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Abstract 

Widespread in THE literature is the conclusion that air pollution is associated with 
various health problems. The present study discusses two discrete Data Envelopment 
Analysis (DEA) models and two related indexes. This approach has been adopted in 
previous research by Halkos & Argyropoulou (2021a, 2021b, 2022). Consequently, 
this paper uses inputs and insights published in the above-mentioned studies to 
evaluate the efficiency of managing pollutant levels in terms of health status at a 
country level. The main objective here is to offer useful tools to researchers, so that 
depending on their needs they can refer to the appropriate methodology, comparing 
the above evaluation models and presenting their capabilities, advantages and 
disadvantages. 
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1. Introduction 
Air pollution is the deterioration of air quality because of changes that occur 

(e.g., chemical or physical) caused by nature itself or due to human activities. Air 
pollution is divided into indoor and outdoor pollution. Indoor air pollution refers to 
the air we breathe at home and generally indoors. Both natural and man-made causes 
cause outdoor air pollution. The main sources in the case of pollution generated by 
nature outdoors are biological decay volcanoes, lightning, and forest fires with the 
sulfur and nitrous oxides emitted. Furthermore, grasses, plants, trees, and dust storms 
with the particles emitted contribute to increased pollution levels. Outdoor air 
pollution attributed to anthropogenic activities is widely caused by fossil fuel burning. 
Most specifically, this situation is based on the use of coal, oil, and natural gas in 
power plants—also, industrial units, refineries, households, and transportation (e.g., 
old vehicles) contribute to this type of pollution (Halkos 1993, 1994; Halkos et al., 
2021).  

The assumption that air pollution devastates the health status of organisms is 
not recent. This was acknowledged in the first years of the 20th century. Specifically 
in 1930 in the Meuse valley (Firket, 1931) and in 1948 in Donora, Pennsylvania 
(Ciocco & Thompson, 1961), with the most important being the great London smog 
of 1952. The latter proved to be disastrous, as the very high levels of particulate-based 
smog. Consequently, various health effects and, primarily, respiratory tract infections, 
such as bronchitis, hypoxia, and bronchopneumonia, led to the death of 4000-12000 
people. Not surprisingly, the reality of those years confirmed that increased 
concentration of air pollutants creates negative (adverse) impacts on human health 
status.  

Interestingly, the economic aspect of such a situation deserves our attention. 
Air pollution is linked with considerable expenses for medical reasons. Based on 
calculations of the OECD (2016), these expenses were estimated at 21 billion dollars 
worldwide in 2015, with loss of both labor productivity (due to increase in days lost 
from illness), as well as to loss of land productivity. The latter is caused by acid rain, 
which releases toxic chemicals into the air, water, and soil. Cohen et al. (2005) claim 
that air pollution increases morbidity. Moreover, 800.000 annual premature deaths 
worldwide can be a global burden of disease because of outdoor air pollution. Finally, 
air pollution and the resulting health problems in an area deter foreign business and 
tourism and deterring foreign businesses and tourists, reducing revenue derived from 
these sectors. 

Simultaneously, there is a rising interest for analytical and comparative 
reasons regarding the health care systems and questionable environmental efficiency 
within the context of non-parametric and parametric applications. In a literature 
review processed by Varabyova and Müller (2016), the health systems’ efficiency 
concerning countries in the OECD was discussed. Additionally, Halkos and Tzeremes 
(2011) reviewed the current literature on performance measurements and processed 
conditional non-parametric methodologies to estimate efficiency levels regarding 
public health care provision at a regional level. Finally, Song et al (2012) investigate 
the various methodologies that have been used in the evaluation of environmental 
efficiency. 



2. Background and Relevant Literature 

The categories in which atmospheric pollutants are classified are four. The 
first category includes gaseous pollutants - for instance, SO2, NOx, CO, ozone and 
volatile organic compounds. Variations in atmospheric composition are largely due to 
gaseous pollutants, mainly emitted by burning fossil fuels. More specifically, sulfur 
dioxide (SO2) is an extremely reactive gas with a strongly irritating odor. Carbon 
monoxide (CO) is an odorless, colorless gas formed due to burning biomass and 
incomplete combustion of carbon in fuels caused by transportation (e.g., vehicles) and 
power generation from coal-fired and heating (Godish, 2003). Specifically, carbon 
monoxide reduces the body’s oxygen and relevant needs of the body's organs (e.g., 
heart and brain) and tissues. Furthermore, at very high levels, it is responsible for 
poisoning, creating death conditions. Ozone (O3) consists of 3 bonded oxygen atoms. 
Ozone is the core element of smog and it is created because of the interaction between 
sunlight and releases from vehicles and or industry. Problems in health conditions 
caused by ozone inhalation are varied. Such are chest pain, cough, throat irritation and 
congestion, worsening bronchitis and asthma, and limiting lung function. 

Volatile organic compounds (VOCs) are mainly indoor pollutants. 
Concentrations of VOCs are greater in indoor air environments than outdoors. VOCs 
can cause many serious health issues. Starting from nose, eye, and throat irritating 
health issues, they can create shortness of breath, dizziness, headaches, fatigue, 
nausea, and skin quality issues. Problems in health status include lung irritation, liver 
damage, kidneys, or central nervous system due to increased concentrations of these 
pollutants. Intense and long-lasting exposure to these pollutants will create health 
issues for the liver, kidneys, and central nervous system. On the contrary, short-term 
exposure does not cause particular health problems. In many cases, some sort of 
VOCs is under investigation since they cause cancers, whereas some are proven 
carcinogens. Therefore, the health effects caused by volatile organic compounds 
depend on the degree of concentration, the duration of exposure to the chemicals and 
the degree of sensitivity of the organism, as people with asthma, for example, are 
more sensitive. 

The second category includes persistent organic pollutants. These pollutants 
include as dioxins. Dioxins are considered in the environment for a long period of 
time. They also accumulate in the food chain, mainly in the fatty tissue of animals. 
Dioxins are recognized as very toxic, and great attention should be paid to experts in 
the field to protect our health status. A wide range of problems have their roots in the 
toxicity of dioxins. Reproductive issues, developmental and hormonal problems, and 
immune system damage are some issues that should be considered.  Moreover, the 
World Health Organization (2016) argues that this toxicity can cause cancer. 

The third category concerns heavy metals. Heavy metals include mercury, 
lead, arsenic, cadmium, and other toxic metals. These pollutants are investigated in 
the environment. These releases are the output of processes that humans put into 
practice. For instance, heavy metals are released due to coal and waste burning, metal 
mining and smelting, industrial processes, and volcanic emissions as well (Lee et al., 
2002; Godish, 2003). Due to their toxicity, high concentrations might be responsible 



for delays in the development process, many cancers, endocrine disorders, immune, 
kidney damage, neurological, and other disorders (Moreira & Moreira, 2004). 

The last category is a mixture of particles of different sizes and chemical 
compositions of PM10 and PM2.5. These pollutants originate from soil and road dust, 
diesel exhaust, combustion and industrial process releases, construction and 
demolition, powdered pesticides, bioaerosols, and volcanic ash (Dickey, 2000; Brook 
et al., 2004). The toxicity of particles largely depends on their size, as the smaller they 
are, the easier it is for them to penetrate into the alveoli of the lungs, making them 
extremely dangerous to human health. (Brunekreef, 2005). More specifically, these 
pollutants cause severe health issues: premature deaths, heart or lung diseases, 
irregular heart rhythms, worsening asthma, non-fatal heart attacks, problematic lung 
function and increased respiratory symptoms such as airway irritation, coughing, or 
difficulty breathing. (Atkinson et al., 2010; Meister et al., 2012; Correia et al., 2013; 
Fang et al., 2013; Cadelis et al., 2014). 

The connection of the above discussed air pollutants with the body systems 
they impact are presented in the following table (Table 1). 

 

From the above analysis, there is an understandable matching between air 
pollutants to various health problems regarding many body systems.  

Another source of health problems, which according to WHO (2008) affects 
one third of the world's population, is also water pollution, which is closely related to 
poor hygiene and shortage drinking water safely, causing 1.6 million deaths annually 
(WHO, 2009). According to WHO (2002), the most serious waterborne diseases are 
cholera, acute diarrhoea, legionellosis and typhoid fever. In fact, cholera has re-
emerged in Africa. Cholera was absent for almost a century. This issue should be of 
high importance and needs further and serious consideration (Ashbolt, 2004).  Other 
diseases also linked to lack of water and poor sanitation are hepatitis A and E viruses, 
the parasitic protozoan Giardia lambia and rotaviruses (Ashbolt, 2004). 

As mentioned above, air’s pollution impacts on health status also have various 
economic effects. OECD (2016), categorizes these impacts into decreased labor 
productivity, greater health spending, and lower crop yields. In addition, (OECD, 
2016) estimates that in 2060, globally, lost working days will be approximately 3.75 
billion days. Furthermore, the cost of health effects due to air pollution in OECD 



countries (including deaths and illnesses) was estimated based on the Willingness-to-
Pay approach to be $1.7 trillion in 2010 (OECD, 2014). The cost of premature deaths 
caused by air pollution concerning European Region countries is estimated at around 
1.4 trillion dollars. The total cost of health effects caused by air pollution is estimated 
annually at approximately 1.6 trillion dollars. (WHO, 2015) 

3. Methodologies and Data used 

This study presents two Data Environmental Analysis (DEA) models and two 
indicators adopted to evaluate the effectiveness of managing pollutants concerning 
health status: 

 i)  the DEA model in its simple form 

 ii)   the DEA model under the two-step approach  

 iii)   Two SDG indexes: 

 the simple mean Bertelsmann Index (BI) 
 the OECD’s Distance Measure Index (DMI) 

 
The analysis helps researchers to select the appropriate, for each case, research 
method. 

3.1 The simple DEA model 

3.1.1  The method 

 DEA is a non-parametric methodology. It uses the linear programming 
approach. It is employed to evaluate the relative efficiency of a group of comparable 
decision-making units (DMUs), by processing several inputs to create several outputs 
(Charnes et al., 1978). Practically, the estimated relative performance of each DMU is 
compared with the most efficient DMU. The most efficient DMUs in the sample is 
treated as a benchmark No assumptions are required concerning the production 
function and the relevant mathematical form that supports it. Furthermore, 
relationships that are hidden to other methodologies are disclosed. 
 
 Cooper et al. (2011) argue that DEA concerns either constant returns to scale 
(e.g., CRS DEA models), or variable returns to scale (e.g., VRS DEA models). In the 
first case, a change in inputs or outputs results in a proportional change in outputs or 
inputs respectively. In the second case, changes in inputs or outputs do not result in a 
proportional change in outputs or inputs respectively. 
 
 Assuming free disposal, which implies possibility not to use or destroy inputs 
or outputs without cost and convexity. This methodologically indicates that when two 
observations are possible, then all linear combinations between them are possible as 



well. The output set DEA estimator to measure the efficiency for a given input-output 
combination (x, y) can be defined as: 

 

 

where  under the constraint  allows for VRS and is often referred as 
 (Banker et al., 1984), while if the equality constrained  is 

dropped, then  allows for CRS (Daraio and Simar, 2007). 

In particular, adopting output orientation, the output efficiency score estimator 
is defined by solving the following linear program: 

 

 

 

While, using an input-orientation, the estimator of the input efficiency score can be 
defined by solving the following linear program (Daraio and Simar, 2007): 

 

 

 

Nevertheless, the biased efficiency scores from the application of traditional 
DEA models can be obtained (Löthegren and Tambout, 1999). Correcting for this bias 
is achieved using the DEA bootstrapping method (Simar and Wilson, 1998), which is 
a statistical process which replaces the original data set. This concerns an iterative 
replacement process which in turn creates a simulated data set. (Efron, 1979) 

The bootstrapping estimated bias of  is attained by the next equations: 



 

Hence, the bias corrected estimator is determined by the following subtraction: 

 

 

 

 

where  is the bias corrected estimator, 

 is the estimator of , 

 is the estimator of  

B is the number of the bootstrapping generated pseudo – samples , and  is 
the Monte Carlo approximation of the  distribution ( ). 

Then, the bootstrap (Simar and Wilson, 1998) algorithm a Return To Scale (RTS) test 
is adopted.  The null hypothesis is the following: 

 is globally CRS 

Consequently, the alternative hypothesis is defined as: 

 is VRS 

It is used as test statistics the mean of the ratios of the efficiency scores: 

 

By construction  we reject the null hypothesis if 
the statistics T is too small. The p-value of the H0 is received by the following 
mathematical type: 



 

where  is the value of T computed on the original observed sample . 

Due to the difficulty of p-value’s accurate calculation, this value is 
approximated by using the bootstrap (Simar and Wilson, 1998) algorithm as follows: 

 

where . 

3.1.2  The empirical Application 

In this research Halkos & Argyropoulou (2021a) use two DEA model 
specifications.  The Model 1 considers as two inputs Capital Stock and Labor Force in 
a production function setup, while uses as a desirable output Gross Domestic 
Production (GDP) and as an undesirable (bad) output Mortality. The Model 2 
concerns as an additional input Environmentally Related Tax Revenue, while the rest 
remain the same as in Model 1. The undesirable output of mortality due to pollution 
was treated using a directional distance function. 

The data to process the analyses consider the years 2000, 2005, 2010, 2014, 
2015 and 2016 and concern the European countries.1 Table 1 presents the received p-
values regarding the RTS test (with B=999). These p values concern each reference 
year and each of the two models adopted in the present study. As it is observed, based 
on the p-values the H0 of CRS is accepted, whereas in the case of model 2 the null 
hypotheses of CRS is rejected, while the p-value = 0.0000. The results of the two 
DEA applications have been published in Computational Economics by Springer 
(Halkos and Argyropoulou, 2021a). 

 

                                                             
1 The countries used are Austria, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, 
Ireland, Italy, the Netherlands, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, the United 
Kingdom The sources of the data were the following: 

 OECD (https://stats.oecd.org/index.aspx?queryid=72722) 
 Annual macro-economic database of the European Commission 

(https://ec.europa.eu/info/business-economy-euro/indicators-statistics/economic-
databases/macro-economic-databese-ameco/download-annual-data-set-macro-economic-
database-ameco_en#capital-stock) 

 Knoema World Data Atlas (https://knoema.com/pjeqzh/gdp-per-capita-by-country-statistics-
from-imf-1980-2023?country=Portugal) 

DataMarket (https://datamarket.com/data/set/1uty/labor-
force#!ds=1uty!1w3z=2z.31.6r.56.q:1w40=2&display=line). 



 

3.2 The two-stage DEA model 

DEA models processed in two-steps are considered systems consisting of 
more than one interconnected process (Kao, 2009) through first-stage outputs called 
intermediate variables which are transformed into second-stage inputs (Zha and 
Liang, 2010). This approach is extensively adopted to elaborate on efficiency issues, 
for instance, in healthcare, environmental and energy matters.  

3.2.1  The method 

Two core structures exist: the series and the parallel structure. In a series 
structure all internal processes are linked in a serial form. In this case the outputs of 
each stage serve as an input to the next stage as an intermediate set of data. Figure 1 
shows a series structure. To characterize this structure efficient (efficiency of the 
DMU), all processes must be efficient (Shahroudi et al., 2011). 

 

In contrast, in a parallel structure, all processes operate independently as shown in 
Fig. 2 (Keikha-Javan and Rostamy-Malkhalifeh, 2016). 

 



A two-stage DEA system has four classifications (Halkos et al., 2014): 

i) The independent two-stage DEA system. In this case no potential interaction 
between the two stages is present (Wang et al., 1997; Seiford and Zhu, 
1999). 
 

ii) The connected two-stage DEA approach. In this case the calculating process 
for the overall efficiency considers the interactions between the two stages 
(Chen and Zhu, 2004). 

 
iii)  The relational two-stage DEA model. In this case the overall and individual 

stage efficiencies are related with a mathematical relationship. This 
relationship can be additive (Chen et al., 2009) or multiplicative (Kao and 
Hwang, 2008). 

 
iv)  Finally, the game theory models (Liang et al., 2006, 2008). This approach 

explores the supply chain by considering a seller-buyer game under both 
non-cooperative and cooperative cases. 

In the existing Literature, there is a considerable number of two-stage DEA 
studies. These studies include undesirable variables by adopting the additive model 
(Chen et al., 2009). Halkos & Argyropoulou (2021b) applied a modified 
multiplicative Kao and Hwang (2008) two-stage DEA model considering the 
existence of undesirable variables They used the R programming language. R 
programming language is a free and open-source (Ross Ihaka and Robert Gentleman 
in 1993 developed this language). This programming language can be used in 
statistical computing, for data analysis and robust scientific research. This approach 
by Halkos & Argyropoulou (2021b) is not observed in relevant studies. It widely 
enriches the existing literature and provides new opportunities in this research field.   

The multiplicative two-stage model (Kao and Hwang, 2008) considers the 
conventional CCR (Charnes et al, 1978) DEA model. This model is used to measure 
the efficiency of DMUp. Interestingly, it assumes the constant returns-to-scale.  
According to this model if the i-th input of j-th DMU (j=1,…,n) is denoted by 

 and the r-th output of j-th DMU (j=1,…,n) by  , then 
the efficiency of DMUp is calculated by the following equations: 

                                                               (1) 

s.t.   

 



where α is a small non-Archimedean number (Charnes et al, 1979; Charnes and 
Cooper, 1984). Based on the model above, each DMU applies m inputs in order to 
produce s outputs. Ep stands for the relative efficiency score of DMUp. If E equals 
to1 then that DMUp is efficient. If Ep<1 then that DMUp is considered non efficient. 

Model (1) represents a linear fractional program. This Model can be transformed into 
the following linear program: 

                                                           (2) 

s.t.   

 

 

Taking into account the series two-stage DEA process (Figure 1), the efficiencies of 
DMUp in the first and the second stages are respectively determined as:  

  and  

where  and  are the input and output weights in the 
first stage and .  The  denote the input and output 
weights concerning the second stage. 

Kao and Hwang (2008) document the efficiency DEA models of stage 1,  , and stage 
2,  based on the following equations: 

                                                               (2i) 

s.t.     

 

                       (2ii) 

s.t.   

 



Practically, these two models are the same as model (1).  The overall efficiency model 
connects the two sub-processes developed by Kao and Hwang (2008) with regards to 
the following types: 

                                                               (3) 

s.t.   

 

 

 

Based on Charnes and Cooper (1962)’s transformation, models (2i), (2ii) and (3) can 
be converted into the linear programs (LP) for solution, as follows: 

                                                         (4i) 

    s.t.   

   

 

                 (4ii) 

s.t.   

  

 

                                              (5) 

s.t.   

 

 



 

 

By solving model (5) optimal multipliers ,  and  can be obtained.  As a result, 
the efficiencies are calculated as: 

,  ,   

Multiplying the numerator and the denominator of  with the same quantity 
, we receive: 

 

Yet, the optimal coefficients concerned by model (5) might not be unique. 
Consequently, the product may not be unique too. Therefore, comparing one or all 
DMUs has no common basis. To overcome this issue, the researcher can find that set 
of multipliers that creates the largest whereas maintaining the overall performance 
score by using (5). Consequently, model (6) is developed by Kao and Hwang (2008) 
based on the following types: 

                                                              (6) 

s.t.   

  

   

 

 

 

After estimating  based on model (6), the efficiency regarding the second stage is 

given by  as . 

 



3.2.2  The empirical Application 

In this research, Halkos & Argyropoulou (2021b) concern the performance of 
23 countries2 has been estimated from 1990 to 2017. Table 3 presents the 23 countries 
in research: 

 

Figure 3 shows the model’s structure: 

 

The above presentation shows that labor force, capital stock, and energy use are 
treated as inputs in the first stage. GDP serves as the desirable output. This output 
comes from the first stage. SOx are treated as undesirable output. They turn into an 
input of the second stage. Also, production respiratory disease deaths are used as 
undesirable output coming from the second stage. It would be essential to note that 
smoking is the most common cause of respiratory disease. Notwithstanding, sulfur 
oxides is another core source for respiratory disease. 

 The modification processed by Halkos & Argyropoulou (2021b) concerning 
the multiplicative Kao and Hwang (2008) model is presented in the following lines.  
Let us denote as:  

                                                             
2 The sources of the data used were the following: 

 European commission (https://ec.europa. eu/economy_finance/ameco/user/serie/ResultSerie.cfm) 
 World Bank database (https://data.worldbank.org/) 
 Eurostat (https://ec.europa.eu/eurostat/tgm/table.do?tab=table&plugin=1&language= 

en&pcode=sdg_07_11) 
 The OECD (https://stats.oecd.org/) 
 Our world in data (https://ourworldindata.org/grapher/respiratory-disease-deaths-by-age?country=GRC) 

 



, the i-th input of j-th DMU (j=1,…,n) 

                          the d-th desirable intermediate variable of j-th DMU (j=1,…,n) 

                          the k-th undesirable intermediate variable of j-th DMU (j=1,…,n) 

                         the r-th undesirable output of j-th DMU (j=1,…,n) 

After transforming the Seiford and Zhu (2002) of the undesirable variables, the Kao 
and Hwang (2008) model is transformed as: 

                                                        (7) 

s.t.    

 

 

 

            (8) 

s.t.   

 

  

 

 

 The transformations of Charnes and Cooper's (1962), modify models (7) and 
(8) into the next linear programs (LP) for solution: 

            

 



                                           (9) 

s.t.   

 

 

 

 

                   (10) 

s.t.   

 

 

 

 

 

After computing  and  from models (9) and (10), the efficiency of the second 

stage is calculated as . 

The test results of the two stage DEA application have been published in Air Quality, 
Atmosphere and Health by Springer (Halkos and Argyropoulou, 2021b) 

 

 



3.3  SDG indexes 

The performance of the 3rd Sustainable Development Goal titled ‘Good health and 
well-being’ at the country level is estimated by adopting the following methods: 

 The simple mean Bertelsmann Index – BI (Lafortune et al., 2018; Sachs et al., 
2018) 

 The OECD’s Distance Measure Index – DMI (OECD, 2017) 

3.3.1  The methods 

i)  Bertelsmann Index (Lafortune et al., 2018; Sachs et al., 2018) 

Sachs et al. (2018) use the following rescaling equation to achieve the normalization 
for comparability. We apply this approach and rescale the individual indicators from 0 
to 100: 

 

Where Rj the value of indicator j 

After this rescaling process concerning the variables, their weighting and 
concentration is demanded to calculate the SDG index. 

There are many procedures to aggragate. For instance, the Leontief production 
function, geometric mean, and arithmetic mean.  Halkos & Argyropoulou (2022) used 
the widely known arithmetic mean method, because of its simplicity and explication, 
adopting the following type: 

 

where Ni is the number of SDG’s indicators for country i, 

          Rij is the value of indicator j in country i 

According to the Bertelsmann Index (BI) simple mean formula the normalization of 
the calculated scores to the 0-1 scale is preceded.  The higher the BI score, the better 
the country’s performance, and vice versa. 

The results of the BI scores have been published in Ecological Economics by 
Elsevier (Halkos and Argyropoulou, 2022) 

ii)  The Distance Measure Index (OECD, 2017) 

This measure concerns a country's distance from a certain (specified) target score with 
reference to that indicator. To calculate this index for an SDG target, a country's 
distance from each indicator’s specified target score is first calculated. The quotient of 



this distance to the standard deviation of the index scores across all countries is then 
calculated. The maximum value between this quotient and zero is found. This 
maximum estimator is then divided by the number of indices and lastly these are 
added. 

Thus, we have the following formula: 

 

where Sij is the score value of indicator j for country i, 

          Kj is the target score for indicator j 

          Ni  is the number of indicators 

          SDj is the Standard Deviation of indicator j in all countries. 

 means for a country that its target score has been achieved.  

After the computation of the above indexes, Halkos & Argyropoulou (2022) have 
made forecast of the DMI scores for each country to decide which specific countries 
will have zeroed them by 2030. 

This index measures each country's distance from its targeted goal. Therefore, the 
smaller the Distance Measure Index (DMI), the better the country's performance, and 
vice versa.  As a target has been set the reduction of each variable by 40%.3  (Halkos 
& Argyropoulou, 2022) 

The results of the DMI scores have been published in Ecological Economics by 
Elsevier (Halkos and Argyropoulou, 2022) 

3.3.2 The empirical Application 
 This paper concerns the SDG target 3.9: “By 2030, substantially reduce the 
number of deaths and illnesses from hazardous chemicals and air, water and soil 
pollution and contamination” 

Target 3.9 is linked with the following three indicators:  
 

 Indicator 3.9.1: “Mortality rate attributed to household and ambient air 
pollution”.  
 

 Indicator 3.9.2: “Mortality rate attributed to unsafe water, unsafe sanitation 
and lack of hygiene”.  
 

 Indicator 3.9.3: “Mortality rate attributed to unintentional poisoning.”  
 

 

                                                             
3 This percentage has been chosen since this is an achievable target (neither too strict, nor too lax). 



 Thus, the following variables have been used in the analysis: 

a)  Death Rate from air pollution 

b)  Death Rate from poisonings 

c)  Death Rate from poor sanitation 

d)  Death Rate from unsafe water 

The data4 used concern 107 countries (Table 4) for the period 1990 to 2017. The 
countries were selected based on the countries' income classification defined by the 
World Bank for 2020-2021, in order to facilitate the comparison of results and useful 
conclusions based on each country's income to be drawn. This classification includes 
the following four income categories: 

i)  Low income                              <1.036 

ii)  Lower – middle income          1.036 – 4.045 

iii)  Upper – middle income          4.046 – 12.535 

iv)  High income                           >12.535 

Thus, as shown on Table 4 below, there are 14 low income countries, 22 lower – 
middle income countries, 24 upper – middle income countries and 47 high income 
countries. 

 

 
 
 
 
 

                                                             
4 The source of the data used is:  https://Ourworldindata.org  



4 Conclusions 
 
Below are the conclusions for each methodology described, as according to Halkos 
& Argyropoulou (2021, 2021, 2022) have been derived. 
 

 4.1 The simple DEA model 

Based on the bias corrected scores the core conclusions that can be drawn are 
(Halkos & Argyropoulou, 2021a):  

 In the first specification model the higher efficient countries over the years are 
Sweden, Finland and France. 

 Concerning the second model, Slovenia, Denmark, UK, Netherlands, Sweden 
and France proved to be most efficient countries over the years. 

 Sweden is the most efficient having on average the maximum efficiency 
scores. 

 In the first specification, Slovak Republic, Hungary, Poland and Greece are 
the less efficient countries having on average the highest rates of mortality and 
very low levels of GDP/c. 

 In the second specification, Slovak Republic, Hungary, Poland, Greece and 
Estonia are the less efficient countries having on average the highest rates of 
mortality and very low levels of GDP/c. 

 Countries that have the GDP/c can achieve greater overall health, wellbeing 
and healthcare/medical status (standards). Thus, the above conclusions could 
be justified by the fact that the richer the country is, the lower death rates from 
air pollution. (Ritchie and Roser, 2017) 

 On the contrary, countries with low GDP/c levels may have lower overall 
health and healthcare quality resulting in a higher burden because of pollution-
related disease (Akhtar et al., 2002). 

 Finally, the following Table shows that there is a small percentage difference 
between the two models in the mean efficiency scores. Thus, the effect of 
environmental tax revenue on the efficiency scores seems to be negligible. 

 

 

 



 4.2 The two-stage DEA model 

 Based on the data statistics, although SOX is reduced, in most of the cases, in 
most of the countries, the respiratory disease deaths are rising from 1990 to 2017. 
This situation can be explained by other determinants (factors) that may create 
respiratory illnesses, for instance, the PM2.5, or smoking, in which there is also a 
reduction over time. Linking together all these factors increases in deaths can be noted 
due to respiratory diseases. (Halkos & Argyropoulou, 2021b)  

 According to the efficiency scores, no country demonstrates efficiency in 
overall terms, since Ep<1. For all of the countries efficiency levels decreases over the 
years.  Considering the last three years, the performance of the 23 selected countries 
in producing is better than in reusing the undesirable pollutant output (SOX). 
(Ep

1>Ep
2) 

 

 4.3 SDG indexes 

4.3. i) Simple mean Bertelsmann index 
 

The average value of the BI is greater for low-income countries than high-
income countries in the period of years considered.  Hence BI and income are 
positively related. (Halkos & Argyropoulou, 2022). In addition, the average BI for the 
two lowest income categories shows a downward trend, in contrast to the upward 
trend of the average BI noted in the other two highest income categories.  (Halkos & 
Argyropoulou, 2022). 

 
4.3.  ii) Distance Measure Index 

According to the DMI scores, countries’ DMI performance and their income are 
negatively related. Additionally, the majority of the countries are closely reaching the 
target set for reducing the variables by 40%, since the DMI decreases over the time. 
Halkos & Argyropoulou (2022) have forecast that the majority of countries will 
approach their goal until 2030 belong to the upper – middle- and high-income 
categories. 

Overall, it can be said that countries’ performance with high income are better on 
both indexes compared to low-income countries. Thus, high-income countries have a 
better chance to meet the Sustainable Development health goals linked to 
environment related issues by 2030. 
 

Comparing the two indexes, Halkos & Argyropoulou (2022) drew the following 
conclusions: 

 
 BI seems to be more reliable compared to DMI, since BI gives a clearer 

relationship between the index and income (high income countries are in first 
place, low-income countries are in last place). Based on the DMI some 
countries appear in the first place despite the fact that they belong to the third 
income category, whereas other countries appear in the last place despite 
belonging to the second income category. 
 



 The BI is more objective than DMI which is considers the subjective goal that 
is each time determined, depending on how strict or relaxed is the preferable. 
 

 On average the two indexes confirm each other and both of them confirm the 
relationship between the two indexes with per capita income. This is 
illustrated in an antisymmetric relationship between them. 

 
Consequently, environmental performance is better for wealthy countries than for 

poor countries. Ineffective policies or their hesitation to handle the issues derived 
from air pollution could be an explanation for this lower index evaluation concerning 
the performance countries with low income (Halkos & Argyropoulou, 2022) 

5  Discussion and Policy Implications 

This paper summarizes the methodologies used in the research by Halkos & 
Argyropoulou (2021a, 2021b, 2022). The goal is for researchers dealing with these 
issues to acquire the tools they need, so that depending on their needs they can refer to 
the appropriate methodology. For this purpose, the capabilities, advantages and 
disadvantages of the above methodologies are summarized below. 

The methods described are used to measure efficiency. Their main differences 
consist in the information we can get from their results. 

The simplest method is that of simple DEA model, which, like the two-stage 
DEA model, allows us to handle undesirable outputs, using the Seiford & Zhu (2002) 
transformation as described above. In addition, with bias correction, the results are 
becoming more reliable. 

Two-stage DEA model also handles undesired outputs. But the information we 
get from this is greater, as in addition to the overall efficiency’s scores, it also gives us 
the individual of each stage efficiency’s scores.  For instance, as aforementioned, 
Halkos & Argyropoulou (2021a), in their research, compared the efficiency scores of 
stage 1 with these of stage 2, concluding that countries perform better in producing 
than in reusing the pollutant output, as Ep1>Ep2. While the overall efficiency scores 
(Ep) lead to the conclusion that there is no overall efficient country. Consequently, it 
is obvious that the information is greater and the conclusions more targeted. 

The use of BI and DMI indexes are relatively simple as their calculation is 
based on simple formulas. They are comparable to each other, since as proved by 
Halkos & Argyropoulou (2022) there is an antisymmetric relationship between them. 
In addition, they give useful information from the prediction of their values, while 
allowing the researcher to investigate factors that may affect the achievement of the 
defined goals. In Halkos & Argyropoulou's (2022) application this factor was income. 
Alternatively, factors such as geographic location or educational level could be added.  
Even more, they may be related to issues of cultural dimensions (Halkos & Petrou,  
2019), waste management (Halkos & Aslanidis, 2024) as well as to qualitative 
aspects of the effect of stress and dissatisfaction on employees during any crisis,  
economic (Halkos & Bousinakis, 2017) or environmental (Halkos & Polemis, 2016). 
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