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Abstract

This study provides empirical evidence documenting how COVID-19 affects in-

tertemporal price dispersion in the U.S. domestic airline market. Applying fixed effect

techniques to a unique panel of 43 million fares collected before and after the outbreak

of the pandemic, we find that airlines discounted fares by an average of 57% in the first

five months of the pandemic, and that prices intertemporally increased at a lower rate,

particularly in the last week to departure. As a consequence, flight-level price disper-

sion decreased. These findings are consistent with the theoretical predictions arising

from models of stochastic peak-load pricing (i.e., the drastic decline in the demand for

business travel during the pandemic decreases the shadow cost of capacity, resulting

in lower fares and lower increases in fares) and intertemporal price discrimination (i.e.,

the decline in the share of business travel resulted in airlines adjusting their intertem-

poral pricing strategy by decreasing the rate at which fares increased for late-booking

passengers).
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n. 181, 11020 Saint Christophe (AO), Italy; email: a.gaggero@univda.it.

�Transportation Performance and Economic Analysis Department, The MITRE Corporation, 7525 Col-
shire Drive, McLean, VA 22102; email: aluttmann@mitre.org.Corresponding author.

1



1 Introduction

It is well-documented that deviations from the law of one price occur in a variety of retail

markets. For example, instead of charging a single price for the same product, a distribution

of prices often exists in the airline, automobile, book, gasoline, grocery, housing, insurance,

mortgage, prescription drug, and wine markets (Allen et al., 2014; Borenstein and Rose,

1994; Cardebat et al., 2017; Chandra and Tappata, 2011; Clay et al., 2001; Dahlby and

West, 1986; Gerardi and Shapiro, 2009; Goldberg and Verboven, 2001; Lewis, 2008; Li et al.,

2013; MacDonald, 2000; Sorensen, 2000; Van Nieuwerburgh and Weill, 2010). Accordingly,

a considerable empirical and theoretical literature has developed to better understand the

principal determinants of this observed price dispersion (Barron et al., 2004; Burdett and

Judd, 1983; Dana, 1999, 2001; Kaplan et al., 2019; McAfee, 1995; Pennerstorfer et al., 2020;

Reinganum, 1979; Salop, 1977; Salop and Stiglitz, 1977, 1982; Shepard, 1991). We add to this

literature by examining how intertemporal price dispersion is affected by the global economic

slowdown caused by the COVID-19 pandemic.

Similar to Cornia et al. (2012), the focus of our study is the United States (U.S.) airline

industry and how price dispersion is correlated with prevailing macroeconomic conditions.1

In Cornia et al. (2012), price dispersion was found to move pro-cyclically with the business

cycle (i.e., increasing during expansionary phases and decreasing during recessionary phases).

Thus, one might expect airline price dispersion to fall during the economic slowdown caused

by the COVID-19 pandemic.

However, because previous recessions were not caused by a pandemic, it is not abundantly

clear that pro-cyclical behavior also extends to the COVID-19 recession. In particular, the

COVID-19 recession is unique in the aspect that adverse supply and demand shocks have

permeated across a broad range of industries. Yet, few industries were as severely impacted as

1Other studies that examine airline price dispersion include Aryal et al. (2023); Borenstein and Rose
(1994); Kim et al. (2021); Gaggero and Piga (2011); Gerardi and Shapiro (2009); Hayes and Ross (1998);
Mantin and Koo (2009); Orlov (2011); Sengupta and Wiggins (2014).
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the airline industry. As governments imposed travel restrictions to curb COVID-19’s spread,

airlines were forced to cancel flights and the remaining flights that operated often flew half

empty. The resulting drop in travel demand was more severe than other recent crises affecting

the industry (e.g., the 9/11 terrorist attack, 2003 SARS outbreak, 2008 financial crisis, or

the 2009 swine flu pandemic).

Another unique aspect of the COVID-19 recession relative to previous recessions are the

unprecedented airline responses. In addition to adjusting capacity and flight schedules, most

U.S. airlines waived cancellation and change fees during the pandemic. Since these ticket

restrictions are an important element of product differentiation, the COVID-19 pandemic

provides an interesting setting to explore how price dispersion changes when a key element

of product differentiation is suddenly eliminated.

Nonetheless, changes in the mix of traveling passengers and the severe decline in air

travel demand during the COVID-19 pandemic allow us to test the theoretical predictions

arising from models of intertemporal price discrimination and stochastic peak-load pricing

(Borenstein and Rose, 1994; Cornia et al., 2012).

Intertemporal price discrimination refers to the practice of charging different prices during

the booking period, and in particular, higher prices to inelastic late-booking passengers (typ-

ically business travelers). As a result of the drastic decline in the demand for business travel,

the mix of traveling passengers during the pandemic was more homogeneous and comprised

of a larger proportion of leisure travelers.2 Given the reduction in the share of business travel,

the rate of intertemporal price increases in the last few weeks to departure is expected to be

lower during the pandemic, resulting in a decrease in price dispersion.

This theoretical prediction also arises in models of stochastic peak-load pricing. In these

models, the optimal peak-load price reflects marginal operating costs plus a charge based

on the probability that demand will exceed capacity at the time the ticket is sold and the

2U.S. companies’ travel budgets declined by 90% or more in 2020. See https://time.com/6108331/

business-travel-decline-covid-19/ and https://www2.deloitte.com/us/en/insights/focus/

transportation/future-of-business-travel-post-covid.html.
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expected shadow cost of capacity if demands ends up exceeding capacity (Borenstein and

Rose, 1994; Crew and Kleindorfer, 1986). Given that business travel demand drastically

declined during the pandemic, demand was unlikely to exceed capacity during the late part

of the booking period, implying that the shadow cost of capacity fell. These lower shadow

costs are expected to translate to lower fares, lower increases in fares, and thus, lower price

dispersion.

To determine how COVID-19 affects both price levels and intertemporal price dispersion,

we exploit a unique panel of over 43 million fares. Flights in our sample depart between

October 1st, 2019 and August 31st, 2020, providing us with over five months of data prior

to COVID-19 being declared a national emergency in the U.S. and over five months of data

during the national emergency.3 Notably, because we track the price of each flight in the

sixty-day period before departure, we are able to examine how new COVID-19 case counts

at the origin and destination markets during a flight’s booking period affect both prices and

price dispersion.

We have four main findings. Foremost, as COVID-19 spread across the country, airlines

responded by discounting fares by an average of 57%.4 Second, although fares exhibit the

typical pattern of increasing as the departure date approaches, the rate of intertemporal

price hikes declined during the pandemic, especially in the last week to departure. Third,

we find that an increase in new COVID-19 cases at the destination decreases fares while new

cases at the origin has no statistically measurable effect. Fourth, we find that flight-level

price dispersion decreased during the pandemic. As we previously discussed, these findings

are consistent with the theoretical predictions arising from models of intertemporal price

discrimination (i.e., the decline in the share of business travel resulted in airlines adjusting

3COVID-19 was declared a national emergency in the U.S. on March 13th, 2020. The first state to issue
a statewide stay-at-home order was California on March 19th, 2020.

4Consistent with this finding, the Bureau of Transportation Statistics (BTS) recorded the
lowest inflation-adjusted annual fare of $292 in 2020, down 19% from the previous low of
$359 in 2019. See Release Number: BTS 27-21, available at https://www.bts.gov/newsroom/

average-air-fares-dropped-all-time-low-2020.
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their intertemporal pricing strategy by decreasing the rate at which fares increased for late-

booking passengers) and stochastic peak-load pricing (i.e., the sharp decline in travel demand

during the pandemic decreased the shadow cost of capacity, resulting in lower fares and lower

increases in fares).

Although we find that pandemic fare decreases are driven primarily by the diffusion of

COVID-19, there is slightly more emphasis on the spread at the destination relative to the

origin. We believe these findings are sensible from the passenger perspective. In particular,

since shutdowns and other pandemic restrictions are highly correlated with the local number

of COVID-19 cases, travelers leaving home (i.e., the origin market) will only care about

restrictions that are in effect at the destination because restrictions at the origin likely do

not affect the utility of their trip. For example, most leisure travelers do not want to travel

to markets where restaurants, bars, museums, and other attractions are closed due to local

pandemic restrictions. Similarly, most business travelers do not want to travel to markets

where in-person meetings are not possible due to regional office closures. As a result, if the

number of new COVID-19 cases at the destination are high, fares must be heavily discounted

to entice prospective passengers to purchase when the likelihood of new pandemic restrictions

being introduced at the destination increases.

The rest of this article is organized as follows. Section 2 describes the data sources

used in the empirical analysis. Section 3 presents a descriptive analysis of the dynamics of

airline pricing during the booking period. Section 4 describes the econometric model used to

examine intertemporal pricing and presents intertemporal pricing results. Section 5 describes

the econometric model used to examine price dispersion and presents price dispersion results.

Section 6 presents robustness checks. Finally, Section 7 provides concluding remarks.
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2 Data

To examine how the COVID-19 pandemic affected intertemporal pricing and price dispersion

in the U.S. airline industry, we rely on several data sources. However, the data underlying our

main empirical results are obtained from two primary sources: fare and itinerary data from

a major online travel agency (OTA) and COVID-19 case counts from the National Center

for Health Statistics (NCHS). Section 2.1 describes the fare and itinerary data, Section 2.2

the data on the number of COVID-19 cases, and Section 2.3 the other data sources used for

the construction of instrumental variables.

2.1 Fare and Itinerary Data

Our fare and itinerary data are obtained from a major OTA.5 In lieu of collecting data for all

possible routes in the U.S., DB1B data from the third and fourth quarters of 2018 were first

used to identify the top directional airport-pair markets within the continental U.S. ranked

by total passenger traffic.6 148 of these top directional airport-pairs were selected for analysis

and include a mix of competitive, monopoly, duopoly, and connecting only (i.e., airport-pairs

without nonstop service) markets. Figure 1 displays a map of the 148 markets included in

our analysis. As the figure demonstrates, these routes provide fairly extensive coverage of

the domestic U.S. market.

To construct our analysis sample, data were collected for flights departing between Oc-

tober 1st, 2019 and August 31st, 2020. Daily economy-class fare quotes were collected for

one-way travel between each of the directional airport-pairs in Figure 1.7 For each route,

5Major OTAs include Expedia, Google Flights, and Kayak. Previous studies that analyze data from a
major OTA include Escobari (2009), Escobari et al. (2019), Gaggero and Luttmann (2023), and Luttmann
(2019), among others.

6A market in our analysis is defined as a directional airport-pair. Accordingly, Los Angeles (LAX)-Chicago
(ORD) and Chicago (ORD)-Los Angeles (LAX) are treated as separate markets.

7Similar to Alderighi et al. (2022), Bilotkach et al. (2010), Escobari et al. (2019), Gaggero and Luttmann
(2021), and Luttmann (2019), we focus on one-way trips due to difficulties in specifying trip duration. For
any given departure date, there are a large number of roundtrip fares that could potentially be gathered, each
depending on trip duration. For example, fares for two-day trips are likely different from seven or ten-day
trips. Moreover, due to our focus on economy-class tickets, we do not study product differentiation across
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Figure 1: U.S. domestic routes included in our analysis sample
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fares for each of the next sixty travel days were collected to capture leisure travelers who

purchase flights well in advance of the departure date and business travelers who purchase

flights closer to the date of departure. This data collection strategy also allows us to track

the price of an individual flight (or pair of flights for connecting trips) over the sixty-day

period prior to departure.8

Our sampling procedure resulted in a unique sample of 43,160,581 observations. Roughly

35% of our observations are for connecting trips. The airlines included in our sample include

four full-service carriers (Alaska, American, Delta, and United) and five low-cost carriers

fare classes (e.g., business or first-class tickets).
8Previous studies that examine airline price dispersion in the U.S. market typically rely on the U.S.

Department of Transportation’s Airline Origin and Destination Survey (DB1B). For example, see Borenstein
and Rose (1994), Gerardi and Shapiro (2009), and Cornia et al. (2012). These data are released quarterly
and represent a 10% random sample of tickets purchased for domestic air travel. However, the DB1B does
not include information on the specific flight(s) purchased or the exact purchase and departure dates. Thus,
the DB1B are not appropriate for examining how fares for a given flight evolve over time nor can the data be
used to control for key factors that may affect fares during the COVID-19 pandemic such as advance-purchase
requirements or the number of COVID-19 cases at the origin and destination markets at the time of purchase.
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(Allegiant, Frontier, JetBlue, Spirit, and Sun Country).9

2.2 COVID-19 Cases

From the NCHS, we downloaded the daily number of new COVID-19 cases for each state in

the continental U.S.10 These daily numbers were then used to construct seven-day moving

average new COVID-19 case counts for each origin and destination market in our sample (see

routes in Figure 1).

2.3 Other Data Sources

In general, measures of competition are endogenous in analyses of airline pricing. For ex-

ample, markets with high fares may be attractive for new entrants. However, these markets

may also be unattractive if high fares are the result of entry barriers such as slot controls or

limited gate access at the endpoint airports. Accordingly, the potential simultaneity bias that

results from an airline’s decision to enter or exit a given route may bias results. To correct for

this potential endogeneity, we employ an instrumental variables strategy (see Section 5.1).

To instrument for the level of competition on a given departure date, we construct lagged

measures of competition using the U.S. Department of Transportation’s Airline On-Time

Performance Statistics database.11 Furthermore, since jet fuel prices affect the marginal cost

of serving a given route, we also collect daily jet fuel prices from the U.S. Energy Information

Administration to construct additional instruments.12

9Fare quotes for Southwest Airlines are not available on travel aggregator websites such as Expedia, Google
Flights, and Kayak. However, the presence of Southwest is accounted for in our empirical analysis when we
construct any market structure variable (e.g., the Herfindahl-Hirschman Index).

10See https://covid.cdc.gov/covid-data-tracker/. Navigate to “Cases & Death” to select “Cases &
Death by States” and then click on “View Historic Case and Death Data” to download the data.

11See https://transtats.bts.gov/Fields.asp?gnoyr_VQ=FGK.
12See https://www.eia.gov/dnav/pet/hist/EER_EPJK_PF4_RGC_DPGD.htm.
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3 Descriptive Analysis

To provide preliminary evidence on the impact of COVID-19 on fares, Figure 2 displays the

average fare per mile for nonstop flights across each booking date in our sample (i.e., NOT

each departure date). The booking date is the date when the fare is observed and includes

flights departing in the next few days as well as flights departing up to sixty days in the

future. However, the proportion of flights departing in the next few days and the proportion

of flights departing in the next sixty days are approximately equal across booking dates.

Thus, pricing dynamics in Figure 2 are displayed over a time horizon of similar average

length across booking dates.13

Figure 2: Average nonstop fare per mile and average new COVID-19 cases by booking date
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To relate the pricing decision of airlines to the diffusion of the COVID-19 pandemic, we

13This balance is also maintained in the booking months of July and August since the latest departure
date included in the construction of Figure 2 is October 26th, 2020. For example, booking dates in August
2020 include flights that depart in August, September, and October 2020.
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calculated the average number of new COVID-19 cases across each state and calendar date in

our sample. Then, to smooth any reporting differences, we computed the seven-day moving

average number of new cases.14 This moving average is displayed on the secondary Y-axis of

Figure 2.

As demonstrated by Figure 2, there is clear evidence of an inverse relationship between

the number of new COVID-19 cases and the average nonstop fare. For instance, in early

March 2020, fares fell substantially as the pandemic began to spread in the United States.

Then, as the number of new COVID-19 cases declined between May and June, average fares

increased.

To further illustrate how the intertemporal behavior of fares evolved prior to and during

the pandemic, Figure 3 displays the average nonstop fare per mile by number of days to

departure for full-service carriers (FSCs) in Panel A and low-cost carriers (LCCs) in Panel

B. Flights are grouped by month of departure to demonstrate the impact of COVID-19 on

fares over time.

In general, fares are lower during the pandemic months of our sample (March through

August). This result is particularly clear for FSCs (Panel A), but less evident for LCCs

(Panel B). This finding is sensible considering that price-cost margins (i.e., markups) for

LCCs are already low, suggesting that LCCs do not have substantial room to decrease fares

in response to adverse demand shocks. In contrast, FSCs typically operate with higher

price-cost margins, implying more leeway to decrease fares in response to an adverse demand

shock.

Since most differences in Figure 3 are observed for FSCs, the subsequent discussion pri-

marily focuses on the intertemporal pricing behavior of FSCs. However, some of the following

discussion also applies to LCCs.

Considering that our data collection window begins sixty days prior to a flight’s departure,

14The pattern of the seven-day moving average of new COVID-19 cases in our sample is similar to what is
observed over the entire United States. For comparison, see https://covid.cdc.gov/covid-data-tracker/
#trends_dailytrendscases.
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Figure 3: Average nonstop fare per mile by days to departure and month of departure

(a) Full-service carriers

0.05

0.15

0.25

0.35

0.45

$ 
pe

r 
m

ile

1714212835425160
Days to departure

October 2019

0.05

0.15

0.25

0.35

0.45

$ 
pe

r 
m

ile

1714212835425160
Days to departure

November 2019

0.05

0.15

0.25

0.35

0.45

$ 
pe

r 
m

ile

1714212835425160
Days to departure

December 2019

0.05

0.15

0.25

0.35

0.45

$ 
pe

r 
m

ile

1714212835425160
Days to departure

January 2020

0.05

0.15

0.25

0.35

0.45

$ 
pe

r 
m

ile

1714212835425160
Days to departure

February 2020

0.05

0.15

0.25

0.35

0.45

$ 
pe

r 
m

ile

1714212835425160
Days to departure

March 2020

0.05

0.15

0.25

0.35

0.45

$ 
pe

r 
m

ile

1714212835425160
Days to departure

April 2020

0.05

0.15

0.25

0.35

0.45

$ 
pe

r 
m

ile

1714212835425160
Days to departure

May 2020

0.05

0.15

0.25

0.35

0.45

$ 
pe

r 
m

ile

1714212835425160
Days to departure

June 2020

0.05

0.15

0.25

0.35

0.45

$ 
pe

r 
m

ile

1714212835425160
Days to departure

July 2020

0.05

0.15

0.25

0.35

0.45

$ 
pe

r 
m

ile

1714212835425160
Days to departure

August 2020

Alaska

American

Delta

United

11



Figure 3: Average nonstop fare per mile by days to departure and month of departure (cont.)

(b) Low-cost carriers
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the March and April diagrams in Figure 3 include fares collected during the pre-pandemic

period and fares collected during the outbreak of the pandemic. Although we suspect that

the decline in average fares observed in April and the steep increase in the last week to

departure observed in March were likely due to the pandemic, we cannot definitively state

that these changes were solely due to COVID-19.15

All diagrams from May 2020 onwards in Figure 3 are fully affected by the pandemic. For

FSCs, it is worth comparing the May, June, and July 2020 diagrams with those completely

unaffected by COVID-19 (i.e., the October, November, and December 2019 diagrams). Two

important regularities are observed in the fare diagrams for the last three months of 2019.

Foremost, the average fare monotonically increases as the departure date approaches, with

four well-defined fare hikes occurring from twenty-one to twenty, fourteen to thirteen, seven

to six, and three to two days prior to departure.16 Second, average fares across carriers

mostly overlap, indicating that FSCs adopt very similar intertemporal pricing strategies on

average.

In contrast, these regularities are not observed in the May, June, and July 2020 diagrams

for FSCs. In these months, average fares do not monotonically increase as the departure

date approaches. Moreover, the pricing curves for each of the FSCs do not overlap in the

same manner as the pre-pandemic diagrams (e.g., compare the July 2020 diagram with the

October 2019 diagram in Panel A of Figure 3). For instance, the irregular pricing curves

for United and Alaska in July 2020 and the irregular pricing curve for Delta in May 2020

suggest that each FSC employed differential pricing responses during the first few months of

the COVID-19 pandemic. This type of behavior is expected to occur if revenue management

staff for each FSC had to manually intervene in the process of updating fares, ignoring the

output suggested by pricing algorithms that were not accustomed to dealing with the drastic

15Since COVID-19 was not declared a national emergency in the U.S. until March 13th, 2020 and the first
statewide stay-at-home order was not issued until March 19th, 2020, the majority of observations within one
week of departure in the March diagrams were collected during the pre-pandemic period.

16As discussed in Gaggero and Luttmann (2021), these fare hikes likely reflect the expiration of discount
fare classes attached to the three-week, two-week, one-week, and three-day advance purchase requirements.
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drop in demand induced by the diffusion of COVID-19.17

A similar argument generally applies to LCCs. However, it is worth noting that JetBlue,

one of the major LCCs in the U.S., displays a different pricing pattern than Allegiant, a

minor LCC. In particular, JetBlue gradually increases fares at three weeks, two weeks, and

one week prior to departure, whereas Allegiant fares stay relatively stable until seven days

prior to departure when fares begin to substantially increase. This finding may be suggestive

of leader-follower behavior amongst LCCs (Bergantino et al., 2018; Kim et al., 2021).

Finally, the regularities observed during the pre-pandemic months reappear in August

2020 with well-defined fare hikes observed from fourteen to thirteen, seven to six, and three

to two days prior to departure. However, average fares remain lower than those observed

during the pre-pandemic period for both FSCs and LCCs.

17For example, at the Airline Group of the International Federation of Operations Research (AGIFORS)
conference, Richard Cleaz-Savoyen, the Managing Director of Revenue Optimization at Air Canada, stated
that: “all of our forecasting techniques developed over the years became incorrect and at the beginning of
the pandemic, revenue management became manual and very much micromanaged on a day-by-day basis”
(Garrow and Lurkin, 2020). His view was shared by other airline representatives at the conference. For
instance, Sander Stomph, the Vice President at KLM Royal Dutch Airlines, mentioned that KLM’s machine
learning algorithms were not forecasting well because the historical data they were trained on were from a
very different era, and therefore no longer valid (Garrow and Lurkin, 2020).
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4 COVID-19 and Intertemporal Pricing

4.1 Econometric Model of Intertemporal Pricing

To identify how intertemporal pricing changed during the COVID-19 pandemic, we estimate

equation (1),

log(Pricerafdb) =
4∑

i=1

δi ·DaysToDepartureib + γ · CovidOutbreakb +

+
4∑

i=1

γi · CovidOutbreakb ×DaysToDepartureib +

+α · CovidOriginrdb + β · CovidDestrdb +

+π · CovidOutbreak × LCC + ρrafd + εrafdb (1)

where the individual dimension of the panel is the combination of route (i.e., directional

airport-pair) r, airline a, and flight f that is scheduled to depart on a given day d.18 The

time dimension of the panel is represented by b, which records the day the fare is observed

(i.e., the day the fare is booked).

In this specification, the fixed-effect ρ identifies the unique combination of flight, airline,

route, and departure date. Since airline and route are specific to each f , we refer to ρ as the

set of flight-date fixed-effects. Notably, because the departure date is time-invariant within

each f , any fare effect attributable to the time-of-day, day-of-week, or month-of-departure

is absorbed by ρ. A similar argument applies to the level of competition, which is also

date-specific, and therefore time-invariant within the panel. Accordingly, these flight-date

fixed effects control for any time-invariant flight, airline, and route-specific characteristics

that affect fares.19 Note that this fixed effects approach does not control for variables that

18For example, the American Airlines flight from Chicago (ORD) to Los Angeles (LAX) on April 22nd,
2020 that departs at 7:23am is an example of f . By extension, a combination of flights on the same itinerary
is another example of f . For instance, the pair of Delta flights on November 15th, 2019 from Chicago (MDW)
to Atlanta (ATL) and from Atlanta (ATL) to Las Vegas (LAS) is another example of f .

19For example, time-invariant flight-specific characteristics include the type of aircraft used and the sched-
uled departure and arrival times. Time-invariant carrier-specific characteristics include any fare effects at-
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are time-varying during the booking period (e.g., available capacity). For example, low fares

may result from a low volume of tickets sold during the booking period.

The first term of the right hand side of equation (1) are the set of days to departure

dummies, which allow fares to change as the departure date approaches in a nonlinear way.

As suggested by Figure 3 and the analysis in Gaggero and Luttmann (2021), we split the

booking period into five mutually exclusive groups: 60 to 21, 20 to 14, 13 to 7, 6 to 3, and

1-2 days before departure. The earliest days-to-departure group (60 to 21 days) is excluded,

so that the coefficients on the included DaysToDeparture dummies indicate the change in

fare relative to this earliest booking period.

The effect of the COVID-19 pandemic on fares is accounted for by CovidOutbreak,

CovidOrigin, and CovidDest. CovidOutbreak is a dummy equal to one if the fare is col-

lected on any day after March 13th, 2020, the date when COVID-19 was declared a national

emergency in the United States. CovidOrigin is the 7-day moving average of new positive

COVID-19 cases (in thousands) in the state of the origin airport. Similarly, CovidDest is

the 7-day moving average of new positive COVID-19 cases (in thousands) in the state of

the destination airport. We use the 7-day moving average to reduce the impact of possible

reporting differences across states, as well as to allow for possible spillover effects of nearby

booking dates on fares. The variable CovidOutbreak × LCC interacts CovidOutbreak with

a low-cost carrier indicator to test whether the impact of the pandemic on fares differs by

carrier type.

The variables of interest in equation (1) are the set of interactions between CovidOut-

break and DaysToDeparture. Compared to the pre-pandemic period (i.e., before March

13th, 2020), the coefficients on these interactions indicate how the rate of intertemporal price

hikes changed during the pandemic for flight’s booked 1-2, 3-6, 7-13, and 14-20 days prior to

departure.

tributable to the airline’s frequent flyer program or average quality of service. In addition to the level of
competition, other time-invariant route-specific characteristics include the level of airport dominance at the
origin and destination airports, the route distance, and whether low-cost carriers are present on the route.
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Finally, ε is the error term. We estimate the fixed effects model described by equation (1)

using ordinary least squares (OLS) with standard errors that are clustered at the route-level

to allow for the residuals of flights operated by the same airline and other airlines on a given

route to be correlated.

4.2 Intertemporal Pricing Results

Table 1 presents results from estimating the model described by equation (1). All specifica-

tions include flight-date fixed effects to control for any time-invariant flight, carrier, and route-

specific characteristics that affect fares. The first column includes only theDaysToDeparture

dummies and confirms the well-documented empirical result that fares increase as the flight’s

departure date approaches, irrespective of the pandemic.20 For example, the coefficient of

0.679 on DaysToDeparture 1-2 indicates that flights booked in the last two days before de-

parture are, on average, almost twice the price of comparable flights booked 21 to 60 days

before departure (the omitted DaysToDeparture group).21

To provide a baseline for how fare levels differ across the pre-pandemic and pandemic

periods of our sample, column 2 adds the CovidOutbreak dummy to the specification pre-

sented in column 1. Notably, the Adjusted R2 almost doubles, illustrating the importance

of CovidOutbreak for explaining pandemic fares. In particular, the coefficient of -0.835 on

CovidOutbreak indicates that domestic fares in the six-month period after COVID-19 was

declared a national emergency were, on average, 57% cheaper than comparable fares prior to

the emergency.

Column 3 adds the set of interactions between CovidOutbreak and the DaysToDeparture

dummies to the specification presented in column 2. Consistent with column 2, the positive

coefficients on the DaysToDeparture dummies indicate that fares increase as the departure

20For example, see Alderighi et al. (2015a,b); Avogadro et al. (2021); Bergantino and Capozza (2015a);
Escobari (2012, 2014); Escobari and Jindapon (2014); Gaggero and Piga (2010); Gaggero and Luttmann
(2021), among others.

21Because the dependent variable is logged and DaysToDeparture 1-2 is an indicator variable, the marginal
effect is (e0.679 − 1)% = 97.2%.
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Table 1: Intertemporal pricing results

(1) (2) (3) (4) (5)
Dependent variable: ln(Price) ln(Price) ln(Price) ln(Price) ln(Price)

DaysToDeparture 1-2 0.679*** 0.756*** 0.806*** 0.806*** 0.806***
(0.019) (0.019) (0.023) (0.023) (0.023)

DaysToDeparture 3-6 0.444*** 0.517*** 0.543*** 0.543*** 0.543***
(0.024) (0.022) (0.027) (0.027) (0.027)

DaysToDeparture 7-13 0.216*** 0.275*** 0.274*** 0.274*** 0.274***
(0.020) (0.018) (0.020) (0.020) (0.020)

DaysToDeparture 14-20 0.021*** 0.067*** 0.073*** 0.073*** 0.073***
(0.008) (0.007) (0.007) (0.007) (0.007)

CovidOutbreak -0.835*** -0.814*** -0.814*** -0.755***
(0.029) (0.031) (0.031) (0.032)

CovidOutbreak × DaysToDeparture 1-2 -0.156*** -0.137*** -0.136***
(0.021) (0.022) (0.022)

CovidOutbreak × DaysToDeparture 3-6 -0.086*** -0.069*** -0.068***
(0.024) (0.024) (0.024)

CovidOutbreak × DaysToDeparture 7-13 -0.007 0.008 0.009
(0.016) (0.015) (0.015)

CovidOutbreak × DaysToDeparture 14-20 -0.025*** -0.013* -0.013*
(0.008) (0.008) (0.008)

CovidOrigin -0.002 -0.002
(0.005) (0.006)

CovidDest -0.019*** -0.019***
(0.004) (0.004)

CovidOutbreak × LCC -0.284***
(0.049)

Adjusted R2 0.171 0.300 0.302 0.303 0.306
Observations 43,160,581 43,160,581 43,160,581 43,160,581 43,160,581

Notes: Summary statistics are provided in Appendix Table A1. Marginal effects are interpreted as the (eβ-
1)% change in fare. All specifications include flight-date fixed effects that control for any time-invariant flight,
carrier, and route-specific characteristics that affect fares. Standard errors are clustered at the route-level.
Constant is included but not reported. *** Significant at the 1 percent level, ** Significant at the 5 percent
level, * Significant at the 10 percent level.

date approaches while the negative coefficient on CovidOutbreak indicates that fares declined

after Covid-19 was declared a national emergency. However, the negative coefficients on the

four interaction terms indicate that the rate of intertemporal fare hikes during the pandemic

are lower relative to the pre-pandemic period. In particular, the slowdown of intertempo-

ral fare hikes during the pandemic is especially evident in the last week to departure. As

previously illustrated in Panel B of Figure 3, this result may be driven by low-cost carriers

who did not substantially increase fares in the last week to departure during the pandemic

months of our sample.
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Nevertheless, the statistically insignificant, albeit negative, coefficient on CovidOutbreak

× DaysToDeparture 7-13 suggests that the slower rate of intertemporal fare hikes observed

during the pandemic is not ubiquitous across days to departure groups. This finding is

consistent with the fare hikes observed 7-13 days before departure in Panel A of Figure 3

for full-service carriers during the pandemic months (e.g., Alaska in May-August 2020 or

American and Delta in June 2020).

To examine how heterogeneity in the diffusion of COVID-19 affects fares, column 4 adds

the 7-day moving average number of new positive COVID-19 cases in the origin (CovidOrigin)

and destination (CovidDest) states to the specification presented in column 3. The coeffi-

cients on CovidOrigin and CovidDest are both negative, providing additional evidence that

COVID-19 adversely affected fares. However, the statistical insignificance and lower absolute

magnitude of the CovidOrigin coefficient implies that pandemic fare decreases are mainly

driven by the diffusion of COVID-19 at the destination.

From the passenger perspective, this finding is sensible. In particular, the origin typi-

cally represents the home market of the passenger. Considering that shutdowns and other

pandemic restrictions are highly correlated with the local number of COVID-19 cases, pas-

sengers leaving home will only care about restrictions that are in effect at the destination

because restrictions at the origin likely do not affect the utility of their trip. For example,

most leisure travelers do not want to travel to markets where restaurants, bars, museums,

amusement parks, and other attractions are closed due to pandemic restrictions. Similarly,

most business travelers do not want to travel to markets where in-person meetings are not

possible due to local office closures. Accordingly, if the number of new COVID-19 cases at

the destination are high, fares must be heavily discounted to entice prospective passengers to

purchase when the likelihood of new pandemic restrictions being introduced at the destina-

tion increases. The coefficient on CovidDest provides an estimate of this effect: an increase

of 1,000 new COVID-19 cases in the state of the destination airport is associated with a 1.9%

fare decrease.

19



To investigate whether pandemic pricing differed between FSCs and LCCs, column 5 adds

the interaction between CovidOutbreak and a LCC indicator. The negative and statistically

significant coefficient on CovidOutbreak × LCC indicates that LCC fares were on average

24.7% lower than FSC fares during the pandemic months of our sample. Relative to the

pre-pandemic period, FSC fares were 53% lower and LCC fares 64.6% lower.

To further examine intertemporal pricing, we perform a sensitivity check on our days to

departure groupings (which in equation (1) are grouped into five mutually exclusive intervals)

by replacing the four days to departure variables with daily dummies (i.e., an indicator for

each day to departure). We then re-estimate equation (1). In lieu of presenting a lengthy table

with coefficient estimates for each of the 59 days to departure dummies and corresponding

interactions with CovidOutbreak, results from this sensitivity are presented graphically in

Figure 4.

Figure 4: Estimated coefficients on the daily DaysToDeparture dummies with 95% confidence
interval during the pre-pandemic and pandemic periods
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The solid blue line in Figure 4 plots the estimated coefficients on the 59 days to departure

dummies (i.e., intertermporal pricing during the pre-pandemic months) while the dashed red

line plots the linear combination of the DaysToDeparture dummies and CovidOutbreak

variables (i.e., intertemporal pricing during the pandemic months of our sample). The shaded

gray area encompassing the solid blue and dashed red lines represents the 95% confidence

interval. Consistent with the descriptive analysis presented in Section 3, the dashed red line

in Figure 4 demonstrates that both fares and the rate of intertemporal price increases are

lower during the pandemic months of our sample (especially in the last week to departure).22

Relative to the solid blue line (pre-pandemic period), the height of the price jumps from seven

to six and three to two days before departure are smaller in the dashed red line (pandemic

period). Stated differently, the absolute variation on the Y-axis when moving from 7 to 1

day prior to departure is approximately 0.5 for the solid blue line (moving from 0.3 to 0.8)

and less than 0.4 for the dashed red line (moving from -0.5 to -0.1).

Finally, note that four well-defined fare hikes are observed from twenty-one to twenty,

fourteen to thirteen, seven to six, and three to two days prior to departure in Figure 4.

These fare hikes are consistent with those reported in our descriptive analysis (see Figure 3)

and support our initial grouping of days to departure categories into the set of five mutually

exclusive intervals used in our baseline specification of equation (1).

5 COVID-19 and Price Dispersion

Figure 3 illustrated a different pattern of airfares across the pre-pandemic and pandemic

months of our sample. In the last quarter of 2019, when “COVID-19” was practically un-

known, the diagrams are very similar across months and carriers: they unambiguously show

22Coefficients on the non-interacted Covid variables in this sensitivity are qualitatively similar to the
coefficients reported in Table 1. For example, the coefficient on CovidOutbreak is -0.903 and statistically
significant at the 1% level. Similarly, the coefficient on CovidOrigin is small in magnitude (-0.006) and
statistically insignificant whereas the coefficient on CovidDest is -0.022 and statistically significant at the
1% level.
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that average fares increase as the departure date approaches with fare hikes that occur at spe-

cific days to departure (e.g., at three-week, two-week, one-week, and three-day milestones).

The diagrams also show that the fare curves of FSCs substantially overlap with one another.

These regularities are not observed in the months following the outbreak of the pandemic.

For example, in the second quarter of 2020, the fare curves are more distant from one another

and huge price drops occur, suggesting that price dispersion changed during the pandemic

months of our sample.

In this section, we examine how the pandemic affected flight-level price dispersion. The

topic of price dispersion has spurred a considerable empirical literature. For example, previ-

ous studies have focused on how airline price dispersion is related to competition (Borenstein

and Rose, 1994; Dai et al., 2014; Gaggero and Piga, 2011; Gerardi and Shapiro, 2009), ca-

pacity (Dana, 1999), demand characteristics (Mantin and Koo, 2009), and business cycles

(Cornia et al., 2012). The analysis in this section enriches this literature by linking price

dispersion to COVID-19.

As discussed in Section 1, the expected impact of the COVID-19 pandemic on price dis-

persion is negative. In models of stochastic peak-load pricing, the drastic decline in business

travel demand during the pandemic should decrease the shadow cost of capacity, resulting

in lower fares and lower increases in fares. Similarly, in models of intertemporal price dis-

crimination, the decline in the share of business travel during the pandemic should result in

airlines adjusting their intertemporal pricing strategy by decreasing the rate at which fares

increase in the last few weeks to departure, leading to lower price dispersion.
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5.1 Econometric Model of Price Dispersion

Our model of price dispersion is summarized by the following equation,

PriceDisprafd = ϕ ·MktShrrad + θ ·HHIrd + σ ·Holidayd + δ ·Weekendd +

+γ1 · 11(Dep. March13-May12 )d + γ2 · 12(Dep. after May12 )d +

+α · CovidOriginBookrd + β · CovidDestBookrd + λraf + νrafd (2)

where the dependent variable PriceDisp stands for price dispersion, which we measure using

several different metrics (Cui et al., 2019). First, consistent with many previous studies

of the airline industry, we measure price dispersion using the Gini coefficient of inequality

(Borenstein and Rose, 1994; Gaggero and Piga, 2011; Gerardi and Shapiro, 2009; Kim et al.,

2021). Specifically, we use the Gini log-odds ratio, ln[Gini/(1 − Gini)], which is employed

to unbound the inequality index.23 We adopt different nuances of this inequality index: the

Gini coefficient computed using all fares collected during the sixty-day booking period of each

flight f , Ginilodd, and then the same coefficient using only fares collected in the last 30 or the

last 20 days before departure (Gini30lodd and Gini20lodd, respectively).24 Other measures of

price dispersion employed as the dependent variable in equation (2) are the natural logarithm

of the flight-level coefficient of variation (CV )25 and the natural logarithm of the flight-level

price range (i.e., Pmax − Pmin measures the difference between the maximum and minimum

fare of the price distribution).26

Similar to equation (1), r refers to the route, a the airline, and f the flight; the combination

23By unbounding the inequality index, we are able to estimate equation (2) using a linear estimator such
as OLS or two-stage least squares.

24Since Figures 3 and 4 demonstrate that fare changes are limited between 21 and 60 days before departure,
Gini30lodd and Gini20lodd examine whether price dispersion estimates are affected by the duration of the
booking period used to compute the Gini coefficient.

25The flight-level coefficient of variation is the ratio of the standard deviation of the price distribution to
the mean of the price distribution.

26Because several flights were canceled during the pandemic, the average number of fare observations for
each flight f is 42. We restrict the calculation of each price dispersion metric to f ’s with more than 10
observations, since this threshold reduces potential small sample bias (Deltas, 2003).
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raf identifies the individual component of the panel. The time dimension of the panel is

now d, the date-of-departure for flight f . Consistent with the price dispersion specification

in Gaggero and Piga (2011), we refer to λ as the set of flight-code fixed effects. Since an

observation in this analysis is the price dispersion of an individual flight, these flight-code fixed

effects control for any flight-code-invariant characteristics that do not differ across departure

dates (e.g., route, operating carrier, and time-of-departure).27 In this respect, λ differs from

ρ, the fixed-effect in equation (1), which identified an individual flight and departure date

combination. For this reason, equation (2) includes more controls than equation (1).

In particular, equation (2) now includes flight-specific and route-specific controls that

were time-invariant within the panel definition of equation (1). To control for the effect that

the level of competition has on price dispersion, we include the airline’s market share on the

route (MktShr) and the route’s Herfindahl-Hirschman Index (HHI). These two regressors

are computed using the daily number of nonstop flights on the route to better capture the

competition that each airline faces on the route on a given day (Bergantino and Capozza,

2015b).

Due to the possible simultaneity of price and quantity, MktShr and HHI are treated as

endogenous variables and equation (1) is estimated using two-stage least squares (2SLS). We

correct for this potential endogeneity using four instruments: (i) the airline’s market share

on the route on the same corresponding day during the previous year,28 (ii) the Herfindahl-

Hirschman Index of the route on the same corresponding day during the previous year,

27Given the daily time dimension of our panel, the fixed effects in equation (2) are different than those
used in previous studies that rely on quarterly data (e.g., Gerardi and Shapiro, 2009; Cornia et al., 2012; Kim
et al., 2021). Instead of employing separate carrier-route and quarter fixed effects (e.g., Gerardi and Shapiro,
2009; Cornia et al., 2012), we employ flight-code fixed effects to allow for the possibility that price dispersion
for an airline’s flights on the same route differ across flight codes (e.g., time-of-day). For example, due to
factors that we do not observe, the 7:05am Delta flight from Atlanta to Boston (flight code DL 327) may
display a different price dispersion pattern over time than the 5:00pm Delta flight from Atlanta to Boston
(flight code DL 360).

28By “same corresponding day” we mean that observations are matched with respect to the same day-of-
week, although this may be a different calendar date across years. For example, the airline’s market share
on a given route on Tuesday October 1st, 2019 is paired with the airline’s market share on same route on
Tuesday October 2nd, 2018.
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(iii) the daily jet fuel price,29 and (iv) the interaction of the daily jet fuel price with flight

distance. The first two instruments reflect that lagged market structure is correlated with

current market structure.30 The last two instruments reflect that jet fuel prices affect the

marginal cost of serving a given route.

To control for flight-specific characteristics, we use a series of indicator variables. Holiday

is an indicator equal to one if the departure date of flight f falls on a holiday.31 We expect

lower fare dispersion on holidays due to systematic peak-load pricing (Gaggero and Piga,

2011). Weekend is an indicator equal to one if flight f departs on a Saturday or Sunday.

We expect lower fare dispersion on weekends due to a more homogeneous mix of passengers

(i.e., business travelers typically do not fly on weekends).

The variables of interest in equation (2) are those that capture the effect of the pandemic

on price dispersion: 11(Dep. Mar13-May12), 12(Dep. after May12), CovidOriginBook, and

CovidDestBook. The first two regressors are indicators that specify the departure date of

the flight: 11(Dep. Mar13-May12) equals one if the flight departs between March 13th, 2020

and May 12th, 2020 while 12(Dep. after May12) equals one for flights departing after May

12th, 2020. Because our fare collection begins sixty days prior to departure, the set of fares

used to calculate price dispersion for flights indexed by 11(Dep. Mar13-May12) are collected

in both the pre-pandemic and pandemic periods, whereas the set of fares used to calculate

price dispersion for flights indexed by 12(Dep. after May12) are collected entirely during

the pandemic. Flights departing prior to the pandemic’s outbreak in the U.S. comprise the

omitted category in the regression (i.e., flights departing before March 13th, 2020).

29The daily jet fuel price is matched to the day that the flight is scheduled to depart. If the flight departs
on a Saturday, Sunday, or holiday when financial markets are closed, we used the nearest previously available
price quote.

30Although unobserved cost and demand shocks may persist over time, these shocks are less likely to be
correlated with previous year market structure than with current year market structure. Other papers that
instrument for market structure using lagged measures include Davis (2005), Evans et al. (1993), Greenfield
(2014), and Whalen (2007).

31Twelve holidays occur during our sample period: Columbus Day, Veterans Day, Thanksgiving, the day
after Thanksgiving (i.e., Black Friday), Christmas Eve, Christmas Day, New Year’s Eve, New Year’s Day,
Martin Luther King Jr. Day, Presidents’ Day, Memorial Day, and Independence Day.
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To account for the spread of COVID-19 at the origin and destination, CovidOriginBook

and CovidDestBook are set equal to the average number of new COVID-19 cases across the

sixty-day booking period in the state of flight f ’s origin and the state of flight f ’s destination,

respectively. Similar to CovidOrigin and CovidDest in equation (1), these variables test

whether the pandemic’s effect on price dispersion is predominantly driven by the spread of

COVID-19 at one route endpoint over another.

5.2 Price Dispersion Results

The results of estimating equation (2) with flight-code fixed effects and 2SLS are provided

in Table 2. The first three columns present results for three different nuances of the Gini

coefficient, the fourth column presents results when the natural logarithm of the coefficient

of variation is the dependent variable, and the fifth column presents results when the natural

logarithm of the price range is the dependent variable. Column (1) represents our preferred

specification since it is the closest to those adopted in Gerardi and Shapiro (2009) and

Gaggero and Piga (2011).

The positive and statistically significant coefficient on MktShr suggests that an increase

in an airline’s market share on a route enables the airline to better intertemporally price

discriminate, which ultimately results in a higher level of price dispersion (Gaggero and Piga,

2011). HHI is also positive and statistically significant at conventional levels, indicating that

a decrease in competition increases price dispersion. This finding is consistent with the results

in Gerardi and Shapiro (2009) who find that an increase in the number of competitors reduces

the higher percentiles of the fare distribution to a greater extent than the lower percentiles,

thereby resulting in lower price dispersion. A negative relationship between competition and

price dispersion is also found in Dai et al. (2014) and in Gaggero and Piga (2011).

The negative and statistically significant coefficient on Holiday is consistent with the

results in Gaggero and Piga (2011), who find lower levels of price dispersion for flights de-

parting during holiday periods. Due to systematic peak-load pricing, fares are higher and
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Table 2: Price dispersion results

(1) (2) (3) (4) (5)
Dependent variable: Ginilodd Gini30lodd Gini20lodd ln(CV) ln(Pmax−Pmin)
Estimator: FE-2SLS FE-2SLS FE-2SLS FE-2SLS FE-2SLS

MktShare 1.097*** 0.415* 0.758* 0.810*** -0.979***
(0.216) (0.225) (0.415) (0.180) (0.225)

HHI 0.541*** 0.159 2.660*** 0.414*** -2.172***
(0.186) (0.300) (0.656) (0.153) (0.218)

Holiday -0.045*** -0.152*** -0.154*** -0.075*** 0.048***
(0.013) (0.017) (0.024) (0.012) (0.016)

Weekend -0.022*** -0.078*** -0.075*** -0.035*** 0.062***
(0.005) (0.008) (0.011) (0.005) (0.011)

11(Dep. Mar13-May12) -0.088** -0.027 -0.207*** -0.177*** -0.225***
(0.041) (0.049) (0.056) (0.036) (0.034)

12(Dep. after May12) -0.359*** -0.138*** -0.336*** -0.388*** -0.628***
(0.050) (0.053) (0.058) (0.042) (0.047)

CovidOriginBook -0.005 0.005 0.009 -0.001 -0.010
(0.016) (0.013) (0.023) (0.013) (0.015)

CovidDestBook 0.026** -0.006 0.001 0.025** 0.019
(0.011) (0.011) (0.018) (0.010) (0.015)

R2 0.055 0.010 0.010 0.045 0.131
Observations 787,994 569,272 499,726 787,994 787,994
K-P LM statistic 55.929*** 48.141*** 39.119*** 55.929*** 55.929***
K-P Wald F statistic 30.607*** 21.479*** 14.957** 30.607*** 30.607***

Notes: Summary statistics are provided in Appendix Table A1. All specifications include flight-code fixed
effects that control for any flight-code-invariant characteristics that do not differ across departure dates (e.g.,
route, operating carrier, and time-of-departure). Constant is included but not reported. Standard errors are
clustered at the route-level. MktShr and HHI are treated as endogenous variables and instrumented for
using past-year values of MktShr and HHI in addition to the jet fuel price and the interaction between jet
fuel price and flight distance. The null hypothesis of the Kleibergen-Paap rk LM statistic is that the equation
is underidentified. First-stage estimates are reported in Appendix Table A2. *** Significant at the 1 percent
level, ** Significant at the 5 percent level, * Significant at the 10 percent level.

less dispersed during the entire booking period for these holiday flights. Notably, the data

in Gaggero and Piga (2011) cover a sample of European routes, while our present work is,

to the best of our knowledge, the first to document the holiday effect on price dispersion for

the U.S. domestic market.

Finally, the negative and statistically significant coefficient on Weekend indicates lower

price dispersion for flights departing on a Saturday or Sunday. This result likely reflects

a more homogeneous mix of passengers on weekends relative to weekdays. Since business
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travelers seldom travel on weekends, most passengers traveling on Saturdays and Sundays

are leisure travelers. The lack of weekend business travel limits an airline’s ability to price

discriminate, which translates to lower price dispersion (Gaggero and Piga, 2011).

The second part of Table 2 is new to the price dispersion literature and presents the impact

of COVID-19 on price dispersion. The negative and statistically significant coefficients on

11(Dep. Mar13-May12) and 12(Dep. after May12) indicate that fares collected during the

pandemic exhibit less price dispersion than similar fares collected prior to the pandemic. It

is worth noting that, in all Table 2 specifications, the absolute value of the coefficient on

12(Dep. after May12) is larger than the absolute value of the coefficient on 11(Dep. Mar13-

May12). This result is sensible since it indicates that lower levels of price dispersion are

observed when all fares, rather than some fares, are collected during the pandemic.

The finding that flights during the pandemic exhibit lower price dispersion is consistent

with our analysis of intertemporal pricing (e.g., see Figure 3, Figure 4, and Table 1) that

documented a lower rate of fare hikes in the last week to departure, suggesting that price dis-

persion decreased during the pandemic. This result is likely reflective of a more homogeneous

passenger mix, with a lower proportion of business travelers flying during the pandemic. A

similar conclusion is reached by Morlotti and Redondi (2023) with European data. Alterna-

tively, this finding is also consistent with the theoretical prediction arising from stochastic

peak-load pricing models. Due to the drastic decline in business travel demand, the shadow

cost of capacity fell during the pandemic, resulting in lower fares, lower increases in fares,

and thus, lower price dispersion.

The evidence on CovidOriginBook and CovidDestBook is mixed, with the coefficients on

these variables often statistically insignificant. Since CovidOriginBook and CovidDestBook

are averages of new COVID-19 cases during the booking period, averaging across the sixty-

day time horizon may have attenuated any effect that new COVID-19 cases have on flight-level

price dispersion. However, the positive and statistically significant coefficient on CovidDestBook

in columns (1) and (4) of Table 2 may be reflective of a composition effect among travelers.
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For example, when there is an increase in CovidDestBook, the number of leisure travelers

likely decreases more significantly than the number of business travelers. Hence, all else

equal, this results in greater intertemporal price discrimination (and higher price dispersion).

6 Robustness: Impact of Flight Cancellations

Figure 5 displays the percentage of canceled flights in the U.S. domestic market during our

sample period (as reported in the Airline On-Time Performance Statistics database). As the

pandemic surges, the percentage of canceled flights spikes to slightly above 50% in the middle

of March 2020. Cancellation rates remain at abnormally high levels between the middle of

March and late May 2020. Then, from late-May 2020 onwards, cancellation rates returned

to levels observed prior to the pandemic. Specifically, the mean cancellation rate was: 0.97%

before March 13th, 2020 (the date when COVID-19 was declared a national emergency in

the U.S.); 23.92% between March 13th and May 31st, 2020; and 0.79% from June 1st, 2020

through the end of our sample.

The primary threat to identification stemming from cancellations is that our dependent

variables may be measured with error that is non-random, and this measurement error may

result in coefficient estimates that are biased. For example, when flights are canceled late in

the booking period, a shorter fare series comprised mostly of low fares is used to compute

our measures of price dispersion (i.e., higher fares that are typical close to departure are not

observed). Failure to observe fares close to departure is likely more of an issue in the price

dispersion regressions than in the intertemporal pricing regressions because the lack of more

expensive fares late in the booking period will systemically imply lower price dispersion for

those flights.

In the price dispersion model described by equation (2), measurement error that results

from canceled flights will be absorbed by the error term ν. Because the volume of canceled

flights spikes during the pandemic, ν is positively correlated with the regressors accounting
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Figure 5: Percentage of canceled flights in the U.S. domestic market (October 2019-September
2020)
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for the spread of COVID-19 (i.e., CovidOriginBook and CovidDestBook). This positive

correlation implies that the coefficients on CovidOriginBook and CovidDestBook may be

biased downward.32

To investigate the impact that canceled flights may have on our price dispersion results, we

perform a robustness check by estimating a series of “donut” regressions that exclude the time

period characterized by the abnormally high rate of flight cancellations. As demonstrated in

Figure 5, this period ranges from March 13th, 2020 to May 31st, 2020.

The results from this “donut” specification are reported in Table 3. Note that because

32To determine the sign of this potential bias, consider CovidDestBook (the same argument applies
to CovidOriginBook). Decompose the error term ν into ψ · CanceledF lights + ϵ, with ϵ uncorre-
lated with CovidDestBook. Totally differentiating equation (2) with respect to CovidDestBook yields:

∂PriceDisp
∂CovidDestBook = β+ψ · ∂CanceledF lights

∂CovidDestBook . Note that ∂CanceledF lights
∂CovidDestBook is greater than zero, because an increase

in COVID-19 cases in the destination market increases the likelihood that flights to that market are canceled.
In contrast, ψ is less than zero, because the lack of more expensive fares late in the booking period implies
lower price dispersion. As a result, the term ψ · ∂CanceledF lights

∂CovidDestBook is negative, indicating that the coefficient on
CovidDestBook is biased downward.
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we exclude flights departing in the period from March 13th, 2020 to May 31st, 2020, 11(Dep.

Mar13-May12) disappears from the regressions, whereas 12(Dep. after May12) is renamed

1(Dep. after May31). Overall, results from this robustness check are qualitatively consistent

with those reported in Table 2. In particular, the negative and statistically significant coeffi-

cient on 1(Dep. after May31) in all Table 3 columns indicates that price dispersion decreased

during the pandemic. Furthermore, consistent with the downward bias discussed in footnote

32, the coefficients on CovidOriginBook and CovidDestBook in Table 3 are larger than the

corresponding baseline estimates in Table 2.

Table 3: Price dispersion results: donut regressions

(1) (2) (3) (4) (5)
Dependent variable: Ginilodd Gini30lodd Gini20lodd ln(CV) ln(Pmax−Pmin)
Estimator: FE-2SLS FE-2SLS FE-2SLS FE-2SLS FE-2SLS

MktShare 2.211*** -0.152 -0.785 1.920*** 0.500
(0.736) (0.632) (0.600) (0.686) (0.307)

HHI 2.535** 4.013** 3.749** 2.527*** -0.106
(0.994) (1.872) (1.697) (0.912) (0.429)

Holiday -0.066*** -0.148*** -0.161*** -0.092*** 0.046***
(0.020) (0.030) (0.030) (0.020) (0.010)

Weekend -0.065*** -0.115*** -0.115*** -0.073*** 0.027***
(0.010) (0.015) (0.015) (0.010) (0.007)

1(Dep. after May31) -0.955*** -0.374* -0.482** -0.885*** -1.254***
(0.126) (0.209) (0.192) (0.118) (0.120)

CovidOriginBook 0.020 0.016 0.038* 0.017 0.006
(0.024) (0.022) (0.021) (0.022) (0.013)

CovidDestBook 0.042*** 0.009 0.027* 0.037*** 0.027***
(0.015) (0.015) (0.016) (0.014) (0.010)

R2 0.039 0.004 0.005 0.042 0.133
Observations 578,340 447,267 409,554 578,340 578,340
K-P LM statistic 21.013*** 8.566** 8.251** 21.013*** 21.013***
K-P Wald F statistic 6.992 2.394 2.252 6.992 6.992

Notes: The sample period excludes flights that depart between March 13th, 2020 and May 31st, 2020. All
specifications include flight-code fixed effects that control for any flight-code-invariant characteristics that
do not differ across departure dates (e.g., route, operating carrier, and time-of-departure). Constant is
included but not reported. Standard errors are clustered at the route-level. MktShr and HHI are treated
as endogenous variables and instrumented for using past-year values of MktShr and HHI in addition to
the jet fuel price and the interaction between jet fuel price and flight distance. The null hypothesis of the
Kleibergen-Paap rk LM statistic is that the equation is underidentified. *** Significant at the 1 percent level,
** Significant at the 5 percent level, * Significant at the 10 percent level.
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7 Conclusion

In this article, we documented how the economic downturn caused by the COVID-19 pan-

demic affected intertemporal price dispersion in the U.S. airline industry. Exploiting a unique

panel of over 43 million fares collected before and during the pandemic, we find that airlines

discounted ticket prices by an average of 57% in the first five months after COVID-19 was

declared a national emergency. The rate of intertemporal price increases also declined, par-

ticularly in the last week to departure. We also find that an increase in new COVID-19 cases

at the destination decreases fares while an increase in new cases at the origin has no statis-

tically measurable effects. Furthermore, we find that flight-level price dispersion decreased

during the pandemic.

Notably, our findings are consistent with the theoretical predictions arising from models

of intertemporal price discrimination and stochastic peak-load pricing. In the intertemporal

pricing model, the decline in the share of business travel during the pandemic resulted in

airlines adjusting their intertemporal price discrimination strategy by decreasing the rate at

which fares increased for late-booking passengers, resulting in lower price dispersion. In the

stochastic peak-load pricing model, the drastic decline in business travel demand during the

pandemic decreased the shadow cost of capacity, resulting in lower fares, lower increases in

fares, and thus, lower price dispersion.

The analysis presented in this article offers some fruitful avenues for future research. Since

COVID-19 has likely had differential impacts across industries, it would be interesting to de-

termine if similar price dispersion impacts have also occurred in other oligopolistic industries

such as the automobile, gasoline, grocery, hotel, or shipping industries. In particular, the de-

cline in business travel and the movement of conferences to online formats have likely caused

similar impacts on prices and price dispersion in the hospitality industry.

Future work could also extend the present analysis to airline markets in other regions.

In particular, it may be important to investigate whether specific features of a local market
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affect the results. For example, in Europe, the expansion of high-speed rail creates intermodal

competition that may affect airline prices (Bergantino and Capozza, 2015b; Bergantino et al.,

2018). Future research could also examine whether strategic interactions among airlines (e.g.,

alliances or leader-follower behavior) have changed as a result of the pandemic (Bergantino

et al., 2018; Kim et al., 2021).

Finally, another question that remains unanswered is how airlines will adjust to the po-

tential permanent decline in business travel. As society gets more accustomed to online

meetings, the demand for business travel is likely to fall. At the same time, the continued

adoption of online communication tools (e.g., Microsoft Teams, Zoom, etc.) provides ad-

ditional opportunities to get in touch with new commercial partners who may eventually

demand face-to-face meetings. Furthermore, the broader acceptance of remote work allows

a larger share of professionals to travel and work from a variety of attractive destinations.

Such digital nomadism may disproportionately affect air travel to a specific subset of desired

destinations. Understanding which of these potential factors dominates or how they interact

with one another would provide airline managers with relevant information that will help

them choose the most optimal route network and implement the most appropriate pricing

strategy in the post-COVID-19 era.
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Appendix A: Supplementary Tables

Table A1: Descriptive Statistics and brief description of the variables included in the analysis

Intertemporal pricing regressions: Equation (1)
Variables Description Mean Std. Dev. Min Max Obs.

Fare One-way airline fare, in U.S.$ 167.2 132.6 11.00 6,155 43,160,581
DaysToDeparture 1-2 Dummy=1 if DaysToDeparture ∈ [1, 2] 0.031 0.173 0.000 1.000 43,160,581
DaysToDeparture 3-6 Dummy=1 if DaysToDeparture ∈ [3, 6] 0.063 0.243 0.000 1.000 43,160,581
DaysToDeparture 7-13 Dummy=1 if DaysToDeparture ∈ [7, 13] 0.110 0.312 0.000 1.000 43,160,581
DaysToDeparture 14-20 Dummy=1 if DaysToDeparture ∈ [14, 20] 0.109 0.312 0.000 1.000 43,160,581
DaysToDeparture 21-60 Dummy=1 if DaysToDeparture ∈ [21, 60],

omitted category in the regressions
0.687 0.464 0.000 1.000 43,160,581

CovidOutbreak Dummy=1 if fare collection is after March
13th, 2020

0.348 0.476 0.000 1.000 43,160,581

CovidOrigin 7-day moving average of new positive
COVID-19 cases (in 1,000s) in the state of
the origin airport

0.658 1.692 0.000 11.93 43,160,581

CovidDest 7-day moving average of new positive
COVID-19 cases (in 1,000s) in the state of
the destination airport

0.753 1.927 0.000 11.93 43,160,581

LCC Dummy=1 if airline is low-cost 0.192 0.394 0.000 1.000 43,160,581
CovidOutbreak × LCC Interaction of CovidOutbreak with LCC 0.061 0.239 0.000 1.000 43,160,581

Price dispersion regressions: Equation (2)
Variables Mean Std. Dev. Min Max Obs.

Ginilodd Flight-level Gini log-odds ratio of prices,
ln[Gini/(1−Gini)]

-1.913 0.959 -8.638 1.267 787,994

Gini30lodd Flight-level Gini log-odds ratio of prices col-
lected on the last 30 days to departure

-1.658 0.769 -8.536 1.289 569,272

Gini20lodd Flight-level Gini log-odds ratio of prices col-
lected on the last 20 days to departure

-1.698 0.711 -8.661 1.348 499,726

CV Flight-level coefficient of variation, ratio of
the standard deviation to the mean of the
price distribution

0.358 0.241 0.001 3.401 787,994

Pmax−Pmin Flight-level difference between the max and
min price of the price distribution

199.2 205.0 1.000 4087 787,994

MktShare Airline’s market share, obtained with the
number of daily nonstop flights on the route

0.317 0.281 0.000 1.000 787,994

HHI Route Herfindhal index,
n∑

a=1

MktShare2a 0.382 0.346 0.001 1.000 787,994

Holiday Dummy=1 if the flight departs during holi-
day

0.031 0.173 0.000 1.000 787,994

Weekend Dummy=1 if the flight departs on a weekend 0.270 0.444 0.000 1.000 787,994
11(Dep. Mar13-May12) Dummy=1 if the flight departs between

March 13th, 2020 and May 12th, 2020
0.196 0.397 0.000 1.000 787,994

12(Dep. after May12) Dummy=1 if the flight departs after May
12th, 2020

0.342 0.474 0.000 1.000 787,994

CovidOriginBook Mean new positive COVID-19 cases (in
1,000s), across the 60-day booking period, in
the state of the origin airport

0.848 1.728 0.000 11.29 787,994

CovidDestBook Mean new positive COVID-19 cases (in
1,000s), across the 60-day booking period, in
the state of the destination airport

0.946 1.959 0.000 11.62 787,994

Instruments
Past-year MktShare Past-year value of MktShare 0.295 0.255 0.000 1.000 787,994
Past-year HHI Past-year value of HHI 0.299 0.292 0.001 1.000 787,994
Fuel price Daily jet fuel price, U.S.$ per gallon 1.273 0.482 0.407 1.980 787,994
Fuel price × Distance Interaction of daily jet fuel price with route

distance (in 100s of miles)
14.84 10.78 0.961 53.54 787,994
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Table A2: First-stage estimates for Table 2

(1) (2) (3) (4) (5) (6)
Dependent variable MktShare HHI MktShare HHI MktShare HHI
Past-year MktShare 0.488*** -0.359*** 0.395*** -0.156*** 0.346*** -0.070

(0.033) (0.056) (0.026) (0.050) (0.022) (0.044)
Past-year HHI -0.006*** 0.019** -0.003* 0.022** -0.002* 0.019**

(0.002) (0.009) (0.001) (0.009) (0.001) (0.008)
Fuel price -0.034** -0.110*** -0.021* -0.061*** -0.015* -0.032**

(0.014) (0.024) (0.012) (0.018) (0.009) (0.012)
Fuel price × Distance -0.001 -0.003 -0.001 -0.002 -0.000 -0.002

(0.001) (0.002) (0.001) (0.001) (0.001) (0.001)
Holiday 0.006*** -0.005 0.007*** -0.003 0.007*** -0.004

(0.001) (0.005) (0.001) (0.005) (0.001) (0.005)
Weekend 0.001* -0.001 0.002*** -0.001 0.002*** -0.001

(0.001) (0.002) (0.001) (0.002) (0.001) (0.002)
11(Dep. Mar13-May12) 0.005 0.003 0.012*** 0.018** 0.013*** 0.020**

(0.004) (0.009) (0.004) (0.008) (0.003) (0.008)
12(Dep. after May12) 0.009* -0.003 0.012** -0.010 0.014*** -0.005

(0.005) (0.011) (0.005) (0.011) (0.005) (0.011)
CovidOriginBook 0.004* 0.011** 0.006 0.014** 0.004 0.011**

(0.002) (0.004) (0.003) (0.006) (0.003) (0.005)
CovidDestBook 0.003* 0.009** 0.004 0.011** 0.002 0.008

(0.002) (0.004) (0.003) (0.005) (0.003) (0.005)
R2 0.074 0.024 0.058 0.012 0.050 0.006
Observations 787,994 787,994 569,272 569,272 499,726 499,726

Notes: Due to varying sample sizes, columns (1) and (2) apply when Ginilodd, ln(CV), or ln(Pmax−Pmin) are the dependent
variables; columns (3) and (4) apply when Gini30lodd is the dependent variable; columns (5) and (6) apply when Gini20lodd is
the dependent variable. All specifications include flight-code fixed effects that control for any flight-code-invariant characteristics
that do not differ across departure dates (e.g., route, operating carrier, and time-of-departure). Constant is included but not
reported. Standard errors are clustered by route. *** Significant at the 1 percent level, ** Significant at the 5 percent level, *
Significant at the 10 percent level.
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