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Central Limit Theorems for Generalized U–Statistics

with Applications in Econometric Specification 1

By Jiti Gao2 and Yongmiao Hong3

Abstract

In this paper, we establish some new central limit theorems for generalized U–

statistics of dependent processes under some mild conditions. Such central limit

theorems complement existing results available from both the econometrics litera-

ture and statistics literature. We then look at applications of the established results

to a number of test problems in time series econometric models.

1. Introduction

The study of central limit theorems for random quadratic forms has a long history. For

example, Hall (1984), De Jong (1987, 1990), and Fan and Li (1996) establish central limit

theorems of U–statistics for the case where the random variables involved are independent.

Those results have been employed quite heavily for various specification tests, such as

Hong and White (1995). For the case where dependent time series are involved, existing

results include Yoshihara (1976, 1989), Hjellvik, Yao and Tjøstheim (1996), Tenreiro

(1997), and Fan and Li (1999) for stationary and absolutely regular processes. Along

with the paper by Li (1999), the last two papers also discuss several applications of the

established central limit theorems for testing independence, linearity and nonparametric

significance for time series data. Recently, Gao and Anh (2000) establish a central limit

theorem for a randomly quadratic form of strictly stationary mixing processes. The
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result has been applied for specification testing in nonparametric series regression. More

recently, Gao and King (2004) establish some general results for such quadratic forms of

strictly stationary α–mixing processes before applying them for specification testing in

continuous–time diffusion models. In this paper we extend the existing results to a more

general setting and then discuss several applications in specification testing problems.

Let {Xt : t ≥ 1} be a r–dimensional strictly stationary β–mixing time series data and

define the following U–statistic

L0T =
T∑

s=1

T∑

t=1

astφ1(Xs, Xt), (1.1)

where {ast} is a sequence of non–random real numbers possibly depending on T , φ1(x1, x2)

is symmetric function of (x1, x2) defined on Rr × Rr, and T is the size of the time series

data. Existing results are applicable to the form (1.1). In many other test problems in

time series specification, however, we need to deal with the case where {ast} may also

depend on the history of (Xs, Xt), such as (Xs−u, Xt−u) for 1 ≤ u ≤ min(s − 1, t − 1).

For example, ast =
∑min(s−1,t−1)

u=1 ATu φ2(Xs−u, Xt−u), where {ATu} is a sequence of non–

random real numbers and φ2(·, ·) is also a symmetric measurable function over Rr × Rr.

This motivates us to consider a generalized U–statistic of the form

LT =
T∑

s=1

T∑

t=1

ψT (Zs, Zt)φ1(Xs, Xt), (1.2)

where Zt = (Xt−1, · · · , X1) and ψT (Zs, Zt) =
∑min(s−1,t−1)

u=1 ATu φ2(Xs−u, Xt−u) with φ2(x1, x2)

being also a symmetric function of (x1, x2). As can be seen, L0T defined in (1.1) is a special

case of LT defined in (1.2) where φ2(·, ·) is just a sequence of non–random real numbers.

In this paper we will then establish new central limit theorems for LT in Section 2.

The proofs of the established theorems are given in Section 3. Section 4 concludes the

paper with comments on possible extensions.

2. Central Limit Theorems
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Before we establish our new central limit theorems, we provide an example to motivate

the proposal of such new central limit theorems.

Example 2.1. Assume that {Xt : t = 1, · · · , T} is a sequence of stationary time series

data with E[Xt] = 0, auto–covariance function ρ(j), and normalized spectral density

function

f(ω) =
1

2π

∞∑

j=−∞

ρ(j) cos(jω), ω ∈ [−π, π]. (2.1)

To test the independence of {Xt}, we are interested in testing

H01 : ρ(j) = 0 for all j 6= 0 versus H11 : ρ(j) 6= 0 for some j 6= 0. (2.2)

It follows from (2.1) that testing H01 is equivalent to testing f(ω) = f0(ω) = 1
2π

for

ω ∈ [−π, π]. Since f(·) is unknown, we estimate it by

f̂T (ω) =
1

2π

T−1∑

j=−T+1

K

(
j

p

)
ρ̂(j) cos(j ω), ω ∈ [−π, π] (2.3)

with ρ̂(j) =

∑T

t=|j|+1
XtXt−|j|∑T

t=1
X2

t

, where p = p(T ) is the bandwidth satisfying limT→∞ p(T ) = ∞
and limT→∞

p(T )
T

= 0, and K(·) is a probability kernel function.

In order to test H01, we thus suggest using a test statistic of the form

Q(f̂ , f0) = 2π
∫ π

−π

(
f̂(ω) − f0(ω)

)2
dω. (2.4)

It may be shown that the leading term of Q(f̂ , f0) is then as follows:

MT = 2
T∑

j=1

K2

(
j

p

)
ρ̂2(j) ≡

T∑

s=2

T∑

t=2

ψT (Zs, Zt) XsXt, (2.5)

where ψT (Zs, Zt) =
∑min(s−1,t−1)

|j|=1
2

T 2K
2
(

j
p

)
Xs−|j| Xt−|j|.

As can be seen from (2.5), MT is a type of generalized U–statistic with stochastic

coefficients {ψT (Zs, Zt)}. Hence, the existing results available for deterministic coefficients

are not applicable. In addition, it is obvious that MT of (2.5) is a special case of LT of
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(1.2). We therefore believe that it is of general interest to establish new asymptotic

distributions for LT .

Let {Xt : t ≥ 1} be a strictly stationary time series. Assume that Xt is absolutely

regular (β–mixing) with mixing coefficient β(t) ≤ Cβ ρ
t defined by

β(t) = sup
s≥1

E


 sup

A∈A∈I∞s+t

|P (A|Is
1) − P (A)|


 ,

where 0 < Cβ < ∞ and 0 < ρ < 1 are constants, and I
j
i denotes the σ-field gen-

erated by {Xt : i ≤ t ≤ j}. For i ≥ 1, let Ii = I i
1. Let ATu be a sequence of

positive non–random weight functions, Zt = (Xt−1, · · · , X1), and define ψT (Zs, Zt) =
∑min(s−1,t−1)

u=1 ATu φ2(Xs−u, Xt−u), where φ2(·, ·) is a symmetric measurable function de-

fined on Rr×Rr. Let φ1(·, ·) be also a symmetric measurable function defined on Rr×Rr.

For 1 ≤ s < t ≤ T , define θst(u) = φ1(Xs, Xt)φ2(Xs−u, Xt−u) and θst =
∑s−1

u=1ATuθst(u).

Let

LT =
T∑

t=3

t−1∑

s=2

s−1∑

u=1

ATuφ1(Xs, Xt)φ2(Xs−u, Xt−u) =
T∑

t=3

t−1∑

s=2

θst (2.6)

with E[LT ] = 0 and σ2
T =

∑T
t=3

∑t−1
s=2 var[θst].

In what follows we will establish a new central limit theorem for LT . As can be seen,

such a central limit theorem covers existing cases (see Yoshihara 1989), including the case

where ψT (·, ·) is a non–random symmetric function of s and t.

Theorem 2.1. Let {Xt : 1 ≤ t ≤ T} be a r–dimensional strictly stationary and

absolutely regular (β–mixing) time series. Let φi(·, ·) be symmetric Borel functions defined

on Rr × Rr for i = 1, 2. Assume that for any fixed x, z ∈ Rr, t ≥ 1 and 1 ≤ u ≤ t − 1,

E[φ1(x,Xt)] = 0 = E[φ2(z,Xt−u)]. For any 1 ≤ u ≤ s − 1, let ξs(u) = (Xs, Xs−u).

For 1 ≤ i < j < k < l ≤ T and 1 ≤ u ≤ T − 1, let us now define P4(ξi, ξj, ξk, ξl),

P3(ξi, ξj, ξk), P2(ξi, ξj), and P1(ξi) as the probability measures of (ξi(u), ξj(u), ξk(u), ξl(u)),

(ξi(u), ξj(u), ξk(u)), (ξi(u), ξj(u)) and ξi(u), respectively. For some small constant 0 < δ <

1, let

MT1 = max
1≤u1,u2≤T−1,

max
1≤i<j<k≤T

max

{
E
[
|θik(u1)θjk(u2)|1+δ

]
,

∫
|θik(u1)θjk(u2)|1+δdP1(ξi)dP2(ξj , ξk)

}
,
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MT21 = max
1≤u1,u2≤T−1,

max
1≤i<j<k≤T

max
{

E
[
|θik(u1)θjk(u2)|2(1+δ)

]}
,

MT22 = max
1≤u1,u2≤T−1,

max
1≤i<j<k≤T

max

{∫
|θik(u1)θjk(u2)|2(1+δ)dP1(ξi)dP2(ξj , ξk)

}
,

MT23 = max
1≤u1,u2≤T−1,

max
1≤i<j<k≤T

max

{∫
|θik(u1)θjk(u2)|2(1+δ)dP1(ξi)dP1(ξj)dP1(ξk)

}

MT2 = max {MT21,MT22,MT23} ,

MT3 = max
1≤u1,u2≤T−1,

max
1≤i<j<k≤T

E
[
|θik(u1)θjk(u2)|2

]
,

MT4 = max
1≤u1,u2≤T−1,

max

1 ≤ i, j, k, l ≤ 2T

i, j, k, l different

{
max
Pu

∫
|θij(u1)θkl(u2)|2(1+δ)dPu

}
,

where the maximization over Pu in the equation for MT4 is taken over the four probability

measures P4(ξi, ξj , ξk, ξl), P1(ξi)P3(ξi, ξj , ξk), P1(ξi)P1(ξj)P2(ξk, ξl), and P1(ξi)P1(ξj)P1(ξk)P1(ξl);

MT51 = max
1≤u1,u2≤T−1,

max
1≤i<j<k≤T

max

{
E

[∣∣∣∣
∫

θik(u1)θjk(u2)dP1(ξi)

∣∣∣∣
2(1+δ)

]}
,

MT52 = max
1≤u1,u2≤T−1,

max
1≤i<j<k≤T

max

{∫ ∣∣∣∣
∫

θik(u1)θjk(u2)dP1(ξi)

∣∣∣∣
2(1+δ)

dP1(ξj)dP1(ξk)

}
,

MT5 = max {MT51,MT52} ,

MT6 = max
1≤u1,u2≤T−1,

max
1≤i<j<k≤T

E

[∣∣∣∣
∫

θik(u1)θjk(u2)dP1(ξi)

∣∣∣∣
2
]

,

MT7 = max
1≤u≤T−1,

max
1≤i<j≤T

E
[
|θij(u)|2(1+δ)

]
.

In addition, suppose that
∑T−1

u=1 ATu <∞. Let

MT = max
{
T 2M

1
1+δ

T1 , T 2M
1

2(1+δ)

T5 , T 2M
1
2
T6, T

2M
1

1+δ

T7

}
and

NT = max
{
T

3
2M

1
2(1+δ)

T2 , T
3
2M

1
2
T3, T

3
2M

1
2(1+δ)

T4

}
. (2.7)

If limT→∞
max{MT ,NT }

σ2
T

= 0, then

1

σT

∑

1≤s<t≤T

θst →D N(0, 1) as T → ∞.

Let ψT (Zs, Zt) ≡ 1 and ξt = Xt, Theorem 2.1 reduces to the following corollary. Its

proof follows from that of Theorem 2.1.
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Corollary 2.1. Let {ξt : 1 ≤ t ≤ T} be a r–dimensional strictly stationary and

β–mixing time series. Let φ1(·, ·) be a symmetric Borel function defined on Rr × Rr.

Assume that for any fixed x, y ∈ Rr, E[φ1(ξ1, y)] = E[φ1(x, ξ1)] = 0. Let θst = φ1(ξs, ξt)

with

E [θst] = 0 and σ2
0T =

∑

1≤s<t≤T

var[θst].

For some small constant 0 < δ < 1, let

MT11 = max
1≤i<j<k≤T

max
{
E|θikθjk|1+δ

}
,

MT12 = max
1≤i<j<k≤T

max
{∫

|θikθjk|1+δdP (ξi)dP (ξj, ξk)
}
,

MT21 = max
1≤i<j<k≤T

max
{
E|θikθjk|2(1+δ)

}
,

MT22 = max
1≤i<j<k≤T

max
{∫

|θikθjk|2(1+δ)dP (ξi)dP (ξj, ξk)
}
,

MT23 = max
1≤i<j<k≤T

max
{∫

|θikθjk|2(1+δ)dP (ξi, ξj)dP (ξk)
}
,

MT24 = max
1≤i<j<k≤T

max
{∫

|θikθjk|2(1+δ)dP (ξi)dP (ξj)dP (ξk)
}
,

MT3 = max
1≤i<j<k≤T

E|θikθjk|2,

MT4 = max

1 < i, j, k ≤ 2T

i, j, k different

{
max

P

∫
|θ1iθjk|2(1+δ)dP

}
,

where the maximization over P in the equation for MT4 is taken over the probability

measures P (ξ1, ξi, ξj , ξk), P (ξ1)P (ξi, ξj , ξk), P (ξ1)P (ξi1)P (ξi2 , ξi3), and P (ξ1)P (ξi)P (ξj)P (ξk), where

(i1, i2, i3) is the permutation of (i, j, k) in ascending order;

MT51 = max
1≤i<j<k≤T

max

{
E

∣∣∣∣
∫

θikθjkθikθjkdP (ξi)

∣∣∣∣
2(1+δ)

}
,

MT52 = max
1≤i<j<k≤T

max

{∫ ∣∣∣∣
∫

θikθjkθikθjkdP (ξi)

∣∣∣∣
2(1+δ)

dP (ξj)dP (ξk)

}
,

MT6 = max
1≤i<j<k≤T

E

∣∣∣∣
∫

θikθjkdP (ξi)

∣∣∣∣
2

, MT7 = max
1≤i<j<T

E
[
|θij |2(1+δ)

]
.
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Let

MT1 = max
1≤i≤2

{MT1i} , MT2 = max
1≤i≤4

{MT2i} , MT5 = max
1≤i≤2

{MT5i} .

Assume that all the MT i are finite. Let

MT = max
{
T 2M

1
1+δ

T1 , T 2M
1

2(1+δ)

T5 , T 2M
1
2
T6, T

2M
1

1+δ

T7

}
,

NT = max
{
T

3
2M

1
2(1+δ)

T2 , T
3
2M

1
2
T3, T

3
2M

1
2(1+δ)

T4

}
.

If limT→∞
max{MT ,NT }

σ2
0T

= 0, then

1

σ0T

∑

1≤s<t≤T

φ1(ξs, ξt) →D N(0, 1) as T → ∞.

Corollary 2.1 improves some corresponding results of Hjellvik, Yao and Tjøstheim

(1996), and Fan and Li (1999) for the β–mixing case by avoiding using the martingale

difference condition: E[φ1(Xi, Xj)Ω
j−1
0 ] = 0 for any i < j, where Ωj

i denotes the σ–

field generated by {Xs : i ≤ s ≤ j}. As discussed in Section 3 below, the replacement

of the martingale condition would make Corollary 2.1 directly applicable to establish

asymptotically normal tests for density specification.

Before we prove Theorem 2.1 in Section 4 below, we explain why the conditions of

Theorem 2.1 are justifiable in Section 3.

3. Examples and Applications

Example 3.1. Consider a time series regression model of the form

Yt = g(Ut) + et, (3.1)

where {et} is a sequence of martingale differences, {Ut} is a strictly stationary time series,

and g(·) is a smooth but unknown function defined over Rd. In the literature of time series
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econometric specification testing, focus has been on the construction of various tests for

testing whether g(·) can be specified parametrically. In general, the leading term of such a

test is a U–statistic. When using a kernel function based test, we may have a test statistic

of the form (2.6) with Xt = (Ut, et) (see Hong and Kao 2004; Hong and Lee 2005),

φ1(Xs, Xt) = es K

(
Us − Ut

h

)
et and φ2(Xs−u, Xt−u) = φ2(Us−u, Ut−u) (3.2)

for u = 1, · · · ,min(s−1, t−1), whereK(·) is a probability kernel function, h is a bandwidth

parameter satisfying certain conditions, and φ2(·, ·) is a bounded function. In addition,

the non–random weight function may be chosen as ATu = W
(

u
T

)
where W (·) is a smooth

function satisfying
∫
W 2(x)dx <∞. Under certain conditions on {et}, we may verify that

the conditions of Theorem 2.1 are all satisfied. In detail, we can verify one part of (2.7)

as follows.

Let MT and NT be defined as in Theorem 2.1. We now verify only the following

condition

T 2M
1

1+δ

T1

σ2
T

→ 0 as T → ∞. (3.3)

The others follow similarly.

Let ast = K
(

Us−Ut

h

)
, bst(u) = φ2(Xs−u, Xt−u) = φ2(Us−u, Ut−u) and ψst(u) = astbst(u).

It follows that for some 0 < δ < 1, 1 ≤ i < j < k ≤ T and 1 ≤ u1, u2 ≤ T ,

E
[
|ψik(u)ψjk(u)|1+δ

]
= E

[
|eieje

2
kaikbik(u1)ajkbjk(u2)|1+δ

]

≤
{
E
[
|eieje

2
k|2(1+δ)(1+δ2)

]} 1
2(1+δ2)

{
E
[
|aijaikbik(u1)bjk(u2)|(1+δ)(1+δ1)

]} 1
(1+δ1)

≤ C1

{
E
[
|aijaik|(1+δ)(1+δ1)

]} 1
(1+δ1)

, (3.4)

assuming the boundedness of φ2(·, ·) and
{
E
[
|eieje

2
k|2(1+δ)(1+δ2)

]} 1
2(1+δ2) , where C1 > 0 is

a constant, 0 < δ1 < 1 and 0 < δ2 < 1 are chosen such that 1
1+δ1

+ 1
2(1+δ2)

= 1 and

1+δ
3−δ

< δ1 <
1−δ
1+δ

. We therefore have that

1 < ζ1 = (1 + δ)(1 + δ2) < 2 and 1 < ζ2 = (1 + δ)(1 + δ1) < 2.
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For convenience, we use ζ = ζ2 and ignore the small order o(1) throughout the rest of

verification. For the given 1 < ζ < 2 and T sufficiently large, we obtain

MT11 = E |aikajk|ζ

=
∫ ∫ ∫ ∣∣∣∣K

(
u− w

h

)∣∣∣∣
ζ ∣∣∣∣K

(
v − w

h

)∣∣∣∣
ζ

f(u, v, w)dudvdw

= h2d
∫ ∫ ∫

|K(x)K(y)|ζf(z + xh, z + yh, z)dxdydz

= C2h
2d, (3.5)

under certain conditions onK(·), where f(x, y, z) is the joint density function of (Ui, Uj, Uk)

and C2 is a constant.

Similarly, we may show that as T → ∞

σ2
T =

T∑

t=3

t−1∑

s=2

var[θst] = C3T
2hd. (3.6)

where C3 > 0 is a constant.

Thus, as T → ∞

T 2M
1

1+δ

T11

σ2
T

= C4

T 2
(
h2d

)1/ζ

T 2hd
= h

(2−ζ)d
ζ → 0. (3.7)

Hence, equations (3.4)–(3.7) show that (3.3) holds for the first part of MT1. The proof

for the second part of MT1 follows similarly.

This shows that the conditions of Theorem 2.1 are verifiable.

Example 3.2. Let {Xt} be a sequence of strictly stationary time series with the

marginal density function being given by π(·). Our interest in this example is to test

whether there a parametric density function π(x, θ0) indexed by θ0 such that

H02 : π(x) = π(x, θ0) versus H12 : π(x) = π1(x, θ1) (3.8)

for all x and some θ0 ∈ Θ0, where π1(x, θ1) is another parametric density function indexed

by θ1 ∈ Θ1, and both Θ0 and Θ1 are parameter spaces.
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Let X1, · · · , XT be the observations. Similarly to Gao and King (2004), we propose

using a test statistic of the form

N̂T = N̂T (h) = Th

∫ (
π̂(x) − π̃(x, θ̃)

)2
π̂(x)dx, (3.9)

where

π̂(x) =
1

Th

T∑

t=1

K

(
x−Xt

h

)
and π̃(x, θ̂) =

T∑

t=1

wt(x)π(Xt, θ̃), (3.10)

where K(·) is the probability kernel function, h is the bandwidth parameter, θ̃ is an
√
T–consistent estimator of θ0, and

wt(x) = wt(x, h) =
1

Th
K

(
x−Xt

h

)
s2(x) − s1(x)(x−Xt)

s2(x)s0(x) − s2
1(x)

, (3.11)

in which sr(x) = 1
Th

∑T
s=1K

(
x−Xt

h

)
(x−Xs)

r for r = 0, 1, 2.

In oder to continue our discussion, we introduce the following notation:

ǫt(x) = K

(
x−Xt

h

)
− E

[
K

(
x−Xt

h

)]
,

θst = θ(Xs, Xt) = (Th)−1
∫
ǫs(u)ǫt(u)π(u) du,

N0T = N0T (h) =
T∑

s=1

T∑

t=1

θst.

It can be easily shown that for any x, y ∈ R1 = (−∞,∞),

E [θ(x,Xt)] = E [θ(Xs, y)] = 0 (3.12)

while the martingale condition is not satisfied. It may also be shown that N0T (h) is the

leading term of N̂T (h). Thus, the asymptotic normality of a suitably normalized version

of N̂T (h) follows from an application of Corollary 2.1.

We would like to point out that Corollary 2.1 is also applicable for establishing asymp-

totical distributions for other nonparametric kernel tests, such as the ones in Hong and

White (2005).

4. Proofs
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The following two technical lemmas have already been used in the proof of Theorem

2.1. The two lemmas are of general interest and can be used for other nonparametric

estimation and testing problems associated with the β–mixing condition.

Lemma 4.1. Suppose that In
m are the σ-fields generated by a stationary β-mixing

process ξi with mixing coefficient β(i). For some positive integers m let ηi ∈ I ti
si

where

s1 < t1 < s2 < t2 < · · · < tm and suppose ti − si > τ for all i. Assume further that

||ηi||pi
pi

= E|ηi|pi <∞,

for some pi > 1 for which

Q =
l∑

i=1

1

pi

< 1.

Then ∣∣∣∣∣E
[

l∏

i=1

ηi

]
−

l∏

i=1

E[ηi]

∣∣∣∣∣ ≤ 10(l − 1)α(τ)(1−Q)
l∏

i=1

||ηi||pi
.

Proof. See Theorem 5.4 of Roussas and Ionnides (1987).

Lemma 4.2. (i) Let ψ(·, ·, ·) be a symmetric Borel function defined on Rr ×Rr ×Rr.

Let the process ξi be defined as in Lemma 3.1. Assume that for any fixed x, y ∈ Rr,

E[ψ(ξ1, ξ2, ξ3)] = E[ψ(ξ1, x, y)] = 0. Then

E





∑

1≤i<j<k≤T

ψ(ξi, ξj, ξk)





2

≤ CT 3M
1

1+δ ,

where 0 < δ < 1 is a small constant, C > 0 is a constant independent of T and the

function ψ, M = max{M1,M2,M3}, and

M1 = max
1<i<j≤T

max
{
E|ψ(ξ1, ξi, ξj)|2(1+δ),

∫
|ψ(ξ1, ξi, ξj)|2(1+δ)dP (ξ1)dP (ξi, ξj)

}
,

M2 = max
1<i<j≤T

max
{∫

|ψ(ξ1, ξi, ξj)|2(1+δ)dP (ξj)dP (ξ1, ξi)
}
,

M3 = max
1<i<j≤T

max
{∫

|ψ(ξ1, ξi, ξj)|2(1+δ)dP (ξ1)dP (ξi)dP (ξj)
}
.
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(ii) Let φ(·, ·) be a symmetric Borel function defined on Rr ×Rr. Let the process ξi be

defined as in Lemma 4.1. Assume that for any fixed x ∈ Rr, E[ψ(ξ1, ξ2)] = E[φ(ξ1, x)] = 0.

Then

E





∑

1≤i<j≤T

φ(ξi, ξj)





2

≤ CT 2M
1

1+δ

4 ,

where δ > 0 is a constant, C > 0 is a constant independent of T and the function φ, and

M4 = max
1<i<j≤T

max
{
E|φ(ξ1, ξi)|2(1+δ),

∫
|φ(ξ1, ξi)|2(1+δ)dP (ξ1)dP (ξi)

}
.

Proof: See Lemma C.2 of Gao and King (2004).

Lemma 4.3. Let φ(·, ·) be a symmetric Borel function defined on Rr × Rr. Let the

process ξi be defined as in Lemma 4.1. Assume that for any fixed x ∈ Rr and j ≥ 1,

E[ψ(ξ1, ξ2)] = E[φ(x, ξj)] = 0. Then for 1 ≤ i < j ≤ T ,

|E [φ(ξi, ξj)|Ii]| ≤ Cβ
δ

1+δ (j − i)
(
E
[
|φ(ξi, ξj)|1+δ

]) 1
1+δ

,

where 0 < δ < 1 is some constant such that max1≤i<j≤T E
[
|φ(ξi, ξj)|1+δ

]
<∞.

Proof: See Yoshihara (1989) or Theorem 5.5 of Roussas and Ionnides (1987).

Proof of Theorem 2.1: For simplicity, we denote ATu by Au throughout the proof.

Let It be a σ–field generated by {Xs : 1 ≤ s ≤ t}. For a given constant 0 < ρ0 ≤ 1
4
,

choose q = [T ρ0 ] as the largest integer part of T ρ0 . Obviously,
∑∞

T=1 e
−d0qT < ∞ for any

given d0 > 0. Recall the notation of θst(u) = φ1(Xs, Xt)φ2(Xs−u, Xt−u) and define

φst(u) = θst(u) − E [θst(u)|It−q] and ψst(u) = E [θst(u)|It−q] . (4.1)

Observe that

LT =
T∑

t=3

t−1∑

s=2

s−1∑

u=1

Auφ1(Xs, Xt)φ2(Xs−u, Xt−u)

=
T∑

t=q+3

t−q∑

s=2

s−1∑

u=1

Auφst(u) +
T∑

t=q+3

t−q∑

s=2

s−1∑

u=1

Auψst(u)
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+
T∑

t=3

t−1∑

s=t+1−q

s−1∑

u=1

Auφst(u) +
T∑

t=3

t−1∑

s=t+1−q

s−1∑

u=1

Auψst(u)

≡
4∑

j=1

LjT . (4.2)

To establish the asymptotic distribution of LT , it suffices to show that as T → ∞

L1T

σT

→ N(0, 1) and
LjT

σT

→p 0 for j = 2, · · · , 4. (4.3)

Let φst =
∑s−1

u=1 φst(u) and Vt =
∑t−q

s=2 φst. Then E[Vt|It−q] = 0. This implies that {Vt}
is a sequence of martingale differences with respect to It−q. We now start proving the first

part of (4.3). Applying a central limit theorem for martingale sequences (see Theorem 1

of Chapter VIII of Pollard 1984), in order to prove the first part of (4.3), it suffices to

show that
1

σ2
T

T∑

t=2

V 2
t →p 1 and

1

σ4
T

T∑

t=2

E
[
V 4

t

]
→ 0. (4.4)

To verify (4.4), we first need to calculate some useful quantities. Recall the definition

of Vt and observe that

V 2
t =

t−q∑

s=2

s−1∑

u=1

A2
uφ2

st(u) + 2

t−q∑

s=3

s−1∑

u=2

u−1∑

v=1

AuAvφst(u)φst(v) + 2

t−q∑

s1=3

s1−1∑

s2=2

s2−1∑

u=1

A2
uφs1t(u)φs2t(u)

+ 4

t−q∑

s1=4

s1−1∑

s2=3

s2−1∑

u=2

u−1∑

v=1

AuAvφs1t(u)φs2t(v) + 2

t−q∑

s1=3

s1−1∑

s2=2

s1−1∑

u=s2

s2−1∑

v=1

AuAvφs1t(u)φs2t(v),

E[V 2
t ] =

t−q∑

s=2

s−1∑

u=1

A2
uE[φ2

st(u)] + 2

t−q∑

s=3

s−1∑

u=2

u−1∑

v=1

AuAvE [φst(u)φst(v)] + 2

t−q∑

s1=3

s1−1∑

s2=2

s2−1∑

u=1

A2
uE [φs1t(u)φs2t(u)]

+ 4

t−q∑

s1=4

s1−1∑

s2=3

s2−1∑

u=2

u−1∑

v=1

AuAvE [φs1t(u)φs2t(v)] + 2

t−q∑

s1=3

s1−1∑

s2=2

s1−1∑

u=s2

s2−1∑

v=1

AuAvE [φs1t(u)φs2t(v)] ,

T∑

t=q+3

E[V 2
t ] =

T∑

t=q+3

t−q∑

s=2

s−1∑

u=1

A2
uE[φ2

st(u)] + 2

T∑

t=q+4

t−q∑

s=3

s−1∑

u=2

u−1∑

v=1

AuAvE [φst(u)φst(v)]

+ 2

T∑

t=q+4

t−q∑

s1=3

s1−1∑

s2=2

s2−1∑

u=1

A2
uE [φs1t(u)φs2t(u)] + 4

T∑

t=q+5

t−q∑

s1=4

s1−1∑

s2=3

s2−1∑

u=2

u−1∑

v=1

AuAvE [φs1t(u)φs2t(v)]

+ 2
T∑

t=q+4

t−q∑

s1=3

s1−1∑

s2=2

s1−1∑

u=s2

s2−1∑

v=1

AuAvE [φs1t(u)φs2t(v)] ≡ σ2
1T +

4∑

j=1

∆jT . (4.5)
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We now show that as T → ∞

σ2
1T = σ2

T (1 + o(1)) and ∆jT = o
(
σ2

T

)
for j = 1, · · · , 4. (4.6)

By Lemma 4.1 listed in the Appendix (with η1 = φst(u), η2 = φst(v), l = 2, pi = 2(1+δ)

and Q = 1
1+δ

),

E |φst(u)φst(v)| ≤ 10M
1

1+δ

T1 β
δ

1+δ (u− v).

Therefore,

s−1∑

u=2

u−1∑

v=1

AuAvE |φst(u)φst(v)| ≤ 10M
1

1+δ

T1

s−1∑

u=2

u−1∑

v=1

AuAvβ
δ

1+δ (u− v) ≤ CM
1

1+δ

T1 (4.7)

using
∑T−1

u=2

∑u−1
v=1 β

δ
1+δ (u − v)AuAv < ∞. This, together with the conditions of Theorem

2.1, impliles that ∆2T = o (σ2
T ) as T → ∞. The verification of (4.6) for j = 1 follows

similarly using
∑T−1

u=1 A
2
Tu < ∞. For j = 3, 4, one needs to use Lemma 3.2 twice to deal

with the case where s1 6= s2 and u 6= v. The verification of the first part of (4.6) follows

similarly using both Lemmas 4.1 and 4.3.

We now start to verify the first part of (4.4). Let σ2
st(u) = E[φ2

st(u)]. Observe that

E




T∑

t=q+3

V 2
t − σ2

1T




2

≤ 2E





T∑

t=q+3

t−q∑

s=2

s−1∑

u=1

A2
u

[
φ2

st(u) − σ2
st(u)

]




2

+ 8E





T∑

t=q+4

t−q∑

s1=3

s1−1∑

s2=2

s2−1∑

u=1

A2
uφs1t(u)φs2t(u)





2

+ 32E





T∑

t=q+5

t−q∑

s1=4

s1−1∑

s2=3

s2−1∑

u=2

u−1∑

v=1

AuAvφs1t(u)φs2t(v)





2

+ 8E





T∑

t=q+4

t−q∑

s1=3

s1−1∑

s2=1

s1−1∑

u=s2

s2−1∑

v=1

AuAvφs1t(u)φs2t(v)





2

≡ Q1T +Q2T +Q3T +Q4T . (4.8)

In the following, we first show that as T → ∞

Q3T = o
(
σ4

T

)
. (4.9)
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The proofs for Q2T and Q4T follow similarly. Using Lemma 3.1 again, one can show that

as T → ∞

Q3T = 32E





T∑

t=q+5

t−q∑

s1=4

s1−1∑

s2=3

s2−1∑

u=2

u−1∑

v=1

AuAvφs1t(u)φs2t(v)





2

≤ 32
∑

u1,u2

∑

v1,v2

Au1Au2Av1Av2



∑

t1 6=t2

∑

s1 6=s2

∑

r1 6=r2

|E [φs1t1(u1)φs2t1(v1)φr1t2(u2)φr2t2(v2)]|



≤ 32 max
{
M2

T , N
2
T

}
· max





(
T−1∑

u=1

Au

)4

,

(
T−1∑

u=1

A2
u

)2


 = o

(
σ4

T

)

under the conditions of Theorem 2.1.

Let Cφ(u1, u2) =
∫
φ2

12(u1)φ
2
34(u2)dP1(ξ1(u1))dP1(ξ2(u1))dP1(ξ3(u2))dP1(ξ4(u2)), where

P1(ξi(u)) denotes the probability measure of ξi(u).

Using Lemma 4.1 repeatedly, we have that for different i, j, k, l

sup
u1,u2

∣∣∣E
[
φ2

ij(u1, u2)φ
2
kl(u1, u2)

]
− Cφ(u1, u2)

∣∣∣ ≤ 10 {β(∆(i, j, k, l))}1− 1
1+δ M

1
1+δ

T4

= 10M
1

1+δ

T4 {β(∆(i, j, k, l))}
δ

1+δ , (4.10)

where ∆(i, j, k, l) is the minimum increment in the sequence which is the permutation of

i, j, k, l in ascending order.

Similar to (4.10), one can have for all different i, j, k, l

max
u1,u2

∣∣∣σ2
ij(u1)σ

2
kl(u2) − Cφ(u1, u2)

∣∣∣ ≤ 10M
1

1+δ

T4 {β(∆(i, j, k, l))}
δ

1+δ . (4.11)

Therefore, using (4.10) and (4.11),

Q1T = 2E

{
T∑

t=q+3

t−q∑

s=2

s−1∑

u=1

A2
u

[
φ2

st(u) − σ2
st(u)

]
}2

≤ 2
∑

u1,u2

A2
u1

A2
u2

(
∑

t1,t2

∑

s1,s2

∣∣E
[
φ2

ij(u1)φ
2
kl(u2)

]
− σ2

ij(u1)σ
2
kl(u2)

∣∣
)

≤ 2
∑

u1,u2

A2
u1

A2
u2

(
∑

t1,t2

∑

s1,s2

∣∣E
[
φ2

ij(u1)φ
2
kl(u2)

]
− Cφ(u1, u2)

∣∣+
∣∣Cφ(u1, u2) − σ2

ij(u1)σ
2
kl(u2)

∣∣
)

≤
{

O

(
T 3M

1
1+δ

T4

)
+ O

(
T 3MT3

)}
·
(

T−1∑

u=1

A2
u

)2

= o(σ4
T ). (4.12)
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It now follows from (4.8)–(4.12) that for any ǫ > 0

P





∣∣∣∣∣∣
1

σ2
1T

T∑

t=q+3

V 2
t − 1

∣∣∣∣∣∣
≥ ǫ



 ≤ 1

σ4
T ǫ

2
E




T∑

t=q+3

V 2
t − σ2

1T




2

→ 0. (4.13)

Thus, the first part of (4.4) is proved.

Recall that

V 2
t =

t−q∑

s=2

s−1∑

u=1

A2
uφ

2
st(u) + 2

t−q∑

s1=3

s1−1∑

s2=2

s2−1∑

u=1

A2
uφs1t(u)φs2t(u) + 2

t−q∑

s=3

s−1∑

u=2

u−1∑

v=1

AuAvφst(u)φst(v)

+ 4
t−q∑

s1=4

s1−1∑

s2=3

s2−1∑

u=2

u−1∑

v=1

AuAvφs1t(u)φs2t(v) + 2
t−q∑

s1=3

s1−1∑

s2=2

s1−1∑

u=s2

s2−1∑

v=1

AuAvφs1t(u)φs2t(v)

≡
5∑

j=1

Vtj.

Since there are some similarlities between E [VtjVtk] for different j, k, we may need

only to deal with some of the terms. For example, we now apply Lemma 4.1 to deal with

E [Vt4Vt5] for 2 ≤ t ≤ T .

|E [Vt4Vt5]| = 8

∣∣∣∣∣

t−q∑

s1=4

s1−1∑

s2=3

s2−1∑

u1=2

u1−1∑

v1=1

t−q∑

r1=3

r1−1∑

r2=2

r1−1∑

u2=r2

r2−1∑

v2=1

Au1
Av1

Au2
Av2

φs1t(u1)φs2t(v1)φr1t(u2)φr2t(v2)

∣∣∣∣∣

≤ 8
∑

u1,u2

∑

v1,v2

Au1
Av1

Au2
Av2

(
∑

s1,s2

∑

r1,r2

|E [φs1t(u1)φs2t(v1)φr1t(u2)φr2t(v2)]|
)

(4.14)

It is easy to see that

∫
|φs1t(u1)φs2t(v1)φr1t(u2)φr2t(v2)|1+δ

dP

≤
{∫

|φs1t(u1)φs2t(v1)|2(1+δ)
dP

∫
|φr1t(u2)φr2t(v2)|2(1+δ)

dP

}1/2

≤ MT4. (4.15)

Similar to (4.10), one can have for any (s1, s2) 6= (r1, r2),

|E [φs1t(u1)φs2t(v1)φr1t(u2)φr2t(v2)]| ≤ 10M
1

1+δ

T4 {β(∆(s1, s2, r1, r2))}
δ

1+δ , (4.16)
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where ∆(·) is as defined in (4.10).

Consequently, one can show that as T → ∞

|E [Vt4Vt5]| ≤
{
O

(
T 3M

1
1+δ

T4

)
+O

(
T 2MT3

)}
· max





(
T−1∑

u=1

Au

)4

,

(
T−1∑

u=1

A2
u

)2


 = o

(
σ4

T

)
.

(4.17)

Thus, the second part of (4.4) follows from

T∑

t=q+3

E
[
V 4

t

]
=

5∑

j=1

5∑

k=1

T∑

t=q+1

E [VtjVtk] = O

(
T 3M

1
1+δ

T4

)
= o(σ4

T ). (4.18)

This finishes the proof, and therefore the first part of (4.3) is proved. We now finish the

proof of the second part of (4.3).

Applying Lemma 4.3 implies that as T → ∞

E |L2T | ≤
∑

u

Au

T∑

t=q+2

t−q∑

s=2

E |E [θst(u)|It−q]|

≤ C

(
T−1∑

u=1

Au

)
·
(
TM

1
2(1+δ)

T7

)
= o(σT ) (4.19)

using the conditions of Theorem 2.1.

The second part of (4.3) for L4T follows from the conditions of Theorem 2.1 and

E |L4T | ≤
∑

u

Au

T∑

t=2

∑

t−s≤q−1

E (E [|θst(u)| |It−q])

=
∑

u

Au

T∑

t=2

t−1∑

s=t+1−q

E [|θst(u)|] ≤
(

T−1∑

u=1

Au

)
·
(
TM

1
2(1+δ)

T7

)
= o(σT ). (4.20)

We finally prove the second part of (4.3) for L3T . Similar to (4.7), using Lemma 4.1,

one can show that as T → ∞
∣∣∣∣∣∣

T∑

t=2

t−1∑

s1=t+1−q

t−1∑

s2 6=s1,s2=t+1−q

E [φs1tφs2t]

∣∣∣∣∣∣
≤

T∑

t=2

t−1∑

s1=t+1−q

t−1∑

s2 6=s1,s2=t+1−q

E [|φs1tφs2t|]

≤ o
(
T 2q MT3

)
,

∣∣∣∣∣

T∑

t1=3

t1−1∑

t2=t1+1−q

t1−1∑

s1=t1+1−q

t2−1∑

s2=t2+1−q

E [φs1t1φs2t2 ]

∣∣∣∣∣ ≤ o
(
T 2q2 MT3

)
. (4.21)
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Using E[φst|It−q] = 0 and (4.21) imply that as T → ∞

E
[
L2

3T

]
=

T∑

t=2

t−1∑

s=t+1−q

E
[
φ2

st

]
+

T∑

t=2

t−1∑

s1=t+1−q

t−1∑

s2 6=s1,s2=t+1−q

E [φs1tφs2t]

+ 2
T∑

t1=3

t1−q∑

t2=2

t1−1∑

s1=t1+1−q

t2−1∑

s2=t2+1−q

E [φs1t1φs2t2 ]

+ 2
T∑

t1=3

t1−1∑

t2=t1+1−q

t1−1∑

s1=t1+1−q

t2−1∑

s2=t2+1−q

E [φs1t1φs2t2 ]

=
T∑

t=2

t−1∑

s=t+1−q

E
[
φ2

st

]
+

T∑

t=2

t−1∑

s1=t+1−q

t−1∑

s2 6=s1,s2=t+1−q

E [φs1tφs2t]

=
T−1∑

u=1

T−1∑

v=1

AuAv

T∑

t=2

t−1∑

s=t+1−q

E [φst(u)φst(v)] +
T∑

t=2

t−1∑

s1=t+1−q

t−1∑

s2 6=s1,s2=t+1−q

E [φs1tφs2t]

+ 2
T∑

t1=3

t1−1∑

t2=t1+1−q

t1−1∑

s1=t1+1−q

t2−1∑

s2=t2+1−q

E [φs1t1φs2t2 ]

= O

(
Tq2M

1
2
T3

)
= o

(
σ2

T

)
.

This therefore completes the proof of Theorem 2.1.

5. Conclusions

In this paper, we have established some new results for central limit theorems for

U–statistics of weakly dependent processes. Theorem 2.1 is useful for establishing asymp-

totic distributions for nonparametric estimators and test statistics computed using the

weakly dependent β–mixing data. In addition, we have demonstrated the conditions of

Theorem 2.1 are justifiable. We also show that the weakened condition: E[φ1(X1, y)] =

E[φ1(x,X1)] = 0 for all x and y would make Corollary 2.1 directly applicable to establish

asymptotically normal test statistics for density function specification.
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