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Abstract

Baryshnikov presented a remarkable algebraic topology proof of Arrow's
impossibility theorem trying to understand the underlying reason behind
the numerous proofs of this fundamental result of social choice theory.
We continue this program, but focusing on combinatorial topology argu-
ments that do not use advanced mathematics, providing a very intuitive
geometric reason for Arrow's impossibility under domain restrictions.
We present a geometric proof for the basis case of two voters, n =
2, and three alternatives, |X| = 3, based on the index lemma,
that counts the absolute number of times that a closed curve in
the plane travels around a point. This yields a characterization of
the domain restrictions that allow non-dictatorial aggregation func-
tions and, as a consequence, Baryshnikov's conjecture relating such
domains with contractible spaces is revealed as untrue. It also exposes
the geometry behind prior pivotal arguments to Arrow's impossibility.
We explain why the basis case of two voters, is where this interest-
ing geometry happens, by giving a simple proof that this case implies
Arrow's impossibility for any |X| ≥ 3 and any �nite n ≥ 2.

1



2 A Combinatorial Topology Approach to Arrow's Impossibility Theorem

Keywords: Social choice, Arrow's impossibility theorem, combinatorial
topology, domain restrictions, distributed computing, simplicial complexes,
index lemma.

1 Introduction

Social choice theory is a highly developed �eld of interest to economics and
political science, and more recently to computer science (Brandt et al., 2016).
The modern �eld of social choice theory took o� with Kenneth Arrow's remark-
able 1950 result (Arrow, 1950) for the basic problem of democracy: it is
impossible to aggregate the individual preferences into a single social pref-
erence, under some reasonable-looking axioms. Soon after the publication of
Arrow's result alternative proofs began to emerge; starting with Inada (1954),
numerous other proofs followed, and continue to be proposed until recently,
e.g. Feldman and Serrano (2008); Geanakoplos (2005); SEN et al. (2014); Fey
(2014). For an overview, including the importance of Arrow's result, see intro-
ductory books such as Gaertner (2009), or more advanced such as Feldman
and Serrano (2006).

Motivation

Trying to understand the underlying reason behind the many proofs of Arrow's
theorem, Baryshnikov (1993) presented a remarkable di�erent approach, a
topological impossibility proof. However, the goal of providing intuition about
the nature of the problem of social choice is hindered by the relatively advanced
algebraic topology tools used by Baryshnikov (several attempts at explain-
ing the proof have been made Baryshnikov (1997) , Chia (2015) and Baigent
(2011)).

Our goal here is to further advance the program of Baryshnikov, while
making it accessible to an audience not familiar with algebraic topology.
Furthermore, we aim at understanding the gap between the literature on topo-
logical social choice (Lauwers, 2000) and combinatorial proofs, which have
developed largely independently. We do so by moving from algebraic topol-
ogy to combinatorial topology, and in doing so discover (and bene�t from)
remarkable connections with distributed computing (Herlihy et al., 2013).

Contributions

First, we provide new geometric proofs of Arrow's impossibility that do not
require any acquaintance with algebraic topology. The proofs give a new insight
for the reason of the impossibility, based on the index lemma. This is a combi-
natorial topology result, useful to compute winding numbers. Recall that the
winding number of a closed curve in the plane around a point is the number
of times that the curve passes counterclockwise around the point minus the
number of times it passes clockwise.
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Fig. 1: C has winding
number 2 around p.

The geometric argument shows that the basis
case of two individuals and three alternatives is
somehow special, explaining an intriguing phe-
nomenon, appearing several times in the literature.
Some papers simply treat this case only e.g. Akashi
(2005), Saari (2011), Baigent (2011) and Tanaka
(2009). More interestingly, some papers hint at the
idea that this is the case where the interesting things

happen. Baryshnikov (1993), in Section 7.1, explains that only the arguments
of his proof for triples of alternatives are in fact used, and one could concen-
trate only on the 2-skeleton of the simplicial complex using one-dimensional
(co)homology.

We show the usefulness of the combinatorial topology approach by provid-
ing a characterization of the domain restrictions of the basis case for which
there is a non-dictatorial aggregation function, a problem that remains open
despite a substantial amount of research (Barberà et al., 2020; Elkind et al.,
2022). A very simple geometric argument for Arrow's impossibility based on
a domain restriction is presented. The domain restriction analysis we present
shows that contractibility of the space of preference pro�les is not the reason
for Arrow's impossibility, as conjectured in topological social choice (Lauwers,
2000).

With the goal of exposing the relation of our topological perspective with
with previous proofs (something not done by Baryshnikov (1993)), we present
a combinatorial topology perspective of the recent pivotal arguments to prove
Arrow's impossibility by Geanakoplos (2005) and Yu (2012), that have received
much attention.

Finally, we present a simple proof showing that Arrow's impossibility result
for the basis case of two individuals and three alternatives implies the general
case. This result has been shown before under the restriction of �nite number
of alternatives by Tang and Lin (2009) and partially by Akashi (2005), but our
proof seems, in addition to be more general, more direct.

New intuition behind Arrow's impossibility and the connection

with distributed computing

Very roughly, the intuition behind our approach, for the base case of two
voters and three alternatives A, B and C is the following. The �rst step is to
represent the set of possible preferences of the voters, NI , as well as the set
of possible social preferences, NO, as geometric objects built from triangles.
These objects are called 2-dimensional simplicial complexes; an introduction
to combinatorial topology is in Section 2.2.

The notation NI , NO stands for �input� and �output� complexes, following
the notion of a task in distributed computing. We present an introduction
of the relation with distributed computing in (Herlihy et al., 2013) and in a
proceedings version of this paper (Rajsbaum and Raventós-Pujol, 2022).



4 A Combinatorial Topology Approach to Arrow's Impossibility Theorem

The second step is to observe that the aggregation map F that decides
the social output, induces a simplicial map f from NI to NO. In Section 2.3
we reformulate Arrow's problem in terms of requirements about the simpli-
cial map f . We use techniques from combinatorial topology such as the index
lemma (see Section 2.2.1) to address the Arrovian problem. The mathemat-
ics used is elementary: essentially only basic parity counting operations are
needed. Interestingly, the index lemma is also behind the distributed com-
puting impossibilities related to weak symmetry breaking e.g. Castañeda and
Rajsbaum (2010) and Goubault et al. (2019).

Organization

First we present the statement of Arrow's theorem, an introduction to com-
binatorial topology, and how to model Arrow's theorem using combinatorial
topology, in Section 2. We provide a proof of Arrow's theorem (|X| = 3 and
n = 2) using the index lemma in Section 3. In Section 4 we study restric-
tion domains. A domain restriction is used in section 4.1 to prove Arrow's
impossibility with a very simple intuitive geometric argument. In Section 4.2 a
domain restriction is described that does allow for a non-dictatorial aggrega-
tion, in spite of having a non-contractible restriction. In Section 4.3 we present
the characterization of non-dictatorial domain restrictions. In Section 5 we use
combinarotial topology to prove Arrow's theorem explaining the classic piv-
otal arguments. In Section 7 we present the conclusions. At the end of the
paper an Appendix includes an exhaustive discussion of the generalization of
Arrow's theorem from the base case we have studied to the general case, and
technical details about the proofs.

2 Arrow's impossibility theorem statement:
classic and geometric formulations

We start by recalling Arrow's theorem in Section 2.1, we then present a
quick introduction to combinatorial topology in Section 2.2 and �nally the
combinatorial topology restatement of Arrow's model in Section 2.3.

2.1 Classic formulation

Let X be a set of alternatives and |X| ≥ 3. The set of all strict total orders
of X is denoted by W . Let n ≥ 2 denote the (�nite) number of voters, and
Wn be the set of pro�les of preferences. Thus, R = (R1, . . . , Rn) ∈ Wn is
a pro�le, where each Ri ∈ W is the order on X preferred by the i-th voter.
An aggregation map F is a function from Wn to W that maps each pro�le
of Wn to a unique order in W . For example, if X = {A,B,C} and Ri ∈ W ,
ARi BRi C denotes that the i-th voter prefers A over B, and B over C. When
no confusion arises, simply by ABC.

A classic form of Arrow's impossibility theorem states that whenever the
set X of possible alternatives has at least 3 elements, there is no aggregation
map F from Wn to W satisfying three reasonable axioms. Formally:
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Theorem 1 (Arrow's impossibility theorem) Let |X| ≥ 3 and n ≥ 2. There is no

aggregation map F : Wn → W satisfying the following conditions:

1. Unanimity. If alternative, a, is ranked strictly higher than b for all orderings
R1, . . . , Rn, then a is ranked strictly higher than b by F (R1, . . . , Rn).

2. Independence of irrelevant alternatives. For two preference pro�les R and
S such that for all individuals i, alternatives a and b have the same order in
Ri as in Si, alternatives a and b have the same order in F (R) as in F (S).

3. Non-dictatorship. There is no individual k whose strict preferences always
prevail. That is, there is no k ∈ {1, . . . , n} such that for all R ∈ Wn, a
ranked strictly higher than b by Rk implies a ranked strictly higher than b
by F (R), for all a and b.

Some formulations of Arrow's impossibility theorem allow ties in the rank-
ings (Arrow, 1951; Fishburn, 1970; Yu, 2015). In this sense, it could seem that
the framework we present here is not as general as it might be. However, this
is not the case (Baryshnikov, 1993, Lemma 1), and indeed previous proofs
(Baryshnikov, 1993; Lauwers, 2000; Baigent, 2011) of Arrow's impossibility
often assume, as we do, strict orders.

2.2 Combinatorial topology

Algebraic topology is a deep and highly developed branch of mathematics,
studying algebraic invariants of topological spaces, such as homology groups.
When the spaces are composed of individual cells attached to each other in a
simple way, we have combinatorial topology, which has been gaining impor-
tance more recently as more and more applications are discovered, and the fact
that such invariants can be computable. Here we use only elementary notions
that can be found in books such as Henle (1994) and Herlihy et al. (2013), for
more advanced treatments see Kozlov (2008) and Stillwell (1980).

A simplicial complex is a family of sets that is closed under taking subsets,
that is, every subset of a set in the family is also in the family. The elements of
the sets are called vertices. A set of the simplicial complex is called a simplex,
and its dimension is d if it has d + 1 elements; we say it is a d-simplex. In
this paper we consider only simplicial complexes of dimension 2, meaning that
each simplex contains at most 3 elements.

A simplicial complex is a purely combinatorial object, it can be seen as a
generalization of a graph; in our case, in addition to edges consisting of pairs
of vertices, we allow also triangles consisting of triples of vertices. As in graph
theory, it is sometimes useful to embed a simplicial complex in Euclidean space.
A simplicial complex can represent a discretization of a geometric object, in
the case of dimension 2, a triangulation. We may think of the simplices of size
3 as triangles, the simplices of size 2 as edges, and simplices of size 1 as points,
as illustrated, for example, in Figure 2 and Figure 3.
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A subset of a simplex is called a face. Notice that if a triangle is in the com-
plex, so are its three 1-dimensional faces (edges), and its three 0-dimensional
faces (vertices), because a complex is closed under containment.

Additionally, we say that a simplicial complex is chromatic with colours in
a set C if every vertex is labeled with an element from C.

A simplicial map is a function from the vertices of one simplicial complex
K to the vertices of another simplicial complex K ′, that preserves simplices:
it sends sets of vertices that belong to a simplex of K, to sets of vertices that
belong to a simplex ofK ′; thus, it respects the simplicial structure. A simplicial
map is a discrete version of a continuous map. A simplical map from K to K ′

is chromatic if K and K ′ are chromatic with respect the same colour set C
and the map preserves the colours. That is, every vertex of K and its image
are labeled with the same colour.

2.2.1 Index lemma

Quoting from Henle (1994),

�The combinatorial method is used not only to construct complicated �gures from

simple ones but also to deduce properties of the complicated from the simple. In

combinatorial topology it is remarkable that the only machinery needed to make

these deductions is the elementary process of counting!�

The index lemma illustrates this point. Here we describe the basic version
of Henle (1994).

2

2 2

0
1 1

21

0

0

1

0

−1−1

+1

0

1 2

f

Fig. 2: Simplicial complex from Henle (1994) illustrating the index lemma,
highlighting the three complete triangles.

Consider a simplicial complex, consisting of a polygon of any number of
sides, triangulated; an example is in Figure 2. The vertices are coloured arbi-
trarily, with colours in C = {0, 1, 2}. The content C is the number of triangles
labelled 0, 1, 2, counted by orientation: it counts +1 if its labels read 012 in a
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counterclockwise direction around the triangle, and counts −1 if they clock-
wise around the triangle. The index I is the number of edges labeled 01 around
the boundary1 of the polygon counted by orientation: and edge counts +1 if
it reads 01 counterclockwise around the polygon, and −1 if it reads 01 clock-
wise. In the �gure, I = C = −1. The index lemma says that this is always the
case. Formally:

Theorem 2 (Index Lemma) Let K be an oriented, chromatic and triangulated

polygon with colours {0, 1, 2}. Then its content C is equal to its index I.

This simplicial complex from Figure 2 illustrates the index lemma, high-
lighting the three complete triangles.

The miracle of the index lemma is that the proof is a very simple parity
counting argument (see Theorem 9), despite the fact of being at the core of
the study of vector �elds and other areas (Henle, 1994). It is a generalization
of Sperner's lemma (which is a discrete analogue to Brouwer's �xed point
theorem (see Loera et al. (2019))). For a general formulation of the index
lemma see Fan (1967).

The see the winding number interpretation, we think of the coloring of the
vertices of the triangulated polygon K as a simplicial map f to the complex
K ′ that consists of a single 2-dimensional simplex {0, 1, 2}, together with all
its faces. The index lemma counts the number of times the boundary of K is
wrapped around the boundary of K ′. In Figure 2, if one follows the colors on
the boundary of the triangulated polygon along the triangle on the right of the
�gure, one can see that it wraps around the triangle once, counterclockwise.
While on the inside, 3 triangles are mapped on top of the triangle on the right,
two with negative orientation and one with positive orientation.

In Section 3 we need a simple generalization (Theorem 9 in the Appendix)
to prove Arrow's theorem: while the boundary of the complex consists of exte-
rior edges belonging to a single triangle, each interior edge belongs to an even
number of triangles (at least 2). As opposed to Sperner's lemma, the index
lemma requires the complex to be orientable (De�nition 2 in Appendix ??). An
example of a such an orientable complex, is the triangulated torus in Figure 3.
It has no exterior edges. After removing one triangle, say cfg, the bound-
ary consists of the edges of this triangle. An example a complex that is not
orientable is a triangulation of the Möbius strip in Figure 3.

2.3 Combinatorial topology from Arrow's theorem

In this section we will transform the Arrovian model described in Section 2.1
into the topological model we will study in the following sections. We will
follow the construction introduced by Baryshnikov (1993).

1In the subsequent pages we use boundary as usually in topology (see e.g. (Henle, 1994, Section
4)).
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Fig. 3: Arrows indicate edges that are identi�ed. The triangulated torus on
the left has 10 vertices. The triangulated Möbius strip on the right has only 6
vertices, the boundary consists of a cycle of 6 edges: ab, bc, cd, de, ef and fa.

We depart from the sets of orderings W , pro�les Wn and aggregation maps
F : Wn →W , and we will obtain a simplicial complex NO representing the set
of social preferences, a simplicial complex NI representing the set of individual
pro�les and a simplicial map f : NI → NO representing the aggregation map
F . Next, we will introduce such mathematical objects following the same order.

De�ne the set Uσ
αβ , with α, β ∈ X and σ ∈ {+,−}n as the subset of pro�les

of Wn where for each voter i, α is ranked higher than β if σ(i) = +, and
otherwise, β is ranked higher than α.

Uσ
αβ = {R ∈Wn : αRiβ if σ(i) = +, βRiα if σ(i) = −}

Notice that Uσ
αβ de�nes the same set of social preferences as U−σ

βα . We
can de�ne a simplicial complex whose vertices V are Uσ

αβ . A set of vertices
of V forms a simplex i� their intersection (namely, of the social preferences
corresponding to each of the vertices Uσ

αβ) is nonempty.

De�nition 1 The input complex NI is the simplicial complex whose set of vertices
V consists of all Uσ

αβ , α, β ∈ W , and σ ∈ {+,−}2,
The output complex NO is the simplicial complex whose set of vertices V consists

of all Uσ
αβ , α, β ∈ W , and σ ∈ {+,−}1.

For both NI and NO, a set of vertices of V forms a simplex i� their intersection
is nonempty.

The complex NO is depicted on the rights side of Figure 4 taking X =
{A,B,C}. Notice that U+

αβ denotes the same set as U−
βα. The complex NO is

chromatic: its colours are the (non-ordered) pair of alternatives placed on the
subindex of every vertex. For instance, the vertex U+

αβ is coloured by {α, β}.
A facet is a 2-simplex

{
Uσ0

α0β0
, Uσ1

α1β1
, Uσ2

α2β2

}
, which represents the strict order

that is compatible with its three vertices, that is, the strict order contained in
Uσ0

α0β0
∩ Uσ1

α1β1
∩ Uσ2

α2β2
. Consider for example the triangle ABC in Figure 4,

and its two vertices U+
AB and U+

BC . Notice that U
+
AB = {ABC,ACB,CAB},

and U+
BC = {ABC,BAC,BCA}. These two vertices form an edge of NO

because their intersection is not empty. Moreover, it belongs to a single trian-
gle, because the third vertex is unique, U−

CA = {ABC,ACB,BAC}. Indeed,
the three vertices intersect in a unique order, ABC.

Moreover, there are exactly two hollow triangles in NO, that is, three (dis-
tinctly coloured vertices) which do not form a simplex. The external one,
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U+
AB , U

+
BC , U

+
CA

}
, would require a preference preferring A over B, B over C

and C over A (a Condorcet cycle), and the central one,
{
U−
AB , U

−
BC , U

−
CA

}
, the

converse. Furthermore, the boundary edges that belong to a single triangle are
those that, by transitivity, imply the third vertex, e.g. the edge

{
U+
AB , U

+
BC

}
implies the third vertex, U−

CA.

Remark 1 For simplicity, we always denote the six vertices of NO by the represen-
tatives U+

AB , U
−
AB , U

+
BC , U

−
BC , U

+
CA and U−

CA, as in the �gure. In Section 3 we will
need all vertices in the same boundary to share the same sign.

Remark 2 Consider two adjacent 2-simplices, intersecting in an edge. The strict order
associated with one simplex and the one associated with the other simplex are equal,
modulo permuting two consecutive elements in the strict order. For example, the
facet corresponding to ABC and the one corresponding to ACB are adjacent: they
are equal modulo the permutation of B and C. This fact will be used in the proof of
Section 5.

U
(+,−)
BC U

(−,+)
CA

U
(+,−)
AB

U
(−,+)
BCU

(+,−)
CA

U
(−,+)
AB

U
(−,−)
BC

U
(+,+)
CA

U
(−,−)
ABU

(+,+)
BC

U
(−,−)
CA

U
(+,+)
AB

U−
AB

U−
BCU−

CA

ACB

ABC

B
A
C

BCA

CAB

C
B
A

NI NO
f

Fig. 4: On the left, NI is a torus with 12 additional triangles that form four
boundary hollow triangles. Here only 6 of them are shown together with their
2 hollow triangles (attached to the green-dashed cycle); the other 6 triangles
are omitted for clarity, they are attached to the blue-dotted cycle. Instead, NO

is homeomorphic to a cylinder with two hollow boundary triangles.

The complex NI is much bigger than NO. A schematic representation is in
Figure 4 and Figure 6. Notice, in the remark below, that analogous observations
to the ones we made for NO hold for NI as well.
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BCA,ACB

U
(+,+)
AC U

(−,+)
AB

U
(+,−)
BC

U
(+,−)
AC

U
(−,−)
AC

U
(−,+)
AC

BAC,ACB

BCA,CAB

BAC,CAB U
(−,−)
CA U

(+,−)
BC

U
(+,+)
AB

U
(−,+)
CA

ABC,ACB

ABC,CAB

U+
AC U−

AB

U+
BC

U−
AC

BAC

BCA

Fig. 5: Four triangles of NI , then two, and �nally two of NO, intersecting in
an edge, because they agree on two pairwise preferences, AB and BC.

Remark 3 First, in the case |X| = 3 and n = 2, whereas each 2-simplex of NO

is a preference, in NI each 2-simplex is represented by two individual preferences.
Second, consider two adjacent 2-simplices (intersecting in an edge) of NI . The indi-
vidual preferences associated with one simplex and those associated with the other
simplex are equal, modulo permuting the preference of two alternatives, x, y, of one
or two voters, without changing the preferences of other alternatives. For example,
in Figure 5, the triangles (BAC,ACB) and (BCA,CAB) are adjacent, because the
preferences of both voters over A and C are exchanged, and only over A and C. This
fact will be a keystone of the proof of Section 5.

Finally, we have the following two propositions.

Proposition 3 Given an aggregation map F : W 2 → W satisfying independence

of irrelevant alternatives, there is an induced aggregation chromatic simplicial map

f : NI → NO, and viceversa, any chromatic simplicial map f : NI → NO induces

an aggregation map F : W 2 → W satisfying independence of irrelevant alternatives.

Proof Let n = 2, but the proof holds for any n. Given Uσ
αβ , since it represents a

subset of pro�les in Wn de�ned purely by the orderings between α and β, f
(
Uσ
αβ

)
is de�ned as Uσ

αβ with the sign σ determined by the ordering of α and β on the social

aggregation of any of the pro�les in Uσ
αβ

2. The images of the higher dimensional
simplices of NI can be de�ned by extension. We only need such simplices to be in NO.
However, this is immediate because a simplex in NI exists whenever the intersection
of their vertices contains at least one pro�le. The image of such a pro�le must belong
to the intersection of the images of those vertices, since the image of a pro�le is
determined by the ordering of pairs of alternatives.

2If we assume independence of irrelevant alternatives together with unanimity, it can be de�ned

as f
(
Uσ

αβ

)
=

{
F (R) ∈ W : R ∈ Uσ

αβ

}
.
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U
(+,+)
AB

U
(+,+)
CA

U
(+,+)
BC

U
(−,−)
AB

U
(−,−)
CA

U
(−,−)
BC

U
(+,−)
AB

U
(+,−)
CA

U
(+,−)
BC

U
(−,+)
AB

U
(−,+)
CA

U
(−,+)
BC U

(+,−)
CA

U
(−,+)
AB

U
(+,−)
BC

U
(−,+)
CA

U
(+,−)
AB

U
(−,+)
BC

U
(+,−)
CA

U
(+,+)
AB

U
(−,−)
BC

U
(+,+)
CA

U
(−,−)
AB

U
(+,+)
BC

U
(−,−)
CA

U
(+,+)
AB

U
(+,−)
BC

U
(−,+)
CA

U
(+,−)
AB

U
(−,+)
BC

U
(+,−)
CA

U
(−,+)
AB

U
(+,−)
BC

Fig. 6: When |X| = 3 and n = 2, the complex NI can be built using two
(cylindrical) copies of NO placed one inside the other (on the left side of
the �gure). The inner cylinder are the unanimous pro�les, whereas the outer
one are the pro�les where the voters have opposite preferences. Additionally,
both cylinders are joined through the torus in the right (the torus is folded
by identifying vertices according to the coloured and patterned edges), so the
total number of vertices of NI is 12.

Notice that the simplicial map f is chromatic, in the sense that it sends vertices
of NI labeled αβ to vertices of NO also labeled with the same alternatives, αβ. The
other direction of the claim is analogous. □

We say that f is a projection if there is a voter k such that for all vertices

Uσ
αβ of NI , f

(
Uσ
αβ

)
= U

σ(k)
αβ . That is, f return the preference of the k-th voter.

Taking into account the discussion above, we can state:

Proposition 4 Let F : Wn → W be an aggregation map satisfying independence of

irrelevant alternatives and f : NI → NO be its induced simplicial aggregation map.

Then, F satis�es unanimity i� f satis�es unanimity. Moreover, F is dictatorial i�

f is a projection.

Proof If F satis�es unanimity, it sends pro�les where everybody prefers α over β
to a social preference where α is preferred over β. Then f sends the vertices where

everybody prefers α over β, denoted U
(+,··· ,+)
αβ , to vertices where α is preferred

over β in the social choice, denoted U+
αβ . Thus, we say that the simplicial map f
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satis�es unanimity if it is such that for all vertices U
(+,··· ,+)
αβ of NI , it holds that

f
(
U

(+,··· ,+)
αβ

)
= U+

αβ .

By the de�nition of projection itself, F being dictatorial is equivalent to f being
a projection. □

These two propositions assure that Arrow's impossibility theorem
(Theorem 1) for |X| = 3 and n = 2 is equivalent to Theorem 5 in the next
section. Moreover, we defer to Section 6 a pair of lemmas that allows general-
izing the impossibility from the base case (|X| = 3 and n = 2) to the general
case (|X| ≥ 3 and n ≥ 2).

3 Impossibility proof based on the index lemma

In this section we will prove the Theorem 5 below, equivalent to Arrow's
impossibility theorem when |X| = 3 and n = 2, using the index lemma. This
lemma is stated and discussed in detail in Section ??.

Theorem 5 If f : NI → NO is a chromatic simplicial map that satis�es unanimity

then f is a projection.

Proof Let f : NI → NO be a simplicial map such that for all vertices U
(+,+)
αβ of NI ,

it holds that f
(
U

(+,+)
αβ

)
= U+

αβ . We will use f to de�ne an additional coloring of

the vertices of NI with colors C = {0, 1, 2}3.
In order to de�ne the coloring of the vertices of NI , �rst we colour them with

{+1,−1} according to the image of every vertex by f . That is, we label Uσ
αβ with

+1 i� f
(
Uσ
αβ

)
∈ NO has the superindex +, and otherwise with −1. We call it the

sign of Uσ
αβ and it is denoted by s

(
Uσ
αβ

)
.

Second, we color every vertex of NI with one colour p in C = {0, 1, 2} following
the rule:

p
(
Uσ
αβ

)
= ID

(
Uσ
αβ

)
+ s

(
Uσ
αβ

)
(mod 3) (1)

where the identi�ers are de�ned as ID
(
Uσ
AB

)
= 0, ID

(
Uσ
BC

)
= 1 and

ID
(
Uσ
CA

)
= 2 (for every σ ∈ {+,−}n).

We show in Section ?? that NI is orientable and we can use the index lemma.
Notice that a cycle of three vertices is 3-coloured if and only if the sign of all of

them is the same4. This implies that the content C = 0 because no 2-simplex in NI

can be mapped to one of the holes in NO.
We conclude from the index lemma that I = 0, on the boundary of NI , which

consists of 4 combinations of Condorcet cycles (see Figure 7). The contribution to
the index from the unanimity cycles is +2 (see Figure 8).

Since the contribution of the unanimity cycles is +2 and I = 0, the two remaining
contributions to I have to be −1 for each one of the remaining boundary components.

3We remark that this new coloring is di�erent from the one used to introduce NI in De�nition 1.
4The key of this statement relies on the three vertices of any triangle having di�erent identi�ers.

So, the combination of two distinct signs with two distinct identi�ers always induces the same
colour p.
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U
(+,−)
CA

U
(+,−)
AB U

(+,−)
BC

U
(−,+)
CA U

(−,+)
AB

U
(−,+)
BC

U
(−,−)
CA

U
(−,−)
AB U

(−,−)
BC

U
(+,+)
CA U

(+,+)
AB

U
(+,+)
BC

Fig. 7: NI has four boundary components generated by Condorcet cycles.
A single triangle intersects each boundary edge since each pair of vertices
determines the third one by transitivity.

p
(
U

(+,+)
CA

)
= 0

1 = p
(
U

(+,+)
AB

)
p
(
U

(+,+)
BC

)
= 2

1 = p
(
U

(−,−)
CA

)

p
(
U

(−,−)
AB

)
= 2p

(
U

(−,−)
BC

)
= 0

+1

p
(
U

(−,−)
CA

)
= 1

2 = p
(
U

(−,−)
AB

)
p
(
U

(−,−)
BC

)
= 0

0 = p
(
U

(+,+)
CA

)

p
(
U

(+,+)
AB

)
= 12 = p

(
U

(+,+)
BC

)

+1

Fig. 8: The contribution of these two boundary components to the index
is +2 according with the orientation de�ned in Proposition 10, Figure 18 in
Appendix ??.

So, we can conclude that both have to be tricoloured and mapped by f to the
boundary of NO.

Both of these boundary components cannot be mapped to the same boundary of
NO because if it were the case all of the non-unanimous vertices would be mapped

in the same boundary. Then, for instance, the simplex
{
U

(−,+)
AB , U

(−,+)
BC , U

(+,−)
CA

}
would be mapped to one of the hollow triangles of NO (see Figure 9).

Finally, we have all the information we need about the images of the 12 vertices
of NI to state that f is a projection. Recall that the images of the �rst and the fourth
boundaries in Figure 7 are determined by the unanimity. If the second boundary is
mapped to the inner boundary ofNO (and the third in the outer), it is straightforward
to check that f is the projection over the �rst component. In contrast, if the second
boundary is mapped to the outer boundary of NO (and the third on the inner), then
f is the projection over the second component. □
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U
(−,+)
AB

U
(−,+)
BC

U
(−,+)
CA

U
(+,−)
AB

U
(+,−)
BCU

(+,−)
CA

U+
AB

U+
BC U+

CA

U−
AB

U−
BCU−

CA

f

Fig. 9: If these two boundary components of NI are mapped to the same
boundary component of NO, then U

(−,+)
AB , U (−,+)

BC and U
(+,−)
CA are also mapped

to the same boundary component. That is, a hollow triangle.

For completeness we have included in Appendix 6 a discussion and two
lemmas that generalizes the Arrow's impossibility theorem in the base case
(|X| = 3 and n = 2) to the general case Theorem 1.

4 Applying the combinatorial topology
approach to domain restrictions

Arrow's impossibility applies to universal domains, where all possible individ-
ual preferences are considered. There is an extensive literature on the subject of
domain restrictions, going back at least to Black (1948), Arrow (1951) and their
famous single-peaked domain restriction, where the alternatives to be ranked
lie on a one-dimensional axis and voters prefer values that are close to their
favorite value. The research area is still very active today, some recent surveys
are Barberà et al. (2020) and Elkind et al. (2022). Researchers have proved that
it is possible to avoid Arrow's impossibility on various non-universal domains,
including generalizations of single-peakedness, see, e.g. Gaertner (2002) and
Le Breton and Weymark (2011) and the previous surveys for many exam-
ples. However, there is no general rule characterizing the domains in which
aggregation is possible.

We illustrate here how the combinatorial topology approach can shed light
on this topic. We present a very intuitive proof of Arrow's impossibility using
domain restrictions in Section 4.1. We provide a characterization of the domain
restrictions of the basis case in which non-dictatorial aggregation is possible
in Section 4.3. We also discuss the role of contractibility of the restricted



A Combinatorial Topology Approach to Arrow's Impossibility Theorem 15

domain, showing it is not what determines the possibility of avoiding Arrow's
impossibility, in Section 4.2.

Remarkably, considering task solvability under restricted domains has been
thoroughly studied in distributed computing since Mostéfaoui et al. (2003).

4.1 Arrow's impossibility using domain restrictions

We start with a domain restriction that exposes clearly a geometric reason for
Arrow's impossibility, related to winding numbers, providing another proof of
Theorem 5. It is the basis of the characterization of the domain restrictions in
which non-dictatorial aggregation is possible of Section 4.3.

Recall the torus on the right of Figure 6. It consists of all the social pro�les
of NI where the two voters disagree in either 1 or 2 of their pairwise prefer-
ences. The torus is depicted again in Figure 10, where in the top-left triangle,
the pro�le is (ABC,ACB), and there is disagreement in only one pairwise
preference, BC, since the �rst voter prefers B over C and the second prefers C
over B. In the following triangle on the left, the pro�le is (BAC,ACB), with
two pairwise disagreements, on BC and on AB.

The torus is made of two triangulated cylinders, joined by the blue-dotted
circle and by the green-dashed circle. The left cylinder is called C1 and the
right one is C2. They are symmetric, if one exchanges the voter 1 and voter
2 in C1 one gets C2. Namely, the top-left triangle of C1 is (ABC,ACB), and
the symmetric triangle in C2 is (ACB,ABC). Similarly for the next triangle
of C1, (BAC,ACB), its symmetric triangle on C2 is (ACB,BAC).

Consider C1 as a domain restriction of NI , in Figure 10. It is obtained by
removing the cylinder C2 from the torus on the right of Figure 6, and removing
also both of the concentric cylinders on the left of the �gure, corresponding
to unanimous pro�les and those where the voters have opposite preferences.
In Figure 10 all the triangles of C2 are removed from the torus: from top to
bottom, the triangles (CAB,ABC), (ACB,ABC), etc. Only the triangles on
the left remain, which form the cylinder C1. Notice that NO is also a cylinder,
except that the cylinder C1 is subdivided into 12 triangles while NO consists
of 6 triangles.

Now, Arrow's geometric impossibility becomes clear: C1 is wrapped once
around NO, and the wrapping is determined by the green-dashed cycle in C1,
due to unanimity. In Figure 10 the image of the green-dashed cycle in C1 on
NO is shown. This implies that the blue-dotted cycle, which is parallel to the
green-dashed cycle, also has to wrap once around the cylinder, going in the
same direction. There are two options for the aggregation function, labeled on
the blue-dotted edges; to map the �rst (from top to bottom) blue-dotted edge
to the edge 2 or to 5, the next one to 3 or 0 in NO, and so on. In the �rst
option the �rst voter is the dictator, in the second option the second voter is
(in either case, the blue-dotted cycle goes on top of the green-dashed cycle of
NO).

The argument can be formalized using the index lemma, as illustrated in
Figure 11. Consider the orientation in the �gure, where one can see that the
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Fig. 10: On the left is C1, a domain restriction on NI , resulting in a cylinder
and how the green-dashed cycle is mapped to NO. Inside of each triangle of
C1 is the corresponding individual preference; the top triangle is ABC,ACB,
the next one BAC,ACB, and so on. The blue-dotted cycle has two labels on
each of its edges; the �rst one is the social choice where the �rst voter is the
dictator, from top to bottom, 2, 3, 4, 5, 0, 1. With the second labels, the second
voter is the dictator.

boundary of C1 consists of two cycles, where the green-dashed cycle gets an
induced orientation downwards, while the blue-dotted cycle gets it upwards.
The colors of the vertices of C1 are de�ned following the same procedure as in
the proof of Theorem 5.

As in the proof of Theorem 5, no triangle of C1 is colored with 3 colors,
because there is no triangle with 3 colors in NO to which f could be mapped
to. Hence we have that C = 0. Then, notice that the contribution to the index
I of the green-dashed cycle is +1, since exactly one of its edges is colored

−→
01

(the edge labeled 5, and with positive direction). Since I = C, the contribution
of the blue-dotted cycle must be −1. Finally, there are only two of its edges
that could be coloured

−→
10 (upwardly oriented) as indicated in the �gure.

We can repeat the same procedure for the edges
−→
12 instead of

−→
01. As before,

there are only two edges in the dotted-blue cycle which can compensate the

index:
{
U

(+,−)
CA , U

(−,+)
BC

}
or

{
U

(−,+)
CA , U

(+,−)
BC

}
. Notice that each of these edges

intersect with one of the edges from the case
−→
01. Moreover, the edge compen-

sating the index in the case
−→
01 determines the one in the case

−→
12: for instance.
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Fig. 11: The index lemma on the cylinder C1. The red arrows represents the
orientation on the triangles and its induced orientation on the boundary circles.
Moreover, the red numbers associated to each vertex is its coloring. Whereas
the vertices on the green-dashed circle are determined by the unanimity, the
ones in the blue-dotted circle have two possibilities.

if
{
U

(−,+)
AB , U

(+,−)
BC

}
compensate the index in the

−→
01 case, U

(+,−)
BC must be

coloured with 0. Then, U (+,−)
CA must compensate index in the case

−→
12 because{

U
(−,+)
CA , U

(+,−)
BC

}
do not (because U

(+,−)
BC is coloured with 0 and not 2). Fol-

lowing an equivalent argument, if
{
U

(+,−)
AB , U

(−,+)
BC

}
compensate the index in

the case
−→
01,

{
U

(−,+)
CA , U

(+,−)
BC

}
must compensate it in the case

−→
01.

Notice that the same argument can be applied into the case
−→
20. So,

chosing the top edge
{
U

(−,+)
AB , U

(+,−)
BC

}
is the one colored

−→
10 or if it is the{

U
(+,−)
AB , U

(−,+)
BC

}
, determines the colouring of all vertices. Moreover, it can be

easily computed that if the top edge
{
U

(−,+)
AB , U

(+,−)
BC

}
is the one colored

−→
10,

then the 2nd voter is the dictator, else if the edge
{
U

(+,−)
AB , U

(−,+)
BC

}
is the one

colored
−→
10, then the 1st voter is the dictator.
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4.2 Eluding Arrow's impossibility while preserving

non-contractibility

It has been argued that the existence of a rule that permits aggregation is
related to contractibility of a topological space. For the existence case in the
continuous setting (which is di�erent from our Arrovian setting), Chichilnisky
and Heal (1983), and a 1954 topology theorem by Eckmann (2004) show that,
for a general class of domains, contractibility is necessary and su�cient. Build-
ing on this result and on Baryshnikov (1993), for weak orders, Tanaka (2009)
shows a connection with Brower's �xed point theorem, in the case of n = 2
and |X| = 3. Baryshnikov (1993) and other authors such as Lauwers (2000)
and Baigent (2011) conjectured in subsequent publications that the aggrega-
tion on non-universal domains could be equivalent to the contractibility of the
induced input simplicial complex. That is, the aggregation à la Arrow on a
domain D ⊆Wn would be possible i� the induced complex N ′

I is contractible.
Moreover, they added that in the well-known case of single-peaked preferences
(in which aggregation is possible) contractibility is satis�ed.

Next, we present a domain of preferences that proves that Baryshnikov's
conjecture above is not true. That is, the domain N ′′

I represented in Figure 12
is not contractible and it allows non-dictatorial aggregation maps.
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Fig. 12: The restricted domain N ′′
I is the union of the simplicial complexes

represented in (a) and (b) according the identi�cations de�ned by vertices'
labeling and colours.

This restricted domain N ′′
I corresponds to a polarised society where politi-

cal parties are classi�ed as left-wing and right-wing parties. Assume that every
left-wing voter will prefer all left-wing parties over all right-wing parties (vice-
versa for right-wing voters). A priori we do not know if a voter is right-wing
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U
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Fig. 13: The simplicial complex N∗. The colours and patterns of the edges
(resp. the labellings of the vertices) show where the edges (resp. the vertices)
of N ′′

I have been compressed in N∗.

or left-wing. The polarized preferences in this section are a particular case of
group-separable preferences (see. e.g. Elkind et al. (2022)).

We focus on the case in which there are two right-wing parties {A,B} and
one left-wing party C and two voters (n = 2). This way, N ′′

I can be compared
with the previous examples and proofs on this article.

The polarised domain restriction deletes the pro�les in which a voter has C
as the middle preferred party5. For example, no voter will have the preference
ACB because it prefer the right-wing party A over the left-wing party C
and C over the right-wing party B. Formally, applying this restriction means

deleting from Figure 6 the edges of the form
{
U

(+,·)
CA , U

(+,·)
BC

}
,
{
U

(−,·)
CA , U

(−,·)
BC

}
,{

U
(·,+)
CA , U

(·,+)
BC

}
and

{
U

(·,−)
CA , U

(·,−)
BC

}
and all triangles containing them, and

we obtain the simplicial complex N ′′
I represented in Figure 12.

There are non-dictatorial aggregation rules for N ′′
I . One of these rules is

de�ned by two local dictators. The �rst voter is a local dictator between
the right-wing parties A and B, whereas the second voter is a local dic-
tator between a right-wing party and the left wing-party C. Formally, this
aggregation map F is de�ned for every pro�le R in the domain as:

AF (R)B ⇔ AR1B, AF (R)C ⇔ AR2C, BF (R)C ⇔ BR2C.

Using the fact that AF (R)C ⇔ BF (R)C, it is straightforward to check that F
is well-de�ned (i.e. F (R) is transitive and complete for every R). Additionally,
F is unanimous, non-dictatorial and satis�es the independence of irrelevant
alternatives.

5This condition is a particular case of the triplewise value-restriction introduced in Sen (1966).
However, polarized domains with at least four parties do not satisfy the triplewise value-restriction.
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It remains to check that N ′′
I is not contractible. In Figure 12, N ′′

I has been
drawn deleting a triangle on each of the concentric cylinders of NI , and from
the torus they only remain four pairs of triangles that join both cylinders. To
see that N ′′

I is not contractible, we apply contractions to N ′′
I obtaining a new

topological space N∗ (that is non-contractible). This contractions consist on
contracting �rst the eight triangles placed in the former torus (Figure 12b)
to eight edges (black edges in Figure 13). Second, we contract both cylinders
(Figure 12a) into two concentric circles (green-dashed and blue-dotted edges
in Figure 13).

4.3 The non-dictatorial domain restrictions

The pro�les on the cylinders C1 and C2 are the basis of the characterization
of subdomains of NI allowing unanimous and non-dictatorial aggregation
maps when |X| = 3 and n = 2.

We are interested in triangles that contain an edge in the blue-dotted cycle,
and a vertex in the green-dashed cycle. Consider a pro�le R that corresponds
to such a triangle, that we call it a critical pro�le. An example of a critical
pro�le is the top one on the left, (BAC,ACB) (see Figure 10 in bold type).
Notice that the two voters disagree on their preferences of the pair AB and the
pair BC, but they agree on the pair CA. In general, for each critical pro�le, R,
there exists an edge de�ned by two pairs of alternatives xy and x′y′, such that
the two voters disagree on them, but agree on the third pair of alternatives,

x′′y′′. Namely, R is de�ned by the edge
{
U

(+,−)
xy , U

(−,+)
x′y′

}
, together with the

vertex U
(s,s)
x′′y′′ , s ∈ {+,−}.

We now de�ne the main notion of a critical pair of pro�les. It is a pair
of critical pro�les, (R1,R2), R1 on C1 and R2 on C2, such that their blue-
dotted edges do not intersect to each other. That is, if the blue-dotted edge

of R1 is
{
U

(+,−)
xy , U

(−,+)
x′y′

}
, then U

(+,−)
xy and U

(−,+)
x′y′ do not belong to R2.

Moreover, a critical triple of pro�les is a triple of pro�les (R1,R2,R3), R1

in C1, R2 in C2 and R3 a antiunanimity pro�le such that the blue-dotted
edges of R1 and R2 intersect in a single vertex and they are the blue-dotted
edges of R3. For instance, R1 = (BAC,ACB), R2 = (BCA,ABC) and
R3 = (BCA,ACB) is a critical triple.

We are interested in characterizing domain restrictions D ⊆ NI that con-
tain all vertices of NI , for two voters and three alternatives. This assumption
is not new in the literature: it is equivalent to requiring that every pair of
alternatives is free (see Le Breton and Weymark (2011) and Gaertner (2002)).
A pair {x, y} is free on a domain D if, for every pro�le R on {x, y}, there is



A Combinatorial Topology Approach to Arrow's Impossibility Theorem 21

a pro�le R on D whose restriction R|{x,y} on the pair {x, y} is equal to R6.
The theorem below characterizes such domains.

Theorem 6 (Domain Restriction Characterization) A domain restriction D that

contains all vertices of NI allows for a unanimous, non-dictatorial aggregation map

if and only if D does not intersect at least the interior7 of one critical pair or one

critical triple of pro�les.

Proof To prove the �⇒� direction of the theorem, assume there is a unanimous, non-
dictatorial aggregation map f : D → NO. We show that if D intersect every critical
pair and critical triple, then f must be dictatorial. Two scenarios may occur: one of
the cylinders restricted to D (i.e. C1 ∩D or C2 ∩D) contains all of its triangles with
blue-dotted edges, or in both of the cylinders lack at least one triangle with a blue-
dotted edge and all of these triangles intersect, at least, in a single vertex. We will
see that in both cases, f can be extended to a simplicial map on one of the cylinders
(and we are back in the situation of Section 4.1).

We start with the �rst case. Suppose without loss of generality that C1 ∩ D
contains all the critical triangles with blue-dotted edges from C1. We denote C1 ∩D
as D− and f− as the restriction of f in D−. In case D− is not C1, we can extend
f− to C1 because the image of the green-dashed edges of C1 are determined by
unanimity. Since they are not mapped to the boundary of NO, the images of the
triangles with a green-dashed edge are well-de�ned by the image of their vertices.
That is, f− has been extended to a unanimous simplicial map f+ de�ned on C1.
Using the argument in Section 4.1, we conclude that f+ must be dictatorial. Then
f must also be dictatorial because f and f+ have the same twelve vertices with the
same images.

In the second case, we denote the intersection vertex as Uσ
xy. Notice that there

are at most four critical pro�les in D intersecting Uσ
xy, and their blue-dotted edges

are
{
Uσ
xy, U

−σ
yz

}
and

{
U−σ
zx , Uσ

xy

}
(with z ̸= x, y). Without loss of generality, we

suppose that both edges are in D.
If both edges are mapped to inner edges of NO, then f can be extended to the

missing critical pro�les using the image of the vertices and we are in the Section 4.1
situation. If both blue-dotted edges are mapped on the boundary of NO, then we

consider the antiunanimity pro�le corresponding to the triangle
{
Uσ
xy, U

−σ
yz , U−σ

zx

}
generated by both blue-dotted edges. It does not belong to D because it would be
mapped into a hole of NO. Then, since by hypothesis D intersects any critical triple

and
{
Uσ
xy, U

−σ
yz , U−σ

zx

}
is not in D, the unique critical pro�les not belonging to D

must share a blue-dotted edge. Without loss of generality, we suppose that it is{
Uσ
xy, U

−σ
yz

}
.

Then, since the blue-dotted edge is mapped on the boundary of NO

(w.l.o.g. f
({

Uσ
xy, U

−σ
yz

})
=

{
U+
xy, U

+
yz

}
), f can be extended to the trian-

gle
{
Uσ
xy, U

−σ
yz , U

(−,−)
zx

}
(the triangle

{
Uσ
xy, U

−σ
yz , U

(+,+)
zx

}
if f

({
Uσ
xy, U

−σ
yz

})
=

6There are numerous works in social choice that escape from this framework and assume that
there is some structural incapacity to compare some alternatives (Fishburn, 1976) or only allowing
non-complete social rankings, but complete individual preferences (Fishburn, 1974; Weymark,
1984).

7Here we use interior in the topological sense (see e.g. (Henle, 1994, Section 4)).
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{
U−
xy, U

−
yz

}
). Once f has been extended, we are in the �rst case where one of the

cylinders contains all of their critical pro�les.
If only one of the blue-dotted edges is mapped to the boundary of NO (w.l.o.g.

f
({

Uσ
xy, U

−σ
yz

})
=

{
U+
xy, U

+
yz

}
), then f can be extended to one of the triangles

containing
{
U−σ
zx , Uσ

xy

}
. Using the same argument as before, we can conclude that

f is dictatorial.
To prove the �⇐� direction, assume a domain not containing the critical pair

(R1,R2) or the critical triple (R1,R2,R3). Without loss of generality, we can sup-
pose that the �rst pro�le is R1 = (BAC,ACB) ∈ C1 and the second one, R2, can
be any triangle in C2 except (BCA,CAB) (see Figure 10). We de�ne the following
aggregation maps for the �ve cases (two critical triples and three critical pairs) in
Table 1. It can be checked that they are all well-de�ned and non-dictatorial. The
algorithm used to �nd these maps is in Appendix C. □

v f(v)

U
(+,−)
AB U+

AB

U
(−,+)
AB U−

AB

U
(+,−)
BC U−

BC

U
(−,+)
BC U−

BC

U
(+,−)
CA U+

CA

U
(−,+)
CA U−

CA

(a)

v f(v)

U
(+,−)
AB U+

AB

U
(−,+)
AB U−

AB

U
(+,−)
BC U−

BC

U
(−,+)
BC U−

BC

U
(+,−)
CA U+

CA

U
(−,+)
CA U+

CA

(b)

v f(v)

U
(+,−)
AB U−

AB

U
(−,+)
AB U−

AB

U
(+,−)
BC U−

BC

U
(−,+)
BC U−

BC

U
(+,−)
CA U+

CA

U
(−,+)
CA U+

CA

(c)

v f(v)

U
(+,−)
AB U−

AB

U
(−,+)
AB U−

AB

U
(+,−)
BC U−

BC

U
(−,+)
BC U+

BC

U
(+,−)
CA U+

CA

U
(−,+)
CA U+

CA

(d)

v f(v)

U
(+,−)
AB U−

AB

U
(−,+)
AB U−

AB

U
(+,−)
BC U−

BC

U
(−,+)
BC U+

BC

U
(+,−)
CA U−

CA

U
(−,+)
CA U+

CA

(e)

Table 1: This �gure contains the de�nition of the �ve aggregations maps
depending on R2 and R3. Their de�nition relies on the image of the ver-
tices. We do not include the images of the unanimous vertices since they
are determined by the unanimity axiom. (a) R2 = (BAC,CBA) and R3 =
(BAC,CAB), (b) R2 = (ABC,BCA), (c) R2 = (ACB,BAC), (d) R2 =
(CAB,ABC), (f) R2 = (CBA,ACB) and R3 = (BCA,ACB).

The maps in Table 1 may seem somewhat opaque. However, for example,
the aggregation map for R2 = (CAB,ABC) (Figure 1d) can be expressed as:

AF (S)B ⇔ AS1B and AS2B, BF (S)C ⇔ BS2C and

AF (S)C ⇔ AS1C and AS2C where S ∈W 2 ∖ {R1,R2}
Using the expression above, we can see that the map is composed of a local
dictator (the social choice between B and C) and two almost constant decisions
(the social choice between A and B and between A and C).

This simplicity is mainly due to two factors: First, we are working with
the simplest basis case (three alternatives and two voters). Second, as it
is explained in Appendix C, these maps are deduced from the domains in
which the unique removed pro�les is a single critical pair. Moreover, in such
domains, these maps are the unique ones that are not dictatorial. But the
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more pro�les are removed, the more aggregation maps are compatible with
the axioms. The next Section 4.2 is devoted to a domain restriction with a
political interpretation, that allows more sophisticated aggregation maps.

Section 4.2 was devoted to expose a straightforward counterexample
to Baryshnikov's conjecture. However, using Theorem 6 we can obtain
a deeper conclusion than using this counterexample. The theorem guar-
antees that, for example, in W 2 ∖ {(BAC,ACB), (ABC,BCA)} non-
dictatorial aggregation is possible (see Figure 1b), on the contrary, in W 2 ∖
{(BAC,ACB), (BAC,BCA)} it is not possible. However, both induced simpli-
cial complexes are homeomorphic as topological spaces (and, as a consequence,
homotopically equivalent).

The consequence of this fact is that neither pure topological nor homo-
topical (and homological) invariants characterize aggregation in restricted
domains. We conclude that, at least for the Baryshnikov's construction, a pure
topological study is not enough for such characterization and the labels of the
vertices are required to characterize the domains in terms of aggregation.

5 Impossibility proof with pivotal voters

The goal here is to understand the geometry behind the combinatorial proofs
by Geanakoplos (2005) and Yu (2012), using pivotal voters, that have received
much attention e.g. Wikipedia contributors (2021). In doing so, we get another
proof of Theorem 5. In Section 5.1 we introduce some concepts which will be
used to give an alternative proof of Theorem 5 in Section 5.2.

5.1 Paths and pivotal voters

We say that a sequence of triangles in either NI or NO is a path, if each two
consecutive triangles are adjacent (share an edge). Let R = (R0, . . . , Rm) be a
sequence of preferences in W such that every Ri can be obtained from Ri−1 by
a permutation of the preference of two consecutive alternatives (see Remark 2).
This sequence induces a path in NO.

Similarly, a sequence of pro�les R = (R0, . . . ,Rm) in W 2 de�nes a path
in NI , if Ri can be obtained from Ri−1 by a permutation of the preference of
two alternatives of at least one of the voters (see Remark 3). We will consider
here only paths in NI where Ri is obtained from Ri−1 by a permutation of
the preference of two consecutive alternatives of exactly one of the voters.

Notice that since the aggregation map f is a simplicial map, it sends
triangles to triangles, and the image of a path in NI is a path in NO.

We will consider paths in NI starting and ending in unanimous pro�les.
Additionally, such that all triangles in the path share a vertex Uσ

xy, x, y ∈ X,
for σ consisting of the same sign, either + or −. Notice that since all the
triangles share vertex Uσ

xy, then all the triangles of the path in NO of the image
under f share the vertex Uσ

xy, where σ is equal to the single sign in σ.
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An example is the path R = (R0, . . . ,R4) in NI , de�ned on the left of
Table 2. All the triangles in this path contain the vertex U

(+,+)
BC , since both

voters prefer B over C. Additionally, the path starts in the unanimous pro�le
(ABC,ABC) and ends in the unanimous pro�le (BCA,BCA). In the table
there is another example, the path R′ = (R′

0, . . . ,R
′
4) starting in the triangle

(BAC,BAC), ending in the triangle (ACB,ACB), and around the vertex
U

(−,−)
CA .
Consider the pathR of Table 2, and its depiction in Figure 15. We call such

a path bivalent because the social choice has to move from f(R0) = ABC to
f(R4) = BCA, by the unanimity axiom. The notion of pivotal voter arises in
such bivalent paths. The social choice has to exchange the preferences of the

pair A,B and also A,C, because it starts in the edge
{
U

(+,+)
AB , U

(−,−)
CA

}
and

ends in the edge
{
U

(−,−)
AB , U

(+,+)
CA

}
. It does not change preferences over B,C,

since the path keeps �xed the vertex U
(+,+)
BC .

Consider a sequence of pro�les in which the �rst pro�le unanimously prefers
an alternative x over another y, we change at each step the preference of a single
individual from x over y to y over x until we arrive at the unanimous pro�le in
which everyone prefers y over x. By unanimity, the �rst pro�le socially prefers
x over y, whereas the last one y over x. Barberá (1980) named the �rst voter
who produces the change on the social preference from x over y to y over x,
the pivotal voter of y over x. Denote this voter by kyx.

In Section 5.2, we will use these paths to prove Theorem 5. Whereas in
Section B we will compare this topological proof based on pivotal voters with
the combinatorial ones by Geanakoplos (2005) and Yu (2012).

5.2 The proof based on pivotal voters

Following Geanakoplos (2005) and Yu (2012), we will �rst prove that all pivotal
voters are the same, and then apply a simple argument to show that this
pivotal voter is, in fact, a dictator.

Step 1: all pivotal voters are the same

Consider the path R of Figure 14 and its depiction in Figure 15. Notice that
indeed all the triangles of the path share the vertex U

(+,+)
BC , and it starts in

the edge
{
U

(+,+)
AB , U

(−,−)
CA

}
and ends in the edge

{
U

(−,−)
AB , U

(+,+)
CA

}
. Traversing

the path, we see that voter 1 changes its preferences twice, �rst from R0 to
R1 (AB to BA) and then from R1 to R2 (AC to CA). The next two changes
of preferences are by voter 2, from R2 to R3 (AB to BA) and then from R3

to R4 (AC to CA). We are interested in comparing kCA with kBA.
The fact that the image of this path in NO has to exchange the preferences

of the pair A,B and also A,C, means that the path in NO has to cross the
triangle BAC. The �gure shows why it has to cross �rst the edge adjacent to
U−
CA, and then the one adjacent to the vertex U−

AB , both of this edges incident
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on U+
BC . The social preference has to change to B over A before it changes

C over A, and given that in the path R the �rst changes are by voter 1,
followed by the changes by voter 2. We conclude that either kBA = 1 = kCA,
or kBA = 1 < 2 = kCA, or kBA = 2 = kCA. In any case, kBA ≤ kCA.

1 2 1 2
A A B B

R0 B B R′
0 A A

C C C C
B A B B

R1 A B R′
1 C A

C C A C
B A C B

R2 C B R′
2 B A

A C A C
B B C B

R3 C A R′
3 B C

A C A A
B B C C

R4 C C R′
4 B B

A A A A

Table 2: The sequences R and R′ are de�ned in the table. Writing an alter-
native on the top on another means that the one on top is preferred to the one
in the bottom.

This argument can be repeated using any path analogous to R around
the green-dashed cycle in Figure 15. That is, taking any two of the three
unanimous green-dashed triangles labeled ABC, BCA or CAB, and the
corresponding bivalent path connecting them clockwisely (that preserves
along the path the vertex in the intersection of the two selected triangles).
This proves three inequalities kyx ≤ kzx, for the corresponding x, y, z ∈ X.
Conversely, taking the three unanimous blue-dotted triangles labeled BAC,
CBA and ACB and the corresponding bivariant paths connecting them also
clockwisely (as R′), we obtain the three additional inequalities kAB ≤ kAC ,
kBC ≤ kBA, and kCA ≤ kCB . Joining the six inequalities we obtain that
kBA ≤ kCA ≤ kCB ≤ kAB ≤ kAC ≤ kBC ≤ kBA. So, there is a unique pivotal
voter.

Surprisingly, as we saw on Section 4.1, the triangles contained in these six
bivariant paths constitute a minimal subsimplex N ′

I of NI (see N ′
I in Figure

10) that causes an impossibility. That is, the cylinder N ′
I contained in the torus

is su�cient to connect the unanimity vertices and the vertices with opposite
pairwise preferences leading to an impossibility result. Whereas we use here
6 paths going across the 12 triangles of N ′

I , in Section 4.1 they have been
joined together in a single closed path. Using this closed path we will describe
a geometric argument for the impossibility. Cutting this closed path into 6



26 A Combinatorial Topology Approach to Arrow's Impossibility Theorem

U+
AB

U+
BCU+

CA

U−
AB

U−
BCU−

CA

ACB

ABC

B
A
C

BCA

CAB

C
B
A

f(R0)

f(R2kBA−1)
f(R2kCA

)

f(R4)

Fig. 14: A graphical representation of the paths de�ned by f(R).

paths, we have connected the geometrical arguments with the classical pivotal
argument.

Thus, the domain does not need to contain all preferences and, conse-
quentially, the whole complex NI , to apply the arguments contained in this
section.

Step 2: the pivotal voter is a dictator

It remains to prove that f is a projection over the k-th component. That is,
f
(
Uσ
xy

)
= U

σ(k)
xy . However, this is immediate to see taking the de�nition of

pivotal voter (for n = 2). When there are two voters, being a pivotal voter and
a dictator is equivalent. The Figure 3 shows, as an example, how to use the

de�nition of a pivotal voter to compute f
(
U

(+,−)
xy

)
when k = 1 and k = 2.

S0 S1 S2 S′
0 S′

1 S′
2

Case k = 1
y y x y x x

Case k = 2
y y x y x x

x x y x y y x x y x y y
Social pref. yx xy xy Social pref. yx yx xy

Table 3: The table on the left represents a sequence of pro�les S = S0,S1,S2

starting from unanimity pro�le of y over x to x over y in which the pivotal
voter is k = 1. Since k = 1 is the pivotal voter, the social preference changes

in the �rst step, so f
(
U

(+,−)
xy

)
= U+

xy. The table on the right represents the

converse situation, when k = 2.
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U
(+,+)
BC

U
(−,−)
AB

U
(+,+)
CAU

(−,−)
BC

U
(+,+)
BA

U
(−,−)
CA

U
(−,+)
AB

U
(+,−)
CA

BAC

BCA

CBACAB

ACB

ABC

U
(−,+)
AB

U
(+,−)
CA

BAC,ACB

BCA,ABC

BCA,BAC
1

1

2

2

Fig. 15: The sequence R = R0, . . . ,R4 in the complex NI . The red curved
arrow shows the order in which these triangles appear in R, and it indicates
that voter 1 changes its preference twice and then voter 2 changes its preference
twice. For clarity, the triangle R0 is labeled with ABC, and the triangle R4 is
labeled with BCA.

In Appendix B, we further discuss the correspondence of pivotal with the
simplicial complex setting.

6 Reduction to the case of n = 2 and |X| = 3

We have presented several geometric proofs of Arrow's impossibility Theorem 5
for |X| = 3, n = 2. Therefore, the proof of Theorem 5 for |X| ≥ 3, n ≥ 2
follows directly from Lemma 7 and 8 below.

There are several works in which the proof of Arrow's theorem is only for
|X| = 3 and/or n = 2 (e.g. Akashi (2005), Saari (2011), Baigent (2011) and
Tanaka (2009)). Using Lemma 7 and 8, all these proofs are extended to |X| ≥ 3
and/or n ≥ 2.

A few works have used inductive arguments over the number of voters
or alternatives. In the �fties, Weldon (1952) proved an impossibility theorem
under a set of non-Arrovian axioms. Unlike our case, he could set the initial
case of his inductive argument on the trivial case n = 1 (instead of n = 2).
More recent works, Akashi (2005) and Tang and Lin (2009), use inductive
arguments using the base case |X| = 3, n = 2, as we do. However, our proof is
more general. That is, whereas the results of Akashi (Akashi, 2005, Lemma 1)
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and Tang and Lin (Tang and Lin, 2009, Lemma 1) are constrained to �nite sets
of alternatives, Lemma 7 works also for in�nite X. In addition, the inductive
step in (Tang and Lin, 2009, Lemma 2) is proved by contradiction using a large
family of maps, while Lemma 8 uses only two, and using an explicit map that
helps to understand the inductive step.

Lemma 7 Let the number of voters be any n ≥ 2. Arrow's impossibility theorem for

|X| = 3 implies it for |X| ≥ 3.

Proof Suppose that Arrow's theorem is true when |X| = 3. We prove that for any
X (with |X| ≥ 3) and any F : Wn → W satisfying unanimity and independence of
irrelevant alternatives, F is dictatorial.

Given F , choose three distinct alternatives x, y, z ∈ X and denote W 0 the set of
all strict orders over these three alternatives. De�ne an aggregation map F : W 0

n →
W 0 as follows. The image of a pro�le

(
R1, . . . , Rn

)
∈ W 0

n
by F is the restriction

of the ordering F (R1, . . . , Rn) ∈ W on the set {x, y, z} ⊆ X, where for each i, Ri is
any extension of Ri from W 0 to W . Notice that the de�nition of F does not depend
on the chosen extension because of the independence of irrelevant alternatives of F .
Moreover, it is easy to check that F satis�es unanimity as well as independence of
irrelevant alternatives. So, it follows that F is dictatorial because we have supposed
that Arrow's theorem is true when |X| = 3. It remains to prove that F is also
dictatorial.

If k is the dictator of F , we will prove that it is also a dictator for F . Consider
a pro�le R = (R1, . . . Rn) ∈ Wn where aRkb for some a, b ∈ X. Then take a
pro�le R′ =

(
R′
1, . . . R

′
n

)
∈ Wn satisfying that, for every i, xR′

ibR
′
iaR

′
iy if bRia, and

aR′
iyR

′
ixR

′
ib if aRib.

Since k is a dictator of F and yR′
kx (k prefers a over b in Rk), we know that the

image by F of the restriction ofR′ overW
n
0 prefers y over x, hence F (R′) also prefers

y over x. Moreover, by unanimity, it holds that aF (R′)y and xF (R′)b. Then, we
obtain that aF (R′)b from the relations aF (R′)yF (R′)xF (R′)b using the transitivity.
Finally, using the independence of irrelevant alternatives, we obtain that aF (R)b.
Since this happens for every pair a, b ∈ X, k must be the dictator of F . □

The proof of the previous lemma, contrary to the ones in Akashi (2005);
Tang and Lin (2009), is not inductive. This fact enables us to reduce the cases
of any cardinality of X to |X| = 3 in a single step.

Lemma 8 Let the number of alternatives be any |X| ≥ 3. If Arrow's impossibility

theorem is true for n = 2 then it is true for n > 2.

Proof The proof is by induction on n. By hypothesis, the theorem is true when n = 2.
Suppose that it is true for n− 1 and we will prove it for n.

Let Fn : Wn → W an aggregation map satisfying unanimity and independence
of irrelevant alternatives. We will prove that Fn is dictatorial in three steps:

Step 1: We de�ne the aggregation map on Wn−1, Fn−1
1 (R1, . . . , Rn−1) :=

Fn(R1, . . . , Rn−1, R1). Since Fn−1
1 satis�es unanimity and independence of irrele-

vant alternatives, the induction hypothesis guarantees that it has a dictator k1. We
will prove that if k1 ̸= 1, then k1 is also a dictator for Fn.
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Suppose R ∈ Wn and xRk1
y. If the ordering of R1 and Rn coincides on {x, y},

then xFn(R)y because Fn−1
1 has k1 as a dictator. Otherwise, we can suppose without

loss of generality that xR1y, yRnx. Then, let z ∈ X be an auxiliary alternative and
let R′ ∈ Wn be a pro�le which coincides with R over {x, y}, xR′

k1
zR′

k1
y and z is

below x and y for the remaining voters.
Since R′

1 and R′
n agrees on {y, z} and k1 is a dictator for Fn−1

1 , we have that
zFn(R′)y. Moreover, xFn(R′)z because of the unanimity. Using the transitivity we
obtain that xFn(R′)y, and applying the independence of irrelevant alternatives we
obtain that xFn(R)y. So, k1 is a dictator of Fn (if k1 ̸= 1).

Step 2: We de�ne Fn−1
2 (R1, . . . , Rn−1) := Fn(R1, . . . , Rn−1, R2). Using the

inductive hypothesis, Fn−1
2 has a dictator k2. If k2 ̸= 2, apply a symmetric reasoning

to the one in step 1 to deduce that k2 is the dictator of Fn (if k2 ̸= 2).
Step 3: If k1 = 1 and k2 = 2, we show that n is the dictator of Fn. Let R ∈ Wn

be a pro�le with xRny. Consider z ∈ X, and R′ ∈ Wn coinciding with R over
{x, y}, xR′

nzR
′
ny, xR

′
1z and zR′

2y. Using that 1 (resp. 2) is the dictator of Fn−1
1

(resp. Fn−1
2 ), we obtain that xFn(R′)z (resp. zFn(R′)y). So, using the transitivity

on Fn(R′) and the independence of irrelevant alternatives, we obtain that xFn(R)y.
Finally, we have concluded that n is the dictator of Fn (if k1 = 1 and k2 = 2). □

The reader may wonder why Lemma 8 is inductive, instead of applying
some direct argument extending from n = 2 to any number of voters (as we
have done in Lemma 7). If such argument existed, it would allow to extend the
theorem to an in�nite number of voters. However, this is not possible because
Arrow's impossibility is not true when n is in�nite (see Fishburn (1970)).

7 Conclusions

We have given new proofs of Arrow's theorem consisting of two parts. The
�rst part deals with the base case of two voters and three alternatives, and we
presented three di�erent versions: using the index lemma, using pivotal voters,
and using domain restrictions. The second part proves the general case by a
simple reduction to the base case. Both parts are new; the �rst one exposes the
geometry behind Arrow's impossibility, while the second simpli�es previous
similar proofs.

The �rst part shows that any aggregation function is dictatorial, because in
essence it is mapping a torus onto a cylinder, in a continuous way, respecting
unanimity. The argument sheds light on the remarkable algebraic topology
proof of Baryshnikov (1993), and makes it accessible to a wider audience.
Also, it connects it to standard proofs of Arrow's theorem based on pivotal
arguments, by explaining how the paths of such arguments move along the
torus and the cylinder. Furthermore, it provided a guide on how to characterize
the domain restrictions that allow non-dictatorial maps.

The structure of our proofs, in two parts, suggests that the interesting
geometry happens in the base case. The structure of the base case has a
clear geometric intuition, which led us to obtain a characterization of the
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non-dictatorial domain restrictions. We hope these ideas are helpful in gener-
alizing the characterization beyond the base case. The two cylinders C1 and
C2 are the crux of the impossibility, representing social pro�les with interme-
diate disagreement (neither complete agreement nor complete disagreement of
the preferences of the two voters). Moreover, we presented a domain restric-
tion in Section 4.2 that answers a 20-year-old question set out by Baryshnikov
in the concluding remarks of his article (Baryshnikov, 1997) about the rela-
tion between the classic and the topological social choice: we used a natural
domain in political science to show that non-dictatorial rules are possible in
non-contractible spaces. Furthermore, contrary to our expectations, Theorem 5
shows that we can not reduce the question of restriction domains to a pure
topological problem. The labels of the vertices are not irrelevant. So, we should
study the spaces of preferences, at least, as chromatic simplicial complexes.

We hope that bringing combinatorial topology to social choice problems
opens interesting opportunities for future work. These tools have been encoun-
tering many applications recently. Some examples are in concurrency (Herlihy
et al., 2013), logic Castañeda et al. (2023), image processing (Babaei and Her-
sch, 2016), political structures (Mock and Voli¢, 2021), data analysis (Kannan
et al., 2019) and wireless networks (Ramazani et al., 2016). Such tools are
at the same time more accessible to an audience unfamiliar with algebraic
topology, and also more concrete, closer to computational approaches.

In particular, combinatorial topology has been very useful in distributed
computing (Herlihy et al., 2013). We described some analogies that are worth
exploring here and by Rajsbaum and Raventós-Pujol (2022), since comput-
ing processes that communicate with each other need to agree on one of their
inputs in many applications. Remarkably, while Sperner's lemma is the key
to the impossibilities of tasks where processes need to reach agreement such
as consensus, set agreement (Attiya and Rajsbaum, 2002), vector consen-
sus (Neves et al., 2005) and interactive consistency (Friedman et al., 2007)
(where domain restrictions are studied), for Arrow's impossibility, the key is
the index lemma, as it is for tasks related to renaming and weak symmetry
breaking (Castañeda and Rajsbaum, 2010; Goubault et al., 2019). Here we
studied only Arrow's setting, where the aggregation map is de�ned directly on
the input complex; it would be interesting to explore the case where the agents
can communicate with each other and subdivisions of the input complex arise.
Notice that the index lemma is preserved under subdivisions e.g. (Goubault
et al., 2019, Corollary 4). However, we are not aware of a distributed task
where the impossibility is proved in dimension 2, and then extended easily to
any dimension. Aggregation functions that elude Arrow's theorem have been
considered in the distributed setting (Chauhan and Garg, 2013; Melnyk et al.,
2018; Allouah et al., 2022).

We have derived the �rst complete characterization of domains where non-
dictatorial aggregation is possible, but only for the base case. We hope our tech-
niques can be used to obtain corresponding characterizations for the general
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case. We are working on taking advantage of the structure exposed by combina-
torial topology to understand Gibbard-Satterthwaite theorem Gibbard (1973);
Satterthwaite (1975), and following Eliaz uni�cation program Eliaz (2004) of
Arrow and Gibbard-Satterthwaite theorems. There are a few attempts to such
uni�cation projects (see Keiding (1981); Nehring and Puppe (2010)), but they
use an abstract approach such as category theory. The geometric �avour and
simplicity of the combinatorial topology techniques could help understanding
the connection between the two theorems, as well as helping deriving new non-
dictatorial domain restrictions for this case, analogous to the Arrow domain
restrictions presented here.

Some of the results of this paper were presented in the 16th meeting of the
Society for Social Choice and Welfare. We believe that combinatorial topology
techniques could be useful to study other aspects of social choice discussed in
the conference, such as strategy-proofness (Barberà et al., 2010; Sato, 2013),
fuzzy social choice (Gibilisco et al., 2014; Raventos-Pujol et al., 2020) or
(social) choice functions (Aizerman and Aleskerov, 1995; Basile et al., 2022).
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A Generalized version of the index lemma

Here we present the generalizated version of the index lemma, and show that
it holds on NI .

De�nition 2 Let K be a simplicial complex of dimension 2 satisfying that every
simplex of dimension 1 has a single or an even number of 2-simplices containing it.
An orientation on K is an orientation on every 2-simplex satisfying that the induced
orientations on the 1-simplices by the 2-simplices have to be opposite by pairs.

As in the original framework, let K be an oriented simplicial complex of
dimension 2 with each vertex labeled with a color from {0, 1, 2}. The content
C of K is the number of tricoloured triangles in K counted +1 if the order of
the labeling agrees with the orientation (see the right side of Figure 17) and
−1 otherwise. The index I of K is the number of edges

−→
01 on the boundary

counted +1 if the order of the vertices agrees with the orientation and −1
otherwise. Now, we can state and proof the index lemma for oriented simplicial
2-complexes.

https://en.wikipedia.org/w/index.php?title=Arrow%27s_impossibility_theorem&oldid=1060161477
https://en.wikipedia.org/w/index.php?title=Arrow%27s_impossibility_theorem&oldid=1060161477
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Fig. 16: The simplicial complex on the left is oriented because the induced
orientations on the inner edge are opposite. However, the right one is not
because it has three orientations in one direction and one on the opposite
direction.

Theorem 9 (Index lemma) Let K be a 3-colored oriented simplicial complex of

dimension 2. Then, the index I is equal to the content C.

Proof Let S be the number of edges
−→
01 counted according to the orientation. We

will prove that I = S and C = S. First, we will see that the contribution of every
interior edge

−→
01 is equal to 0. Since every interior edge has an even number of incident

2-simplices, by de�nition of being oriented, their contribution is 0. Then I = S.
For every triangle in the complex, the contribution is only non-zero if the triangle

is tricoloured. If it is not tricoloured, it is 0 because, in case it has at least one 0
and one 1, the third vertex has to be coloured by 0 or 1, then one edge compensates
the other. Otherwise, if it is tricoloured, its contribution is the same as the content's
contribution (see Figure 17).

0

0 1+1

−1

1

0

2

−1

Fig. 17: On the left, the contribution of the simplex is 0 because the two edges−→
01 compensate each other. On the right, the contribution of the tricolored
triangle is −1.

□

Now we provide NI with an orientation. Recall that we assume that the
number of alternatives is |X| = 3 and the number of voters is n = 2.
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Proposition 10 The complex NI is orientable.

Proof We will de�ne an orientation on NI as follows. For every 2-simplex ∆ ={
Uσ1

AB , Uσ2

BC , Uσ3

CA

}
we de�ne its parity as the product of all the signs of σ1, σ2 and

σ3. For instance, if σ1 = (+,+), σ2 = (+,−) and σ3 = (−,−), the parity is −1 (see
Figure 18a). We de�ne the orientation of this 2-simplex as clockwise (AB → CA →
BC → AB) if its parity is −1 and counterclockwise (AB → BC → CA → AB) if its
parity is 1.

U
(−,−)
CA

U
(+,+)
AB U

(+,−)
BC

(a)

U
(+,+)
AB U

(−,+)
CA

U
(+,−)
BC

U
(−,−)
CA

(b)

U
(+,+)
AB

U
(−,−)
CA

U
(+,+)
BC

U
(−,+)
BC

U
(+,−)
BC

U
(−,−)
BC

(c)

Fig. 18: (a) Since the parity of the triangle is negative, the orien-
tation is U

(+,+)
AB ← U

(+,−)
BC ← U

(−,−)
CA . (b) Two triangles sharing the edge{

U
(+,+)
AB , U

(+,−)
BC

}
. (c) Four triangles sharing the edge

{
U

(+,+)
AB , U

(−,−)
CA

}

This is an orientation because for every non-boundary edge, there are an even
number of 2-simplices containing it, and they are paired by their opposite induced

orientations. For example, consider the edge
{
Uσ1

AB , Uσ2

BC

}
, this edge only can be

completed with a vertex indexed as Uσ3

CA for some compatible σ3 ∈ {+,−}n con-
strained by the transitivity property. That is, for every component i ∈ {1, . . . n}, if
σ1(i) = σ2(i) = + (resp. σ1(i) = σ2(i) = −, then σ3(i) = + (resp. σ3(i) = −).
However, if σ1(i) and σ2(i) have di�erent signs, both signs are compatible in σ3(i).
We can conclude that the admissible σ3 are exactly 2k (where k is equal to the num-

ber of voters i on the third situation). And, since by hypothesis
{
Uσ1

AB , Uσ2

BC

}
is not

in the boundary, k > 0.

Second, we can pair these 2k 2-simplices saying that
{
Uσ1

AB , Uσ2

BC , Uσ3

CA

}
and{

Uσ1

AB , Uσ2

BC , U
σ′

3

CA

}
are paired if σ3 and σ′

3 are equal on each component but the

�rst one. That is, if there are σ2, . . . , σn ∈ {+,−} such that σ3 = (+, σ2, . . . , σn)
and σ′

3 = (−, σ2, . . . , σn). Then the parity associated to every triangle of a pair

is opposite to the other member, so, their contribution on the edge
{
Uσ1

AB , Uσ2

BC

}
determined by the induced orientations is also opposite. □
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B Pivotal voters and paths in NI

In this section, we further discuss the correspondence of the pivotal setting
with the simplicial complex setting of Section 5.

To discuss the role of pivotal voters and the paths de�ned by sequences,
consider as an example the path R de�ned in Table 2. This path starts and
ends in the inner cylinder of NI , that is, the unanimity simplices (see Figure 6).
Obviously, this cylinder is identi�ed with NO because of the unanimity prop-
erty of the aggregation map f . The remaining simplices {R1,R2,R3} of the
path link the inner cylinder with the outer one (see the complex at the right
of Figure 19).

U
(−,−)
CA

U
(−,−)
AB

U
(+,+)
BC

U
(+,−)
CA

U
(−,+)
AB

R0 R1

R2

R3

R4

f

f(U
(+,−)
CA ) = U−

CA U−
AB

f(U
(−,+)
AB ) = U+

AB

U+
BC

Case: kCA = 2

U−
CA

U−
AB = f(UAB(−,+))

f(U
(+,−)
CA ) = U+

CA

U+
BC

Case: kCA = 1

Fig. 19: The �gure in the right represents the simplices {R1,R2,R3} linking
the inner cylinder ofNI (green-dashed edges) with the outer cylinder (red edge)
and the path R. The �gure in the middle represents the folding of the hinges
and the inner cylinder when kCA = 2; the one on the left, when kCA = 1.

When the aggregation map f is applied, the inner cylinder remains invari-
ant because we have identi�ed it with NO, but the outer cylinder and the links
(the torus joining both cylinders) are compressed into the inner cylinder. We
have to imagine the simplices between the cylinders (from Figure 6), the ones
linking the cylinders, playing the role of �hinges�, folding into each other so
that the two cylinders �t together.

In Figure 19 we can see that the hinge {R1,R2,R3} can fold two ways.
It folds one way or another depending on the value of kCA. Notice that its
folding also determines the value of f(U (−,+)

AB ), and this determination of the
folding is the geometrical representation of the inequality kCA ≤ kBA, proved
in Section 5.2. Moreover, the simplex R3 also belongs to another hinge, which
at the same time will represent an inequality. So, all hinges are connected and
they constrain each other foldings. Consequently, there are only two possible
ways to fold and �t both cylinders together: the two projections.
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C Schema of how obtain aggregation maps on
restricted domains

Here we give an overview of the procedure we have followed to obtain the maps
of Table 1 in Section 4.3.

First, we have studied the scenario in which only a critical pair or a critical
triple has been removed from NI . Notice that if a non-dictatorial map f exists
in a domain D like this, then in every subdomain D′ ⊆ D we will have as a
non-dictatorial map f|D′ . This assertion is true because D and D′ have the
same vertices.

As in the proof of Theorem 6, we focus on the domain D obtained by
removing the critical pair (R1,R2) or the critical triple (R1,R2,R3) being
R1 = (BAC,ACB). We will de�ne a non-dictatorial map f . We will build f
step by step imposing unanimity and the simplicial structure of D and NO.

Our strategy will be the following: We will determine all possible images
of the blue-dotted path (i.e. the antiunanimity vertices), using exclusively
the simplicial properties of C1 ∖ {R1} and the unanimity axiom. Next,
we will determine which of these images are compatible with the domain
D = NI ∖ {R1,R2} or D = NI ∖ {R1,R2,R3} depending on R2 and R3.

Step 1: The boundary of R1 must be mapped on the boundary of
NO, otherwise f can be extended to another map de�ned on C1 and, using
the arguments in Section 4.1, we conclude it is dictatorial. And, using that

f
(
U

(−,−)
CA

)
= U−

CA, we state that f
(
U

(+,−)
BC

)
= U−

BC and f
(
U

(−,+)
AB

)
= U−

AB .

Step 2: We consider the next blue-dotted edge
{
U

(−,+)
AB , U

(+,−)
CA }

)
. Taking

into account that f
(
U

(−,+)
AB

)
= U−

AB and f
(
U

(+,+)
BC

)
= U+

BC , the image of

U
(+,−)
CA is not determined. In other words, the edge

{
U

(−,+)
AB , U

(+,−)
CA }

)
can be

mapped to the edge labeled with 3 or the one labeled with γ in Figure 20c.

Step 3: If
{
U

(−,+)
AB , U

(+,−)
CA }

)
was mapped to γ, using the same reasoning,

we conclude that the next edge
{
U

(+,−)
CA , U

(−,+)
BC

}
must be mapped in 1.

Otherwise, if f(
{
U

(−,+)
AB , U

(+,−)
CA

}
) = 3, then f(

{
U

(+,−)
CA , U

(−,+)
BC

}
) could be 4

of B (third row in Figure 20a).

We repeat the same types of arguments for steps 4,5 and 6, until we have
mapped all possible images for the blue-dotted cycle. In Figure 20a each branch
corresponds to a candidate for the mapping. Starting with α as the image of{
U

(+,−)
BC , U

(−,+)
AB

}
and �nishing with 4 or β as the image of

{
U

(−,+)
CA , U

(+,−)
BC

}
.

We have �ve candidates for the image of the blue-dotted cycle, equivalently,
�ve candidates for an aggregation map. By the de�nition of f , we know that
these maps are simplicial in C1, but we need to verify that these candidates
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f
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f
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U
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CA
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f
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U
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AB

U
(−,+)
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U
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α
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. . .
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α

(b)
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γ
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A

B

C

(c)

Fig. 20: (a) The tree representing the admissible mappings of the blue-dotted

edges when R1 =
{
U

(−,+)
AB , U

(+,−)
BC , U

(−,−)
CA

}
. The �rst row of the three rep-

resents the admissible image of the edge
{
U

(+,−)
BC , U

(−,+)
AB

}
, the second row

the admissible images of
{
U

(−,+)
AB , U

(+,−)
CA

}
, and successively until the edge{

U
(−,+)
CA , U

(+,−)
BC

}
. So, a tupple represents an admissible mapping of the blue-

dotted cycle. For instance, the tuple (α, 3, B, 2, 3, 4) represents a map in which
the �rst blue-dotted edge is mapped to α, the second to 3 and the sixth to 4.

(b) The torus without the triangle R1 =
{
U

(−,+)
AB , U

(+,−)
BC , U

(−,−)
CA

}
and some

admissible mappings of the edges represented. (c) The NO complex with their
edges labeled.

are simplicial in the whole domain NI ∖ {R1,R2} or NI ∖ {R1,R2,R3} (for
a suitable R2 and R3).

It turns out that the unique obstacle for each of these �ve maps to
be simplicial is overcomed by removing a single triangle from C2. That is,
for each critical pair (R1,R2) or critical triple (R1,R2,R3) (being R1 =
(BAC,ACB)), we obtain a unique non dictatorial aggregation map.

Given a triangle R2 ∈ C2, as we have argued before, it has to be mapped
to the boundary of NO, then the unique map compatible, is the one which
maps the blue-dotted edge of R2 in the boundary of R2. For example, if
R2 = (ABC,BCA), the unique candidate to be simplicial is the map which

maps
{
U

(+,−)
AB , U

(−,+)
CA

}
to C. That is, the map represented by the tupple

(α, 3, 4, 5, C, 4).
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