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Abstract

The determinants of an economy’s growth path for income per head may vary over time.

In this paper we apply unobserved components analysis to an otherwise standard panel

model of economic growth dynamics so that an economy’s long run relative income per

head can change at any point of time. We apply this model to data for US states for

1929-2021 and the world economy for 1970-2019. In both datasets an economy’s initial

relative income per head is a good predictor of its long run relative income per head.

Relatively poor economies on average remain relatively poor.

WORD COUNT 5031

JEL classification numbers: C11, O40

Keywords: Bayesian Econometrics, Economic Growth, State Space Models

∗Many thanks to Fabio Canova, Etsuro Shioji and Jonathan Wadsworth for very helpful comments on

an earlier draft. All errors are my own.



I Introduction

Economic growth theory describes how an economy’s income per head on its balanced growth

path may be determined by, inter alia, its saving propensity, human capital accumulation,

population growth, institutional quality and economic policy. All these factors may be chang-

ing over time. Even without the anchor of economic theory, it is intuitive that an economy’s

long run path is determined by factors that are likely to change. In this paper we therefore

add unobserved components analysis to an otherwise standard empirical model of economic

growth dynamics so that an economy’s growth path can change at any point in time. We

estimate the model using two publicly available datasets: US Bureau of Economic Analysis

(BEA) data for personal income per head for the 48 contiguous US states for 1929-2019, and

the Penn World Table data for GDP per head in the world economy for 1970-2019. We find

in both datasets that an economy’s initial relative income per head is a good predictor of

its long run relative income per head, with little mobility in long run relative growth paths.

These results provide support for ‘The Poor Stay Poor’ hypothesis of Canova and Marcet

(1995).

A fundamental question in macroeconomics is whether one should think of the world

as made up of economies that are slowly converging to the same balanced growth path or

whether one should think that economies are converging to their own individual balanced

growth paths. Examples of the former view include Barro and Sala-i-Martin (1991) on the

convergence of US states, and recently Patel, Sandefur and Subramanian (2021) on conver-

gence in the world economy. In the latter view, economies’ growth dynamics are described

by economy specific parameters and so panel estimation methods are used. Examples of this

approach include Canova and Marcet (1995), Caselli, Esquivel and Lefort (1996) and Shioji

(2004) and more recently by Acemoglu et al. (2019) and Acemoglu and Molina (2022).

This paper contributes to the literature in three ways. Firstly, it introduces a time varying

individual economy specific parameter into this analysis. As well as being a more reasonable

description of reality, this modelling approach has the advantage of providing a general form

for modelling changes in growth paths. The literature has tended to focus on one specific

growth determinant at a time. Important examples include Acemoglu et al (2019), Cerra and

Saxena (2008) and Wacziarg and Welch (2008) who, respectively, have shown how changes to

democracy, financial and political stability and trade openness can affect an economy’s long

run growth path. These effects are not mutually exclusive and can change in any economy at

any time. Therefore, rather than look at these determinants one by one, this paper provides

a more general form which nests all - observed and unobserved - potential effects into one

model, albeit in reduced form, so that an economy’s balanced growth path is able to move

persistently at any point in time.

Secondly, the empirical growth literature has typically estimated models where the au-

toregressive coefficients, and so the speed of convergence to the steady state, are restricted

to be the same across economies, with Canova and Marcet (1995) and Andrés et al (2004)

important exceptions to this. While, as Mankiw, Romer and Weil (1992) argue, some deter-
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minants of the speed of convergence, such as production technology, may be determined at

a global level, this is not true for all determinants. We therefore also estimate a hierarchical

model where, in addition to time varying individual economy parameters, the autoregressive

coefficients in the panel regression are able to differ across economies while remaining related

to each other by belonging to a common population distribution. As well as being intuitive

and linking better to economic growth theory, the reduced level of aggregation in this model

may also reduce bias in the panel estimates, see Canova (2023).

Finally, the paper is able to address the argument of Shioji (2004) that US states’ income

per head data is more consistent with a slow convergence of states to the same balanced

growth path than with states converging to their own individual balanced growth paths. Sh-

ioji (2004) showed that panel models produced parameter estimates that implied a relatively

fast rate of convergence to the long run balanced growth path and this seemed inconsis-

tent with the large distance of many states’ initial conditions from their long run balanced

growth paths. This paper addresses this issue by allowing the long run balanced growth path

to change over time so that, for example, an economy could initially be close to its initial

balanced growth path but far away from its ultimate balanced growth path.

This paper applies Bayesian state space analysis to the empirical economic growth liter-

ature. Recently Startz (2020) and Imam and Temple (2023) have used state space methods

to model economies’ growth paths as switching between different growth states in a Markov

process. Bayesian macroeconomic state space analysis has also been used to, inter alia, de-

compose time series such as GDP and inflation into a trend and cyclical component, see

e.g. Canova (2007) and Chan et al. (2019) for examples of this large literature. This paper

applies Bayesian macroeconomic state space analysis to decompose an economy’s change in

relative income per head into a long run growth path component which can change through

time and transitory components around this path.

We estimate two variations of our model: (i) A baseline model where each individual

economy’s intercept term follows an independent local level model but with the same conver-

gence coefficients across economies. This model is designed to be as close to the panel model

structure used by the literature as possible while allowing time varying individual economy

terms. (ii) A hierarchical model where the autoregressive parameters may also vary across

economies but where they are drawn from a common population distribution.

The estimation process for both models follows the Gibbs sampling procedures set out

in Chan et al. (2019) and is applied to two important datasets from the literature. The

US states dataset is of contiguous, free trading, democratic economies operating under free

interstate capital and labour mobility. The conditions for convergence in this dataset are

therefore as good as could reasonably be expected. The Penn World Table dataset allows

analysis of the dynamics of output per head across countries in the world economy which is

of intrinsic interest.

The paper is organised as follows. Section II describes the estimated models and their

relationship to the empirical growth literature. Sections III and IV describe the results from

applying the models to data on US states and the world economy respectively. Section V
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discusses the choice of priors and the performance of the models in out-of-sample prediction

exercises. Section VI concludes. The Gibbs sampling algorithms used in the estimation and

some further results are presented in the Appendix.

II Time varying balanced growth paths

There is a large literature analysing economic growth dynamics using dynamic panel models,

see for example Chen et al (2019). These models have the form

Yi,t = αi + γt +

L∑

l=1

βlYi,t−l + δDi,t + ei,t (1)

where ei,t
iid
∼ N (0, σ2), αi are individual fixed effects, γt are time effects, Yi,t is the log of

income per head in economy i at time t and Yt−l is its l’th lag. Di,t is an indicator variable

for a significant change. Notable examples of this estimated model include Acemoglu et al

(2019) where Di,t is an indicator for democracy, Wacziarg and Welch (2008) where Di,t is

an indicator for trade openness and Cerra and Saxena (2008) where Di,t is an indicator for

financial instability.

The model can also be estimated in terms of relative income per head, where the time

effects cancel out, so that the estimated equation becomes,

Y ∗

i,t = αi +
L∑

l=1

βlY
∗

i,t−l + δDi,t + ei,t (2)

where Y ∗

i,t is the deviation of the log of the income per head in economy i at time t, from the

average across all economies at time t. The relative income per head form of the model was

used by Canova and Marcet (1995) and Shioji (2004) and we use this form in our estimation

below.

Unobserved components model

The contribution of this paper is to estimate the dynamics of income per head where the

country specific intercept term, now denoted αi,t, is free to move persistently at any point in

time, rather than being tied to particular policies or institutional variables.

We estimate two variations of the model. Our baseline model has the intercept term for

each economy following an independent local levels model together with a transitory cyclical

term, as in Chan et al (2019), but where the autoregressive β coefficients are the same for

each economy and estimated using data from all economies as in equation (2). This model

is designed to be as close as possible to that used by the literature except for time varying

intercept terms. Our second model is a hierarchical model where individual economies’ β

coefficients can vary but are related to the population distribution.

We choose diffuse priors for most parameters but not for the priors for the local level

and transitory terms. These parameters significantly impact on the volatility of the long
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run growth path and so one’s choice of prior for these parameters will reflect the degree of

variation one thinks is reasonable for a long run growth path. We discuss the implications of

the choice of priors briefly below and at greater length in Section V.

The baseline model

The baseline model varies equation (2) by treating each economy’s intercept term as a stan-

dard local levels model and allowing for a transitory shock to each economy’s growth process,

ci,t, so that

Y ∗

i = αi,t +

L∑

l=1

βlY
∗

i,t−l + ci,t + ei,t ∀i

ci,t = φi,1ci,t−1 + φi,2ci,t−2 + ui,t ∀i

αi,t = αi,t−1 + νi,t ∀i

(3)

where ei,t
iid
∼ N (0, σ2), ui,t

iid
∼ N (0, σ2

c,i) and νi,t
iid
∼ N (0, ω2

i ). The local levels model specifies

that αi follows a random walk with a Normally distributed error term. This is appropriate for

our case as the change in the intercept in the literature is also persistent, i.e. the change inDi,t

from 0 to 1 in equation (2).1 The ci,t, process is also unobserved and provides economy level

parameterization of potentially cyclical transitory deviations around the balanced growth

path.

We estimate this model using Bayesian methods set out in Chan et al (2019). The prior

for the β parameters, β ≡ [β1 . . . βl]
′ is distributed, N (β0, Sβ), where N denotes the Normal

distribution. The prior for the φ parameters, φ ≡ [φ1, φ2]
′ is distributed, N (0, Sφ) and where

φ is restricted to ensure stationarity. The prior for the initial value of α, denoted α0 in

each economy is also normal with distribution N (a0, b0). The prior for σ2 is distributed

so that σ−2 ∼ G(νσ, Sσ) where G denotes the gamma distribution.2 We set νσ = 2.5 and

Sσ = 4×10−4. The value of β0 is taken from a pooled OLS regression of all economies with a

common intercept term and we set Sβ = 108Ip and Sφ = 108I2 which implies a diffuse prior.

The parameters for the prior of α0 is also chosen so that the prior is diffuse with a0 = 0 and

b0 = 10000.

The priors for ω2
i and σ2

i,c are very important as they significantly impact the variation

in the path of αi,t and so the cross-sectional variation in the balanced growth path. We

use the same priors for each economy in the panel and assume the priors for ω2
i and σ2

i,c

are distributed so that ω−2
i ∼ G(νω, S−1

ω ) and σ−2
i,c ∼ G(νc, S−1

c ) respectively, where we set

1The normality assumption is standard and is a good fit for the US regional dataset where relative log income

per head is approximately Normal in the cross section.
2We are using the following form for the Gamma Distribution. A random variable y, where y ∼ G(νω, Sω),

has a gamma distribution with the following form

fγ(y | ν, S) =





S−ν

Γ(ν)y
ν−1e−

y
S ν, S,> 0 y > 0,

0 otherwise

This implies that y has a mean of νS and y−1 has a mean of 1
S(ν−1) .
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νω = νc = 3. In Section V below, we discuss the performance of the model under different

prior specifications, including their forecasting performance. Intuitively, if ω2
i is restricted

to be very small then the estimated balanced growth path will not be able to explain or

predict much of the variation in Y ∗

i,t over time and the model will resemble the panel model of

equation (2) with fixed effects but without the Di,t indicator variable which we are interested

in. Conversely, one also does not want to set Sω to be so high that the balanced growth path

is too variable, as this would conflict with the notion of a long run balanced growth path

which intuitively should be slow moving. We therefore choose intermediate values of Sω and

Sc and set Sω = Sc = 1 to illustrate the model in Sections III and IV below. We discuss the

choice of priors further including their forecasting performance in Section V.

Given the β coefficients, for each economy, i, the model described by equation (3) is

a local levels model with an autoregressive transitory component as in Chan et al (2019),

where the dependent variable is Ŷi,t where Ŷi,t ≡ Y ∗

i,t −
∑L

l βlY
∗

i,t−l. Similarly given vectors

αi ≡ [α1, . . . , αT ] and ci ≡ [c1, . . . , cT ] the model is a simple linear regression model of the

form Ỹt =
∑L

l βlY
∗

t−l where Ỹt is the stacked vector Y ∗

i,t − αi,t − ci,t, which can be estimated

using standard methods, The model overall can be estimated with a Gibbs sampler which is

described in the Appendix.

The hierarchical model

The baseline model assumes that the autoregressive β coefficients are the same for all

economies. This implies that the speed of convergence to the steady state is the same across

economies. In our second model we follow Canova and Marcet (1995) and relax this assump-

tion. Our second model is a hierarchical model where in addition to time varying intercept

terms, an individual economy’s autoregressive coefficients, now denoted βi, are drawn from

a population distribution so that each individual economy’s coefficients can vary from each

other to the extent allowed by the variance of the population distribution.3 This model is

described as follows,

Y ∗

i,t = αi,t +
L∑

l=1

βl,iY
∗

i,t−l + ci,t + ei,t ∀i

ci,t = φi,1ci,t−1 + φi,2ci,t−2 + ui,t ∀i

αi,t = αi,t−1 + νi,t ∀i

(4)

where now βi∼N (βl,Σβ2) ∀i, and where βl and Σ
β
2 are the mean and variance of the

population distribution respectively. The prior for the mean of the population distribution is

distributed normally, i.e. βl ∼ N (ψ,C) , where ψ is taken from a pooled OLS regression of

all economies with a common intercept term and where we set C = Ip× 108 which is diffuse.

The prior for the variance Σ
β
2 is distributed with a Inverse Wishart density function so that

(Σ
β
2)−1 ∼ W([ρR]−1, ρ)), where W denotes the Wishart distribution. We set R = Ip × 10−2

and ρ = 100. These priors are tight around βl but still allow for variation across economies as

3The differences between this model and Canova and Marcet (1995) are that this model includes time varying

parameters, a full hierarchical model for the autoregressive parameters and uses different datasets.
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we describe below. The other priors are set as in the baseline model with the same parameter

values.

This model can also be estimated using Gibbs sampling. Given the βi coefficients, for each

economy, i, the model described by equation (4) is a local levels model with an autoregressive

transitory component as in Chan et al (2019), where the dependent variable is Ŷi,t where

Ŷi,t ≡ Y ∗

i,t −
∑L

l βlY
∗

i,t−l. Similarly given vectors αi ≡ [α1, . . . , αT ] and ci ≡ [c1, . . . , cT ] for

each economy i, the model is a hierarchical linear regression model with dependent variable

Ŷi,t = Y ∗

i,t − αi,t − ci,t and so given the population parameters, for each economy i the βi can

be estimated using standard methods. Given the estimated parameters for each individual

economy the population parameters βi, Σβ2 and the inverse variance ( 1
σ2
) can be shown to

be distributed, Normal, Inverse Wishart, and Gamma respectively, as described in Chan et

al (2019).

III US states growth dynamics 1929-2019

We estimate the models described in section II using data for personal income per head for

the 48 contiguous US states for 1929-2021. We follow Shioji (2004) in using the log of income

per head for each state and taking its deviation from the average across states in each year.

This data is publicly available from the BEA.4

Shioji (2004) used data for 1929-2001 and analysed the relationship between the initial

level of relative income per head and the long run relative income per head, Y ∗,LR. We define

Y
∗,LR
i for economy i in the baseline model by

Y
∗,LR
i =

αi,t

1−
∑L

l=1 βl
(5)

In the hierarchical model the βl become βi,l. In Shioji’s model there is no term ci,t and the

economy specific intercept is fixed so that αi,t = αi ∀t.

Shioji (2004) found a strong positive relationship between initial relative income per head

and long run relative income per head, Y ∗,LR
i . In Figure 1 we plot this relationship for

different periods in the evolution of αi,t using the posterior means from the baseline model

of equation (3) and data for 1929-2021. The first panel, Figure 1a, plots this relationship in

1933. This relationship is similar to Shioji (2004) with the variables being strongly correlated

but where the estimated relationship is away from the 45◦ line.

The key difference between Shioji (2004) and the baseline model of equation (3) is that

the latter allows αi,t to move over time so that states’ long run balanced growth paths can

evolve. Thus potentially a state’s initial conditions may have been close to its initial balanced

growth path but far away from its present day balanced growth path. The evolution of this

relationship is shown in the other panels of Figure 1. These plot the relationship for the years

1953, 1973, and 1993, so that e.g. Figure 1b plots long run relative income calculated using

4It is available via the website https://www.bea.gov/data/income-saving/personal-income-by-state. We use

the variable personal income, which is Table SAINC4, line code 30. This is a nominal variable but since

relative income is the variable used in the analysis, an inflation adjustment would cancel out.
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TABLE 1

Income mobility of US states by quartile 1929-2021

Quartile in 2021

Quartile in 1929 First Second Third Fourth

First 7 3 2 0

Second 4 2 5 1

Third 0 6 3 3

Fourth 1 1 2 8

Notes: The mobility in income per head in US states from 1929-2021

αi,1953 against relative income in 1953. These figures show that over time the relationship

between the long run balanced growth and initial income tends towards the 45◦ line. Indeed,

Figure 1b shows this relationship is mostly established after only 20 years.

An alternative way of showing the stability of relative balanced growth paths over time

is to directly plot the evolution of each states’ balanced growth paths. This is done in Figure

2 for the baseline model and Figure 3 for the hierarchical model. Figure 2a shows that in

the baseline model from 1933 to around the mid-1970’s there was noticeable convergence in

the distribution of income per head - i.e. σ convergence. However, since the mid-1970’s the

variance of the distribution has remained fairly constant. A noticeable feature of Figure 2

is that the balanced growth paths of most states have been largely stable and slow moving.

Individual states’ paths do cross with their neighbours in the distribution but tend to stay in

the same part of the distribution. This is consistent with the concept of a balanced growth

path. There are however exceptions to this, notably North Dakota which Figure 2a highlights

together with the more stable balanced growth paths for New York and South Carolina.

This stable pattern is also consistent with the raw data on income mobility presented in

Table 1. In terms of upward mobility, Table 1 shows that over the 93 years of the sample

only one state has moved from the bottom quartile to the top quartile. This state is North

Dakota which was ranked 41st in the raw data in 1929 and 12th in 2021 and is a state with

a small population and whose income per head is highly influenced by the price of oil and

grain. Its unusual degree of volatility is evident in Figure 2a and also in Figure 1c where it

is a noticeable outlier with its relative income level in 1973 much higher than its long run

growth path. This datapoint is coincident with a large temporary rise in the price of wheat

which, intuitively, the estimated long run growth path does not respond greatly to. In terms

of downward mobility, no state has moved from the top quartile to the bottom quartile and

only two states that were in the first quartile in 1929 dropped to the third quartile in 2021.
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These were Nevada which was ranked 9th in 1929 and 26th in 2021 and Michigan that was

ranked 10th in 1929 and 32nd in 2021. Thus change does happen but, as Figure 2a shows,

this occurs against a backdrop of stability.

Figure 2b plots the 84th and 16th percentiles of the posterior distribution for the balanced

growth path of the baseline model for New York and South Carolina whose balanced growth

paths belong to the first and fourth quartiles, together the mean for each state. These

confidence intervals can clearly distinguish between the top and bottom of the distribution

and are consistent with the data described in Table 1 which shows very little mobility between

the first and fourth quartiles.

The estimated balanced growth paths for the hierarchical model are plotted in Figure 3

and are similar to those of the baseline model in Figure 2. The tight prior on the population β

variance effectively restricts the βi coefficients to be quite close to the population β, although

there is still variability of the βi across economies. The value of the sum of the mean

population β’s is 0.71 while that for the sum of the individual states’ mean βi coefficients

varies from 0.48 to 0.85. At the moderate level of variation implied by the priors Sω = Sc = 1

which we have used in this section and Section IV, there is little difference in the performance

of the two models. However, in general, the models do differ as their forecasting performance,

discussed below in Section V demonstrates.
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Figure 1: The evolution of balanced growth paths and initial income, US states 1933-1993
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Figure 1 shows US states’ initial relative income per head against the estimated long run growth path level

of relative income per head for years 1933, 1953, 1973 and 1993. The estimates are the posterior means

from the baseline model with four lags using data from 1929-2021 and with prior values of Sω = 1 and

Sc = 1. The scale in the figures, and subsequent figures, is multiplied by a factor of 100 so that, e.g. the x

axis shows 100× the deviation of log income per capita from the sample mean.
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Figure 2: Evolution of balanced growth paths, US states 1933-1993 - Baseline Model
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(a) Balanced growth paths in US states 1933-2021 highlighting selected states
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(b) Balanced growth paths in US states 1933-2021 highlighting confidence bands of two states

Figure 2 shows the evolution of the estimates of the balanced growth path for US states from the baseline

model with four lags using data from 1929-2021 and with prior values of Sω = 1 and Sc = 1. Panel a) plots

the posterior means for all states in light grey and highlights the path of three states. Figure (B1a) in the

Appendix is a colour version of panel a) which highlights regions rather than individual states. Panel b)

plots the 84th and 16th percentiles of the posterior distribution for two states together with the posterior

means for all states in light grey, as discussed in the text.



Figure 3: Evolution of balanced growth paths, US states 1933-1993 - Hierarchical Model
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(a) Balanced growth paths in US states 1933-2021 highlighting selected states

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030

Year

-100

-80

-60

-40

-20

0

20

40

60

80

100

L
o
n
g
 R

u
n
 R

e
la

ti
v
e
 I
n
c
o
m

e
 C

o
n
fi
d
e
n
c
e
 I
n
te

rv
a
ls

New York

South Carolina

(b) Balanced growth paths in US states 1933-2021 highlighting confidence bands of two states

Figure 3 shows the evolution of the estimates of the balanced growth path for US states from the

hierarchical model with four lags using data from 1929-2021 and with prior values of Sω = 1 and Sc = 1.

Panel a) plots the posterior means for all states in light grey and highlights the path of three states. Figure

(B1b) in the Appendix is a colour version of panel a) which highlights regions rather than individual states.

Panel b) plots the 84th and 16th percentiles of the posterior distribution for two states together with the

posterior means for all states in light grey, as discussed in the text.
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IV World growth dynamics 1970-2019

In this section we carry out the same analysis as in section III but for GDP per head in the

world economy for 1970-2019 using the Penn World Table 10.0 dataset. We follow section III

and use the log of GDP per head and take its deviation from the average across countries in

each year.5 Following, for example, Patel et al (2021), we exclude oil producing economies

and small economies which leaves a dataset of 123 countries.6 As we discuss below, the

results of the analysis for the world economy share many of the characteristics of that for the

US states above, most notably that an economy’s initial level of income per head is a strong

predictor of its long run balanced growth path and that there is little relative mobility.

The relationship between an economy’s initial conditions in 1974 and its estimated bal-

anced growth path in 1974 is shown in Figure 4. The first panel, Figure 4a, plots this

relationship for the baseline model. In contrast to the US states dataset described in Sec-

tion III, the relationship for the world economy fits the 45◦ line well from the beginning of

the dataset, albeit it with significant variation. Figure 4b plots the same relationship for

the hierarchical model, which is very similar. In both models therefore the balanced growth

paths do not need to move over time in order to fit the 45◦ line. This is consistent with

the plots of the balanced growth paths in Figure 5 for the baseline model and Figure 6 for

the hierarchical model, which show little evidence of any convergence in the distribution of

relative GDP per head.

The estimated balanced growth paths for the world economy for the baseline model in

Figure 5 are similar to those for US states in Figure 2 in that there is a great deal of

stability. Figure 5a highlights the balanced growth paths for the United States, Cameroon

and China which are all smooth and quite stable although with an upward trend for China

and a downward trend for Cameroon. As in the US states dataset the confidence intervals

for the baseline model Figure 5b can clearly distinguish between the top and bottom of the

distribution. The confidence bands appear very narrow but this is due to the scaling of the

Figure 5b which is much wider than in Figure 2b.

The estimated balanced growth paths for the hierarchical model are plotted in Figure 6

and are similar to those of the baseline model plotted in Figure 5 at the moderate level of

variation implied by the priors Sω = Sc = 1 which we have used in this section. As with

the US states dataset, there is variability of the βi across economies. The value of the sum

of the mean population β’s is 0.88 while that for the sum of the individual states’ mean βi

coefficients varies from 0.68 to 0.99. In general the two models do differ in their performance

5This data is publicly available via the website https://www.rug.nl/ggdc/productivity/pwt/. We follow e.g.

Patel et al (2021) and use the variables ‘rdpe’ and ‘pop’ to calculate real GDP per head. ‘rgdpe’ is the

Expenditure-side real GDP at chained purchasing power parity and ‘pop’ is the population. We note this is

an output measure rather than the income measure used in Section III but in each case we are following the

datasets used in the literature so that we cleanly demonstrate the implications of our different modelling

approach.
6The oil producing countries are the same as in Patel et al (2021), and small countries are those with a

population less than 100,000 in 1970.
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TABLE 2

Income mobility in world economy by quartile 1970-2019

Quartile in 2019

Quartile in 1970 First Second Third Fourth

First 25 5 0 0

Second 4 19 8 0

Third 1 5 12 13

Fourth 0 2 11 18

Notes: The mobility of GDP per head in the world economy dataset from 1970-2019

as we discuss below in Section V.

The stability of the balanced growth paths is again consistent with the raw data on income

mobility presented in Table 2. This shows that over the 50 years of the sample no country

has moved from the top quartile to the bottom half of the distribution and no country moved

from the bottom quartile to the top quartile. One country moved from the third quartile in

1970 to the first quartile in 2019. This country is the Republic of Korea which was ranked

64th in 1970 and 27th in 2019. Change is possible, notable examples being China that rose

from a ranking of 101st in 1970 to 63 in 2019 and India from 103rd in 1970 to 83rd in 2019.

However, as with the US states dataset, this change is occurring in a broadly stable setting.
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Figure 4: Balanced growth paths and initial income in the world economy

(a) Baseline model
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(b) Hierarchical model
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Figure 4 shows countries’ initial relative GDP per head plotted against estimated long run balanced growth

path relative GDP for 1974. Panel a) show the results for the baseline model and Panel b) shows those for

the hierarchical model. The estimates are the posterior means and both models have four lags and use data

from 1970-2019. The labels are three letter ISO codes.



Figure 5: Evolution of balanced growth paths, world economy 1974-2019 - Baseline model
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(a) Balanced growth paths in the world economy highlighting selected countries
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(b) Balanced growth paths in the world economy highlighting confidence bands for two coun-

tries

Figure 5 shows the evolution of the estimates of the balanced growth path for the world economy dataset

from the baseline model with four lags using data from 1970-2019 and with prior values of Sω = 1 and

Sc = 1. Panel a) plots the posterior means for all countries in light grey and highlights the path of three

countries. Figure (B2a) in the Appendix is a colour version of panel a) which highlights continents rather

than individual countries. Panel b) plots the 84th and 16th percentiles of the posterior distribution for two

countries together with the posterior means for all states in light grey, as discussed in the text.



Figure 6: Evolution of balanced growth paths, world economy 1974-2019 - Hierarchical model
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(a) Balanced growth paths in the world economy highlighting selected countries
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(b) Balanced growth paths in the world economy highlighting confidence bands for two coun-

tries

Figure 6 shows the evolution of the estimates of the balanced growth path for the world economy dataset

from the hierarchical model with four lags using data from 1970-2019 and with prior values of Sω = 1 and

Sc = 1. Panel a) plots the posterior means for all countries in light grey and highlights the path of three

countries. Figure (B2b) in the Appendix is a colour version of panel a) which highlights continents rather

than individual countries. Panel b) plots the 84th and 16th percentiles of the posterior distribution for two

countries together with the posterior means for all states in light grey, as discussed in the text.



V Choice of prior and the fit of the model

Section II gave two motivations for the choice of priors: (i) that the concept of a balanced

growth path implies a path which is not very volatile and (ii) that the balanced growth path

should help predict the future path of relative income per head. In this section we discuss

these two motivations further. We first describe the implications of the choice of prior for the

shape of the estimated balanced growth path. We then show that models whose priors imply

a near constant balanced growth path perform poorly in terms of out-of-sample prediction

compared to models whose estimated growth path is able to evolve significantly over time.

Furthermore, in the US states dataset there is also some evidence that a moderate degree of

variability performs better at longer forecast horizons, although for shorter horizons and for

the world economy dataset, a better forecast performance is often associated with a higher

level of volatility. Taken together these results give support for modelling growth paths as

time varying as proposed by this paper. In addition for the US states dataset a balanced

growth path interpretation of the results seems reasonable, whereas for the world economy

dataset the long run growth paths seem too volatile for this interpretation.

The choice of prior and estimated balanced growth path

In Figure 7 we plot the estimated balanced growth paths of the baseline model for the US

states dataset when we set a very low prior value, 10−5, for Sω (and where Sc was set to one).

In this case the estimated balanced growth paths are essentially flat and the model approaches

that of the fixed effects panel regression model of Shioji (2004). As discussed above we don’t

think this is a reasonable choice of prior because there are good reasons for believing that

an economy’s balanced growth path can change significantly through time. Furthermore we

show below that the forecasting performance of models with very low prior levels of Sω is

not good. However, for a balanced growth path interpretation it is also not reasonable to

set Sω to be very high as a very volatile balanced growth path does not correspond to our

understanding of what a balanced growth path is. For the world economy dataset we find

that models with high levels Sω perform well in out of sample forecasts compared to more

moderate levels of Sω and so for this dataset the balanced growth path interpretation is not

appropriate.

Choice of prior and prediction

We perform an out-of-sample forecasting exercise for both models using both datasets over

a grid of different values for Sω and Sc ranging from extremely low (Si = 10−5, i = ω, c)

to extremely high (Si = 105, i = ω, c).7 In the exercise we use the last 25 observations as

the out-of-sample data with forecasts made at the one, five and ten periods ahead forecast

horizon. Forecasts are made using the posterior mean of the parameter estimates using 20,000

7This forecasting exercise is included to illustrate the value of a model that allows balanced growth paths

to change over time. It is far from an exhaustive search for the best performing prior specification which

would be well beyond the scope of this study.
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Figure 7: The US states estimated balanced Growth Paths with Sω = 0.00001
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Figure 7 shows the balanced growth path for the 48 contiguous US states from 1933-2021 using the baseline

model with Sω = 0.00001. The estimates are the posterior means.

draws from the posterior. Forecasts are made recursively so that parameters are re-estimated

using new information as the out-of-sample roles forward, i.e. the root mean squared forecast

error (RMSFE) is given by

RMSFE =

[
1

N

N∑

j=1

T−h∑

t=τ0

(yj,t+h −E(yj,t+h|Datat])
2

T − h− τ0 + 1

] 1
2

(6)

where h = {1, 5, 10}.

We focus on the ten periods ahead forecast, h = 10, as this most corresponds to a long

run forecast which is the primary interest of the paper. The shorter horizon forecasts will be

influenced more by the transitory process ci,t and these results are placed in the Appendix.

Table 3 displays the ten year ahead forecasts for the US states dataset. The first row of

the first block displays the RMSFE for the baseline model when Sω is very small so that there

is very little movement in the states’ balanced growth paths over time, as in Figure 7. This

row has a relatively poor forecasting performance compared to other rows and this illustrates

the benefit of our modelling approach that allows the balanced growth path to move through

time. In line with the intuition given above, the best performing row, displayed in bold, is at

an intermediate level of variation, where of Sω = 10−1. However the next best performance

is where Sω = 105 and the one after that Sω = 103. Thus we can only conclude that the

moderate levels of Sω perform better than very low levels, and comparably to high and very

levels of Sω. The second block in Table 3 displays the results for the hierarchical model.

Here the benefit of a moderate value of Sω is much more apparent, as moving down each
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column there is a ‘U’ shape for forecast performance. The lowest RMSFE is where Sω = 10

Sc = 100 but its performance is close to that adjacent cells to the left, above and below. The

forecasting performance of the first and last rows are now both relatively poor.

Table 3 therefore gives some support to hypothesis that intermediate values for Sω are

beneficial for forecasting long run balanced growth paths. However, this evidence is far

from definitive. This forecasting exercise is not intended to be a rigorous search for the

best performing prior. The grid is very sparse and while for the hierarchical model there

does appear to be a local minimum at intermediate levels of Sω for most columns, there is

also evidence in the baseline model for beneficial forecasting performance of very high levels

of Sω. This also true for shorter forecast horizons in Tables A1 and A3 in the Appendix.

However, across both models and at all forecast horizons the first row, with a very low level

of Sω, performs relatively poorly. These results therefore do give evidence for the benefit of

modelling growth paths as time varying which is the primary purpose of the exercise.

The results of the ten year ahead forecasts for the world economy are displayed in Table

4 and in Tables A2 and A4 in the Appendix. These results are similar to those for the US

states dataset in that for both the baseline and the hierarchical model and at all forecast

horizons the first row, with a very low level of Sω, is one of the worst performing rows. This

again provides support for modelling growth paths as time varying. However, there is a much

less evidence of the benefits of intermediate levels of Sω in this dataset although there is some

evidence of local minima at intermediate levels in some columns of Table 4. As stated above,

the clear benefit of high levels of volatility for ω in the baseline model, is not consistent with

a balanced growth interpretation of the data.
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TABLE 3

Ten years ahead forecast performances (RMSFE): US states dataset

Sc 10−5 10−3 10−2 10−1 1 10 102 103 105

Sω

Baseline Model

10−5 8.715 7.202 7.620 7.416 9.406 8.484 15.834 11.276 15.785

10−3 7.639 7.608 7.504 7.738 7.769 7.350 7.245 8.447 28.172

10−2 7.316 7.166 7.515 7.401 7.097 6.709 6.580 7.294 50.397

10−1 7.189 6.999 6.963 7.077 7.069 6.589 6.354 6.688 44.651

1 7.286 7.198 7.392 7.326 7.029 6.880 6.566 6.685 76.619

10 7.063 7.122 7.236 6.957 7.061 7.019 6.721 7.453 61.896

102 6.617 6.679 6.611 6.649 6.578 6.606 6.637 7.856 49.807

103 6.537 6.522 6.572 6.520 6.525 6.536 6.578 8.532 59.769

105 6.511 6.538 6.548 6.534 6.530 6.523 6.576 7.831 194.492

Hierarchical Model

10−5 7.649 7.528 7.698 7.622 7.787 8.017 9.636 10.584 26.154

10−3 6.760 6.733 6.744 6.727 6.900 7.089 7.425 8.993 27.260

10−2 6.571 6.579 6.586 6.560 6.766 6.865 7.020 8.138 34.886

10−1 6.502 6.493 6.502 6.491 6.463 6.465 6.574 7.622 44.688

1 6.495 6.485 6.493 6.497 6.496 6.430 6.444 8.032 44.395

10 6.496 6.500 6.496 6.489 6.495 6.477 6.424 8.021 43.533

102 6.502 6.508 6.495 6.499 6.499 6.498 6.471 7.664 54.005

103 6.515 6.519 6.515 6.527 6.535 6.515 6.579 7.898 72.555

105 9.161 10.499 11.723 8.393 8.409 9.742 10.573 20.236 156.810

Notes: Table 3 reports the Root-Mean-Squared Forecast Errors for ten period ahead out-of-sample forecast,

for the Regional US dataset. The estimates are produced recursively using 20,000 draws from the posterior

and the mean parameter estimates are used to generate the forecast.
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TABLE 4

Ten years ahead forecast performances (RMSFE): PWT Dataset

Sc 10−5 10−3 10−2 10−1 1 10 102 103 105

Sω

Baseline Model

10−5 48.53 37.25 37.52 39.40 37.76 37.59 36.62 33.76 51.64

10−3 45.03 45.81 45.15 45.38 46.48 44.82 41.49 40.62 79.72

10−2 43.70 43.21 43.71 43.37 43.46 43.00 40.01 36.93 95.74

10−1 41.63 41.98 42.24 41.80 42.18 41.01 38.20 32.64 123.52

1 40.78 41.08 40.44 40.05 41.36 39.99 37.81 30.69 114.08

10 39.04 38.96 38.92 38.64 38.55 38.07 37.91 31.72 97.20

102 31.27 31.57 30.99 31.25 31.79 31.89 33.46 32.25 87.77

103 29.81 29.68 29.84 29.72 29.85 29.87 30.43 31.68 100.39

105 30.04 30.13 29.71 29.87 30.00 29.88 30.87 34.71 308.85

Hierarchical Model

10−5 37.79 38.19 38.08 38.21 37.42 38.78 38.23 35.42 86.47

10−3 37.64 38.03 37.37 37.58 37.55 38.15 36.87 33.49 85.97

10−2 38.11 39.27 38.41 38.30 39.48 37.57 39.34 38.19 94.03

10−1 37.21 37.35 36.48 36.78 36.74 35.78 39.31 38.22 117.32

1 32.96 33.08 33.23 33.31 32.64 34.19 37.28 36.79 128.66

10 33.54 32.50 33.45 34.15 32.46 32.90 33.22 35.81 122.05

102 33.30 34.52 34.20 34.39 34.88 34.35 34.75 35.85 116.61

103 38.73 36.76 38.20 38.10 38.63 37.89 38.15 41.59 154.26

105 51.33 54.35 55.72 54.89 54.93 52.94 54.81 58.82 373.42

Notes: Table 4 reports the Root-Mean-Squared Forecast Errors for ten period ahead out-of-sample forecast.

The estimates are produced recursively using 20,000 draws from the posterior and the mean parameter

estimates are used to generate the forecast.
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VI Conclusion

Are economies converging to the same balanced growth path or their own individual growth

paths? In this paper we have added unobserved components analysis to an otherwise standard

empirical model of economic growth dynamics, so that an economy’s growth path can change

at any point in time. We applied this model to data on income per head from US states and

the world economy. Although the empirical model allows growth paths to change through

time, in both datasets there is very little evidence of convergence in the last 50 years. This

result is most striking for the US states dataset. US states are free trading, democratic and

peaceful, and operate under free interstate capital and labour mobility. The conditions for

convergence are thus as good as can be expected. Yet there is little evidence of convergence

over the last half century. ‘The Poor’ stay relatively poor.

If one accepts this paper’s analysis, the natural next question to ask is ‘Why then are

US states converging to different balanced growth paths?’. This paper does not attempt to

point to a specific determinant. The literature has provided many, possibly correlated and

not mutually exclusive, potential candidates. The issue is highly multi-dimensional. In this

context looking at the big picture, via a flexible reduced form analysis of income per head

dynamics, is informative. The results show that an economy’s initial level of relative income

per head appears to be a good summary measure of what is important for long run relative

growth.
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Appendix A

Estimation Algorithms

Draws from the posterior for all the models are made iteratively via a Gibbs sampling algo-

rithm which draws in sequence from the conditional posterior distributions described below.

We follow Chan et al (2019) closely here, including the notation. Further detail and deriva-

tions can also be found at this reference.

Model 1: The Baseline Model

The baseline model of equation (3) with T time periods and N individual economies has the

set of estimated parameters, Γ, where Γ = [{αi}Ni=1, {ω
2
i }
N
i=1, {ci}

N
i=1, {ω

2
c,i}

N
i=1{α0,i}Ni=1, {(φ1,i, φ2,i)}Ni=1, β, σ

2]

where αi ≡ [α1, . . . , αT ]
′, ci ≡ [c1, . . . , cT ]

′ and {ψi}Ni=1 denotes the set of coefficients ψi for

all economies, i = 1 : N .

Denoting all parameters other than ψ by Γ−ψ, then the conditional posterior distribution

for parameter ψ given all the other parameters and the data, Y can be written p(ψ | Γ−φ, Y ).

Using this notation, the Gibbs sampler algorithm can be described as follows:-

Choose starting values for β, ω2, σ2,ci and α0,i, and also the number of draws, ndraw.

Then cycle through draws from the condition posterior distributions described in (i)-(viii)

below, ndraw times, saving the draws after discarding an initial number, nburnin. We choose

ndraw = 2× 104 and nburnin = 104 in all our estimations. Draws are thinned by a factor of 10

leaving 1000 draws for calculations.

(i) Draw from p(αi | Γ−αi
, Yi), for each economy i, separately. This has the distributionN (α̂i, Vα)

where

α̂i = Vα

(
α0,i

ω2
i

H ′H1T +
1

σ2
Ŷ α
i

)
Vα =

[
1

ω2
H ′H +

1

σ2
IT

]
−1

where Ŷ α
i,t ≡ Yi,t −

∑L
l βlYi,t−l − ci,t and where Ŷi = [Ŷ α

i,1, Ŷ
α
i,2, . . . , Ŷ

α
i,N ]

′, 1T is a T × 1 vector

of ones and H is a T × T matrix with 1 on the diagonal, and -1 below the diagonal and zeros

elsewhere.

(ii) Draw from p(ci | Γ−ci, Yi), for each economy i, separately. This has the distribution N (ĉi, Vc)

where

ĉi = Vc(
1

σ2
Ŷ c
i ) Vc =

[
1

σ2
c

H ′

φHφ +
1

σ2
IT

]
−1

where Ŷ c
i,t ≡ Yi,t −

∑L
l βlYi,t−l − α, 1T is a T × 1 vector of ones and Hφ is a T × T matrix

with 1 on the diagonal, and −φ1,i and −φ2,i on the two rows immediately to the left of the

diagional -space permitting, see Chan et al (2019).

(iii) Draw from p(φi | Γ−φi , Yi), for each economy i, separately. This has the distribution N (φ̂i, Vφ)

where

φ̂i = Vφ

(
µφ

Sφ
+

1

σ2
c,i

Xφĉi

)
Vφ =

[
1

Sφ
+

1

σ2
c,i

X ′

φXφ

]
−1

where Xφ

(T×2)

= [ci,t−1 , ci,t−2].
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(iv) Draw from p(σ2
c,i | Γ

−σ2c,i
, Yi), for each economy i, separately. p( 1

σ2c,i
| Γ

−σ2c,i
, Yi) has the

Gamma density (α, β) form where α̂ = νc,i +
T
2 and β̂ = 1

[Sc,i+
[(ci,t−Xφφ)′((ci,t−Xφφ)]

2
]

(v) Draw from p(ω2
i | Γ

−ω2
i
, Yi), for each economy i, separately. p( 1

ω2
i

| Γ
−ω2

i
, Yi) has the Gamma

density (α, β) form with parameters α̂ = νω,i +
T
2 and β̂ = 1

Sω,i+
[(αi−α01T )′H′H(αi−α01T )]

2
]

(vi) For each economy i, draw from p(α0,i | Γ−α0,i , Yi). p(α0,i | Γ−α0,i , Yi) ∼ N (α̂0,i, Vαi0) where

α̂0,i = Vαi0

(
a0

b0
+

αi(1)

ω2
i

)
Vαi0 =

[
1

b0
+

1

ω2
i

]
−1

(vii) Given the parameters α from all economies and defining Y ⋆
i = Yi − αi − ci and stacking this

variable across economies to create Y ⋆ = [Y ⋆
1
′, Y ⋆

2
′, . . . , Y ⋆

2
′]′ then the system becomes a linear

regression model Y ⋆ = Xβ + u where X is the stacked system of lagged values of Y . i.e.

X = [Y−1, Y−2, . . . , Y−p], where Y−j is the stacked system of Yi,t’s lagged by j time periods.

This can be estimated in the standard way so that p(β | Γ−β, Y ) ∼ N (β̂, Vβ) where

β̂ = Vβ

(
S−1
β β0 +

1

σ2
X ′XβOLS

)
Vβ =

[
S−1
β +

1

σ2
X ′X

]
−1

(viii) Draw from p( 1
σ2

| Γ
−σ2 , Y ) using the stacked system. 1

σ2
will have a Gamma distribution with

parameters νσ+T×N
2 and 2

νσ
Sσ

+[Y ⋆
−Xβ)′(Y ⋆

−Xβ)]
.

For the initial values of α0,i we choose the intercept term from an economy i level OLS regression

of Yi,t = αi +
∑L

l βlYt−l and for the initial values of β we use the βl values from an OLS regression

using the stacked system. We set the initial value of c to zero and set c−1 = c−2 to zero following

Chan et al (2019).

Model 2: The Hierarchical Model

The hierarchical model extends the baseline model by allowing the βi coefficients to vary

across economies by being randomly drawn from a common higher level distribution. This

can be estimated in the same way as in the baseline model except for having a separate draw

for each individual economy’s βi before there is a draw for β and Σβ as in Chan et al (2019).
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Appendix B

Colour Versions of US states’ Growth Paths

Figure B1: Evolution of balanced growth path, US states 1933-1993
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(a) Baseline model
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(b) Hierarchical model

Figure B1 plots the evolution of the balanced growth path for the 48 contiguous US states from 1933-2021.

Panel a) is a colour version of Figure 2a and Panel b) is a colour version of Figure 3a. The colours highlight

different US regions.
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Figure B2: Evolution of the balanced growth path in the world economy
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(a) Long run growth in the world economy 1974-2019 from the baseline model
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(b) Long run growth in the world economy 1974-2019 from the hierarchical model

Figure B2 plots the evolution of the balanced growth path for the 123 countries in the world economy from

1974-2019. Panel a) is a colour version of Figure 5a and Panel b) is a colour version of Figure 6a. The

colours highlight different US regions.
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Shorter Forecast Horizon Results Tables

Table A1: Five years ahead forecast performances (RMSFE) For US states Dataset

Sc 10−5 10−3 10−2 10−1 1 10 102 103 105

Sω

Baseline Model

10−5 5.597 5.917 6.301 5.976 6.286 5.701 7.670 6.989 12.065

10−3 4.931 4.923 4.879 4.947 5.022 4.991 4.958 5.367 16.713

10−2 5.098 5.185 5.053 5.376 4.986 4.705 4.626 4.964 24.218

10−1 4.952 4.986 4.667 4.598 4.647 4.578 4.485 4.621 22.395

1 5.134 4.676 5.060 4.747 4.908 4.753 4.591 4.630 33.179

10 4.856 4.893 4.956 4.805 4.880 4.833 4.716 5.013 31.743

102 4.577 4.621 4.570 4.607 4.559 4.584 4.633 5.183 24.357

103 4.537 4.530 4.546 4.521 4.524 4.533 4.624 5.571 29.702

104 4.531 4.548 4.548 4.531 4.540 4.525 4.632 6.896 67.832

Hierarchical Model

10−5 5.380 5.160 5.316 5.295 5.353 5.447 6.012 6.488 14.842

10−3 4.747 4.788 4.777 4.734 4.973 4.866 5.066 5.753 15.569

10−2 4.644 4.633 4.643 4.680 4.836 4.829 4.918 5.340 18.039

10−1 4.566 4.562 4.588 4.585 4.575 4.545 4.629 5.158 21.847

1 4.604 4.596 4.577 4.571 4.602 4.518 4.574 5.353 22.331

10 4.590 4.597 4.591 4.586 4.592 4.597 4.572 5.256 21.881

102 4.579 4.589 4.569 4.574 4.578 4.574 4.616 5.133 24.495

103 4.566 4.557 4.569 4.584 4.581 4.568 4.653 5.259 31.958

105 5.750 5.907 6.141 5.521 5.512 5.610 6.189 10.672 68.776

Notes: Table A1 reports the Root-Mean-Squared Errors for the five period ahead out-of-sample forecast.

The estimates are produced recursively using 20,000 draws from the posterior and the mean parameter

estimates are used to generate the forecast.
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Table A2: Five years ahead forecast performances (RMSFE) for the world economy dataset

Sc 10−5 10−3 10−2 10−1 1 10 102 103 105

Sω

Baseline Model

10−5 25.58 23.22 23.08 23.17 23.94 22.89 21.79 20.47 32.16

10−3 23.90 24.04 24.04 24.14 24.25 23.99 22.43 22.21 39.97

10−2 23.51 23.45 23.50 23.47 23.46 23.29 21.81 21.09 47.67

10−1 22.94 22.98 23.05 22.89 23.07 22.58 21.33 19.37 55.71

1 22.40 22.48 22.33 22.22 22.62 22.06 21.18 18.69 57.13

10 21.94 21.96 21.93 21.86 21.84 21.66 21.27 18.83 48.45

102 18.95 19.12 18.80 18.93 19.25 19.32 19.78 19.22 45.33

103 17.96 17.92 17.98 17.95 18.01 18.02 18.42 19.10 48.64

105 18.08 18.16 17.90 18.00 18.06 18.01 18.99 21.97 120.57

Hierarchical Model

10−5 21.86 21.95 22.01 21.94 21.81 22.03 21.52 20.64 40.48

10−3 21.59 21.77 21.49 21.24 21.56 22.18 21.16 20.02 41.93

10−2 21.40 21.79 21.32 21.45 22.07 21.94 21.91 21.21 46.01

10−1 20.94 20.88 20.85 20.75 21.09 21.59 21.93 21.22 55.72

1 19.58 19.52 19.72 19.68 19.51 20.29 21.15 21.15 57.70

10 19.47 19.20 19.54 19.75 19.23 19.44 19.65 20.64 55.35

102 19.54 19.72 19.86 19.96 20.05 19.70 19.83 20.40 54.40

103 21.01 20.43 20.75 20.77 21.00 20.83 20.84 22.02 67.11

105 24.57 25.42 25.13 25.42 25.34 25.25 25.48 29.66 162.15

Notes: Table A2 reports the Root-Mean-Squared Errors for five period ahead out-of-sample forecast.The

estimates are produced recursively using 20,000 draws from the posterior and the mean parameter estimates

are used to generate the forecast.
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Table A3: One year ahead forecast performances (RMSFE) for US states dataset

Sc 10−5 10−3 10−2 10−1 1 10 102 103 105

Sω

Baseline Model

10−5 1.984 2.518 2.718 2.458 2.360 2.178 2.175 2.370 5.169

10−3 1.830 1.838 1.844 1.842 1.862 1.883 1.861 1.880 4.265

10−2 1.813 1.834 1.828 1.827 1.817 1.819 1.792 1.832 4.120

10−1 1.787 1.762 1.743 1.716 1.736 1.767 1.743 1.739 4.578

1 1.816 1.754 1.762 1.692 1.790 1.747 1.724 1.713 5.030

10 1.669 1.670 1.676 1.676 1.681 1.688 1.683 1.703 4.318

102 1.621 1.625 1.619 1.621 1.610 1.592 1.633 1.697 4.191

103 1.625 1.623 1.615 1.617 1.610 1.615 1.650 1.763 4.780

105 1.608 1.627 1.631 1.622 1.627 1.623 1.749 2.507 8.728

Hierarchical Model

10−5 1.885 1.815 1.906 1.867 1.912 2.008 2.076 2.050 3.625

10−3 1.776 1.749 1.776 1.745 1.811 1.868 1.883 1.956 3.691

10−2 1.742 1.722 1.731 1.719 1.800 1.839 1.860 1.897 3.966

10−1 1.711 1.738 1.701 1.733 1.700 1.789 1.799 1.842 4.369

1 1.695 1.713 1.698 1.686 1.692 1.712 1.756 1.828 4.620

10 1.685 1.687 1.686 1.678 1.684 1.692 1.713 1.801 4.510

102 1.677 1.671 1.673 1.669 1.672 1.676 1.713 1.795 4.533

103 1.678 1.668 1.673 1.668 1.673 1.668 1.707 1.824 5.589

104 1.729 1.784 1.795 1.802 1.749 1.784 1.900 2.721 10.931

Notes: Table A3 reports the Root-Mean-Squared Errors for the one period ahead out-of-sample

forecast.The estimates are produced recursively using 20,000 draws from the posterior and the mean

parameter estimates are used to generate the forecast.
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Table A4: One year ahead forecast performances (RMSFE) for the world economy dataset

Sc 10−5 10−3 10−2 10−1 1 10 102 103 105

Sω

Baseline Model

10−5 6.75 7.28 7.21 7.08 8.39 6.84 6.66 6.76 9.44

10−3 6.52 6.51 6.54 6.54 6.59 6.63 6.59 6.49 9.11

10−2 6.45 6.46 6.45 6.49 6.54 6.55 6.54 6.29 9.25

10−1 6.40 6.40 6.42 6.43 6.50 6.46 6.57 6.20 9.93

1 6.36 6.37 6.36 6.38 6.43 6.44 6.60 6.18 10.24

10 6.38 6.40 6.38 6.43 6.45 6.49 6.58 6.11 9.04

102 6.15 6.16 6.12 6.16 6.19 6.28 6.25 6.17 8.42

103 5.91 5.93 5.92 5.93 5.95 5.98 6.05 6.11 9.51

105 5.90 5.90 5.87 5.90 5.91 5.94 6.08 6.74 16.89

Hierarchical Model

10−5 6.39 6.38 6.38 6.38 6.36 6.46 6.45 6.33 8.46

10−3 6.35 6.34 6.34 6.33 6.36 6.53 6.43 6.25 8.65

10−2 6.28 6.30 6.30 6.30 6.36 6.51 6.47 6.36 9.07

10−1 6.24 6.20 6.20 6.19 6.28 6.44 6.45 6.34 9.88

1 6.06 6.07 6.06 6.05 6.11 6.26 6.46 6.43 10.08

10 5.99 5.99 6.00 6.03 6.00 6.06 6.25 6.45 10.20

102 5.96 5.99 6.02 6.02 6.03 6.00 6.13 6.23 10.13

103 6.11 6.00 6.08 6.08 6.12 6.07 6.12 6.31 11.85

105 6.41 6.50 6.37 6.52 6.51 6.51 6.66 7.33 25.16

Notes: Table A4 reports the Root-Mean-Squared Errors for the one period ahead out-of-sample

forecast.The estimates are produced recursively using 20,000 draws from the posterior and the mean

parameter estimates are used to generate the forecast.
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