oligopolistic markets when consumers differ both in their underlying willingness-to-pay and

their degree of brand loyalty. We find that the level of competition (measured by either the

number of competitors or the Herfindahl-Hirschman Index) has no statistically measurable

impact on the magnitude of the holiday purchase discount.
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The rest of this article is organized as follows. Section 2 summarizes previous literature

on price discrimination in oligopolistic markets, with a particular emphasis on empirical

studies of the airline industry. Section 3 describes the fare and itinerary data collected for

the empirical analysis. Section 4 presents a descriptive analysis of dynamic pricing in the

sixty-day period leading up to a flight’s departure. Section 5 outlines the empirical model

used to identify holiday booking discounts. Section 6 presents empirical results. Finally,

Section 7 concludes.

2 Price Discrimination and Price Dispersion in Oligopolis-

tic Markets

Firms in a variety of industries including automobiles, Broadway theater, energy, hospitality,

retail, and specialty coffee engage in price discrimination (Chevalier and Kashyap, 2019; Ivaldi

and Martimort, 1994; Leslie, 2004; Möller and Watanabe, 2010; McManus, 2007; Verboven,

1996, 2002). In the airline industry, a sizable literature has developed examining the various

ways in which airlines practice second and third-degree price discrimination.5 Dana (1998)

and Gale and Holmes (1993) show that advance-purchase restrictions enable airlines to reduce

fares for price-elastic leisure travelers. Other ticket restrictions such as Saturday-night stay,

length of stay, and non-refundability are designed to discourage price-inelastic passengers

from buying cheaper tickets (Escobari and Jindapon, 2014; Stavins, 2001).6 Puller and Taylor

(2012) find that fares purchased on weekends are 5% cheaper, supporting the conjecture that

5Second-degree price discrimination occurs when firms offer a menu of prices that induce consumers to
differentiate themselves. Non-linear pricing strategies such as quantity discounts and charging different prices
for refundable and non-refundable tickets are examples of second-degree price discrimination. In contrast,
third-degree price discrimination occurs when firms directly segment consumers according to some observable
metric. Student discounts, senior citizen discounts, and prices that vary by location are examples of third-
degree price discrimination.

6Escobari and Jindapon (2014) present a theoretical model examining how airlines use refundable and
non-refundable tickets to screen consumers who are uncertain about their demand. Empirically, they show
that the difference in fare between refundable and non-refundable tickets declines as the departure date
approaches.
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airlines price discriminate when the mix of purchasing passengers makes demand more elastic.

Applying a similar argument, Escobari et al. (2019) find that fares are higher during business

hours and lower in the evening. Additionally, Luttmann (2019b) and Lewis (2020) offer

conflicting evidence on the existence of directional price discrimination in the domestic U.S.

market.7

The empirical analysis presented in this article is also motivated by the extensive the-

oretical literature on the relationship between competition and price dispersion when firms

practice third-degree price discrimination.8 In particular, the relationship between compe-

tition and price discrimination is ambiguous when consumers differ both in their degree

of brand loyalty and their underlying willingness-to-pay (Borenstein, 1985; Holmes, 1989;

Chandra and Lederman, 2018).

Consistent with theory, previous empirical studies of the airline industry that examine

this relationship provide conflicting results. Borenstein and Rose (1994) and Stavins (2001)

find that competition increases price dispersion while Gaggero and Piga (2011), Gerardi and

Shapiro (2009), and Siegert and Ulbricht (2020) find that competition reduces price disper-

sion. Furthermore, Dai et al. (2014) find a nonmonotonic relationship, with competition

increasing dispersion in concentrated markets and reducing it in competitive markets. Ex-

amining the Canadian airline industry, Chandra and Lederman (2018) find that competition

has little impact at the top or bottom of the price distribution but a significant impact in the

middle of the distribution, with competition increasing some price differentials and decreasing

others.

7Directional price discrimination occurs when airlines charge different prices on the same flights to pas-
sengers who originate from different endpoints. This form of price discrimination is feasible if demand
elasticities substantially differ between endpoint cities. Using aggregated transacted fare data from 2015,
Luttmann (2019b) finds evidence consistent with airlines practicing directional price discrimination. Using
published fare data, Lewis (2020) finds that airlines do not directionally price discriminate on domestic routes
but do directionally discriminate on international routes.

8See Stole (2007) for a comprehensive review of price discrimination under oligopoly.
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3 Fare and Itinerary Data

Previous empirical studies that examine airline price dispersion and price discrimination in

the U.S. have typically relied on the U.S. Department of Transportation’s Airline Origin and

Destination Survey (DB1B).9 Data from this survey are released quarterly and represent a

10% random sample of all airline tickets sold for U.S. domestic travel. However, the DB1B

data do not include information on the specific flight(s) purchased or the exact purchase and

departure dates (only the quarter of travel is reported). As a result, the DB1B cannot be

used to examine holiday pricing or control for other factors that may affect fares, such as

advance-purchase requirements or the specific date of travel. With these shortcomings in

mind, we constructed our own dataset using published fare and itinerary information from a

major online travel agency.10

In lieu of collecting published fares for all possible routes in the U.S. market, we relied

on DB1B data from the third and fourth quarters of 2018 to identify the 98 major airport-

pairs within the continental U.S. ranked by total passenger traffic.11 These routes were

supplemented with 17 monopoly, 24 duopoly, and 16 airport-pairs without nonstop service

(these are routes where passengers must take a connecting flight to reach their destination).12

Due to overlap between the 98 major and 24 duopoly airport-pairs, our analysis covers a total

of 148 directional airport-pairs instead of 155. A detailed list of these routes is provided in

Appendix Table A1.

Figure 1 displays a map of the routes included in our analysis. As the map illustrates,

our route coverage is fairly comprehensive across the continental U.S.

9These studies include Borenstein and Rose (1994), Hayes and Ross (1998), Gerardi and Shapiro (2009),
Dai et al. (2014), and Luttmann (2019b), among others.

10Major online travel agencies (OTAs) and aggregator websites include Expedia, Google Flights, Kayak,
Priceline, Skyscanner, and Travelocity. This article is not the first to analyze data from a major OTA. For
example, see Escobari (2009), Escobari et al. (2019), Luttmann (2019a), and Williams (2022), among others.

11A market in our analysis is defined as a directional pair of origin and destination airports. Therefore, Los
Angeles (LAX)-New York (JFK) and New York (JFK)-Los Angeles (LAX) are treated as separate markets.

12The list of monopoly, duopoly, and connecting airport-pairs were also ranked by total passenger traffic.
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Figure 1: U.S. domestic routes included in our analysis sample
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To construct our analysis sample, data were collected over a seven-month period for flights

departing between October 1st, 2019 and February 29th, 2020.13 Fare quotes were obtained

daily, for one-way travel between the airport-pairs listed in Appendix Table A1.14 For each

flight option on a given route, the lowest observed economy-class fare for each of the next

sixty travel days were collected, allowing us to track the price of an individual flight (or

sequence of flights for connecting trips) over the sixty-day period prior to departure.15 We

13Because our analysis sample ends on February 29th, 2020, the COVID-19 pandemic has a negligible
impact on our results. In the U.S., COVID-19 was declared a national emergency on March 13th, 2020.
Moreover, California became the first state to issue a statewide stay-at-home order on March 19th, 2020.

14We focus on one-way trips due to difficulties in specifying trip duration. For any given departure date,
there are a substantial number of roundtrip fares that could potentially be gathered, each depending on
trip duration. For example, fares for three-day trips are likely different from seven and fourteen-day trips.
Similar articles using published fare and itinerary data also focus on one-way trips due to this duration issue.
Examples include Bilotkach (2005), Bilotkach et al. (2010), Escobari et al. (2019), and Luttmann (2019a).

15For example, fare quotes for a flight departing on January 1st, 2020 were collected daily between November
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focus on a sixty-day window to capture leisure travelers who purchase flights well in advance

of the departure date in addition to business travelers who purchase flights closer to the date

of departure.16

Our sampling procedure resulted in a unique sample of 21,829,963 observations. 30.8%

of our observations are for connecting trips. The airlines included in our sample are Alaska,

Allegiant, American, Delta, Frontier, JetBlue, Spirit, Sun Country, and United.17

4 Descriptive Analysis of Dynamic Pricing During the

Booking Period

To illustrate how fares evolve in the sixty-day period prior to departure, Figure 2 displays

the average fare per mile by number of days to departure for each of the nine airlines in our

analysis sample.18 The top panel of Figure 2 displays averages for the four legacy carriers

(Alaska, American, Delta, and United) while the bottom panel displays averages for the five

low-cost carriers (Allegiant, Frontier, JetBlue, Spirit, and Sun Country). For both legacy

carriers and low-cost carriers (LCCs), the fare per mile remains relatively stable during

the early part of the booking period, starts to increase three weeks before departure, and

substantially increases in the last seven days to departure.

For legacy carriers, there are four well-defined fare hikes that occur from twenty-one

to twenty, fourteen to thirteen, seven to six, and three to two days prior to departure. In

3rd, 2019 and December 31st, 2019. Our data collection began in August 2019 to ensure that fare quotes
were obtained over the full sixty-day period before departure for flights departing on October 1st, 2019. If
an airline offers multiple flight options on a given day, the lowest economy-class fare for each of the flight
options were collected (e.g., if Delta operates three flights from Atlanta to Boston on a given departure date,
the lowest observed economy-class fare for each of the three flights would be collected).

16In his analysis of intertemporal price discrimination in monopoly airline markets, Lazarev (2013) employs
a six-week data collection window.

17Fare quotes for Southwest Airlines are not available on travel aggregator websites such as Expedia, Google
Flights, and Kayak. However, Southwest is accounted for in our empirical analysis when we construct market
structure variables such as the number of competitors or the Herfindahl-Hirschman Index.

18Only nonstop flights were used to generate Figure 2. Of the 21,829,963 observations in our sample, 69.2%
(15,106,864) are for nonstop travel.
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Figure 2: Average fare per mile during the booking period for nonstop flights
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other words, legacy carriers sharply increase fares at specific three-week, two-week, one-week,

and three-day milestones prior to departure. The first three milestones likely reflect the

expiration of discount fare classes attached to three-week, two-week, and one-week advance-

purchase requirements. The last milestone likely reflects intertemporal price discrimination

for late booking passengers who have a lower price elasticity of demand (Gaggero, 2010).

Furthermore, consistent with the expectation that purchasing passengers are more price

inelastic as the departure date approaches, the magnitude of the fare jump monotonically

increases as we move across the three-week, two-week, one-week, and three-day fare hike

milestones.

Consistent with their status as a LCC, Allegiant, Frontier, JetBlue, Spirit, and Sun

Country all have a lower average fare per mile than the four legacy carriers (see bottom

panel of Figure 2). Allegiant and JetBlue fares are also consistently higher than Frontier,

Spirit, and Sun Country fares across the entire sixty-day booking period. Nevertheless,

both legacy and LCCs display similar patterns. Fares are relatively stable until three weeks

before departure when fares begin to monotonically increase. In addition, JetBlue and Spirit

sharply increase fares at three-week, two-week, one-week, and three-day milestones prior to

departure, behavior consistent with Alaska, American, Delta, and United.

To further illustrate how fares evolve in the sixty-day period before departure, Figure 3

displays the probability of observing a fare increase (denoted by a white bar) or fare decrease

(denoted by a red bar) for each day to departure. The blue line above each white bar

displays the average percentage fare increase, while the red line below each red bar displays

the average percentage fare decrease. For example, the white bar at 31 days to departure in

the top panel of Figure 3 indicates that the fare for 11% of the flights in our sample increased

31 days before departure and the blue line indicates that the average fare increase was 24%.

Similarly, the white bar at 31 days to departure indicates that the fare for 9% of the flights

in our sample decreased 31 days before departure and the red line indicates that the average

fare decrease was 17%.
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Figure 3: Probability of observing a fare increase or decrease during the booking period and
average fare increase or decrease
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As depicted in the top panel of Figure 3, fares are relatively stable during the early booking

period, with the probability of a fare increase hovering around 10% and the probability of a

fare decrease at 8% on average. The magnitude of fare increases and decreases are also stable

during the early booking period, ranging from 21%-24% for fare increases and 16%-19% for

fare decreases.

The bottom panel of Figure 3 demonstrates that fare increases and decreases are larger

in magnitude and more likely to occur in the last thirty days to departure. Consistent with

the fare hikes observed in Figure 2, the probability of observing a fare increase jumps at

twenty (44%), thirteen (57%), six (72%), and two (61%) days prior to departure. Moreover,

in line with the expectation that demand is more inelastic closer to the date of departure,

the average percentage fare increase, in general, monotonically increases from 26% twenty

days before departure to 67% two days before departure.

Similar to the early booking period, the probability of observing a fare decrease and the

magnitude of the decrease are relatively stable in the last thirty days to departure. During

this late booking period, the probability of a fare decrease hovers around 10% with the

average fare decrease ranging from 17% to 22%.

Overall, the descriptive analysis of dynamic pricing presented in Figures 2 and 3 reveals

two key insights. Foremost, it is important to control for advance-purchase requirements in

our empirical analysis of holiday pricing. Most importantly however, if airlines discount flights

on major holidays, these discounts are likely to differ with the advance-purchase requirement.

For example, if airlines discount flights on federal holidays because price inelastic business

travelers are not purchasing tickets when offices are closed, then holiday purchase discounts

are likely to be larger in magnitude for flights closer to the date of departure (Bilotkach

et al., 2015). In other words, because passengers shopping on a holiday are more likely to be

price elastic, high fares that are typically reserved for late arriving business travelers may be

heavily discounted to stimulate purchases from these price elastic customers.
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5 Empirical Strategy

To identify holiday booking discounts, we estimate a flight fixed effects model where the

variables of interest are the set of dummies that identify each of the eleven major federal and

shopping holidays that occur during our sample period (see Table 1 for a detailed list). We

estimate equation (1) below,

ln(fare)fjt = α+
4∑

i=1

δi ·DaysToDepartureft+γ ·WeekendBookft+
12∑
i=1

βi ·HolidayBookft

+ ρfj + εfjt (1)

where ln(fare)fjt is the natural logarithm of the published fare measured at the flight or

flight-pair (for connecting itineraries) f , directional airport-pair j, and number of days to

departure t ∈ [1, 60], level. DaysToDeparture are a set of dummy variables that indicate

if the fare is collected 1-2, 3-6, 7-13, or 14-20 days before departure. The earliest days

to departure group (21-60 days) serves as the base category, so that the coefficients on the

includedDaysToDeparture dummies indicate the change in fare relative to the early booking

period.19

WeekendBook is a dummy indicating whether the fare is collected on a Saturday or

Sunday. α is the regression intercept while ε is an error term. Standard errors are clustered

at the airport-pair level.

ρfj is a flight-route fixed effect that controls for time-invariant flight, carrier, and airport-

pair-specific characteristics that may affect fares (i.e., unobservable factors that may impact

the log price level and the general level of the demand elasticity). For example, flight-

specific characteristics include the size and type of aircraft used, the scheduled departure

and arrival times, and the date of departure. Carrier-specific characteristics include any

19These five days to departure categories correspond to the fare increases observed in Figures 2 and 3.
These days to departure groupings are also consistent with the analyses in Gaggero and Luttmann (2023a,b).
Results are qualitatively similar if we replace the DaysToDeparture dummies with a single variable that
indicates the number of days to departure.
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fare effects attributable to the airline’s frequent flyer program, cost structure, and average

quality of service. Airport-pair-specific characteristics include the level of competition on

the route, whether low-cost carriers are present on the route, distance between the origin

and destination airports, and the level of airport dominance at the origin and destination

airports.20

Table 1: Holidays during our sample period

Holiday Holiday Holiday Day of Percentage of workers with day off
Name Type Date Week Civilian Private Government

Labor Day National Sep. 2, 2019 Mon 91% 91% 96%
Columbus Day Federal Oct. 14, 2019 Mon * * *
Veteran’s Day Federal Nov. 11, 2019 Mon 19% 11% 70%
Thanksgiving Day National Nov. 28, 2019 Thu 97% 97% 99%
Black Friday Shopping Nov. 29, 2019 Fri 43% 39% 69%
Christmas Eve Shopping Dec. 24, 2019 Tue 28% 26% 45%
Christmas Day National Dec. 25, 2019 Wed 97% 97% 93%
New Year’s Eve Shopping Dec. 31, 2019 Tue 15% 14% 20%
New Year’s Day National Jan. 1, 2020 Wed 90% 90% 90%
M. L. King Day Federal Jan. 20, 2020 Mon 32% 24% 86%
President’s Day Federal Feb. 17, 2020 Mon 24% 19% 58%

Notes: National holidays are days most government and private sector employees receive off from work. Federal

holidays are days most federal/state government employees receive off from work that private sector employees

may or may not receive. Finally, shopping holidays are dates adjacent to a national holiday that are typically

associated with high volumes of retail sales. These shopping holidays are also dates that many private and

public sector employees either receive or request off from work (i.e., use some of their allotted vacation time).

Because our data collection begins in August 2019 and ends in February 2020, Memorial Day and Independence

Day are not observed in our sample. The statistics reported in the last three columns are obtained from

the National Compensation Survey conducted by the U.S. Bureau of Labor Statistics in 2018 (see https:

//www.bls.gov/ebs/factsheets/holiday-profiles.htm). *The percentage of workers with Columbus Day

off was not reported in the 2018 National Compensation Survey.

The variables of interest in equation (1) are the set ofHolidayBook dummies that indicate

if the fare is published on a holiday. We allow for heterogeneity in fare effects across holidays

by including a separate dummy for each of the eleven federal or shopping holidays that occur

20Note that the ρfj fixed effect controls for any fare effects attributable to the route’s market concentration
(typically measured by the Herfindahl-Hirschman Index or a variable counting the number of competitors)
in addition to any hub premium that affects fares for all flights operating from the origin and destination
airports.
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during our sample period. To further explore heterogeneity in holiday booking discounts,

additional specifications examine how these discounts are affected by carrier type, the number

of days to departure, itinerary type, and market structure.

6 Results

We begin by presenting our baseline holiday booking discount results (Section 6.1). These

results are followed by additional specifications that examine how holiday booking discounts

are affected by advance-purchase requirements, carrier type, competition from Southwest

(Section 6.2), itinerary type (Section 6.3), and market structure (Section 6.4).

6.1 Baseline Holiday Booking Discounts

Table 2 presents regression results from the model described by equation (1). Due to space

constraints and to improve readability, standard errors for the coefficient estimates in Table 2

(and Table 4 that follows) are provided in Appendix D. All specifications include flight-route

fixed effects to control for unobservable time-invariant flight, carrier, and airport-pair-specific

characteristics that affect fares and the general level of the demand elasticity. To provide a

baseline for the magnitude of advance-purchase discounts, the first column of Table 2 reports

results when only the DaysToDeparture dummies and flight-route fixed effects are included.

Consistent with Figure 2 and Figure 3, the positive coefficients on the DaysToDeparture

dummies provide clear evidence of advance-purchase discounts (i.e., intertemporal price dis-

crimination). Compared to flights purchased 21-60 days before departure, flights purchased

1-2, 3-6, 7-13, and 14-20 days before departure are 128.1%, 76.8%, 35.5%, and 10.7% more

expensive, respectively.21

21Because the dependent variable is in natural log form and the DaysToDeparture variables are dummies,
marginal effects are interpreted as the 100(expβ −1)% change in fare. These results are consistent with
Alderighi et al. (2015), Gaggero and Piga (2010), Gillen and Mantin (2009), Luttmann (2019a), and Mantin
and Koo (2009) who find that fares begin to substantially increase three weeks prior to departure.
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Table 2: Baseline holiday booking effects

(1) (2) (3) (4) (5)

DaysToDeparture 1-2 0.825*** 0.825*** 0.835*** 0.825*** 0.825***
DaysToDeparture 3-6 0.570*** 0.570*** 0.574*** 0.570*** 0.570***
DaysToDeparture 7-13 0.304*** 0.304*** 0.303*** 0.304*** 0.304***
DaysToDeparture 14-20 0.102*** 0.102*** 0.102*** 0.102*** 0.102***
WeekendBook 0.001 0.001 0.001 0.001
HolidayBook -0.019*** -0.013***
HolidayBook × DaysToDeparture 1-2 -0.152***
HolidayBook × DaysToDeparture 3-6 -0.061***
HolidayBook × DaysToDeparture 7-13 0.021***
HolidayBook × DaysToDeparture 14-20 0.008***
Book on Labor Day -0.015*** -0.017***
Book on Columbus Day 0.025*** 0.021***
Book on Veteran’s Day 0.009*** 0.007**
Book on Thanksgiving -0.015*** -0.016***
Book on Black Friday -0.023*** -0.025***
Book on Christmas Eve -0.060*** -0.058***
Book on Christmas Day -0.061*** -0.059***
Book on New Year’s Eve -0.048*** -0.042***
Book on New Year’s Day -0.041*** -0.036***
Book on M.L. King Day 0.049*** 0.047***
Book on President’s Day 0.009 0.009
LCC × Book on Labor Day 0.008
LCC × Book on Columbus Day 0.018***
LCC × Book on Veteran’s Day 0.012***
LCC × Book on Thanksgiving 0.002
LCC × Book on Black Friday 0.007
LCC × Book on Christmas Eve -0.015**
LCC × Book on Christmas Day -0.007
LCC × Book on New Year’s Eve -0.026***
LCC × Book on New Year’s Day -0.024***
LCC × Book on M.L. King Day 0.013**
LCC × Book on President’s Day -0.002
R2 0.420 0.420 0.421 0.421 0.421
Observations 21,829,963 21,829,963 21,829,963 21,829,963 21,829,963

Notes: The dependent variable is the natural logarithm of fare. Marginal effects are interpreted as the 100(expβ −1)%

change in fare. All specifications include flight-route fixed effects that control for time-invariant flight, carrier, and

airport-pair-specific characteristics that affect fares. Standard errors are clustered at the airport-pair level. Due to

space constraints, the regression constant is not reported and standard errors are provided in Appendix Table D1. ***

Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.
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The second column of Table 2 adds theWeekendBook andHolidayBook indicators to the

specification presented in column (1). Contrary to the results in Puller and Taylor (2012),

but consistent with Mantin and Koo (2010), we find that economy fares published (i.e.,

“purchased” or “booked”) on a weekend (Saturday-Sunday) are not statistically different

from fares published during the workweek (Monday-Friday). The analysis in Puller and

Taylor (2012) relied on detailed transacted fare data from the fourth quarter of 2004, a

timeframe prior to the mergers between US Airways and America West, Delta and Northwest,

United and Continental, Southwest and AirTran, American and US Airways, and Alaska and

Virgin America. While uncertainty exists whether fares in our sample were purchased at the

published rates, our results suggest that the weekend purchase discount may no longer hold

in the newly consolidated U.S. airline industry.

The negative and statistically significant coefficient on HolidayBook in column (2) of

Table 2 indicates that fares published on a federal holiday or an adjacent shopping holiday

are 1.9% cheaper than fares published on non-holiday dates, supporting the conjecture that

airlines price discriminate when the mix of purchasing passengers makes demand more elastic.

To determine if the holiday booking discount differs with how far in advance airfare is booked,

column (3) presents results when HolidayBook is interacted with the DaysToDeparture

dummies. We find substantial heterogeneity in the magnitude of the holiday booking dis-

count, ranging from no discount for flights booked 7-13 days in advance to 15.2% for flights

booked 1-2 days in advance. In addition, flights booked on a holiday with 3-6, 14-20, or 21-60

day advance-purchase requirements are 7.1%, 0.5%, and 1.3% cheaper, respectively.

To determine if holiday booking discounts differ across holidays, column (4) of Table 2

replaces theHolidayBook indicator with separate indicators for each of the eleven federal and

shopping holidays that occur during our sample period. We find substantial heterogeneity

in holiday discounts ranging from 1.5% for fares booked on Labor Day and Thanksgiving to

5.9% for fares booked on Christmas Day. Although we estimate fare premiums ranging from

0.9% to 5.0% for flights booked on Columbus Day, Martin Luther King Day, President’s Day,
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and Veteran’s Day, not all civilian, private sector, or state government employers observe

these federal holidays (e.g., see Table 1).22 Therefore, it is not surprising to find that holiday

booking discounts do not extend to these four holidays.23

The last column of Table 2 presents results when the holiday booking effects are allowed

to vary between legacy (Alaska, American, Delta, and United) and LCCs (Allegiant, Frontier,

JetBlue, Spirit, and Sun Country). Consistent with column (4), the positive or statistically

insignificant coefficients on the Martin Luther King, President’s, Columbus, and Veteran’s

Day variables indicate that both carrier types do not discount fares on these four federal

holidays. Furthermore, the statistically insignificant coefficients on the Labor Day, Thanks-

giving Day, Black Friday, and Christmas Day interaction terms suggest that legacy and LCCs

do not differ in average discounts offered on these five holidays. Similar to the column (4)

results, published fares are 1.7%, 1.6%, 2.5%, and 5.7% cheaper on Labor Day, Thanksgiving

Day, Black Friday, and Christmas Day, respectively.

However, the negative and statistically significant coefficients on the Christmas Eve, New

Year’s Eve, and New Year’s Day interactions in column (5) of Table 2 indicate that LCCs

offer larger discounts than legacy carriers on these three holidays. On Christmas Eve, fares

for LCCs are 7.0% cheaper compared to 5.6% cheaper for legacy carriers. On New Year’s

Eve and New Year’s day, LCC fares are 6.6% and 5.8% cheaper compared to 4.1% and 3.5%

cheaper for legacy carriers.

22For example, employees of The MITRE Corporation (the current employer for one of the author’s of this
study) currently do not receive Veteran’s Day, President’s Day, or Columbus Day off from work. Many state
government employees (e.g., California, Oregon, South Carolina, Texas, and Washington, among others) do
not receive Columbus Day off. According to the Bureau of Labor Statistics, full-time private-sector employees
receive an average of 7.6 paid federal holidays (https://www.bls.gov/news.release/ebs.t05.htm).

23In Appendix C, we explore whether airlines discount fares on state holidays (e.g., Confederate Heroes
Day in Texas, Rosa Parks Day in California, and Lincoln’s Birthday in New York) using a difference-in-
differences approach where flights departing from states not observing the holiday serve as the control group.
Except for flights booked on Lincoln’s Birthday from New York airports, we find that airlines generally do
not discount fares on state holidays. Consistent with the lack of holiday purchase discounts estimated for
Columbus Day, Martin Luther King Day, President’s Day, and Veteran’s Day, our state holiday findings are
sensible considering that most federal government and private sector employees do not receive state holidays
off from work.
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6.1.1 More Elastic Demand or Lower Than Average Demand?

In Section 1, we offered two potential explanations for why airlines may discount fares on

federal holidays. Our first explanation is that demand is more elastic on holidays because

price inelastic business travelers are less likely to purchase tickets when offices are closed. Our

finding that the largest holiday discounts are reserved for flights within one-week of departure

(flights typically purchased by business travelers) is consistent with this first explanation.

Our second explanation is that federal holidays coincide with periods of lower than average

airline demand because people who are already away from home (e.g., visiting family over

Thanksgiving and Christmas) may not be ready to plan yet another vacation after having just

incurred significant travel expenses. Our finding that large discounts are offered on Christmas

Eve and Christmas Day when many consumers are away visiting family is consistent with

this second explanation.

Although we do not have access to data on ticket sales to investigate the lower than

average demand hypothesis, we are able to explore the more elastic demand hypothesis by

examining if holiday purchase discounts are larger on routes that typically have more business

travel. For example, if demand is more elastic on federal holidays because business travelers

are less likely to purchase on these dates, then holiday purchase discounts should be larger

on routes with high shares of business travel and lower on routes with high shares of leisure

travel. To determine if holiday purchase discounts differ across business and leisure routes,

column (1) of Table 3 presents results when the specification in column (2) of Table 2 is

augmented to include the interaction between HolidayBook and an indicator identifying a

tourist destination.24 The coefficient on HolidayBook × TouristDestination while positive

is statistically insignificant, suggesting that more elastic demand may not be driving the

holiday purchase discount.

As an alternative approach to identify routes with more business travel, column (2) of

24Consistent with Berry and Jia (2010), Las Vegas (LAS) and all airports in Florida (i.e., FLL, MIA,
PBI, RSW, and JAX) are identified as tourist destinations in our analysis sample. The tourist destination
indicator itself is not separately identified from the flight-route fixed effects.
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Table 3: Holiday booking effects and the more elastic demand hypothesis

(1) (2) (3)

DaysToDeparture 1-2 0.825*** 0.825*** 0.825***
(0.022) (0.022) (0.022)

DaysToDeparture 3-6 0.570*** 0.570*** 0.570***
(0.026) (0.026) (0.026)

DaysToDeparture 7-13 0.304*** 0.304*** 0.304***
(0.019) (0.019) (0.019)

DaysToDeparture 14-20 0.102*** 0.102*** 0.102***
(0.007) (0.007) (0.007)

WeekendBook 0.001 0.001 0.001
(0.000) (0.000) (0.000)

HolidayBook -0.020*** -0.019** -0.019**
(0.002) (0.007) (0.008)

HolidayBook × TouristDestination 0.002 0.001
(0.002) (0.002)

HolidayBook × OriginIncome 0.001 0.001
(0.001) (0.001)

HolidayBook × DestinationIncome -0.001 -0.001
(0.001) (0.001)

R2 0.420 0.420 0.420
Observations 21,829,963 21,829,963 21,829,963

Notes: The dependent variable is the natural logarithm of fare. Marginal effects are interpreted as the

100(expβ −1)% change in fare. All specifications include flight-route fixed effects that control for time-invariant

flight, carrier, and airport-pair-specific characteristics that affect fares. Constant is included but not reported.

Standard errors are clustered at the airport-pair level and provided in parentheses. *** Significant at the 1

percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.

Table 3 presents results when the specification in column (2) of Table 2 is augmented to

include the interaction between HolidayBook and the per capita incomes (in $10,000s) of the

origin and destination cities.25 The implicit assumption is that routes to or from high income

cities are likely to have more business travel. However, the coefficients on HolidayBook ×

OriginIncome and HolidayBook × DestinationIncome are also statistically insignificant,

providing additional evidence that more elastic demand is likely not driving the holiday

purchase discount.

25Per capita income data for each metropolitan statistical area are taken from the Bureau of Economic
Analysis. Origin Income and Destination Income are not separately identified from the flight-route fixed
effects.

21



Finally, column (3) of Table 3 includes the Tourist Destination, Origin Income, and

Destination Income interactions in the same specification. Consistent with the results from

the first two columns, the coefficients onHolidayBook×TouristDestination, HolidayBook×

OriginIncome, and HolidayBook × DestinationIncome remain statistically insignificant.

Accordingly, the results in Table 3 suggest that lower than average demand rather than more

elastic demand is the more likely driver behind the holiday purchase discounts we observe.

6.2 Holiday Booking Discounts and Competition from Southwest

There may be a concern that the results in Table 2 are biased due to our lack of available

fare data from Southwest.26 To examine this possibility, Table 4 presents results when the

advance-purchase and holiday booking effects are allowed to vary across three types of mar-

kets: markets where Southwest is a nonstop competitor (i.e., airport-pairs that Southwest

serves nonstop), markets where Southwest is a potential competitor (i.e., airport-pairs that

Southwest does not serve nonstop, but serves at least one destination from both endpoint

airports), and markets where Southwest is not present as a nonstop or potential competitor.27

Column (1) of Table 4 presents results when the specification in column (1) of Table

2 is augmented to include interactions between the DaysToDeparture dummies and the

Southwest Nonstop (SWNonstop) and Southwest Potential (SWPotential) competition in-

dicators.28 The statistically insignificant coefficients on the SWNonstop 1-2, 3-6, and 7-13

interactions indicates that nonstop competition from Southwest does not affect average fare

hikes for flights purchased 1-13 days before departure. Similarly, the statistically insignifi-

cant coefficient on the SWPotential 3-6 interaction indicates that the presence of potential

26For example, both nonstop and potential competition from Southwest have been shown to have large
negative fare effects (Brueckner et al., 2013; Goolsbee and Syverson, 2008; Morrison, 2001; Kwoka et al.,
2016).

27For example, Southwest is a potential competitor in the BOS-DCA market because while Southwest
does not serve BOS-DCA directly, it does serve other markets from BOS (e.g., BOS-ORL) and DCA (e.g.,
DCA-ORL).

28The Southwest Nonstop and Southwest Potential competition indicators are not separately identified
from the flight-route fixed effects.
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competition from Southwest does not affect average fare hikes for flights purchased 3-6 days

before departure.

However, the negative and marginally significant coefficient on the SWPotential 1-2 inter-

action suggests that potential competition from Southwest decreases average fare premiums

for flights purchased 1-2 days before departure.29 In contrast, the positive and marginally

significant coefficient on the SWNonstop 14-20 interaction suggests that average fare premi-

ums increase for flights purchased 14-20 days before departure in markets where Southwest

is a nonstop competitor.30 Additionally, the positive and statistically significant coefficients

on the SWPotential 7-13 and 14-20 interactions indicate that average fare hikes for flights

purchased 7-20 days before departure are larger in markets where Southwest is a potential

competitor.31

Column (2) of Table 4 presents results when WeekendBook, HolidayBook, and the in-

teractions between HolidayBook and the SWNonstop and SWPotential competition indi-

cators are added to the specification in column (1). The small and statistically insignificant

coefficients on HolidayBook×SWNonstop and HolidayBook×SWPotential indicate that

average holiday booking discounts do not differ across markets where Southwest is a nonstop

competitor, markets where Southwest is a potential competitor, and markets where South-

west is not present as a nonstop or potential competitor. Similar to the results in column (2)

of Table 2, fares published on a federal holiday or an adjacent shopping holiday are 1.8%-2.1%

cheaper on average across these three types of markets.

In Table 2, holiday booking discounts were found to differ with how far in advance airfare

29Compared to flights purchased 21-60 days before departure, flights purchased 1-2 days before departure
are 136.6% more expensive in markets where Southwest is not present as a nonstop or potential competitor
compared to 114.9% more expensive in markets where Southwest is a potential competitor.

30Compared to flights purchased 21-60 days before departure, flights purchased 7-13 days before departure
are 26.4% more expensive in markets where Southwest is not present as a nonstop or potential competitor
compared to 51.1% more expensive in markets where Southwest is a potential competitor.

31Compared to flights purchased 21-60 days before departure, flights purchased 14-20 days before departure
are 7.7% more expensive in markets where Southwest is not present as a nonstop or potential competitor
compared to 11.0% more expensive in markets where Southwest is a nonstop competitor and 14.9% more
expensive in markets where Southwest is a potential competitor.
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Table 4: Holiday booking effects and competition from Southwest (SW)

(1) (2) (3)

DaysToDeparture 1-2 0.861*** 0.861*** 0.871***
DaysToDeparture 3-6 0.542*** 0.542*** 0.546***
DaysToDeparture 7-13 0.234*** 0.234*** 0.233***
DaysToDeparture 14-20 0.074*** 0.074*** 0.073***
SW Nonstop × DaysToDeparture 1-2 -0.008 -0.008 -0.009
SW Nonstop × DaysToDeparture 3-6 -0.014 -0.014 -0.014
SW Nonstop × DaysToDeparture 7-13 0.053 0.053 0.053
SW Nonstop × DaysToDeparture 14-20 0.030* 0.030* 0.030*
SW Potential × DaysToDeparture 1-2 -0.096* -0.096* -0.096*
SW Potential × DaysToDeparture 3-6 0.107 0.107 0.107
SW Potential × DaysToDeparture 7-13 0.179*** 0.179*** 0.177***
SW Potential × DaysToDeparture 14-20 0.065*** 0.065*** 0.066***
WeekendBook 0.001 0.001
HolidayBook -0.021*** -0.014***
HolidayBook × SW Nonstop 0.002 0.002
HolidayBook × SW Potential 0.003 0.002
HolidayBook × DaysToDeparture 1-2 -0.155***
HolidayBook × DaysToDeparture 3-6 -0.056***
HolidayBook × DaysToDeparture 7-13 0.016**
HolidayBook × DaysToDeparture 14-20 0.008**
HolidayBook × SW Nonstop × DaysToDep. 1-2 0.011
HolidayBook × SW Nonstop × DaysToDep. 3-6 0.002
HolidayBook × SW Nonstop × DaysToDep. 7-13 -0.008
HolidayBook × SW Nonstop × DaysToDep. 14-20 0.004
HolidayBook × SW Potential × DaysToDep. 1-2 -0.008
HolidayBook × SW Potential × DaysToDep. 3-6 -0.012
HolidayBook × SW Potential × DaysToDep. 7-13 0.025***
HolidayBook × SW Potential × DaysToDep. 14-20 -0.006
R2 0.428 0.428 0.429
Observations 21,829,963 21,829,963 21,829,963

Notes: The dependent variable is the natural logarithm of fare. Marginal effects are interpreted as the

100(expβ −1)% change in fare. All specifications include flight-route fixed effects that control for time-invariant

flight, carrier, and airport-pair-specific characteristics that affect fares. Standard errors are clustered at the

airport-pair level. Due to space constraints, the regression constant is not reported and standard errors are

provided in Appendix Table D2. *** Significant at the 1 percent level. ** Significant at the 5 percent level. *

Significant at the 10 percent level.

is purchased, with the largest discounts reserved for flights within one-week of departure. To

determine if nonstop and potential competition from Southwest affects these holiday booking
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discounts, column (3) of Table 4 presents results when theHolidayBook×DaysToDeparture

interaction terms are interacted with the Southwest Nonstop and Southwest Potential com-

petition indicators. In this specification, the HolidayBook × SWNonstop, HolidayBook ×

SWPotential,HolidayBook×SWNonstop×DaysToDeparture, andHolidayBook×SWPotential×

DaysToDeparture interactions are generally statistically insignificant, providing further ev-

idence that the presence of nonstop or potential competition from Southwest does not affect

average holiday booking discounts.32

6.3 Holiday Booking Discounts and Itinerary Type

Our baseline results in Table 2 constrain the advance-purchase and holiday booking effects to

be constant across nonstop and connecting trips. However, because the quality of nonstop and

connecting trips differ, it is possible that the advance-purchase and holiday booking effects

differ between these two types of trips (Luttmann, 2019a). To examine this possibility, Table

5 presents results when the advance-purchase and holiday booking effects are allowed to vary

across nonstop and connecting trips.

Column (1) of Table 5 presents results when the specification in column (1) of Table

2 is augmented to include interactions between the DaysToDeparture dummies and the

connecting trip indicator.33 The statistically insignificant coefficient on the 14-20 interaction

term indicates that trip type does not affect average fare hikes for flights purchased 14-20

days before departure. However, the negative and statistically significant coefficients on

the 1-2, 3-6, and 7-13 interactions indicates that fare hikes for flights purchased within two

weeks of departure are larger for nonstop trips. Compared to flights purchased 21-60 days

before departure, flights purchased 1-2 days before departure are 144.2% more expensive for

32The coefficient on HolidayBook × SWPotential ×DaysToDeparture 7-13 is positive, statistically sig-
nificant, and larger in absolute value than the coefficient on HolidayBook, indicating that holiday booking
discounts do not extend to flights purchased 7-13 days before departure in markets where Southwest is a
potential competitor. This finding is consistent with the results in column (3) of Table 2 where no holiday
booking discount was estimated for flights purchased 7-13 days before departure.

33The connecting trip indicator itself is not separately identified from the flight-route fixed effects.
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nonstop trips and 87.6% more expensive for connecting trips. Similarly, flights purchased 3-6

days before departure are 84.8% more expensive for nonstop trips and 53.7% more expensive

for connecting trips. Finally, flights purchased 7-13 days before departure are 37.6% more

expensive for nonstop trips and 28.0% more expensive for connecting trips.

Column (2) of Table 5 presents results when WeekendBook, HolidayBook, and the inter-

action between HolidayBook and the connecting trip indicator are added to the specification

in column (1). The positive and statistically significant coefficient onHolidayBook×Connect

indicates that holiday booking discounts are larger for nonstop trips. Compared to fares

published on non-holiday dates, fares published on a federal holiday or an adjacent shopping

holiday are 2.1% cheaper for nonstop trips and 1.5% cheaper for connecting trips.

In Table 2, holiday booking discounts differed with how far in advance airfare is pur-

chased, with the largest discounts reserved for flights within one-week of departure. To

determine if these holiday booking discounts differ across nonstop and connecting trips,

column (3) of Table 5 presents results when the HolidayBook × DaysToDeparture inter-

action terms are interacted with the connecting trip indicator. In this specification, the

HolidayBook × Connect and HolidayBook × Connect × DaysToDeparture interactions

attached to the 1-2, 7-13, and 14-20 advance-purchase requirements are all statistically in-

significant, implying that average holiday booking discounts do not differ across nonstop

and connecting trips for flights purchased 1-2 or 7-60 days before departure. However, the

HolidayBook×Connect×DaysToDeparture 3-6 coefficient is positive and statistically sig-

nificant, indicating that holiday booking discounts are larger for nonstop trips purchased 3-6

days before departure. Compared to flights purchased 21-60 days before departure, flights

purchased 3-6 days before departure on a federal holiday or an adjacent shopping holiday are

8.2% cheaper for nonstop trips and 4.8% cheaper for connecting trips.
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Table 5: Holiday booking effects and connecting flights

(1) (2) (3)

DaysToDeparture 1-2 0.893*** 0.893*** 0.903***
(0.023) (0.023) (0.023)

DaysToDeparture 3-6 0.614*** 0.614*** 0.619***
(0.031) (0.031) (0.031)

DaysToDeparture 7-13 0.319*** 0.319*** 0.317***
(0.024) (0.024) (0.024)

DaysToDeparture 14-20 0.104*** 0.104*** 0.104***
(0.008) (0.008) (0.008)

Connect × DaysToDeparture 1-2 -0.264*** -0.264*** -0.265***
(0.035) (0.035) (0.035)

Connect × DaysToDeparture 3-6 -0.184*** -0.184*** -0.187***
(0.038) (0.038) (0.038)

Connect × DaysToDeparture 7-13 -0.072*** -0.072*** -0.072***
(0.028) (0.028) (0.027)

Connect × DaysToDeparture 14-20 -0.015 -0.015 -0.015
(0.010) (0.010) (0.010)

WeekendBook 0.001 0.001
(0.000) (0.000)

HolidayBook -0.021*** -0.014***
(0.002) (0.002)

HolidayBook × Connect 0.006*** 0.003
(0.002) (0.003)

HolidayBook × DaysToDeparture 1-2 -0.157***
(0.010)

HolidayBook × DaysToDeparture 3-6 -0.072***
(0.009)

HolidayBook × DaysToDeparture 7-13 0.021***
(0.005)

HolidayBook × DaysToDeparture 14-20 0.007**
(0.003)

HolidayBook × Connect × DaysToDep. 1-2 0.012
(0.013)

HolidayBook × Connect × DaysToDep. 3-6 0.034***
(0.011)

HolidayBook × Connect × DaysToDep. 7-13 0.001
(0.006)

HolidayBook × Connect × DaysToDep. 14-20 0.001
(0.004)

R2 0.428 0.428 0.428
Observations 21,829,963 21,829,963 21,829,963

Notes: The dependent variable is the natural logarithm of fare. Marginal effects are interpreted as the

100(expβ −1)% change in fare. All specifications include flight-route fixed effects that control for time-

invariant flight, carrier, and airport-pair-specific characteristics that affect fares. Constant is included but

not reported. Standard errors are clustered at the airport-pair level and provided in parentheses. ***

Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.



6.4 Holiday Booking Discounts and Market Structure

The results in Tables 2, 3, 4, and 5 provide evidence consistent with airlines discounting

fares on several major holidays. To determine how holiday booking discounts are affected

by the level of competition, Table 6 presents results when the specification in column (2)

of Table 2 is augmented to include the interaction between HolidayBook and the number

of nonstop carriers serving the route on the observed departure date (NCarriers).34 To

be consistent with previous literature on competition and price discrimination in the airline

industry (Borenstein and Rose, 1994; Dai et al., 2014; Gaggero and Piga, 2011; Gerardi

and Shapiro, 2009; Siegert and Ulbricht, 2020), we restrict the analysis in Table 6 to the

subsample of nonstop flights.35

Although classical economic theory predicts that the extent of price discrimination should

decrease with competition because incumbent firms find it more difficult to maintain markups

over marginal cost as new competitors enter, the predicted effect in oligopolistic markets is

ambiguous (Borenstein, 1985; Chandra and Lederman, 2018; Holmes, 1989; Stole, 2007). In

column (1) of Table 6, the coefficient on HolidayBook×NCarriers is small and statistically

insignificant, suggesting that the level of competition does not impact the magnitude of the

holiday booking discount. However, HolidayBook × NCarriers is potentially endogenous.

For example, there may be an unobserved factor that is correlated with both the number of

carriers and the use of holiday discounts. If such an unobserved factor exists, then the bias

that results from this factor may be attenuating the coefficient onHolidayBook×NCarriers.

To correct for the potential endogeneity of HolidayBook × NCarriers, we employ an

instrumental variables (IV) strategy consistent with the one used in Chandra and Lederman

(2018). This IV approach is based on a route-entry decision model that assumes that air-

lines choose which routes to enter, and in what order, based on their expected profitability.

Following Chandra and Lederman (2018), we first estimate a logit regression to predict the

34Southwest is included in the count of nonstop carriers. The NCarriers variable itself is not separately
identified from the flight-route fixed effects.

35Results are qualitatively similar if connecting trips are included.
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likelihood that each U.S. airline serves a given route on a particular day using the follow-

ing variables: the population of the endpoint cities, the distance and distance squared of

the route, the distance of the route from the airline’s headquarters (i.e., the largest hub for

legacy carriers), the airline’s age, and an interaction between the distance of the route from

the airline’s headquarters and the airline’s age. Coefficient estimates from this logit regres-

sion and additional details on the assumptions underlying this IV approach are provided in

Appendix B.

After predicting each airline’s likelihood of serving a given route on a given day, we use the

predictions to calculate the predicted number of carriers on each route and day in our analysis

sample. The predicted number of carriers are then used as an instrument for the actual

number of carriers in a two-stage least squares (2SLS) regression. Table 7 summarizes the

predicted number of carriers by the actual number of carriers. While we slightly overpredict

the number of carriers on monopoly and duopoly routes and underpredict on routes with three

or more carriers, the logit model produces reasonable overall predictions (the Pseudo-R2 of

our logit model is 0.30).36

36See Appendix Table B1 for coefficient estimates from this first-stage logit model.
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Table 6: Holiday booking effects and market structure

(1) (2) (3) (4) (5) (6)
Estimator OLS 2SLS OLS 2SLS OLS 2SLS

DaysToDeparture 1-2 0.893*** 0.893*** 0.893*** 0.893*** 0.893*** 0.893***
(0.023) (0.023) (0.023) (0.023) (0.023) (0.023)

DaysToDeparture 3-6 0.614*** 0.614*** 0.614*** 0.614*** 0.615*** 0.615***
(0.031) (0.031) (0.031) (0.031) (0.031) (0.031)

DaysToDeparture 7-13 0.319*** 0.319*** 0.319*** 0.319*** 0.319*** 0.319***
(0.024) (0.024) (0.024) (0.024) (0.024) (0.024)

DaysToDeparture 14-20 0.104*** 0.104*** 0.104*** 0.104*** 0.104*** 0.104***
(0.008) (0.008) (0.008) (0.008) (0.008) (0.008)

WeekendBook 0.001** 0.001** 0.001** 0.001** 0.001** 0.001**
(0.0005) (0.0005) (0.0005) (0.0005) (0.0005) (0.0005)

HolidayBook -0.019*** -0.021*** -0.019*** -0.021*** -0.022*** -0.022***
(0.006) (0.006) (0.006) (0.006) (0.002) (0.003)

HolidayBook × NCarriers -0.0004 -0.00002
(0.002) (0.002)

HolidayBook × NLegacy -0.0005 -0.0004
(0.002) (0.002)

HolidayBook × NLCCs -0.0002 0.0005
(0.002) (0.002)

HolidayBook × HHI 0.004 0.005
(0.005) (0.010)

Kleibergen-Paap rk LM statistic 20.542*** 30.398*** 44.384***
Kleibergen-Paap rk Wald F stat. 405.034*** 67.325*** 116.145***
R2 0.439 0.439 0.439 0.439 0.439 0.439
Observations 15,106,864 15,106,827 15,106,864 15,106,827 15,096,815 15,088,229

Notes: The dependent variable is the natural logarithm of fare. Marginal effects are interpreted as the 100(expβ −1)% change in fare. All

specifications include flight-route fixed effects that control for time-invariant flight, carrier, and airport-pair-specific characteristics that affect

fares. Constant is included but not reported. Standard errors are clustered at the airport-pair level and provided in parentheses. First-stage

estimates for columns (2), (4), and (6) are provided in Appendix Table B2. *** Significant at the 1 percent level. ** Significant at the 5 percent

level. * Significant at the 10 percent level.
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Table 7: Predicted number of carriers by the actual number of carriers

̂NCarriers
NCarriers Mean Std. Dev. Min Max

0 0.033 0.057 0.000 0.497
1 1.069 0.334 0.466 2.575
2 2.155 0.411 1.015 3.841
3 2.949 0.493 1.201 4.073
4 3.877 0.233 2.497 4.832
5 4.699 0.513 3.118 5.530
6 5.729 0.453 3.516 6.122
7 6.097 0.027 6.046 6.134

Notes: Coefficient estimates from the logit model used to generate the
predicted number of carriers are provided in Appendix Table B1.

Column (2) of Table 6 presents 2SLS estimates using the interaction between the predicted

number of carriers and HolidayBook (HolidayBook × ̂NCarriers) as an instrument for

HolidayBook × NCarriers (first-stage results are provided in Appendix Table B2). The

statistically significant coefficient on HolidayBook × ̂NCarriers in column (1) of Appendix

Table B2 and the statistically significant Kleibergen-Paap rk Wald F statistic in column

(2) of Table 6 indicates that our instrument is both strong and relevant. After correcting

for potential endogeneity, the coefficient on HolidayBook × NCarriers while decreasing in

absolute value, remains statistically insignificant. Accordingly, the use of holiday discounts

by U.S. airlines does not appear to vary with the level of route competition.

Brueckner et al. (2013) found that competition from legacy carriers has minimal impacts

on fares while competition from LCCs leads to large fare reductions. As a robustness check,

we split the NCarriers variable into two separate variables that count the number of legacy

carriers (NLegacy) and the number of LCCs (NLCCs) providing nonstop service. Column

(3) of Table 6 presents ordinary least squares (OLS) results when the interactions between

HolidayBook and NLegacy and HolidayBook and NLCCs are added to the specification

while column (4) presents 2SLS results using the same IV strategy described in Appendix B.37

37The predicted number of legacy carriers and the predicted number of LCCs serving a given route on a

31



In both columns, the coefficients on HolidayBook ×NLegacy and HolidayBook ×NLCCs

are statistically insignificant, indicating that average holiday purchase discounts do not vary

with the number of legacy carriers or the number of LCCs providing nonstop service.

The market structure analysis in the first four columns of Table 6 relies on a count of

competitors. As an additional robustness check, column (5) presents OLS results when the

interaction between HolidayBook and the Herfindahl-Hirschman Index of the route on the

observed departure date (HHI) is added to the specification in column (2) of Table 2.38 The

coefficient on HolidayBook×HHI is also statistically insignificant, indicating that the level

of competition does not affect the magnitude of the holiday purchase discount. However,

similar to NCarriers, HHI is potentially endogenous.

To correct for the potential endogeneity of HHI, we follow the approach used by Evans

et al. (1993), Whalen (2007), and Greenfield (2014) and instrument for HHI using its one-

year lag.39 Results from this 2SLS approach are provided in column (6) of Table 6. The

coefficient on HolidayBook × HHI remains statistically insignificant, providing additional

evidence that the level of competition does not affect the magnitude of the holiday purchase

discount.

7 Conclusion

Sales during Thanksgiving, Christmas, and other holiday periods are common in a variety of

retail markets. In this article, we examined whether holiday discounts also occur in the airline

industry. In contrast to retail markets where purchased goods are immediately consumed

(e.g., groceries), the purchase date typically differs from the consumption date in airline

markets due to advance purchases. As a result, the holiday occurs prior to the actual date

given day are used as instruments for NLegacy and NLCCs, respectively.
38HHI is computed using daily capacity. Similar results are obtained if monthly enplaned passengers from

the T-100 Domestic Segment database are used to construct HHI.
39Although unobserved demand and supply shocks may persist over time, these shocks are less likely to be

correlated with previous year market structure than with current year market structure.
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of travel in our setting.

We offer two potential explanations for why airlines may discount fares on federal holidays.

Foremost, demand may be more elastic on holidays because business travelers are unlikely

to purchase tickets when offices are closed. Second, holidays may coincide with lower than

average airline demand because people who are already away from home (e.g., visiting family

over Christmas) may not be ready to plan yet another vacation after having just incurred

significant travel expenses. Both explanations imply that federal holidays provide airlines

with an opportunity to practice third-degree price discrimination by offering discounts to

passengers who purchase on these dates.

Exploiting a unique panel of almost 22 million fares collected over a seven-month period,

we find that fares published on a federal holiday for flights in the sixty-day period following

the holiday are 1.9% cheaper, supporting the conjecture that airlines price discriminate on

federal holidays. Further decomposing our results, we find that the largest holiday discounts

are offered for flights that are within one-week of departure and for flights booked during the

Christmas (5.8%-5.9% cheaper) and New Year’s (4.0%-4.7% cheaper) holidays.

For three reasons, we believe lower than average airline demand explains the majority of

holiday purchase discounts observed in our sample. Foremost, the largest discounts occur

on Christmas and New Year’s when many consumers are away from home. Second, we find

no statistically significant purchase discounts on holidays that do not coincide with large

volumes of vacation travel (e.g., Columbus Day, Veteran’s Day, Martin Luther King Jr. Day,

and President’s Day). Finally, we find that the holiday purchase discount does not differ

across business and leisure routes, providing additional evidence that airlines discount fares

on federal holidays due to lower than average airline demand as opposed to more elastic

demand. Nevertheless, finding that the largest discounts are reserved for flights within one-

week of departure (flights typically purchased by business travelers) suggests that more elastic

demand may also contribute to the use of holiday discounts.

We also offer new evidence on the relationship between market structure and price dis-
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crimination. In oligopolistic markets, competition may either increase or decrease the extent

of price discrimination when consumers differ both in their underlying willingness-to-pay and

their degree of brand loyalty (as exists in the U.S. airline industry). We find that the level

of route competition has no statistically measurable impact on the magnitude of the holiday

purchase discount.

The analysis presented in this article offer some interesting avenues for further research.

Future studies could extend the present analysis to other oligopolistic markets such as the

cruise line, hotel, passenger railway, retail gasoline, and shipping markets. Although the

analysis in this article focused on the U.S. airline industry, similar analyses could also be

performed for the African, Asian, Australian, Canadian, European, and South American

airline markets.
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Appendix A: List of markets included in our analysis

Table A1: List of directional airport-pairs included in our analysis

ABQ-LGA DFW-LAS JFK-MIA MKE-SFO RIC-LAX
ATL-BOS DFW-LAX JFK-PBI MSP-LAS SAN-OAK
ATL-FLL DFW-LGA JFK-SFO MSP-MCO SAN-SFO
ATL-LAS DFW-MCO LAS-LAX MSP-PHX SAN-SJC
ATL-LAX DFW-ORD LAX-ATL MSP-RSW SAN-SMF
ATL-LGA DTW-FLL LAX-BOS OAK-BUR SAT-BOS
ATL-MCO DTW-LAS LAX-DEN OAK-LAS SEA-LAS
BDL-PHX DTW-MCO LAX-DFW OAK-LAX SEA-LAX
BDL-SFO DTW-RSW LAX-EWR OAK-SAN SEA-PHX
BOS-ATL EWR-FLL LAX-JAX OAK-SNA SEA-SAN
BOS-DCA EWR-IAH LAX-JFK ORD-BOS SEA-SFO
BOS-FLL EWR-LAX LAX-LAS ORD-DCA SFO-BDL
BOS-LAX EWR-MCO LAX-MCO ORD-DEN SFO-BOS
BOS-MCO EWR-MIA LAX-OAK ORD-DFW SFO-EWR
BOS-MIA EWR-ORD LAX-ORD ORD-FLL SFO-JFK
BOS-ORD EWR-PBI LAX-SEA ORD-LAS SFO-LAS
BOS-RSW EWR-RSW LAX-SFO ORD-LAX SFO-LAX
BOS-SFO EWR-SFO LGA-ATL ORD-LGA SFO-ORD
BUR-OAK FLL-EWR LGA-FLL ORD-MCO SFO-SAN
BWI-FLL FLL-JFK LGA-MCO ORD-MIA SFO-SEA
BWI-LAS FLL-LGA LGA-MIA ORD-PHX SJC-SAN
BWI-MCO HOU-DAL LGA-ORD ORD-SFO SJC-SNA
CLT-LGA IAH-EWR MCO-EWR PDX-FLL SLC-MIA
CMH-SEA IAH-LAS MDW-DEN PDX-LAS SMF-BUR
DAL-HOU JAX-LAX MDW-FLL PDX-LAX SMF-SAN
DAL-LAS JAX-PHX MDW-LAS PHL-FLL SMF-SNA
DEN-LAS JFK-FLL MDW-LAX PHL-MCO SNA-MCO
DEN-LAX JFK-LAS MDW-MCO PHL-SNA SNA-SJC
DEN-MCO JFK-LAX MDW-PHX PHX-DEN
DEN-PHX JFK-MCO MIA-LGA RIC-LAS
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Appendix B: Instrumental variables strategy and first-

stage estimates

As outlined in Section 6.4, we employ an instrumental variables (IV) strategy to correct for the

potential endogeneity of HolidayBook×NCarriers (in addition to HolidayBook×NLegacy

and HolidayBook ×NLCC). This IV strategy hinges on a route-entry decision model that

assumes that airlines choose which routes to enter, and in what order, based on their expected

profitability. Following Chandra and Lederman (2018), two types of instruments are used:

variables that impact the expected cost to a particular airline of entering a given route and

variables that impact the suitability of a given route for a particular airline’s fleet. The

variables we use are the population of the endpoint cities of the route, the distance and

distance squared of the route, the distance of the route from the airline’s headquarters (i.e.,

the largest airline hub for legacy carriers), the airline’s age, and the interaction between the

distance of the route from the airline’s headquarters and the airline’s age.

The rationale for including these variables is straightforward. The population and distance

variables help capture the suitability of a route to a given airline’s fleet type, size, and range.

The distance of the route from the airline’s headquarters reflects that the cost of entry likely

increases the further the airline is from its headquarters. The age variable reflects that airlines

may enter less profitable routes over time.

As discussed in Chandra and Lederman (2018), this IV strategy requires two key assump-

tions. First, the airlines’ business models (e.g., decision of which aircraft types to operate)

are exogenous. Second, an airline’s decision of where to locate their headquarters must not

be driven by time-varying unobservable characteristics of the routes close to their headquar-

ters. This assumption ensures that the distance from an airline’s headquarters meets the

exclusion restriction for use as a valid instrument. This assumption seems reasonable given

the geographic distribution of U.S. airline headquarters. For example, Alaska (Seattle), Alle-

giant (Las Vegas), American (Fort Worth), Delta (Atlanta), Frontier (Denver), JetBlue (New
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York City), Southwest (Dallas), Spirit (Fort Lauderdale), Sun Country (Minneapolis), and

United (Chicago) have all chosen different cities for the location of their headquarters (with

the exception that the American and Southwest headquarters are nearby).

To implement our IV strategy, we proceeded with the following steps.

1. We constructed a daily airline-route dataset from January 1st, 2018 to February 29th,

2020 that captures all nonstop routes in the continental U.S. market.40

2. Then, we estimated the probability that each U.S. airline serves a given route on a

particular day using a logit model where the dependent variable is an indicator equal

to one if the airline serves the route on the observed day and zero otherwise. The

explanatory variables are: the population of the endpoint cities of the route, the dis-

tance and distance squared of the route, the distance of the route from the airline’s

headquarters, the airline’s age, and an interaction between the distance of the route

from the airline’s headquarters and the airline’s age. To capture differences in business

models (and to be consistent with the Chandra and Lederman (2018) approach), we

allowed each of these variables to have a different effect for each airline by interacting

these variables with a dummy for each airline. Day-of-week, month-of-year, and route

fixed effects were also included to improve predictive power.41 Coefficient estimates

from this logit regression are provided in Table B1.

3. Using the coefficient estimates from this logit regression, we predicted each airline’s

likelihood of serving each route on each day during our sample period. For each route-

day pair, the predictions across all carriers were summed to calculate the predicted

number of carriers serving the route ( ̂NCarriers) in addition to the predicted number

of legacy carriers ( ̂NLegacy) and the predicted number of low-cost carriers (N̂LCCs).

40This dataset is constructed using information from the “Marketing Carrier On-Time Performance” data
provided by the Bureau of Transportation Statistics.

41We are able to include route fixed effects because our explanatory variables vary at the airline-route or
airline-route-day level.
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4. Finally, we interactedHolidayBook with ̂NCarriers to generateHolidayBook× ̂NCarriers.

HolidayBook× ̂NCarriers is then used as an instrument forHolidayBook×NCarriers

in a two-stage least squares regression. Similarly,HolidayBook× ̂NLegacy andHolidayBook×

N̂LCCs were also used as instruments forHolidayBook×NLegacy andHolidayBook×

NLCCs in a separate two-stage least squares regression.
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Table B1: Logit regression estimates for predicted service by carrier

Alaska Allegiant American Delta Frontier JetBlue Southwest Spirit United

Origin population (100,000s) 0.007 -0.046*** 0.009 0.004 -0.011 0.010 0.001 0.004 0.008
(0.010) (0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Destination population (100,000s) 0.007 -0.045*** 0.009 0.004 -0.011 0.010 0.001 0.004 0.009
(0.010) (0.011) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010) (0.010)

Route distance (100s of miles) -0.299 0.852 -0.377 -0.234 0.501 -0.042 0.046 0.197 -0.211
(1.807) (1.808) (1.805) (1.806) (1.806) (1.807) (1.806) (1.806) (1.807)

Route distance2 (100s of miles) -0.047 -0.099 -0.048 -0.053 -0.078 -0.056 -0.062 -0.067 -0.053
(0.135) (0.135) (0.134) (0.135) (0.135) (0.135) (0.135) (0.135) (0.135)

Min. distance to HQ (100s of miles) 3.244*** -0.142*** 1.075*** 0.070 -0.706*** -0.221*** 0.557*** 0.220** -0.577***
(1.104) (0.039) (0.234) (0.114) (0.155) (0.065) (0.118) (0.098) (0.215)

Age (100s of days) 0.070*** -0.011** 0.045*** 0.008*** -0.011 -0.015** 0.020*** 0.064*** 0.001
(0.018) (0.005) (0.006) (0.003) (0.012) (0.006) (0.005) (0.009) (0.004)

Age × min. distance to HQ -0.012*** 0.002*** -0.004*** -0.000 0.007*** 0.001 -0.004*** -0.003*** 0.002**
(0.003) (0.000) (0.001) (0.000) (0.002) (0.001) (0.001) (0.001) (0.001)

Carrier intercepts -6.415 9.952*** -11.159 11.473*** 10.466*** 11.621*** 9.448*** 4.386* 13.020***
(6.150) (2.106) (8.059) (2.179) (2.325) (2.140) (2.145) (2.246) (2.471)

Notes: Coefficients are from a single logit regression where the identity of each airline is interacted with the corresponding variable in the first

column. The dependent variable is an indicator equal to one if the airline serves the route on the given day and zero otherwise. The regression

includes day-of-week, month-of-year, and route fixed effects. Standard errors are provided in parentheses and clustered at the route level. The

sample period is January 1st, 2018 to February 29th, 2020. *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant

at the 10 percent level. Observations = 45,546,660; Pseudo-R2 = 0.297.
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Table B2: First-stage estimates for Table 6

(1) (2) (3) (4)
Dependent variable HolidayBook×NCarriers HolidayBook×NLegacy HolidayBook×NLCCs HolidayBook×HHI

DaysToDeparture 1-2 -0.0003 0.0005 -0.0008 0.0007**
(0.0005) (0.0003) (0.0005) (0.0003)

DaysToDeparture 3-6 -0.0003 -0.0001 -0.0002 0.0004*
(0.0002) (0.0003) (0.0003) (0.0002)

DaysToDeparture 7-13 0.00002 0.00005 -0.00006 0.0002
(0.0002) (0.0002) (0.0001) (0.0002)

DaysToDeparture 14-20 -0.0003* -0.0002 -0.0002 0.0002
(0.0002) (0.0001) (0.0001) (0.0002)

WeekendBook -0.0001*** -0.00006** -0.00005 0.00003***
(0.00004) (0.00003) (0.00004) (0.00001)

HolidayBook 0.118 0.476*** -0.347* 0.126***
(0.166) (0.163) (0.191) (0.0128)

HolidayBook × ̂NCarriers 0.999***
(0.050)

HolidayBook × N̂Legacy 1.285*** -0.254***
(0.064) (0.066)

HolidayBook × N̂LCCs -0.734*** 1.675***
(0.122) (0.144)

HolidayBook × HHIt−1 0.441***
(0.041)

R2 0.987 0.944 0.863 0.611
Observations 15,106,864 15,106,864 15,106,864 15,106,864

Notes: All specifications include flight-route fixed effects that control for time-invariant flight, carrier, and airport-pair-specific characteristics

that affect fares. The regression constant is included but not reported. Standard errors are clustered at the airport-pair level and provided in

parentheses. *** Significant at the 1 percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.
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Appendix C: Holiday booking effects on state holidays

Table C1 presents results from a difference-in-differences analysis to determine if holiday

purchase discounts also occur on state holidays. There are nine relevant state holidays that

occur during our sample period: Rosa Parks Day (observed in Ohio on December 1, 2019 and

in California on February 4, 2020), Confederate Heroes Day (observed in Texas on January

19, 2020), Lincoln’s Birthday (observed in Connecticut, Illinois, and New York on February

12, 2020), Georgia State Holiday (observed in Georgia on November 29, 2019), Lee-Jackson

Day (observed in Virginia on January 17, 2020), and Nevada Day (observed in Nevada on

October 20, 2019).

The difference-in-differences specification is an augmented version of equation (1) and is

described by equation (2) below:

ln(fare)fjt = α+
4∑

i=1

δi ·DaysToDepartureft + γ ·WeekendBookft + β ·HolidayBookft+

7∑
i=1

σi ·BookOnStateHolidayt +
9∑

i=1

µi · StateDeparturef ×BookOnStateHolidayt+

ρfj + εfjt (2)

where BookOnStateHoliday is a series of indicators that equal one if the fare is published on

the state holiday (one indicator for each of the seven different state holiday dates mentioned

above) and StateDeparture is a series of indicators that equal one if the departure airport

for flight f on directional airport-pair j is in the state observing the holiday (one indicator

for each of the nine states mentioned above). In this specification, flights from states not

observing the state holiday serve as the control group, so that the nine estimated µ’s are the

difference-in-differences estimates of the state holiday booking effects.42

Eight of the nine difference-in-differences coefficients are either positive or statistically

42The StateDeparture variables are not separately identified from the flight-route fixed effects (i.e., ρfj).
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insignificant in Table C1, indicating that holiday purchase discounts generally do not extend

to state holidays. This finding is sensible considering that most federal government and

private sector employees do not receive state holidays off from work. This finding is also

consistent with the lack of holiday purchase discounts estimated for Martin Luther King

Day, President’s Day, and Veteran’s Day in Table 2, federal holidays that the majority of

private sector employees also do not receive off from work (e.g., see Table 1).

The only difference-in-differences estimate that is negative and statistically significant is

the estimate for Lincoln’s Birthday in New York (NYDeparture×Book on Lincoln′s Birthday).

This difference-in-differences estimate indicates that published fares for flights that originate

at New York airports are 7.5% cheaper on Lincoln’s Birthday (February 12th) relative to

other non-holiday dates.
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Table C1: Holiday booking effects on state holidays

(1)

DaysToDeparture 1-2 0.825***
(0.022)

DaysToDeparture 3-6 0.570***
(0.026)

DaysToDeparture 7-13 0.304***
(0.019)

DaysToDeparture 14-20 0.102***
(0.007)

WeekendBook 0.001
(0.000)

HolidayBook -0.018***
(0.001)

Book on Rosa Parks Day (Feb. 4th) 0.028***
(0.007)

Book on Confederate Heroes Day 0.055***
(0.004)

Book on Lincoln’s Birthday -0.031***
(0.009)

Book on Rosa Parks Day (Dec. 1st) -0.002
(0.003)

Book on Georgia State Holiday -0.005
(0.003)

Book on Lee-Jackson Day 0.052***
(0.003)

Book on Nevada Day 0.024***
(0.003)

CADeparture × Book on Rosa Parks Day (Feb. 4th) 0.038**
(0.019)

TXDeparture × Book on Confederate Heroes Day -0.016
(0.018)

NYDeparture × Book on Lincoln’s Birthday -0.078**
(0.033)

ILDeparture × Book on Lincoln’s Birthday -0.016
(0.046)

OHDeparture × Book on Rosa Parks Day (Dec. 1st) -0.001
(0.002)

GADeparture × Book on Georgia State Holiday 0.004
(0.007)

VADeparture × Book on Lee-Jackson Day -0.009
(0.006)

CTDeparture × Book on Lincoln’s Birthday -0.025
(0.025)

NVDeparture × Book on Nevada Day 0.005**
(0.003)

R2 0.421
Observations 21,829,963

Notes: The dependent variable is the natural logarithm of fare. Marginal effects are interpreted as the

100(expβ −1)% change in fare. All specifications include flight-route fixed effects that control for time-invariant

flight, carrier, and airport-pair-specific characteristics that affect fares. Constant is included but not reported.

Standard errors are clustered at the airport-pair level and provided in parentheses. *** Significant at the 1

percent level. ** Significant at the 5 percent level. * Significant at the 10 percent level.



Appendix D: Standard errors for coefficient estimates in

Tables 2 and 4

Table D1: Standard errors for coefficient estimates in Table 2

(1) (2) (3) (4) (5)

DaysToDeparture 1-2 (0.022) (0.022) (0.022) (0.022) (0.022)
DaysToDeparture 3-6 (0.026) (0.026) (0.026) (0.026) (0.026)
DaysToDeparture 7-13 (0.019) (0.019) (0.019) (0.019) (0.019)
DaysToDeparture 14-20 (0.007) (0.007) (0.007) (0.007) (0.007)
WeekendBook (0.000) (0.000) (0.000) (0.000)
HolidayBook (0.001) (0.001)
HolidayBook × DaysToDeparture 1-2 (0.007)
HolidayBook × DaysToDeparture 3-6 (0.007)
HolidayBook × DaysToDeparture 7-13 (0.004)
HolidayBook × DaysToDeparture 14-20 (0.003)
Book on Labor Day (0.004) (0.004)
Book on Columbus Day (0.003) (0.003)
Book on Veteran’s Day (0.003) (0.003)
Book on Thanksgiving (0.003) (0.003)
Book on Black Friday (0.003) (0.003)
Book on Christmas Eve (0.004) (0.004)
Book on Christmas Day (0.004) (0.004)
Book on New Year’s Eve (0.003) (0.003)
Book on New Year’s Day (0.003) (0.003)
Book on M.L. King Day (0.004) (0.004)
Book on President’s Day (0.007) (0.008)
LCC × Book on Labor Day (0.009)
LCC × Book on Columbus Day (0.005)
LCC × Book on Veteran’s Day (0.004)
LCC × Book on Thanksgiving (0.005)
LCC × Book on Black Friday (0.006)
LCC × Book on Christmas Eve (0.007)
LCC × Book on Christmas Day (0.007)
LCC × Book on New Year’s Eve (0.005)
LCC × Book on New Year’s Day (0.005)
LCC × Book on M.L. King Day (0.006)
LCC × Book on President’s Day (0.021)
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Table D2: Standard errors for coefficient estimates in Table 4

(1) (2) (3)

DaysToDeparture 1-2 (0.031) (0.031) (0.031)
DaysToDeparture 3-6 (0.042) (0.042) (0.043)
DaysToDeparture 7-13 (0.025) (0.025) (0.025)
DaysToDeparture 14-20 (0.009) (0.009) (0.009)
SW Nonstop × DaysToDeparture 1-2 (0.048) (0.048) (0.048)
SW Nonstop × DaysToDeparture 3-6 (0.056) (0.056) (0.057)
SW Nonstop × DaysToDeparture 7-13 (0.039) (0.039) (0.039)
SW Nonstop × DaysToDeparture 14-20 (0.016) (0.016) (0.016)
SW Potential × DaysToDeparture 1-2 (0.057) (0.057) (0.057)
SW Potential × DaysToDeparture 3-6 (0.066) (0.066) (0.066)
SW Potential × DaysToDeparture 7-13 (0.045) (0.045) (0.045)
SW Potential × DaysToDeparture 14-20 (0.014) (0.014) (0.014)
WeekendBook (0.000) (0.000)
HolidayBook (0.002) (0.002)
HolidayBook × SW Nonstop (0.003) (0.003)
HolidayBook × SW Potential (0.003) (0.003)
HolidayBook × DaysToDeparture 1-2 (0.012)
HolidayBook × DaysToDeparture 3-6 (0.012)
HolidayBook × DaysToDeparture 7-13 (0.006)
HolidayBook × DaysToDeparture 14-20 (0.004)
HolidayBook × SW Nonstop × DaysToDep. 1-2 (0.019)
HolidayBook × SW Nonstop × DaysToDep. 3-6 (0.016)
HolidayBook × SW Nonstop × DaysToDep. 7-13 (0.009)
HolidayBook × SW Nonstop × DaysToDep. 14-20 (0.005)
HolidayBook × SW Potential × DaysToDep. 1-2 (0.018)
HolidayBook × SW Potential × DaysToDep. 3-6 (0.016)
HolidayBook × SW Potential × DaysToDep. 7-13 (0.008)
HolidayBook × SW Potential × DaysToDep. 14-20 (0.007)
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