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Highlights 

 This study analyses whether spatial diversification reduces systemic risk. 

 Daily temperature and rainfall models are used to derive greater data samples. 

 Systemic risk is assessed through the Buffer Load, as measured by the Expected 

Shortfall, and the diversification effect.  

 Broadening the trading area generates significant diversification effects.  

 Rainfall insurance is a less-risky alternative as compared to temperature policies. 

Abstract 

This study assesses how effective spatial diversification is in reducing the systemic risk 

implied by a market for weather index-based insurance in Spain and compares rainfall- 

and temperature-based policies in terms of systemic risk. Based on historical weather 

data, daily models which rely on the multivariate normal distribution are applied to derive 

greater samples. The results show that the Buffer Load, as measured by the Expected 

Shortfall, decreases up to 67% as the level of aggregation increases. This suggests that 

the trading area should not be focused on a specific county, but on Spain as a whole. 

Considering the highest aggregation degree, it is also shown that the diversification effect 
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is significant, of up to 0.35. Finally, it is noted that rainfall insurance is a less-risky 

alternative as compared to temperature-geared contracts, as it implies lower losses and 

prices and stronger risk pooling effectiveness. Therefore, we recommend the inclusion of 

this type of policies in the insurance companies’ portfolio. Finally, although this study 

focuses on a specific country, the proposed methodology can be easily extrapolated to 

other geographical areas.  

Keywords: weather index-based insurance; spatial diversification; systemic weather risk; 

risk pooling effectiveness; multivariate normal distribution. 

JEL Codes: C15, G22, Q54 

1. Introduction 

Climate change is increasingly leading to more frequent and intense extreme weather 

events. This raising weather variability will affect the agricultural industry most probably, 

entailing negative consequences for both the yield amount and quality (Mäkinen et al., 

2018). This may become a challenge to global food security and supply (Semenov and 

Shewry, 2011; Porter et al., 2014; Trnk et al., 2014; Asseng et al., 2015; Ray et al., 2015).  

Although the impact of climate change varies across countries and regions, especially 

negative effects are expected for the major food and feed crops both in tropical and 

temperate areas, such as Southern Europe (Porter et al., 2014; Mäkinen et al., 2018). In 

fact, it has been pointed out that European farms have slightly higher sensitivity to global 

warming than American farms, and, as reported in Van Passel, Massetti, and Mendelsohn 

(2016), those located in Southern Europe are projected to suffer losses ranging from 5% 

to 9% per Celsius degree.  

The current context emphasizes, thus, the urge of implementing measures to protect 

farms’ revenues, particularly in those regions which are more sensitive to the effects of 

climate change (Rufat et al., 2015). As a consequence, several alternatives to mitigate 

meteorological risk exposure have been suggested and eventually implemented in 

agriculture and other weather-sensitive industries. These measures can be of operational 

or financial nature (Allayannis, Ihrig, and Weston, 2001). The first group comprises those 

hedging strategies that imply a change in business operations, such as the acquisition of 
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new technologies as well as geographical and product diversification. For their part, the 

financial alternatives, represented by loss-based insurance and weather index-based 

insurance or weather derivatives, are those that aim to transfer risk to the market or 

insurance companies. This last type of measures are less capital-demanding and their 

implementation can be easily reversed (Tang and Jang, 2012).  

Among the financial alternatives, the popular and widely implemented loss-based 

modality stands as the preferred choice while the most recent option of weather index-

based insurance remains as the great unknown, despite its advantages. This paper focuses 

on this last instrument, which insures the cause or event instead of the effect. By doing 

so, it overcomes two of the most relevant drawbacks inherent to the loss-based modality: 

adverse selection and moral hazard. Furthermore, this hedging alternative also results 

more affordable, as payoffs are derived from objective criteria (Skees and Reed, 1986; 

Quiggin, Karagiannis, and Stanton, 1993; Smith and Goodwin, 1996; Coble et al., 1997; 

Hess, Richter, and Stoppa, 2002; Turvey and Kong, 2010). Given the welfare 

improvements that it poses, this tool shows a high potential to benefit the agricultural 

sector and many other weather-sensitive industries (Ye et al., 2017). However, its 

operational feasibility still needs to be further studied. In fact, the analysis of different 

issues related to this topic, such as the factors influencing farmers’ willingness to pay 

(Liu et al., 2019; Senapati, 2020), has proven to be crucial to ensure a correct insurance 

design and to spread the implementation of this tool.   

This paper approaches one of the main challenges refraining the supply of this hedging 

alternative: systemic risk. This source of uncertainty arises from the fact that effective 

insurability requires the presence of uncorrelated risks that occur with high frequency 

(Woodard et al., 2012). However, this requirement may be sometimes violated 

concerning index insurance, as the geographical dependence of the underlying weather 

measures can cause correlation in losses and lead to a large number of concurrent 

insurance claims (Glauber, 2004). In fact, several authors have shown that correlation is 

sometimes high and significant, especially at regional level, which cannot be afforded by 

private insurers. To avoid public intervention and the settlement of government subsidies, 

it is essential that insurance companies allocate a buffer fund, so that bankruptcy is 

avoided in the face of systemic risk (Miranda and Glauber, 1997; Mahul, 1999; Skees and 

Barnett, 1999; Duncan and Myers, 2000; Odening and Shen, 2014, Nguyen-Huy et al., 

2019). 
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As noted in Xu et al. (2010) and Odening and Shen (2014), insurers may mitigate and 

diversify the degree of systemic weather risk by broadening the trading territory. For 

example, excessive temperatures occurring within a small area might be highly correlated 

and decrease or even disappear at a broader scale. We focus on this topic in this article. 

Concretely, the objective of this study is twofold: 1) discerning whether an increase in 

the trading area can reduce systemic risk and, being this the case, to what extent; and 2) 

comparing the degree of systemic risk implied by temperature- and rainfall-based 

policies. These issues are assessed for Spain, given that this country, jointly with others 

in Southern Europe, is expected to be highly affected by climate change and, therefore, 

to experience more intense and frequent extreme weather events (Porter et al., 2014; Van 

Passel, Massetti, and Mendelsohn, 2016). Moreover, the agricultural industry, which is 

very sensitive to weather conditions, has a high weight in the productive structure of this 

country.  

To address the main goals of this study, we suggest the use of the multivariate normal 

distribution, which is applied to quantify dependence between weather states at different 

locations. Although this method is widely accepted in the meteorological literature, it has 

not been previously used to assess systemic risk in the context of weather-index 

insurance. This is a novel contribution of our research, which opens the path to its 

application by both industry practitioners and researchers. In fact, this method is 

significantly superior to the frequently used linear correlations, given that it captures non-

linear dependencies. Furthermore, it shares some of the advantages usually highlighted 

for copulas, as it defines the joint distribution considering both the variables’ marginal 

distribution and their correlation matrix. However, it is mathematically tractable, more 

straightforward, easier to understand, and less computationally demanding than 

multivariate copulas, and this reinforces the benefits of its application. One of the main 

pitfalls that may refrain the use of the multivariate normal distribution is that weather 

indices are not always normally distributed. However, in this study we overcome this 

drawback by employing the widely-applied and well-known daily rainfall model 

proposed by Wilks (1998) and latter refined by Mhanna and Bauwens (2011), whose steps 

are explained in more detail in Section 3.3.2. The model assumes that rainfall follows a 

Gamma distribution, given that this meteorological variable is bounded on the left by zero 

and thus, it is non-normally distributed (Shah, 2017). In fact, the Gamma distribution has 

been widely suggested in literature to capture rainfall patterns (Cao et al., 2004; 
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Leobacher and Ngare, 2011; Shah, 2017), given that it starts at the origin and has flexible 

shape (Forbes et al. 2011). The basic idea of the model, from which its main advantage is 

derived, is to assume that the needed correlations of random numbers are equal to the 

Gamma correlations between the rainfall occurrence series. The stochastic simulation is 

forced by a random number generator that generates correlated normal variates and then 

transforms them individually to get uniform marginal distributions. This multi-site 

rainfall model is able to reflect spatial characteristics efficiently. Mhanna and Bauwens 

(2011) provide the ‘step by step’ procedure proposed by Wilks (1998) and suggest some 

improvements to the previous model. Concerning temperature, we combine the broadly 

used technique initially suggested by Alaton, Djehiche, and Stillberger (2002) with some 

of the steps proposed by Mhanna and Bauwens (2011).  

Another original scholarly contribution of this article is the assessment and comparison 

of both temperature- and rainfall-based policies. This has been done previously only by 

Xu et al. (2010). However, the statistical reliability of this study was limited, as these 

authors did not generate random data. Instead, they based their results and conclusions on 

a small real sample. We overcome this limitation by comparing the degree of systemic 

risk implied by both weather variables using a methodology that allows the generation of 

random data. It is expected that correlation in terms of precipitation is lower and, 

therefore, that this variable has greater systemic risk reducing potential as compared to 

temperature. Being such the case, the supply of rainfall-based policies may contribute 

significantly to the mitigation of the degree of risk faced by insurers. Of course, it is worth 

noting that the methodology followed in this research can be extrapolated to other 

geographical areas easily. 

It should be noted that, although the importance of rainfall index insurance has increased 

over the last years, especially in rural areas, it is still undersupplied by insurance firms. 

These companies are often reluctant to the use of this insurance modality due to the degree 

of systemic risk. Thus, one of the most relevant remaining challenges to boost the supply 

of this insurance typology is deciding the size of the insured area, so that insurance firms 

can face an affordable degree of systemic risk. This study provides a methodology which 

helps insurance companies in this regard and contributes to the decision on their trading 

area. This may not only have positive effects for private insurers, but might also have 

important public policy implications. In fact, the methodology proposed in this study can 

help avoid the need of public intervention. 



6 

 

The rest of the article is organized as follows. The second section reviews the most 

relevant studies approaching geographical diversification as a mean to reduce systemic 

risk in the context of index insurance. Next, the third section introduces the materials and 

methods used to assess the degree of systemic risk and the pooling efficiency as well as 

those applied to generate bigger samples of meteorological data. The fourth section shows 

and discusses the main results reached. Finally, the fifth section ends up with some 

concluding remarks. 

2. Literature review 

As previously mentioned in Section 1, agriculture and thus, crop insurance, are highly 

affected by systemic risk. This type of risk arises from the spatial positive correlations 

usually found among crop yields, which are caused by widespread weather events (Feng 

and Hayes, 2016). As a result, several authors have highlighted that public intervention 

may be needed for crop insurance, given that the degree of systemic risk derived from 

natural disasters, such as droughts, floods, and other weather-related events (Miranda and 

González Vega, 2010), might be too high for private insurers (Doherty and Dionne 1993; 

Goodwin and Hungerford, 2014; Mahul, 1999; Miranda and Glauber, 1997). In fact, Li 

et al. (2020) and Enjolras, Capitanio and Adinolfi (2012) point out that crop insurance 

often results in failure in commercialization due to the safety premium rate which is 

required to farmers as a consequence of the level of systemic risk. In the same regard, 

Skees and Barnett (1999) highlight that the positive correlation across loss events may 

lead to prohibitive insurance. Duncan and Myers (2000) further emphasize this idea and 

state that systemic risk is the main factor affecting the failure of the market. In conclusion, 

the feasibility of a market for crop insurance is highly dependent on how efficiently 

systemic risk is managed (Shen, 2012).   

Authors such as Wang and Zhang (2003) have concluded that correlations between yield 

losses fade out rather quickly as distances between fields increase. Based on these results, 

several articles have suggested that geographical diversification may be a good alternative 

to reduce the degree of systemic risk.  As mentioned in the introduction, this study pursues 

analyzing whether geographical diversification can actually mitigate the systemic risk 

faced by weather index-based insurance providers and comparing the effect that this can 

have for temperature- and rainfall-based insurance. This requires the accurate 
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quantification of the degree of dependence between weather states at different locations. 

Several methodologies have been suggested in the literature for this purpose. The most 

common approach was followed by authors such as Goodwin (2001), Holly Wang and 

Zhang (2003) and Woodard and Garcia (2008), who evaluated risk pooling efficiency in 

US. They used simple correlation coefficients to measure dependence between yields at 

different stations as a function of distance. However, simple correlations cannot capture 

the frequent nonlinear dependencies between weather variables. To overcome this 

limitation, the use of multivariate copula-based models has been recently suggested. This 

technique was first applied for this purpose by Xu et al. (2010), who focused on the 

German agricultural industry and addressed both temperature- and rainfall-based policies. 

However, the statistical reliability of this study was limited, as it was based on a small 

sample. This limitation was overcome later by Okhrin, Odening, and Xu (2013), who 

derived a greater sample from a daily model for the temperature variable in China. These 

authors utilized multivariate asymmetric Archimedean copulas. The same methodology 

was applied by Awondo (2019) to assess drought risk in Africa. However, this author, 

who also relied on a daily model to derive a bigger sample, approached rainfall instead 

of temperature. Also focusing on precipitation, Nguyen-Hui et al. (2019) suggested for 

the case of Australia the use of vine copulas as a method to overcome some of the 

disadvantages of the Archimedeans, such as the assumption of the same dependence 

structure for all pairs or the use of the same copula function (Odening, Musshoff and Xu, 

2007; Nguyen-Huy et al. 2017, 2018a, 2019). 

3. Data and Methodology 

Daily temperature and rainfall data for the periods 1970-2018 and 1964-2018 respectively 

have been retrieved from the Spanish National Meteorological Agency, AEMET 

(Agencia Estatal de Meteorología). Although Spain is overall temperate, different 

regional climates can, indeed, be distinguished. Therefore, we selected 10 weather 

stations spread throughout whole Spain, aiming at covering the main regional areas of the 

country: Vigo, Gijon, Zaragoza, Barcelona, Valladolid, Madrid, Valencia, Sevilla, 

Malaga and Las Palmas de Gran Canaria. Figure 1 displays the location of these cities in 

the Spanish geography and Table 1 exhibits the distance in km between each pair of 

locations. The first group of cities is comprised by Vigo and Gijon. Despite their 
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geographical distance and slightly different climatic characteristics, they both belong to 

the Oceanic or Atlantic climate, which is characterized by frequent and intense 

precipitations throughout the year. Rainfalls are more recurrent in winter and less 

common in summer, while temperatures are overall mild and stable. For their part, 

Sevilla, Madrid, Zaragoza and Valladolid, each with its specificities, belong to the 

Continental Mediterranean climate, which is marked by cold winters and hot summers. 

Precipitation is scarce and variable and it is mostly recorded in autumn and spring. 

Temperatures range considerably. The next group is comprised by Malaga, Barcelona and 

Valencia. These three cities belong to the Coastal Mediterranean climate, which is 

characterized by a moderate temperature range, with hot summers and soft winters. 

Rainfall is scarce and changeable and takes place mainly in autumn and spring. Finally, 

Las Palmas de Gran Canaria is classified within the Subtropical climate, which is given 

by warm temperatures throughout the year, with very low volatility and scarce rainfall at 

the sea level. 

 

Table 1. Distance matrix. 

 
1 2 3 4 5 6 7 8 9 

2 287.7 
        

3 650.8 443.2 
       

4 907.2 685.3 256.6 
      

5 336.9 222.7 318.7 574.9 
     

6 465.3 382.3 272.9 505.4 161.9 
    

7 766 630.4 246.1 303.2 440.2 302.6 
   

8 587.8 683.6 644.3 829.5 486.2 390.2 540.4 
  

9 715.9 764.6 626.7 769.8 548.9 415.6 467.6 157.3 
 

10 1682.8 1923.4 1999.8 2174.3 1790.5 1737.5 1873.5 1355.9 1406.2 

Notes: 1: Vigo; 2: Gijon; 3: Zaragoza; 4: Barcelona; 5: Valladolid; 6: Madrid; 7: Valencia; 8: Sevilla; 9: 

Malaga; 10: Las Palmas de Gran Canaria. Distance is measured in km.  
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Figure 1. Location of the meteorological Spanish stations. 

The next subsections address the different steps followed in this study to assess risk 

pooling efficiency. First, we choose different meteorological indices that may be suitable 

underlyings for crop insurance policies. Next, we define the measures employed to 

evaluate risk pooling effectiveness as a function of the trading area. At this stage, we also 

show how the cities are clustered for the measurement of the diversification effect. 

Finally, in pursuance of increasing accuracy, we simulate daily temperature and rainfall 

data, which are then used to build the weather indices previously selected and to calculate 

the measures proposed to assess the degree of systemic risk.  

3.1.Selection of weather indices 

Any weather index-based insurance policy requires the selection of an underlying that 

describes the evolution of the meteorological variable of interest with accuracy. In this 

study, we choose the indices HDD (Heating Degree Days), CDD (Cooling Degree Days) 

and CR (Cumulative Rainfall) as underlyings, which have been widely proposed and 

applied in the agricultural-related literature.  

The HDD index is defined as: 

𝐻𝐷𝐷𝑦,𝑧 = ∑ max  (0, 18º𝐶 − 𝑇𝑖,𝑦,𝑧)

𝐼

𝑖=1

,  
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(1) 

where 𝑇𝑖,𝑦,𝑧 denotes the average temperature registered on day i and year y at station z, 

measured in Celsius degrees. This index is calculated for the winter period, comprised 

between November 1st and March 31st.1 

For its part, the CDD index is defined in the following form: 

𝐶𝐷𝐷𝑦,𝑧 = ∑ max  (0, 𝑇𝑖,𝑦,𝑧 −  18º𝐶)

𝐼

𝑖=1

  

(2) 

Its period of calculation is comprised between May 1st and September 30th. 

Finally, the CR index is defined as: 

𝐶𝑅𝑦,𝑧 = ∑ 𝑅𝑖,𝑦,𝑧

𝐼

𝑖=1

,  

(3) 

where 𝑅𝑖 denotes the rainfall registered on day i and year y at station z, measured in 

millimeters. As for the CDD measure, this index is calculated for the period comprised 

between May 1st and September 30th. 

The descriptive statistics of the three indices considered, based on real data, are exhibited 

in Table A1 of the Appendix.  

The indices’ calculation allows for the derivation of insurance payoffs. Indemnities for 

the temperature-based policies are generated whenever the temperature index exceeds a 

given level, called strike.2 These indemnities are calculated as the difference between the 

index value and the strike, which is then multiplied by the tick size (for the purpose of 

deriving a monetary value). In this study, this parameter is fixed at a value of 1 monetary 

unit. Regarding rainfall, the insurance scheme proposed provides coverage against 

drought. Indemnities are, therefore, generated whenever the strike level3 exceeds the CR 

                                                 
1 The index is computed for the same period as for the contracts supplied by Chicago Mercantile Exchange 

(CME).  
2 We suggest three different strike values, equal to the 0.55, 0.70 and 0.85 empirical quantiles of the 

historical HDD and CDD. 
3 Strikes are defined in this case as the 0.15, 0.30 and 0.45 empirical quantiles of the historical CR. 
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index. They are computed as the difference between both values, which is then multiplied 

by the tick size.  

3.2. Assessment of the diversification effect 

As explained in section 3.1, indemnities can be derived from the weather indices selected. 

Those indemnities allow us to calculate the losses experienced by insurers, from which 

risk pooling effectiveness can be assessed. However, we first need to define a measure to 

perform this analysis.  

The previous literature aiming to ascertain whether risk pooling effectiveness varies as a 

function of the trading area has evaluated the degree of systemic risk via the Value at Risk 

(VaR) of the net losses faced by the insurance company (Holly Wang and Zhang, 2003; 

Okhrin, Odening, and Xu, 2013; Awondo, 2019). This can be expressed as follows:  

𝑉𝑎𝑅𝛼(𝑋) = 𝑖𝑛𝑓{𝑋|𝑃 (𝑋 ≥ 𝑥) = 1 − 𝛼}, 

(4) 

where 𝑖𝑛𝑓{𝑋|𝐴} is the lower limit of X given event A; and 1 − 𝛼 denotes the ruin 

probability (Okhrin, Odening, and Xu, 2013). Dividing VaR by the number of contracts 

gives the Buffer Load (BL), which is the risk loading that has to be added to the fair price 

of the insurance to avoid bankruptcy.  

In this case, X (losses) is defined as: 

𝑋 = ∑ 𝑤𝑧 (𝐹𝐼𝑦,𝑧
− 𝜋𝑧) ,

𝑛

𝑧=1

 

(5) 

where 𝐹𝐼𝑦,𝑧
 is the indemnity payment as a function of the weather index I, whose 

calculation was explained in section 3.1. Therefore, I can take the form of HDD, CDD, 

and CR;  𝜋𝑧 denotes the fair insurance premium for region z, computed as the expected 

value of the indemnity (𝐸[𝐹𝐼𝑦,𝑧
]); and 𝑤𝑧 is the weight of the zth insurance contract in the 

company portfolio (Okhrin, Odening, and Xu, 2013). 

Although Value at Risk (VaR) has become a standard risk measure, it is associated to 

some deficiencies (Artzner et al., 1997, 1999; Rootzén and Klüuppelberg, 1999; Acerbi, 
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Nordio, and Sirtori, 2001). In fact, it has been heavily criticized for not being sub-additive, 

meaning that a portfolio risk can exceed the sum of the degree of risk of its individual 

components. Furthermore, it does not consider the severity of an incurred damage event 

(Acerbi and Tasche, 2002). In other words, it does not take into account any loss beyond 

the VaR level. This is referred to in the literature as the “tail risk”. As a consequence, 

other so-called coherent risk measures have been suggested. One of the most well-known 

is the Expected Shortfall (ES), which is defined as “the conditional expectation of losses 

beyond the VaR level” (Yamai and Yoshiba, 2005). This measure is expressed as follows 

(Yamai and Yoshiba, 2005): 

𝐸𝑆𝛼(𝑋) = 𝐸[𝑋|𝑋 ≥ 𝑉𝑎𝑅𝛼(𝑋)] 

(6) 

At the light of the pitfalls of the VaR measure, we use in this study the ES. For its 

calculation, we assume uniform weights across regions and set 𝛼 at a value of 0.95. 

Therefore, the BL is directly derived from this measure.  

Consequently, the diversification effect is calculated in the next form, following Okhrin, 

Odening, and Xu (2013): 

𝐷𝐸 =
𝐵𝐿𝛼𝑛

∗

(∑ 𝐵𝐿𝛼𝑧
)𝑛−1𝑛

𝑧=1

, 

(7) 

where DE denotes the diversification effect over the entire geographical area 

considered, 𝐵𝐿𝛼𝑛
∗  is the Buffer Load of the whole region, and 𝐵𝐿𝛼𝑧

 is the individual 

Buffer Load of location z. 

DE is calculated for different levels of aggregation. Concretely, locations are clustered 

according to the distance between them, using a hierarchical cluster analysis and the 

Ward2 algorithm (Murtagh and Legendre, 2014). The distance matrix is presented in 

Table 1.  

The resulting dendogram is depicted in Figure 2.  
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Figure 2. Dendogram (cluster analysis).  

Therefore, we suggest the aggregation scheme for the insurance regions exhibited in 

Table 2.  

Table 2. Aggregation of insurance regions.  

Aggregation level 0 1 2 3 4 5 

Insured area 5 5,6 5,6,1,2 5,6,1,2,8,9 1-9 1-10 

 Notes: Numbers of the insured area: 1: Vigo; 2: Gijon; 3: Zaragoza; 4: Barcelona; 5: Valladolid; 6: Madrid; 

7: Valencia; 8: Sevilla; 9: Malaga; 10: Las Palmas de Gran Canaria. 

As mentioned in the introduction, our analysis does not rely on real but on simulated 

weather data. This is expected to increase the accuracy of the results, given the limited 

amount of observations that meteorological data allow for. Therefore, the diversification 

effect that we present is calculated for the simulated samples. The next section reviews 

the methodology followed to generate weather daily random paths, from which indices 

and indemnities are derived, as explained in section 3.1.  

3.3.Weather variables modelling 

Daily temperature and rainfall variables cannot be modelled following the same 

methodology, as they both have their own specificities. Regarding temperature, it is 
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widely accepted that it can be shaped accurately applying a daily model that relies on the 

stochastic process called Orstein-Uhlenbeck. However, modelling precipitation is harder 

than temperature. First, it evolves more irregularly: it is more erratic (Stowasser, 2012). 

Furthermore, it is not a continuous variable, but a binary event which can take the value 

of zero or any other positive amount (Alexandridis and Zapranis, 2013). Thus, its 

distribution is bounded on the left by zero (Shah, 2017). This last fact makes impossible 

the application of the Orstein-Uhlenbeck process, which can only be used for Gaussian 

and Markovian processes. The methodology followed to model each of the variables is 

described in the next subsections. 

3.3.1. Multisite temperature modelling 

The generation of daily data at the weather stations under consideration requires the 

development of a multisite temperature model that preserves correlation between weather 

conditions at different locations. The generating process can be divided into a 

deterministic and a non-deterministic part.   

 Deterministic part 

The deterministic part relies on the model proposed by Alaton, Djehiche, and Stillberger 

(2002), which is based on the Orstein-Uhlenbeck process introduced in the previous 

section.  

The first step consists in capturing the characteristic patterns of the mean temperature: 

seasonality and time trend. The resulting function is fitted to the daily mean temperatures 

registered at each of the weather stations considered using OLS. Figure A1 of the 

Appendix illustrates the good fit attained between real and mean temperatures for a given 

city.  

The next step entails adding noise, which is modelled with a standard Wiener process, to 

the deterministic mean temperature. Unlike Alaton, Djehiche, and Stillberger (2002), who 

assumed monthly varying volatility, we suggest varying daily values, following 

subsequent studies such as Zapranis and Alexandridis (2006) and Benth and Saltyte-

Benth (2007), as this decision has proven to be superior in terms of accuracy. 

The last stage involves adding a mean reverting process to prevent daily temperatures to 

deviate from the mean for long-time periods.  
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Table 3 exhibits the three steps of the deterministic part of the model and the formulas 

used at each stage. More detailed information on how these expressions were derived can 

be found in Alaton, Djehiche, and Stillberger (2002). 

 

Table 3. Steps and formulas of the temperature modelling process.  

Capturing the seasonality 

and time trend of 

temperature by Truncated 

Fourier series 

Modelling the driving noise 

process: estimating sigma 

Estimating the mean reversion 

parameter 

 

𝑻𝒕
𝒎

= 𝒂𝟏 + 𝒂𝟐𝒕 + 𝒂𝟑 𝐬𝐢𝐧(𝝎𝒕)

+ 𝒂𝟒 𝐜𝐨𝐬(𝝎𝒕), 

 

 

𝜎𝑡𝑊𝑡 , t ≥0 

 

�̂�𝑛

= −log (
∑ 𝑌𝑡−1{𝑇𝑡 − 𝑇𝑡

𝑚}𝑛
𝑡=1

∑ 𝑌𝑡−1{𝑇𝑡−1 −  𝑇𝑡−1
𝑚 }𝑛

𝑡=1

) , 

Where 𝑻𝒕
𝒎 is the mean 

temperature, t=1, 2, …, denotes 

January 1, January 2 and so on; 

and ω is the period of the 

oscillations, which is equal to 

𝟐𝝅

𝟑𝟔𝟓
 , or equivalently, to one 

year. 

 

Where  

𝜎𝑡+365 = 𝜎𝑡 

 

and 𝑊𝑡 is a standard Wiener 

process. 

 

Where �̂�𝑛 is the mean reversion 

parameter and 

 

𝑌𝑡−1 ≡
𝑇𝑡−1

𝑚 − 𝑇𝑡−1

𝜎𝑡−1
2       

  𝑡 = 1,2, … , 𝑛 

 

 

 Non-deterministic part 

Once the stochastic process is completely defined, the non-deterministic part of the model 

comes into play. According to Kordi (2012, pp.46-47), random temperature paths can be 

generated with the following equation: 

𝑇𝑗 = (1 − 𝑎)(𝑇𝑡−1 − 𝑇𝑡−1
𝑚 ) + 𝑇𝑡

𝑚 +∈𝑡 𝜎𝑡, 

(8) 

where ∈𝑡=1
𝑁−1 are independent standard normally distributed random variables. 

Usually, temperature random paths are directly obtained from equation (1), by making 

∈𝑡=1
𝑁−1 vary randomly. However, as we are dealing with the generation of data at multiple 

sites, correlation levels between standard errors should be preserved. To ensure this, we 
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follow the approach suggested by Wilks (1998) and latter refined by Mhanna and 

Bauwens (2011). Although these articles deal with the simulation of rainfall at multiple 

sites, their generating process can be perfectly extrapolated to the generation of 

temperature standard residuals. Figure 3 shows the steps of this procedure.  

 

 

Figure 3. Steps of the multisite standard errors generating process. (color online only) 

As stated by Mhanna and Bauwens (2011), the first step of the multisite standard errors 

generating process involves determining the Spearman rank correlation coefficient for 

each pairwise combination of standard errors and for each month of the year, as shown in 

Figure 3. Binormal correlations are then derived as stated in equation 9. This corresponds 

to the second step exhibited in Figure 3. 

 

𝜑(𝑘, 𝑙) = 2 sin [𝜋
𝜌(𝑘, 𝑙)

6
] , 

(9) 

where 𝜌(𝑘, 𝑙) denotes the Spearman correlation between locations k and l. 

1. Calculate the Spearman correlation between the standard errors for
each pairwise combination of locations and for each month of the
year.

2. Transform the Spearman coefficients to build the covariance
matrix. If the matrix is non-positive definite, replace the negative
eigenvalues with zero or small positive value.

3. Generate the multivariate normal variates.

4. Transform each set of normal variates to obtain uniform marginal 
distributions.

5. Use each uniform marginal distribution to generate the standard 
errors.
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The second stage continues with the construction of the covariance matrix, whose 

elements are the binormal correlations. If it is non-positive definite, we replace the 

negative eigenvalues with a zero or a small positive value. 

The third stage entails generating the multivariate normal variates as follows: 

𝑤𝑡 = 𝑈𝑅𝑡 , 

(10) 

where 𝑅𝑡 denotes an independent normal vector, generated randomly from a standard 

normal distribution, and 𝑈 is a coefficient matrix such that: 

𝑈𝑇𝑈 = 𝛺, 

(11) 

where 𝛺 represents the covariance matrix built in the previous step.  

The fourth stage consists in transforming each set of normal variates to obtain uniform 

marginal distributions. We use the R command pnorm() for this purpose. Finally, we 

generate the standard errors from each uniform marginal distribution using the command 

qnorm() with mean 0 and standard deviation 1.  

Once this process has been concluded, daily temperature is simulated for all the cities 

considered by adding both the deterministic and non-deterministic part of the model. 

Next, the HDD and CDD indices are built and their indemnities computed as explained 

in Section 3.1.    

3.3.2. Multisite rainfall modelling 

As for temperature, we need to develop a model that allows the multiple simulation of 

daily rainfall data at several weather stations. We follow the approach presented by Wilks 

(1998) and later refined by Mhanna and Bauwens (2011). As suggested by these authors, 

we divide the rainfall process into two sub-processes: occurrence and amount.  

 Occurrence process 

We start by explaining the occurrence process. First, we need to calculate for each month 

and location the parameters 𝑃01, which denotes the conditional probability of a wet day 
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if the previous day was dry, and  𝑃11, which is the conditional probability of a wet day 

given that the previous day was wet. These can be calculated as: 

�̂�01(𝑘) =
𝑛01(𝑘)

𝑛01(𝑘) + 𝑛00(𝑘)
, 

(12) 

�̂�11(𝑘) =
𝑛11(𝑘)

𝑛11(𝑘) + 𝑛10(𝑘)
, 

(13) 

where, for the weather station k, 𝑛01 is the historical number of dry days followed by wet 

days, 𝑛00 denotes the historical count of dry days followed by dry days, and so on.  

The second step of the occurrence process consists in constructing the covariance matrix 

analytically. For this purpose, we calculate the gamma coefficient for each pair of 

locations k and l as follows: 

𝛾(𝑘, 𝑙) =
𝜑(𝑘, 𝑙) − 1

𝜑(𝑘, 𝑙) + 1
, 

(14) 

where 𝜑 is the odds-ratio and is computed in the following form: 

𝜑(𝑘, 𝑙) =
𝜋00(𝑘, 𝑙)𝜋11(𝑘, 𝑙)

𝜋10(𝑘, 𝑙)𝜋01(𝑘, 𝑙)
, 

(15) 

where 𝜋00 denotes the joint probability that station pairs are both dry, 𝜋11 denotes the 

joint probability that station pairs are both wet, and so on. For instance, 𝜋00 is derived as: 

𝜋00(𝑘, 𝑙) =
𝑑𝑗𝑜𝑖𝑛𝑡

𝑛
, 

(16) 

where 𝑑𝑗𝑜𝑖𝑛𝑡 is the historical number of station pairs that are dry on the same day and n 

denotes the total number of data values. 
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In this case, the elements of the correlation matrix 𝛺 are the gamma coefficients instead 

of the binormal correlations.  

The next steps coincide with those applied in the multisite standard errors generating 

process exhibited in Figure 3 (steps 3 to 4). For this purpose, we need to apply equations 

10 and 11.  

 Amount process 

This section approaches the amount process. The first stage involves modelling rainfall 

amounts on wet days4 for each month and location with a 2-parameter Gamma 

distribution, which is defined by the shape (α) and scale (β) parameters. Both are 

estimated by MLE (Maximum Likelihood Estimation). Please, refer to Mhanna and 

Bauwens (2011) for a more detailed explanation of this distribution.  

The second step entails computing Spearman correlations between the amounts of rain 

recorded in wet days for each month and pair of locations.  

The subsequent steps coincide with those shown in the multisite standard errors 

generating process depicted in Figure 3 (steps 2 to 4); this is, we need to apply equations 

9, 10 and 11. 

Once both the occurrence and amount processes have been defined and the uniform 

marginal distributions have been generated, we proceed to simulate rainfall amounts.  

For the generation of occurrences, each uniform marginal distribution is used 

individually. First, we need to decide which conditional probability to utilize as follows: 

𝑃𝑐(𝑘) = {
𝑃01(𝑘)      𝑖𝑓      𝑥𝑡−1(𝑘) = 0

𝑃11(𝑘)     𝑖𝑓       𝑥𝑡−1(𝑘) = 1
 

(17) 

Next, we can directly simulate occurrences as: 

𝑋𝑡(𝑘) = {
1      𝑖𝑓 𝛷(𝑣𝑡(𝑘)) ≤ 𝑃𝑐(𝑘)

0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
, 

(18) 

                                                 
4 In this study, “wet” means occurrence of at least a minimum precipitation amount for the day of 0.1 mm. 
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where 𝛷[. ] denotes the standard cumulative distribution function (CDF); and 𝑣𝑡 denotes 

the standard Gaussian variates of the occurrence process.  

Regarding the amounts, they are directly simulated as the inverse of the Gamma 

distribution, with the parameters estimated in the first step, applied to the uniform 

marginal distributions generated in the last step of the amount process. Concretely, the R 

command qgamma() is used for this objective. 

Finally, rainfall data are generated by multiplying the occurrence, which can take the 

value of 0 or 1, by the amount.  

Once daily rainfall data have been generated, the cumulative rainfall index can be 

computed for each of the cities under consideration and their generated indemnities can 

be calculated as explained in Section 3.1. 

4. Results and discussion 

As introduced in Section 1, one of the main goals pursued in this study is comparing the 

degree of systemic risk implied by temperature- and rainfall- based insurance. We expect 

precipitation contracts to yield lower systemic risk levels than those geared to 

temperature, given the more erratic and less geographically correlated behavior of this 

meteorological variable. The next subsections show and discuss the results attained in this 

regard.  

4.1. Assessing the losses’ descriptive statistics 

As an initial explorative analysis to approach this issue, Table 4 exhibits the descriptive 

statistics of the losses X faced by the insurer as defined in equation 5, with n=10. This 

shows the degree of risk implied by each of the suggested contracts and their earnings 

potential.  

Table 4. Descriptive statistics of losses.  

Losses Min Q1 Median Q3 Max SD 

 Strike 1   

CR -3.02 -3.02 -1.61 1.58 33.55 4.17 
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CDD -4.721 -4.72 -2.63 1.77 55.53 7.12 

HDD -6.65 -6.65 -4.96 2.52 86.64 11.02 

 Strike 2  

CR -7.81 -5.75   -1.94    3.61   49.95 7.40 

CDD -12.03   -9.05   -3.64    4.42   78.33 12.44 

HDD -16.09 -14.11   -7.05   6.83 118.65 19.33 

 Strike 3  

CR -15.09   -8.30   -1.98    6.37   62.06 10.86 

CDD -21.21 -12.62   -4.30    8.12   92.13 17.00 

HDD -29.10 -21.35   -8.18   13.78 139.39 27.53 

Notes: Strike 1, 2 and 3 correspond to the 0.85, 0.70 and 0.55 empirical quantiles respectively for the 

temperature-based indices and to the 0.15, 0.30 and 0.45 concerning the rainfall-based index.  

Based on the results displayed in Table 4, we observe that CR insurance actually entails 

lower risks from the insurer’s perspective as compared to CDD and HDD contracts. In 

fact, these last type of policies yield lower figures for the maximum value, third quartile 

and standard deviation. These descriptive statistics are further commented subsequently. 

Regarding the first of them, and for the strike level 1, the maximum loss implied by 

rainfall-based contracts is 33.55€, which is significantly lower than that attained for CDD 

(55.53€) and HDD policies (86.64€). The same pattern is found for the remaining strike 

levels considered.  

A similar behavior is found for the third quartile. For this descriptive statistic and the first 

strike level, CR-based contracts yield lower losses (1.58€) as compared to CDD (1.77€) 

and HDD (2.52€) insurance. The same happens for the second and third strike level. All 

these findings show that temperature-based contracts are more prone to generate greater 

losses than those geared to rainfall. However, this will be further discussed below based 

on the Buffer Load figures exhibited in Table 5.  

The third descriptive statistic of those mentioned above is the standard deviation, which 

is a measure of the risk faced by insurers. Again, lower values are attained for CR-based 

contracts as compared to those geared to temperature. For the strike level 1, the standard 

deviation of this insurance modality amounts to 4.17€, which is followed by CDD (7.12€) 

and HDD (11.02€) policies respectively. Again, the same pattern is identified for the 

remaining strike values.  
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As expected, and at the light of the results attained, CDD- and, especially, HDD-based 

policies show greater losses but also greater earnings potential than those geared to 

rainfall. As displayed in Table 4, these contracts yield higher absolute figures for the 

minimum value, first quartile and the median. This is not surprising based on the previous 

findings, as these contracts are also riskier. For instance, for the strike level 1, the absolute 

minimum losses (maximum gains) are 3.02€, 4.72€ and 6.65€ for CR, CDD and HDD 

contracts respectively. As observed, the maximum gains entailed by HDD contracts are 

more than twice the value attained for rainfall policies. The same behavior is observed 

for the remaining strike levels.  

Regarding the first quartile, similar conclusions are reached. Again, HDD contracts yield 

the most favorable results. For the first strike, the absolute value of this statistic amounts 

to 3.02€, 4.72€ and 6.65€ for CR, CDD and HDD policies respectively. The same pattern 

is identified for the second and third strike level. In fact, for all the strikes considered, the 

value of this statistic for HDD policies more than doubles the figures derived for rainfall 

contracts.  

Similar results are attained for the third descriptive statistic: the median. It should be noted 

that, for all the strike values considered, the value of this statistic is significantly greater 

for HDD insurance as compared to CR contracts, being in all cases more than three times 

higher. For instance, for the first strike, HDD-based insurance yields again the highest 

absolute value (4.96€), followed by CDD-based contracts (2.63€) and CR policies 

(1.61€). Similar results are reached for the remaining strike levels.  

At the light of these results, it seems clear that insurance firms would need to balance 

carefully the type of contracts supplied. Temperature-based insurance, which is the most 

commonly traded insurance typology, yields higher earnings potential but results riskier 

than rainfall insurance. For its part, rainfall policies show lower earnings potential in 

exchange for lower income variability. Therefore, insurance companies may actually 

consider offering contracts geared not only to temperature but also to rainfall for the 

purpose of reducing their risk exposure. 
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4.2. A step further: assessing the degree of systemic risk through the Buffer Load (BL) 

Table 5 sheds more light on the quantification of the degree of systemic risk implied by 

temperature- and rainfall-based insurance. This table exhibits the BL figures attained as 

a function of the degree of geographical aggregation. The higher the BL measure, the 

more expensive weather insurance would be for farmers. In line with the conclusions 

derived from Table 4, it is observable that rainfall-based policies imply lower systemic 

risk in comparison to the most commonly supplied temperature-based insurance, given 

the lower BL figures attained for this type of contracts for all the strikes and aggregation 

levels contemplated.  

The values displayed in Table 5 also contribute to the assessment of the other goal of this 

study, which is discerning whether an increase in the trading area can reduce systemic 

risk. Although this is analyzed more accurately in Table 6, it is observable that BL 

generally decreases the higher the level of aggregation, as defined in Table 2. For the first 

strike level, the BL value ranges for CR-based contracts between 35.81€ and 13.02€ for 

the lowest and the highest degree of aggregation respectively. This range is greater for 

CDD-based insurance (comprised between 68.25€ and 23.85€) and even higher for HDD-

based contracts (comprised between 110.66€ and 36.20€). The same pattern is observed 

for the second and third strike levels. It should be noted that, in all cases, the figures 

attained for the lowest aggregation level are more than double the figures of the highest 

aggregation level. These findings support the hypothesis that broadening the trading area 

may have favorable effects and increase the feasibility of a market for weather index-

based insurance in Spain.  

Table 5. Expected shortfall as a function of the degree of aggregation.  

CR 

Aggregation level 0 1 2 3 4 5 

BL (strike 1) 35.81 22.91 25.66 17.90 14.46 13.02 

BL (strike 2) 52.48 35.89 38.29 27.76 22.69 20.43 

BL (strike 3) 62.72 45.06 49.95 37.05 30.38 27.36 

CDD 

Aggregation level 0 1 2 3 4 5 

BL (strike 1) 68.25 63.30 36.75 30.29 26.25 23.85 
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BL (strike 2) 96.25 96.24 56.81 46.89 41.34 37.80 

BL (strike 3) 110.96 115.85 70.46 58.09 51.69 47.33 

HDD 

Aggregation level 0 1 2 3 4 5 

BL (strike 1) 110.66 85.74 59.43 45.26 40.12 36.20 

BL (strike 2) 152.55 128.89 91.71 70.94 64.03 57.57 

BL (strike 3) 181.99 158.98 116.39 91.07 83.41 75.24 

Notes: Strike 1, 2 and 3 correspond to the 0.85, 0.70 and 0.55 empirical quantiles respectively for the 

temperature-based indices and to the 0.15, 0.30 and 0.45 concerning the rainfall-based index.  

4.3. Concluding on the relationship between geographical diversification and systemic 

risk  

Table 6 directly addresses the assessment of the effect of geographical diversification on 

the level of systemic risk. This table exhibits the results attained for each of the suggested 

insurance schemes for the highest level of aggregation in terms of fair price and 

diversification effect. Concerning fair prices, we observe that CR-based policies are the 

cheapest, followed by CDD- and HDD-geared contracts. For the first strike level, the fair 

price of the HDD policies (6.65€) is more than 1.4 times higher than the price of CDD 

insurance (4.72€) and more than doubles the value attained for CR-based contracts 

(3.02€). The same pattern is observed for the remaining strike levels.  

Regarding the diversification effect, results are also more favorable for rainfall-based 

contracts. This is measured as the ratio of the BL of the whole region to the average 

individual BL of each location, as introduced in equation 7. Therefore, the lower this 

measure, the higher the systemic risk reduction. For the strike value 1, the diversification 

effect of the CR contracts is 0.35, followed by CDD (0.40) and HDD (0.45) insurance. 

For the second strike, the diversification effect grows for all types of contracts, with a 

value of 0.39 for the CR insurance and 0.45 and 0.50 for CDD- and HDD-based policies, 

respectively. The diversification effect is at its highest for the third strike, with figures of 

0.42, 0.47 and 0.55 for CR-, CDD- and HDD-based contracts, respectively. It is worth 

noting that diversification reduces the degree of systemic risk more pronouncedly when 

only the negative extreme events are insured (this is, for the strike value 1). This result is 
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coherent, as extreme meteorological conditions usually show higher correlation than 

normal weather states (Goodwin, 2001).  

Table 6. Fair prices and Diversification Effects (whole insurance area). 

Cumulative rainfall 

 Strike 1 Strike 2 Strike 3 

Fair price  3.02 7.81 15.09 

Diversification effect 0.35 0.39 0.42 

CDD 

Fair price  4.72 12.03 21.21 

Diversification effect 0.40 0.45 0.47 

HDD 

Fair price  6.65 16.08 29.07 

Diversification effect 0.45 0.50 0.55 

Notes: Strike 1, 2 and 3 correspond to the 0.85, 0.70 and 0.55 empirical quantiles respectively for the 

temperature-based indices and to the 0.15, 0.30 and 0.45 concerning the rainfall-based index.  

5. Conclusion 

This study assesses the degree of systemic risk implied by a market for weather index-

based insurance in Spain. This country is suitable for the analysis, given the high weight 

of the agricultural industry in its productive structure and the fact that it is expected to be 

highly affected by climate change. In  2018, the premiums collected by the Spanish 

System of Combined Agricultural Insurance, which offers loss-based contracts, amounted 

to 738.52 million euros and 419565 policies were agreed (Agroseguro, 2020). This shows 

the importance of supplying a feasible hedging alternative in this country. Given that 

weather-index based insurance overcomes several of the drawbacks of the loss-based 

typology, this modality would likely experience a high demand if it were offered at a 

national level.  

Given the potential demand that weather index insurance could have in Spain, we evaluate 

whether broadening the trading area for this modality would reduce correlation in losses 

and, thus, the probability of bankruptcy for insurance firms. Furthermore, we compare 

the degree of systemic risk implied by temperature- and rainfall-based contracts. For this 
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purpose, we suggest insurance schemes based on weather indices. To ensure accurate 

results and conclusions, we use meteorological daily models, from which we derive 

greater data samples. The results attained point out that the higher the aggregation level 

(the broader the trading area), the lower the Buffer Load (as measured by Expected 

Shortfall) that has to be charged to farmers. Our results also suggest that, although 

temperature-based contracts show higher earnings potential, rainfall-based policies imply 

lower maximum losses and risks and, at the same time,  result cheaper and show lower 

values for the diversification effect (the lower this figure, the lower the correlation in 

losses and the degree of systemic risk). Finally, our findings highlight that aggregation 

results especially beneficial for the strike value 1 (0.85 empirical quantile for temperature-

based contracts and 0.15 for rainfall-geared policies), as extreme weather events are more 

correlated than normal conditions (Goodwin, 2001).  

In sum, the main conclusion of this article is that the supply of weather index-based 

insurance should not be focused on a specific region or county. Instead, it should consider 

the different regional climates in Spain to ensure that correlation in losses is moderate 

and, thus, that the level of systemic risk is acceptable. It is well known that basis risk 

increases as the distance between the place for which insurance is purchased and the 

meteorological station where measurements take place increases. However, we believe 

that not necessarily an increase in the trading area may always lead to higher levels of 

basis risk if there is an enough spread network of weather stations. This issue has also 

been addressed recently by several authors, such as Kölle et al. (2020) and Vroege et al. 

(2021) among others, who suggest as a suitable solution the use of satellite images.  

Furthermore, in this study we state that the inclusion of rainfall-based policies would be 

highly beneficial, given the lower levels of correlation in terms of precipitation among 

locations and the stronger diversification effect attained for this weather variable. 

Therefore, insurance firms should contemplate the supply of these contracts, jointly with 

temperature-based policies, in order to reduce their systemic risk exposure. For their part, 

public endeavors, which have so far been focused on the loss-based typology offered by 

the Spanish System of Combined Agricultural Insurance, should also concentrate on 

weather-index insurance, for instance, by contributing to the development of a market for 

this type of contracts (as done previously for the loss-based modality, which ended up 

with the creation of the Spanish System of Combined Agricultural Insurance) or by 

increasing farmers’ awareness of the existence of these type of policies once they started 
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being traded. Government efforts might also be focused on the development of a spread 

enough network of weather stations, on ensuring the accuracy of their weather 

measurements, and even on the development of more advanced measurement techniques 

(based, for instance, on satellite images).  

It is worth noting that this study compares the degree of systemic risk implied by a market 

for rainfall- and temperature-based policies. However, it does not consider the connection 

between both weather variables. Supplying both types of contracts at the same time may, 

indeed, reduce the degree of risk faced by insurers significantly, given the lower 

dependence between these two variables at a national level (e.g. the rainfall recorded in 

Sevilla is weakly correlated to the temperature registered in Vigo). Future research lines 

could, therefore, focus on this issue and develop a model that allows the simultaneous 

generation of both temperature and precipitation, as this would help to quantify the overall 

risk faced by insurance entities. As a final remark, we would like to point out that the 

feasibility of a market for weather index-based insurance in Spain would finally rely upon 

the farmers’ degree of risk aversion and, thus, upon their willingness to pay. Would they 

be willing to pay the buffer loads (as measured by Expected shortfall) displayed in Table 

5? This question may also be addressed in future research, for instance, through surveys.  

Last but not least, as stated throughout the paper, although this study addresses a specific 

country, Spain, the methodology applied is suitable to be extrapolated straightforward to 

other geographical areas.  
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Appendix 

Table A1. Descriptive statistics of the weather indices.  

 1 2 3 4 5 6 7 8 9 10 

 Cumulative rainfall 

Mean  383.72 279.46 129.19 234.80 144.84 115.81 141.40 77.83 57.44 9.34 

Median 387.30 252.50 125.90 221.10 139.50 107.00 117.80 76.40 50.10 5.10 

SD 125.55 89.33 56.92 104.53 57.11 48.11 77.40 44.75 40.18 14.63 

 HDD 

Mean  1365.51 1253.75 1600.03 1306.61 2037.24 1700.07 884.69 953.97 835.36 108.50 

Median 1363.31 1251.91 1625.24 1301.70 2055.93 1702.13 900.82 946.56 825.14 102.90 

SD 105.75 109.79 122.29 125.65 123.91 117.76 108.59 116.49 87.92 54.65 

 CDD 

Mean  141.76 90.24 546.36 412.78 187.16 557.67 666.92 920.17 678.99 624.20 

https://doi.org/10.1111/j.1539-6975.2010.01397.x
https://doi.org/10.1108/00021461011065283
https://doi.org/10.1016/j.jbankfin.2004.08.010
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Median 131.67 83.35 553.45 416.57 179.72 567.42 675.43 936.70 683.10 622.05 

SD 53.68 40.73 86.82 94.47 52.03 87.74 76.54 100.57 63.09 75.10 

Notes: 1: Vigo; 2: Gijon; 3: Zaragoza; 4: Barcelona; 5: Valladolid; 6: Madrid; 7: Valencia; 8: Sevilla; 9: 

Malaga; 10: Las Palmas de Gran Canaria. 

 

Figure A1. Mean and real temperatures at Vigo station over 10 years. (color online only) 
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