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A Note on an Alternative Approach to Experimental Design of
Lottery Prospects

Abstract

We introduce an alternative approach to lottery prospects experimental de-
sign aimed at collecting experimental data for parametric estimation of the
cumulative form of Prospect Theory (PT). Our approach incorporates two fun-
damental principles: ensuring that all tasks provide valuable information and
avoiding redundancy among tasks. These principles mean that we avoid the
construction of lottery prospects that duplicate information within the set of
tasks generated. The methodological approach that we have designed ensures
that each lottery pair is non-redundant in an informational sense. This means
that the set of lottery tasks generated can help to improve the effectiveness of
data collection when estimation of preference parameters is the main research
objective. In this note, we describe our approach to experimental design in
detail.
KeyWords: Experimental Design; Lotteries; Risk and Uncertainty; Prospect

Theory.
JEL: C11; C52; D81.

1 Introduction

In this note, we introduce an alternative approach to lottery design that can
be used in an experimental setting to collect data that in turn can be used to
estimate preference parameters for cumulative Prospect Theory (PT) (Tversky
and Kahneman, 1992). Our aim is to develop an alternative approach to experi-
mental design that can enable the effective estimation of preference parameters.
There exists a large literature estimating preference parameters using experi-
mental data (e.g., Stott, 2006; Booij et al., 2010; Nilsson et al., 2011; Balcombe
and Fraser, 2015; Balcombe et al., 2019; Kpegli, et al., 2023) Estimation of
preference parameters is one reason As such this research contributes to an im-
portant issue, that is the formulation and resulting effectiveness and effi ciency
of a lottery design that underpins any experimental data collection (Loomes and
Sugden, 1998; Hey 2001; Cavagnaro et al., 2013a,b; Moffat, 2015).
It is well understood that any experimental design will have an impact on

experimental data collection and potentially influence the preference parame-
ters parametrically recovered from the data. If you “assume”(your prior) any
key PT parameter is likely to be similar in value to those originally reported
by Tversky and Kahneman (1992) and you incorporate this into your experi-
mental design (e.g. when simulating lotteries) it is then highly likely that your
experiment will yield PT parameters estimates within the "expected range".
Indeed, if you develop experimental designs employing simulation methods that
have "tight" bounds on your prior beliefs, your resulting set of lotteries will
likely reflect your priors. Consequently, how prior beliefs about parameters
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shape the experimental design needs to be explicitly recognized and described
by researchers when estimating preference parameters with such data.
Here we address the basic question of how should researchers select the ac-

tual set of lotteries to be used in their experiment. We address this question by
introducing a simple but logical approach to experimental design. Our approach
is based upon two basic principles. First, each task a respondent undertakes
needs to be "informative". This simply means that respondents who have dif-
ferent preferences will select different options in a lottery choice task. Second,
no task should be rendered redundant by any other task. The most obvious
example is that a task should not be repeated. More generally, it means that
one task should not be able to be used to predict responses to other tasks. By
employing these two principles within an algorithm, we can construct lotter-
ies that are informative and have low pairwise redundancy defined by using an
entropy measure.

2 The Design of Lottery Tasks

2.1 Common Design Issues

When a researcher sets out to design an experiment such as a binary lottery or
multiple price list (MPL), that can be used to estimate PT parameters there are
many issues to consider including: what statistical method/criteria to employ to
derive lotteries; the number of lotteries to generate (ie, the super-set); selecting
the sub-set to be used from the super-set; evaluation of the sub-set selected;
inclusion of a sure thing option; two or more lottery outcomes; text, graphics
or a mix presentation of the task; and purely hypothetical lotteries, or do you
offer real incentives. Several of these issues have received far more attention
than others. For example, there is a large literature on how risk preferences
can be elicited and the mechanism to be used (Charness et al., 2013; Crosetto
and Filippin, 2016) with the choice of method being highly dependent on the
researcher’s goals. Many papers have employed either lists, ladders, or a series
of discrete lottery choices following the procedures introduced by Eckel and
Grossman (2002, 2008) and the MPL approach introduced by Holt and Laurey
(2002). There is a large research literature comparing elicitation methods (e.g.,
Charness et al., 2013; Crosetto and Filippin, 2016; Drichoutis and Lusk, 2016;
Pedroni et al., 2017; Freeman and Mayraz, 2019; Holzmeister and Stefan, 2021).
Another topic that has attracted a lot of attention is the number of tasks

undertaken during the experiment. It is assumed that offering respondents ever
more tasks enables the recovery of better parameter estimates, such that the
number of tasks employed can be large. For example, Rieskamp (2008) gave
30 participants 180 pairs of gambles with 60 in each domain (Gain, loss, and
mixed). Others (e.g. Hey and Orme, 1994; Hey, 2001; Stott, 2006) have opted
for 100 tasks. More recently Frydman and Jin (2022) have asked respondents
to complete 600 tasks. However, as noted by Hey (2001): "The more questions
the better as long as tiredness does not set in." (p.7). Furthermore, simply in-

3



creasing the number of tasks given to respondents need not necessarily improve
the accuracy of model estimates. This is because, without careful consideration,
a researcher might simply use informationally redundant lotteries. Moreover,
increasing the number of tasks may induce respondent fatigue or reduce engage-
ment and degrade the quality of the data collected impacting the preference
parameter estimates recovered.
There are also examples of researchers recycling experimental tasks which

presumes that the existing experimental design is both sound and appropriate
for the task in hand. For example, the lottery design developed by Binswanger
(1980) has been widely used (e.g. Bauer et al., 2012; Chowdhury et al., 2022).
Another is that developed and employed by Tanaka et al. (2010) that has
been re-used by many researchers (e.g. Liu and Huang, 2013; Ward and Singh,
2015; Bougherara et al., 2017). You also find examples of researchers combining
existing sets of experimental designs (e.g. Andersen et al., 2018; Murphy and
ten Brincke, 2018).

2.2 Effi ciency of Experimental Designs

Within the literature, there are often extensive descriptions of how experiments
have been implemented and how they deal with the issues already noted. How-
ever, there is frequently far less detail given about how the lotteries or choice
tasks were generated and selected. For example, Andersen et al. (2018) indi-
cate that they carefully selected the lottery tasks employed such that they could
econometrically identify the structural model of interest. They also detail and
explain very carefully the sources of all of the lotteries employed, but they do not
give any more information as to how the selection of the lotteries may be effi cient.
Indeed the tasks employed by Andersen et al. (2018) draw on some prominent
experimental designs that appeal to theory to justify the tasks generated. For
example, Hey (2001) motivates the choice of lotteries using Marschak—Machina
Triangles (MMT) as do Harrison and Swarthout (2016), following the approach
taken by Loomes and Sugden (1998). While this approach provides an excellent
platform for generating tasks, it can be implemented in many ways, and the
performance of the final design in terms of estimating preference parameters is
not clear. Both Cavagnaro et al. (2013a) and Harrison and Ng (2016) provide
extended and insightful discussions regarding MMTs and experimental design.
In general, the statistical effi ciency of lottery designs has attracted rela-

tively little attention compared to other experimental areas in economics, such
as stated preference research (e.g., Johnson et al., 2017). Why is this the case?
Maybe, in some part, this is because there was a historical tendency to think
about risk preferences in a non-stochastic/deterministic way. However, it also
stems from the wide range of candidate models for risk preferences which seri-
ously complicates attempts to generate lottery designs using statistical criteria.
Importantly, there is no such thing as an "effi cient design" per se. A design

that is highly effi cient for estimating the parameters of one model may perform
very poorly for estimating the parameters of another (possibly more correct)
model. For example, if a researcher assumes that key PT parameters are going
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to be in a range similar to those originally reported by Tversky and Kahneman
(1992), a set of lotteries can be generated that is capable of estimating parame-
ters in that neighborhood, yet might be highly uninformative about parameter
values that lie far outside this range. Somewhat uncomfortably, this also im-
plies the possibility that the apparent superior performance of one model over
another may not be due to its inherent superiority but due to the particular set
of tasks within the experimental design. This issue has also been discussed in
relation to MMTs and the location of lottery pairs (Harrison and Ng, 2016).
To date, only a few papers have considered the statistical properties of ex-

perimental designs in regard to eliciting risk preference parameters (e.g. Müller
and Ponce de Leon, 1996; Moffatt, 2007, 2015; Cavagnaro et al., 2013a). Müller
and Ponce de Leon (1996) specifically address the issue of experimental design
concerning risk elicitation, although they appear to focus on the functional form
and related issues. Moffatt (2007) discusses how to employ D-optimal designs
(an approach commonly employed in the discrete choice experiment literature)
but does not implement an approach due to the complexity of implementation
involved. Moffatt (2015) also discusses the possibility of employing D-optimal
designs but explains why they are computationally too demanding.
A very different philosophical approach to experimental design is used by

Cavagnaro et al. (2013a). They employed a design approach that is referred to
as adaptive design optimization (ADO). ADO uses an algorithm to dynamically
select the choice tasks, not in advance of the experiment but during the exper-
iment. Employing Bayesian inference, ADO requires that researchers explicitly
specify priors for models and parameters such that after every choice is made
the subsequent choice offered to an individual respondent is informative.1 As
a result, ADO can yield effi cient designs. However, as noted by Sloman et al.
(2023) the choice of the priors has a significant effect on the performance of
ADO. They also report that the selection of priors has significantly less impact
on parameter estimates but that model selection can be significantly affected.
There is much to like about the ADO approach, but it does require the researcher
to have strong priors in advance of data collection.
Within the wider decision theory literature there are also papers that ex-

amine the issue of effi cient experimental design. An example is the paper by
Broomell and Bhatia (2014) that has recently been used by Olschewski et al.
(2021). Broomell and Bhatia (2014) develop a criterion to rank decision sets
that allows for parameter discrimination. This approach provides important
insights into the ease with which different PT parameters can be identified from
experimental designs. This is an important observation as insuffi cient atten-
tion is paid to why a design method was chosen and how well it would identify
the parameters of a given model. When rationalizations are given, these are
often in terms of identifying tasks that might discriminate between models or
elicit choices that contradict a given model. We contend that there is an under-
appreciation of the necessary amount of information required to identify the

1The implementation of ADO has been enabled by the development of a python package
ADOpy by Yang et al. (2021).
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parameters of interest for flexible models derived from PT, particularly if there
is respondent heterogeneity.

2.3 Task Complexity and the Sure-Thing Option

An important issue to be aware of when undertaking any experimental design is
the inherent degree of task complexity. When undertaking experimental design
from a purely statistical perspective the degree of task complexity confronting
respondents also needs to be appreciated. Researchers need to strike a balance
between making tasks too easy or giving more complex tasks that, in theory,
might be more informative in regard to revealing information but respondents
find challenging and therefore fail to engage properly with the experiment.
The role of complexity in survey designs has been examined at length in

various research areas, including stated preference discrete choice experiments
(e.g. Pfeffi er et al., 2014; Johnson et al., 2017; Regier et al., 2014) and lot-
tery/prospect designs. For example, complexity has been considered in the
lottery design literature in terms of similarity of prospect pairs (e.g. Buschena
and Zilberman, 1999; Buschena and Atwood, 2011). The issue of complex-
ity has also been examined with regard to preference reversals (Loomes and
Pogrebna (2017)2 and respondent performance by Charness et al. (2018) who
note that complexity and the structure of a risk elicitation mechanism impact
measured risk preferences. Amador-Hidalgo et al.(2021) also note that com-
monly employed lottery tasks, such as MPLs frequently result in a significant
proportion of inconsistent choices. In terms of explaining inconsistent choices
Amador-Hidalogo et al. (2021) report findings in keeping with Andersson et al.
(2016). As task complexity increases, that is the probability calculations are
more complicated, then the number of inconsistent choices increases. Inconsis-
tent choices also increase as the realization of the probabilities of the two payoffs
get closer because the computation required to identify the preferred option be-
comes harder. Amador-Hidalgo et al. (2021) suggest one way to deal with this
problem would be to employ more tasks but this then runs up against the fatigue
issue already noted. Andersson et al. (2016) conclude that in an effort to reduce
problems with inconsistent tasks that the following is required when designing
choice tasks: "...the need to use balanced experimental elicitation designs (e.g.,
several MPLs with varying switch points for given risk preferences." (p. 1131).
Although there is obvious merit in this suggestion, it is somewhat vague and not
entirely clear what it means when it comes to practical implementation. They
also suggest what they refer to as a balanced design, but this is not a useful
criteria or practical solution to experimental task design.3

One way in which researchers have sought to devise tasks that help reduce

2The issue of preference reversals is a long-standing research theme eg., Lichtenstein and
Slovic (1971) and Grether and Plott (1979). However, examination of "reversal rates" gener-
ally requires the repetition of tasks, an approach not recommended if the goal is to maximise
the information elicited about preferences within a fixed number of tasks.

3The impact of task complexity has also been discussed in relation to the legitimacy of
rank dependency, see Bernheim and Sprenger, (2020) and Bernheim et al. (2022).
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complexity is by limiting the number of tasks in sets of lotteries to those that
only require prospects with two or three payoffs or where one of the options
is a sure-thing (e.g. Bruhin et al., 2010; Falk et al., 2018; l’Haridon and Viei-
der, 2019). By employing a sure-thing in an experimental design this can give
rise to what Tversky and Kahneman (1981) coined as certainty bias. This is
a phenomenon where respondents chose options that have payoffs that are cer-
tain but cannot be explained by expected utility theory (EUT). Kahneman and
Tversky (1986) view the certainty effect as a framing bias, but it can poten-
tially be understood as a phenomenon that arises because respondents choose
options that they can more easily understand (albeit because of framing). In-
terest in certainty bias is ongoing with Zilker and Pachur (2021) explaining how
probability weighting within PT can vary the valuation placed upon the risky
option but not the safe/sure option. They also contend that it may well be how
respondents allocate their attention to a task that gives rise to the observed
certainty effect. Frydman and Jin (2022) also examine decision making when
confronted with one risky choice and a sure thing. They consider how changing
the range of payoffs effects decision making, such that with a higher range of
values, a treatment they refer to as the high-volatility setting, the likelihood of
selecting the sure thing decreases. What they take this to mean is that when
a respondent’s perceptions are noisier and this occurs in high volatility settings
this in turn generates noisier (inconsistent) choices. Frydman and Jin (2022)
express this finding as follows:
"..., we provide evidence consistent with the hypothesis that diminishing sen-

sitivity to payoffs arises in part from an optimal allocation of perceptual re-
sources." (p. 166).

2.4 Summary

This brief review of the literature indicates that the existing experimental lit-
erature that has set out to examine risk preferences, frequently with a focus
on PT has generally paid minimal attention to issues relating to experimental
design effi ciency as it relates to parametric derivation of preference parameters.
Few studies discuss the relative effi ciency of an experimental design relative to
a defined criterion. This issue is explicitly considered by Moffat (2007, 2015),
but only Cavagnaro et al. (2013 a,b) and to a lesser extent Broomell and Bhatia
(2014) have developed methods to evaluate the effi ciency of a set of lotteries or
prospects used to statistically derive key PT parameters. Although both meth-
ods have merit there remains scope to re-examine this issue from a different
philosophical perspective as we do in this paper. There is also an extensive dis-
cussion on task complexity and design choice, such as the use of the sure-thing,
but this has not been explicitly linked to how better to undertake the design of
experimental tasks. This is surprising given the extensive literature that exists
in other areas of experimental design such as stated preference research. It is
these two issues that we address in the approach to design we present in this
note.
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3 Experimental Design

3.1 In Principle

Our lottery tasks are presented to respondents as a series of discrete choices. To
reduce task complexity, we have one of the options as a sure-thing, plus either
a two-payoff or three-payoff lottery. We include three payoff options, as well as
two payoff probabilities, because it gives greater information about the nature
of the probability weightings.
The development of the statistical procedure to generate the set of lotteries

employed to estimate PT models is based on two principles:
Principle 1: Each task should be "informative". A task is "non-informative"

if the same option would be chosen regardless of preferences. That is, if two
individuals with very different preferences are likely to make the same choice,
then that task is not informative about the preferences of those individuals. By
contrast, an informative task is likely to reveal different choices by individuals
with different preferences.
Principle 2: Any task should not be rendered redundant by any other task

(pairwise redundancy). The most obvious example is that tasks should not be
repeated. However, more generally, the answer to one task should not be able
to predict the answer to any other task across the range of possible preferences.
This principle relates directly to a limitation of the approach introduced by
Broomell and Bhatia (2014). Their approach relies on the assumption that
each choice task can be treated as independent of all others. However, this
requirement is important as it ignores the dependence in choice tasks in terms
of the amount of information revealed.
Using these principles, we can construct a set of lotteries that are highly

informative and have low pairwise redundancy. A deeper approach would not
only look at the pairwise redundancy of tasks but seek to ensure that each task
was informative relative to the entire set of tasks. However, this is a diffi cult
computational problem, therefore we do not attempt to operationalize this in our
design. We also note that our approach to experimental design is philosophically
different from previous approaches in that we focus on the informational content
of the lotteries in an effort to generate a set that will enable effective recovery
of model and key parameter estimates.
These principles can be formalized using Bayesian inference that seeks to

estimate a ‘posterior’distribution for the parameters in question. The posterior
is the distribution given the choices of respondents and is constructed from the
data along with a prior distribution. The more informative this posterior distri-
bution is, the better we can make inferences about the parameters of interest.
A set of tasks can be chosen that will deliver a posterior distribution with low
entropy, or equivalently, high Kullback-Leibler divergence from a uniform distri-
bution. A flat distribution does not necessarily translate into a non-informative
distribution. However, for the parameters used here there should be a corre-
spondence between the flatness and non-informative nature of the distribution,
since none of them involve variance parameters of the likelihood, where non-
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informativeness would normally be modelled using a diffuse gamma.
Under diffuse priors, maximum likelihood estimates are similar to Bayesian

ones. Thus, it should be equally applicable to sets designed for Classical esti-
mation procedures. A formal description of our statistical procedure is provided
below. The essential components are as follows:

• define a set of T prospect pairs as P = (P1,P2, ...,PT ) ;

• define the associated outcomes (choices) as y = (y1, y2, y3, ..., yT ) ; and

• define the preference parameters as φ.

The preference parameters are those needed for the standard power form of
the PT model φ = (α, λ, β, γ, δ, ρ), where α, λ,and β are the parameters that
determine the conventional power value functions, γ and δ are the parameters
that govern the probability warping of the probability weighting functions and
ρ is the parameter that determines the noise in the model.
The entropy of the posterior f (φ|y,P) based on the logit model employing

a PT structure for its systematic utility and a prior for the preferences φ is:

ξ (Φ|Y,P) = −
∫
φ∈Φ

∑
y∈Y

f (φ, y|P) ln f (φ|y,P) dφ (1)

Ideally this quantity should be minimized and this quantity can be simu-
lated for a given set of tasks P. However, it is quite intensive for large T and
therefore an algorithm to choose P so as to minimize ξ (Φ|Y,P) is infeasible.
However, it is feasibly simulated for all given tasks ξ (Φ|Yi,Pi) and pairs of
tasks ξ (Φ|Yi,Yj ,Pi,Pj) . Thus, if ξ (Φ|Yi,Pi) is large then task i is singularly in-
formative and if ξ (Φ|Yi,Yj ,Pi,Pj)− ξ (Φ|Yi,Pi) is large, then task j is pairwise
informative relative to task i.
Given these statistical measures, we next summarize our design algorithm:

1. Decide on the number of tasks to be completed by respondents (we selected
100);

2. Generate a large number of potential tasks randomly (initially 5,000);

3. Simulate the measures of how singularly informative and pairwise infor-
mative the tasks are based on a prior distribution for the parameters of
interest (i.e. in the underlying PT model as a logit model);

4. Eliminate tasks that are pairwise uninformative relative to tasks that are
more singularly informative (if they fall in a given threshold); and

5. Change the threshold and repeat (4) until only 100 tasks remain. The
selection of the threshold value can be automated until the desired number
of lotteries is derived. Alternatively, the threshold can be used to derive
a range of lotteries that differ in terms of number of options for the risky
option or a lottery that does not include a sure-thing.
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The tasks are generated to have payoffs between -100 and 100 where there
could be gain, loss, or mixed prospects. The probabilities were set to be in-
crements of 0.05. from 0 to 1. The priors that we used to generate our PT
parameters were bounded α ∼ Uniform(0.05, 1.5), β ∼ Uniform(0.15, 2),
λ ∼ d(0.33, 3), γ1, γ2, δ1, δ2 ∼ d (0.4, 2.5) where d (a, b) is a shifted beta dis-
tribution over the interval (a, b) with a modal value of 1 which covered the
consensus regions while giving higher prior modal weight to the expected utility
model. We set the logit standard deviation as ρ−1 = 2.5(ρ = 0.4). This value
was chosen so that a certainty equivalent difference of five would give an ap-
proximate 90% probability to the task with a higher certainty equivalent and
approximately 98% chance if the certainty equivalent difference was as high as
10. In addition, given the size of our payoffs (|x| < 50) the parameters of the
value function are set so that ω1 < 10 and 0.15 < ω2 < 1 which allows for a S—
type shape for lower payoffs but CRRA/liking for the higher payoffs. At ω1 = 0
the function collapses to a standard power form in the respective domain.

3.2 Theoretical Derivations

3.2.1 Basic Model Structure

Assume that we have the tth set of prospect pairs {Pt = (Za,t,Zb,t)} and a set
of preference parameters φ that decide preferences. Our aim is to generate a set
of t = 1, ..., T prospect pairs where a choice between each of the prospect pairs
is informative in the sense that we are likely to learn more about individuals
preferences, conditional on what we know from all the other choices. For this
design, we use a model based on the deterministic power value function and a
Prelec II probability weighting function with a stochastic component for each
prospect pair Pt= (Za,t,Zb,t) . We will denote this as V ∗ (Za,t, θ, γ, δ) where
θ = (α, λ, β) such that:

Uat = ρ (V ∗ (Za,t, θ, γ, δ)) + ea,t (2)

Ubt = ρ (V ∗ (Zb,t, θ, γ, δ)) + eb,t

where the errors ea,t and eb,t are independent Gumbel distributed errors. The
probability that Za,t will be chosen over Zb,t is:

Γ (Pt, θ, γ, δ, ρ) =
eρV

∗(Za,t,θ,γ,δ)−ρV ∗(Zb,t,θ,γ,δ)

1 + eρV
∗(Za,t,θ,γ,δ)−ρV ∗(Zb,t,θ,γ,δ)

(3)

The parameters of interest are φ = (θ, γ, δ) .
Let yt = 1 if Za,t is preferred to Zb,t and 0 otherwise. It then follows that

the probability distribution for yt is:

f (yt|φ, ρ,Pt) = (Γ (Pt, φ, ρ))
yt (1− Γ (Pt, φ, ρ))

1−yt (4)

Define a set of T prospect pairs P and associated outcomes (choices) y as follows:

y = (y1, y2, .., yT ) (5)

P = (P1,P2, ...,PT )

10



and denote the set of all possible outcomes for y as Y . Given independent
choices (conditional on φ) the conditional distribution of y is:

f (y|φ, ρ,P) =

T∏
t=1

f (yt|φ, ρ,Pt) (6)

Assume that there is a prior density on the underlying preference parameters φ
and the error ρ

f (φ, ρ) = f (φ) f (ρ) (7)

In what follows, we assume a strict prior for ρ of the form f (ρ) = 1 where ρ = ρ∗

and 0 otherwise and ignore it subsequently. Therefore, using Bayes theorem,
the posterior distribution of φ is f (φ|y,P) is:

f (φ|y,P) =
f (y|φ,P) f (φ)

f (y,P)
(8)

The marginal likelihood of y is the integrating constant of the posterior:

f (y|P) =

∫
φ∈Φ

f (y|φ,P) f (φ) dφ (9)

3.2.2 Entropy Measures

If f (φ) is continuous over the domain Φ, the differential marginal and condi-
tional entropies can be defined. In each case they will be conditioned on P (the
which is the set of tasks taken to be of a fixed number).

• Entropy of the Prior f (φ): ξ (Φ) = −
∫
φ∈Φ

f (φ) ln f (φ) dφ

• Entropy of the Marginal Likelihood: ξ (Y |P) = −
∑
y∈Y

f (y|P) ln f (y|P)

• Entropy of the Posterior f (φ|y,P) : ξ (Φ|Y,P) = −
∫
φ∈Φ

∑
y∈Y

f (φ, y|P) ln f (φ|y,P) dφ

• Entropy of the Likelihood f (y|φ,P) : ξ (Y |φ,P) = −
∫
φ∈Φ

∑
y∈Y

f (y, φ|P) ln f (y|φ,P) dφ

According to the definitions these four are related

ξ (Φ|Y,P) = ξ (Y |Φ,P) + ξ (Φ)− ξ (Y |P) (10)

This is shown in Proof A:

Proof A
Using

f (φ|y,P) =
f (y|φ,P)

f (y|P)
f (φ) (11)
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ξ (Φ|Y,P) = −
∑
y∈Y

f (y|P)

∫
φ∈Φ

f (φ|y,P) ln f (φ|y,P) dφ (12)

= −
∑
y∈Y

f (y|P)

∫
φ∈Φ

f (y|φ,P)

f (y|P)
f (φ) ln

[
f (y|φ,P)

f (y|P)
f (φ)

]
dφ

= −
∑
y∈Y

f (y|P)

∫
φ∈Φ

f (y|φ,P)

f (y|P)
f (φ) [ln f (y|φ,P)− ln f (y|P) + ln f (φ)] dφ

= −
∑
y∈Y

f (y|P)

∫
φ∈Φ

f (y|φ,P)

f (y|P)
f (φ) ln f (y|φ,P) dφ

+
∑
y∈Y

f (y|P)

∫
φ∈Φ

f (y|φ,P)

f (y|P)
f (φ) ln f (y|P) dφ

−
∑
y∈Y

f (y|P)

∫
φ∈Φ

f (y|φ,P)

f (y|P)
f (φ) ln f (φ) dφ

= −
∫
φ∈Φ

∑
y∈Y

f (y|φ,P) ln f (y|φ,P) f (φ) dφ

ξ(Y |Φ,P)︸ ︷︷ ︸
+
∑
y∈Y

∫
φ∈Φ

f (y|φ,P) f (φ) dφ

f(y|P)︸ ︷︷ ︸
ln f (y|P)

−ξ(Y |P)︸ ︷︷ ︸
−
∫
φ∈Φ

f (φ) ln f (φ) dφ

ξ(Φ)︸ ︷︷ ︸
3.2.3 Divergence

Let N be a constant such that
∫
φ∈Φ

1
N dφ = 1. The Kullback-Leibler divergence

for the random variable Φ relative to a uniform distribution can be defined
(using the entropy definitions given) as:

Div (Φ|Y,P) = −ξ (Φ|Y,P) + ln(N )

For a fixed N , maximising expected divergence from the uniform distribution
is therefore, equivalent to minimising the entropy of the posterior. For a given
prior, then given [10], for high divergence, we need a high value of

ξ (Y |P)− ξ (Y |Φ,P) (13)

Note that in general ξ (Y |P) ≥ ξ (Y |Φ,P).
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3.2.4 Choosing an Informative Task

Imagine, we only have one task P =P1 such that

ξ (Y1|Φ,P1) = −
∫
φ∈Φ

∑
y=0,1

f (y|φ,P1) ln f (y|φ,P1) f (φ) dφ (14)

ξ (Y1|P1) = −
∑
y∈0,1

f (y|P1) ln f (y|P1)

where (15)

f (y|P1) =

∫
φ∈Φ

f (y|φ,P1) f (φ) dφ (16)

For very large N draws of φn from the prior f (φ) , we can simulate these quan-
tities as:

ξ̂ (Y1|Φ,P1) = N−1
N∑
n=1

∑
y=0,1

f (y|φn,P1) ln f (y|φn,P1)

ξ̂ (Y1|P1) = −
∑
y=0,1

f̂ (y|P1) ln f̂ (y|P1)

where (17)

f̂ (y|P1) = N−1
N∑
n=1

f (y|φn,P1) (18)

A task is therefore estimated to be "singularly informative" if it has a large

value for ξ̂ (Y |P1)− ξ̂ (Y |Φ,P1) .

3.2.5 Choosing an Informative Pair of Tasks

Now imagine, we have only two tasks P = (P1,P2) such that Y = (y1, y2). Let
us assume that y1 has already been chosen as highly informative according to
the criteria above. Our task is then to choose y2. The entropy functions obey
the following (under conditional independence f (y2|y1, φ) = f (y2|φ))

ξ (Y |Φ,P) = ξ (Y1|Φ,P1) + ξ (Y2|Φ,P2) (19)

ξ (Y |P) = ξ (Y1|P1) + ξ (Y2|Y1,P)

This is follows from Proof B.

Proof B
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Conditional Entropy is defined as:

ξ (y2|y1,P) =
∑
y2∈0,1

ln f (y2|y1,P) f (y2, y1)

Therefore, if we take:

ξ (Y |P) = −
∑
y∈Y

f (y1, y2|P) ln f (y1, y2|P)

= −
∑
y∈Y

f (y1, y2|P) (ln f (y2|y1P) + ln f (y1P))

= −
∑
y∈Y

f (y1, y2|P) ln f (y2|y1P)−
∑
y∈Y

f (y1, y2|P) ln f (y1P)

= −
∑
y∈Y

f (y1, y2|P) ln f (y2|y1P) + ξ (y1|P)

= ξ (y2|y1,P) + ξ (y1|P)

If there is conditional independence then it follows that:∑
y∈Y

f (y1, y2|P) ln f (y2|y1P) =
∑
y∈Y

f (y1, y2|P) ln f (y2|P) = ξ (y2|P)

Therefore, taking y1as fixed, we wish to choose P2 so as to minimise

ξ (Y |Φ,P)− ξ (Y |P) = k + ξ (Y2|Φ,P2)− ξ (Y2|Y1,P)

We can calculate the quantity ξ (Y2|Φ,P2) in exactly the same way as we cal-
culated ξ (Y1|Φ,P1). However, ξ (Y2|Y1,P) needs to be calculated differently to
ξ (Y2|P2) . Recalling that

ξ (Y2|Y1,P) =
∑
y2∈0,1

∑
y1∈0,1

f (y1, y2|P) ln f (y2|y1,P) (20)

f (y1, y2|P) =

∫
φ∈Φ

f (y1, y2|φ,P) f (φ) dφ

f (y2|y1,P) =

∫
φ∈Φ

f (y1|y2, φ,P) f (φ) dφ

Both the joint and the conditional probabilities can therefore be simulated using
N draws of φn from the prior f (φ)

f̂ (y1, y2|P) = N−1
N∑
n=1

f (y1, y2|φn,P) (21)

f̂ (y2|y1,P) =
f̂ (y1, y2|P)

f̂ (y1|P)
where f̂ (y1|P) = N−1

N∑
n=1

f (y1|φn,P1)
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Then for any two pairs

ξ̂ (Y2|Y1,P) =
∑
y2∈0,1

∑
y1∈0,1

f̂ (y1, y2|P) ln f̂ ((y2|y1,P)) (22)

Accordingly this conditional entropy can be calculated for any set of tasks.

3.2.6 Simulating the Full Entropy of a Set of Prospect Pairs

Because the set of all possible outcomes for y is of size 2T it is unfeasible to sum
over this set. However, this quantity can be simulated for any set of draws

ξ (Y |Φ,P) = −
∫
φ∈Φ

∑
y∈Y

f (y, φ|P) ln f (y|φ,P) dφ (23)

Using this we can therefore:

• Take a draw from f (φ) then a draw from f (y|φ,P) to obtain a joint draw
(ys, φs) and then we can calculate f (yn|φs,P)

• Repeat S times and calculate the average ξ̂ (Y |φ,P) = S−1
∑S
s=1 ln f (ys|φs,P)

Next, since

ξ (Y |P) =
∑
y∈Y

f (y|P) ln f (y|P) (24)

f (y|P) =

∫
φ∈Φ

f (y|φ,P) f (φ) dφ

• Take a draw from f (φ) then a draw from f (y|φ) to obtain ys

• Obtain an estimate of f (y|P) as N−1
∑N
n=1 f (ys|φn) where φn are draws

from the prior distribution

• Repeat S times to obtain

ξ̂ (Y ) = S−1
S∑
s=1

ln

(
N−1

N∑
n=1

f (ys|φn)

)
(25)

where φn are draws from f (φ)

3.2.7 Constructing Prospect Sets

A truly effi cient design would start with a first prospect pair that was singularly
informative, then we could proceed to find pairs that were highly setwise infor-
mative. However, this is computationally impractical given the complexity of
the calculations due to the very large number of combinations for (yT , ..., y1) , for
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which there are 2T possible outcomes. The calculations above would therefore
require that f̂ (yT , ..., y1) be calculated for all 2T cases which rapidly becomes
infeasible. Given the infeasibility of the ‘setwise’approach, we adopt a second
best solution. The approach used here is to ensure that all prospect pairs are
highly ’pairwise informative’. It is relatively straight forward to construct the
matrix of all values of the information content of a given prospect pair, along
with the additional information of one pair, given another.
Define:

ξii = −ξ (Yi|Φ,P) and ξij = −ξ (Yj |Φ,P) + ξ (Yj |Yi,P) if i 6= j

A procedure to construct the prospect set which we have adopted (having
decided on a number of prospect Pairs T ) is as follows:

• Make a large number of draws from the prior f (φ)

• Construct a very large number of candidate prospect pairs P of size T0.
In so doing ensure that initial set does not include tasks that would lead
to identical choices across the entire range of preferences and contains no
repeated tasks

• Simulate all ξij for all prospect pairs (given the priors f(φ))

• Rank them such that ξ11 > ξ22 > ... > ξLL (i.e. in terms of their singular
informativeness)

• For a given (small) κ eliminate prospect pairs where ξkj < κ for any i and
j > i to leave a set of size M

• Allow κ increase to the point where M = T (the desired number of
prospect pairs)

This procedure does not promise to maximise divergence, but it does ensure
that each pair of pairs is non-redundant in an informational sense (i.e. they
are pairwise informative). That is, T prospect pairs will have been constructed
where the one with the highest information is included and any other prospect
that has been included has a minimal pairwise information contribution of κ,
where κ is made as high as possible.

4 Demonstration

In this section, we give a brief illustration of the comparative effi ciency of designs
using the method described in this paper. The design is compared with two
other lottery sets of the same dimension (i.e. 100 lotteries) given in Appendix
A of Harrison and Swarthout (2016). These design draw heavily on designs
introduced and used by Loomes and Sugden (1998). In each case the simulation
of preferences was done using 10,000 draws of preferences from the same "priors"
outlined in the experimental design section. We have generated three sets of
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lotteries and these are given in Excel spreadsheet (Simulation Lotteries) that
accompanies this paper.
The growth in the effi ciency/entropy measure (in 23) at each point in the

lottery set is shown in Figure 1.

Figure 1: Cumulative Effi ciency Plot of New Design
Compared to Harrison and Swarthout (2016)

:

In Figure 1, the two existing lottery sets show a "staggered" growth path
since the calculation is at each point in the ordered set where the increase in
the rate of effi ciency gain is occurs in the middle of the lottery sets as this is
when loss/mixed lotteries enter the calculation. The new set of lotteries we
have generated (where we have in each case a sure thing) is not ordered in this
way hence the smoother nature of the growth path in effi ciency gain. As can
be seen by the results shown in Figure 1, for every given number of lotteries
the aggregate effi ciency measure is always higher than for the corresponding
lotteries in Harrison and Swarthout (2016). This difference in the design of
lotteries implies that the level of information that will be revealed is always
greater for the set of lotteries we have generated. The potential benefit of the
effi ciency gain are that fewer lotteries are required to reveal the same level of
information about risk preferences.

5 Concluding Comments

In this we note, we explain how to design and implement an experimental ap-
proach capable of accurately characterizing people’s risk preferences, assuming
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that they behaved in accordance with Prospect Theory (PT). To accomplish
this, we have taken as our guiding principle that the tasks assigned to partici-
pants are informative, meaning that individuals with different preferences would
make distinct choices. Given the flexibility of PT models, the heterogeneous
preferences of people cannot be captured by asking them to perform only a few
tasks. Yet, simply increasing the number of tasks that people must complete,
may not improve the potential to capture their risk preferences should some
choices establish preferences already revealed by previous choices. Therefore,
we introduced an approach to designing a survey that reduces the propensity to
include noninformative or informationally redundant tasks. Our research adds
to a literature that has considered how tasks can be designed effi ciently and im-
plemented effectively, such as Adaptive Design Optimization (ADO). Although
the approach we have taken is different to those previously employed in the
literature, we are able to generate a set of tasks that are informative without
imposing strong prior beliefs about model parameters. We also note, that the
approach that we have described will not yield an "effi cient" set of lottery pairs
but it does extend aspects of lottery design that warrant further investigation.
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