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Abstract 

 

We consider the randomness of market trade values and volumes as the origin of asset price 

stochasticity. We define the first four market-based price statistical moments that depend on 

statistical moments and correlations of market trade values and volumes. Market-based price 

statistical moments coincide with conventional frequency-based ones if all trade volumes are 

constant during the time averaging interval. We present approximations of market-based 

price probability by a finite number of price statistical moments. We consider the 

consequences of the use of market-based price statistical moments for asset-pricing models 

and Value-at-Risk. We show that the use of volume weighted average price results in zero 

price-volume correlations. We derive market-based correlations between price and squares of 

volume and between squares of price and volume. To forecast market-based price volatility at 

horizon T one should predict the first two statistical moments of market trade values and 

volumes and their correlations at the same horizon T. 
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1. Introduction 

 Investors and traders need reliable price forecasts, but exact price projections as well 

as tomorrow’s fortune forecasts are too variable and almost stochastic. The history of asset 

pricing research (Dimson and Mussavian, 1999) tracked price probability up to Bernoulli’s 

studies in 1738, but possibly Bachelier (1900) was the first to really highlight the 

probabilistic character of price behavior and forecasting. “The probabilistic description of 

financial prices, pioneered by Bachelier.” (Mandelbrot et al., 1997). “in fact, the first author 

to put forward the idea to use a random walk to describe the evolution of prices was 

Bachelier.” (Shiryaev, 1999). During the last century, countless studies discussed asset 

pricing models and different hypotheses, laws, and properties of a random asset price 

(Kendall and Hill, 1953; Muth, 1961; Sharpe, 1964; Fama, 1965; Stigler and Kindahl, 1970; 

Black and Scholes, 1973; Merton, 1973; Tauchen and Pitts, 1983; Mackey, 1989; Friedman, 

1990; Cochrane and Hansen, 1992; Campbell, 2000; Heaton and Lucas, 2000; Cochrane, 

2001; Poon and Granger, 2003; Andersen et al., 2005; 2006; Cochrane, 2005; Wolfers and 

Zitzewitz, 2006; DeFusco et al., 2017; Weyl, 2019; Cochrane, 2022). Rigorous mathematical 

treatments of stochastic description and probabilistic modeling of asset prices can be found in 

Shiryaev (1999) and Shreve (2004). We refer only to a negligible part of the asset pricing 

studies.  

 Asset price dynamics are under the impact of multiple factors that cause irregular or 

random price changes during almost any time interval. That generates studies of price 

variations and price dependence on the market (Fama, 1965; Tauchen and Pitts, 1983; Odean, 

1998; Poon and Granger, 2003; DeFusco et al., 2017), on macroeconomics (Cochrane and 

Hansen, 1992; Heaton and Lucas, 2000; Diebold and Yilmaz, 2008), on business cycles 

(Mills, 1946; Campbell, 1998), on expectations (Muth, 1961; Malkiel and Cragg, 1980; 

Campbell and Shiller, 1988; Greenwood and Shleifer, 2014), on trading volumes (Karpoff, 

1987; Campbell et al., 1993; Gallant et al., 1992; Brock and LeBaron, 1995; Llorente et al., 

2001), and on many other factors that for sure impact price change and fluctuations. The line 

of factors and references can be continued (Goldsmith and Lipsey, 1963; Andersen et al., 

2001; Hördahl and Packer, 2007; Fama and French, 2015). 

 The conventional treatment (Shiryaev, 1999) of a random price p(ti) times series during 

the averaging interval Δ is based on the frequency of trades at a price p. If mp is the number 

of trades at a price p and N is the total number of trades during Δ, then the probability P(p) of 

a price p is assessed as: 
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𝑃(𝑝)  ~ 𝑚𝑝𝑁      (1.1) 

We denote mathematical expectation as E[..]. The finite number N of trades for n=1,2,.. 

estimates the n-th statistical moments of price E[p
n
(ti)] as: 𝐸[ 𝑝𝑛(𝑡𝑖)]~ 1𝑁  ∑ 𝑝𝑛(𝑡𝑖)𝑁𝑖=1     (1.2) 

The set of the n-th statistical moments (1.2) provides a conventional frequency-based 

description of a random variable (Shiryaev, 1999; Shreve, 2004). 

 However, asset prices are not independent issues of economics and finance. Asset 

pricing is woven deeply into market trade, financial laws, and economic properties. We 

consider market trade randomness as the economic origin of price stochasticity and show that 

market-based price statistical moments determined by market stochasticity could take a form 

that is different from (1.2). That results in significant distinctions, which are valuable for 

investors and financial markets. We consider the description of random asset prices and price 

statistical moments as a problem of market trade stochasticity.  

 Indeed, each market deal at time ti is described by trade value C(ti), trade volume 

U(ti), and trade price p(ti), which match simple relations (1.3): 𝐶(𝑡𝑖) = 𝑝(𝑡𝑖)𝑈(𝑡𝑖)     (1.3) 

 However, the trivial equation (1.3) states that given the probabilities of the trade value 

and volume (1.3), determine the market price probability. Given statistical moments of 

market trade value and volume, determine statistical moments of market price. 

 The market-based approach to asset price probability highlights the direct dependence 

of price n-th statistical moments on the statistical moments of market trade values and 

volumes. However, market trade records allow us to estimate only a finite number of trade 

statistical moments. Hence, one can derive only a finite number of price statistical moments, 

which describe a finite approximation of price probability. Actually, we replace the problem 

of what the “correct” form of the price probability is with a different one. We consider how 

an approximate description of the random market trade value and volume by a finite number 

of statistical moments describes a finite number of price statistical moments. 

 In Section 2, we describe how the statistical moments of market trade values and 

volumes determine the statistical moments of the asset price. In Sections 3 and 4, we briefly 

consider the consequences of our results on description of the random properties of returns 

and inflation, asset pricing models, and Value-at-Risk (VaR) as most conventional risk 

management tool. Section 5: Conclusion. We assume that our readers are familiar with 

standard issues of asset pricing theory, probability theory, statistical moments, characteristic 
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functions, etc. This paper is not for novices, and we propose that readers already know or can 

find on their own the notions, terms, and models that are not given in the text. 

2. Market-based price statistical moments 

Properties of a random variable can equally be described by probability measure, 

characteristic function, and a set of the n-th statistical moments (Shephard, 1991; Shiryaev, 

1999; Shreve, 2004). We describe a market price as a random variable using market-based n-

th statistical moments. The finite set of n-th statistical moments of price, n=1,2,..m, describes 

the m-th approximation of the price characteristic function and price probability measure 

(App.A). Each additional n-th statistical moment adds additional accuracy to the 

approximation of market-based price probability. 

 Let us consider time series records that describe the transaction value C(ti), volume 

U(ti), and price p(ti) at a time ti. The times ti of market deals introduce the initial division of 

the time axis. We describe random properties of market trade using time series records of 

performed transactions only. Thus, all possible factors that impact asset pricing are already 

imprinted into the time series records of the market trade value C(ti) and volume U(ti). For 

simplicity, we assume that transactions are performed with a constant, small interval ε that 

can be equal to 1 second or even a fraction of a second: 𝑡𝑖 − 𝑡𝑖−1 = 𝜀      (2.1) 

 The time series (2.1) establishes a time axis division multiple of ε. To describe market 

trade and price at a time horizon T >> ε, the precise time division ε is of little help. To 

describe the market price at a horizon T, which can be equal to weeks, months, or years, one 

should aggregate or average the initial trade time series during some reasonable averaging 

interval Δ: 𝜀 <  ∆ < 𝑇   ;      ∆= [𝑡 − ∆2 ; 𝑡 + ∆2]  ;    𝑡𝑖 ∈ ∆   ;    𝑖 = 1,2, . . 𝑁  (2.2) 

We assume that each interval Δ contains the same number N of terms of the trade time series 

and take time t as the current time. We assume that all prices are adjusted to the current time 

t. N terms of time series of the market trade value C(ti), volume U(ti), and price p(ti) can 

behave irregularly during averaging interval Δ, and we consider them as random variables 

during Δ. The averaging of market trade value C(ti), volume U(ti), and price p(ti) during Δ 

estimates their statistical moments and assesses their properties as random variables. We 

consider averaging during Δ (2.2) as a tool for estimating statistical moments of market trade 

value and volume and, through them, deriving statistical moments of market price. The finite 

number N of market trades estimates only a finite number of trade statistical moments and 
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describes a finite number of price statistical moments. A finite set of statistical moments 

describes a finite approximation of a characteristic function and probability measure of a 

random variable (App. A). 

The choice of the averaging interval Δ (2.2) is a particular problem. Too long Δ can have 

more terms of time series and thus permit the estimation of more trade statistical moments. 

However, long Δ establishes time axis division, which reduces the abilities of traders and 

investors to take “this hour” or “this day” trade decisions. Short Δ give opportunity to take 

immediate market decisions, but statistical moments may be irregular on long horizon T. We 

highlight that the choice of different averaging intervals Δ could result in different forecasts 

on long horizons. 

We start the definition of the market-based statistical moments of price with the choice of the 

average price or the 1-st statistical moment a(t;1). To highlight the distinction between the 

market-based price probability and the conventional frequency-based probability, we shall 

note market-based mathematical expectation as Em[..] and due to (2.2): 𝑎(𝑡; 1) = 𝐸𝑚[𝑝(𝑡𝑖)]    ;     𝑖 = 1, . . 𝑁  ;    𝑡𝑖 ∈ ∆   (2.3) 

The reasons for justification of the choice of the market-based average price a(t;1) are as 

follows: As usual, investors estimate the average price of the shares in their portfolio as a 

simple ratio of the total value to the total number of shares in the portfolio. The same 

meaning has the well-known definition of volume weighted average price (VWAP) 

(Berkowitz et al., 1988; Buryak and Guo, 2014; Busseti and Boyd, 2015; CME Group, 2020; 

Duffie and Dworczak, 2021). Taking into account the trade price equation (1.3), one can 

present VWAP p(t;1,1) as: 𝑝(𝑡; 1,1) =  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1∑ 𝑈(𝑡𝑖)𝑁𝑖=1 = 𝐶Σ(𝑡;1)𝑈Σ(𝑡;1) = 𝐶(𝑡;1)𝑈(𝑡;1)    (2.4) 𝐶Σ(𝑡; 1) =  ∑ 𝐶(𝑡𝑖)𝑁𝑖=1        ;         𝑈Σ(𝑡; 1) =  ∑ 𝑈(𝑡𝑖)𝑁𝑖=1    (2.5) 𝐶(𝑡; 1) =  1𝑁 ∑ 𝐶(𝑡𝑖)𝑁𝑖=1       ;         𝑈(𝑡; 1) =  1𝑁 ∑ 𝑈(𝑡𝑖)𝑁𝑖=1   (2.6) 

Relations (2.5) define the total value CΣ(t;1) and the total volume UΣ(t;1) of market trades, 

and (2.6) estimates the average trade value C(t;1) and volume U(t;1) by a finite number N of 

trades during Δ (2.2). Relations between the frequency-based average price determined by 

(1.2) for n=1 and VWAP (2.4) are trivial. VWAP p(t;1,1) (2.4) coincides with the average 

price determined by (1.2) if all trade volumes U(ti) =constant for i=1,2,..N during Δ (2.2). 

However, financial markets demonstrate highly irregular or random behavior in trade 

volumes. VWAP p(t;1,1) takes into account the randomness of the trade volumes U(ti), and 

we set the average price of the market-based price probability a(t;1) to be equal to VWAP: 
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𝑎(𝑡; 1) = 𝑝(𝑡; 1,1)     (2.7) 

To derive market-based price n-th statistical moments a(t;n): 𝑎(𝑡; 𝑛) = 𝐸𝑚[𝑝𝑛(𝑡𝑖)]    ;    𝑛 = 2,3, …   (2.8) 

let us take the n-th power of the trade equation (1.3): 𝐶𝑛(𝑡𝑖) = 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)    ;     𝑛 = 2,3, ..   (2.9) 

Equations (2.9) generate the set of price n-th statistical moments p(t;n,m) determined by 

weight functions w(ti;m) of the m-th power of trade volume Um
(ti): 𝑤(𝑡𝑖; 𝑚) = 𝑈𝑚(𝑡𝑖)∑ 𝑈𝑚(𝑡𝑖)𝑁𝑖=1     ;     ∑ 𝑤(𝑡𝑖; 𝑚)𝑁𝑖=1 = 1    (2.10) 𝑝(𝑡; 𝑛, 𝑚) = ∑ 𝑝𝑛(𝑡𝑖)𝑤(𝑡𝑖; 𝑚)𝑁𝑖=1 = 1∑ 𝑈𝑚(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑚(𝑡𝑖)𝑁𝑖=1   (2.11) 

We highlight that weight functions w(ti;m) (2.10) don’t define particular price probability 

measures. For the simplest case, U(ti)=constant, all weight functions w(ti;m)=1/N, and that 

coincides with the weight 1/N of the frequency-based probability (1.1; 1.2). For n=m price n-

th statistical moments p(t;n,n): 𝑝(𝑡; 𝑛, 𝑛) = 1∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑛(𝑡𝑖)𝑁𝑖=1 = 𝐶𝛴(𝑡;𝑛)𝑈𝛴(𝑡;𝑛) = 𝐶(𝑡;𝑛)𝑈(𝑡;𝑛)   (2.12) 𝐶𝛴(𝑡; 𝑛) = ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1            ;        𝐶(𝑡; 𝑛) = 1𝑁 ∑ 𝐶𝑛(𝑡𝑖)𝑁𝑖=1     (2.13) 𝑈𝛴(𝑡; 𝑛) = ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1            ;        𝑈(𝑡; 𝑛) = 1𝑁 ∑ 𝑈𝑛(𝑡𝑖)𝑁𝑖=1    (2.14) 

Relations (2.13) define the total sums CΣ(t;n) of the n-th power of trade value C
n
(ti) and 

C(t;n) defines the estimate of the n-th statistical moments or an average of the n-th power of 

trade value Cn
(ti) and relations (2.14) define the total sums UΣ(t;n) of the n-th power of trade 

volume U
n
(ti) and assessment U(t;n) of the n-th statistical moments of trade volume by a 

finite number N of trades during Δ (2.2). From (2.12), obtain equations (2.15) on the n-th 

statistical moments of market trade value C(t;n), volume U(t;n), and price p(t;n,n):  𝐶(𝑡; 𝑛) = 𝑝(𝑡; 𝑛, 𝑛)𝑈(𝑡; 𝑛)     ;      𝑛 = 1,2, …   (2.15) 

Relations (2.9-2.15) establish the basis for the definition of market-based price statistical 

moments a(t;n) (2.8). Indeed, the 1-st statistical moment a(t;1) (2.7) is determined by the 

VWAP p(t;1,1), weight function w(ti;1), and is based on the trade price equation (1.3). To 

define the 2-d price statistical moment a(t;2), one should take into account (2.9) for n=2 and 

the statistical moments p(t;1,2) and p(t;2,2) generated by the weight function w(ti;2).  

One should verify that market-based price statistical moments a(t;1), a(t;2), a(t;3),..., which 

depend on statistical moments p(t;n,m) (2.11) generated by different weight functions (2.10), 

are jointly consistent. In particular, one should check that the definitions of market-based 

price statistical moments a(t;1), a(t;2), a(t;3),.. ensure that central even moments are non-



 7 

negative. To define the 2-d price statistical moment a(t;2) (2.8), one should require market-

based price volatility σ2
(t) (2.16) that depends on a(t;2), and the average price a(t;1) (2.7) is 

non-negative. To obtain that, we derive the 2-d statistical moment a(t;2) as a solution of the 

equation (2.17) that defines market-based price volatility σ2
(t) (2.16): 𝜎2(𝑡) = 𝐸𝑚 [(𝑝(𝑡𝑖) − 𝑎(𝑡; 1))2] = 𝑎(𝑡; 2) − 𝑎2(𝑡; 1)  (2.16) 𝜎2(𝑡) = ∑ (𝑝(𝑡𝑖) − 𝑎(𝑡; 1))2𝑤(𝑡𝑖; 2)𝑁𝑖=1 = 𝑀(𝑡; 2)   (2.17) 

The factor M(t;2) in the right side of (2.17) is always non-negative and that approves non-

negative market-based price volatility σ2
(t) (2.16). The factor M(t;2) ties up the average price 

a(t;1) (2.7) that is determined by the weight function w(ti;1), and the price averaging by the 

weight function w(ti;2). From (2.10; 2.11) for w(ti;2), obtain: 𝑀(𝑡; 2) = ∑ (𝑝(𝑡𝑖) − 𝑎(𝑡; 1))2𝑤(𝑡𝑖; 2)𝑁𝑖=1 = 𝑝(𝑡; 2,2) − 2𝑝(𝑡; 1,2)𝑎(𝑡; 1) + 𝑎2(𝑡; 1)  (2.18) 

From (2.16-2.18), obtain the 2-d market-based price statistical moment a(t;2): 𝑎(𝑡; 2) = 𝐸𝑚[𝑝2(𝑡𝑖)] = 𝑝(𝑡; 2,2) + 2𝑎(𝑡; 1)[𝑎(𝑡; 1) − 𝑝(𝑡; 1,2)]  (2.19) 𝜎2(𝑡) = 𝑝(𝑡; 2,2) − 2𝑝(𝑡; 1,2)𝑎(𝑡; 1) + 𝑎2(𝑡; 1)   (2.20) 

We highlight that a(t;2) (2.19) fits together statistical moments p(t;1,1), p(t;1,2), and p(t;2,2) 

(2.11) that are determined by two different weight functions w(ti;1) and w(ti;2). The definition 

of a(t;2) (2.19) provides correct, non-negative values (2.17; 2.18; 2.20) for market-based 

price volatility σ2
(t) (2.16). We use similar recursive procedures to define higher market-

based price statistical moments.  

To define market-based 3-d statistical moment a(t;3), we determine market-based price 

skewness Sk(t) (2.21) via the factor M(t;3) (2.22) determined by the weight function w(ti;3): 𝑆𝑘(𝑡)𝜎3(𝑡) = 𝐸𝑚[(𝑝(𝑡𝑖) − 𝑎(𝑡; 1))3] = 𝑎(𝑡; 3) − 3𝑎(𝑡; 2)𝑎(𝑡; 1) + 2𝑎3(𝑡; 1) (2.21) 𝐸𝑚[(𝑝 − 𝑎(1))3] = ∑ (𝑝(𝑡𝑖) − 𝑎(𝑡; 1))3𝑤(𝑡𝑖; 3)𝑁𝑖=1 = 𝑀(𝑡; 3) (2.22) 

From (2.21; 2.22), obtain the 3-d statistical moment a(t;3): 𝑎(𝑡; 3) = 𝑝(𝑡; 3,3) − 3𝑎(𝑡; 1)[𝑝(𝑡; 2,3) − 𝑝(𝑡; 1,3)𝑎(𝑡; 1)] + 3𝑎(𝑡; 1)𝜎2(𝑡) (2.23) 𝑆𝑘(𝑡)𝜎3(𝑡) = 𝑝(𝑡; 3,3) − 3𝑝(𝑡; 2,3)𝑎(𝑡; 1) + 3𝑝(𝑡; 1,3)𝑎2(𝑡; 1) − 𝑎3(𝑡; 1) (2.24) 

To define the 4-th statistical moment a(t;4), one should check that two even market-based 

statistical moments: price kurtosis Ku(t) (2.25) and volatility of squares of price θ2
(t) (2.27), 

which depend on a(t;4), are non-negative.  𝐾𝑢(𝑡)𝜎4(𝑡) = 𝐸𝑚[(𝑝(𝑡𝑖) − 𝑎(𝑡; 1))4]   (2.25) 𝐸𝑚[(𝑝(𝑡𝑖) − 𝑎(𝑡; 1))4] = 𝑎(𝑡; 4) − 4𝑎(𝑡; 3)𝑎(𝑡; 1) + 6𝑎(𝑡; 2)𝑎2(𝑡; 1) − 3𝑎4(𝑡; 1)  (2.26) 𝜃2(𝑡) = 𝐸𝑚[(𝑝2(𝑡𝑖) − 𝑎(𝑡; 2))2] = 𝑎(𝑡; 4) − 𝑎2(𝑡; 2)  (2.27) 



 8 

To derive that, let us consider the factor M(t;4) (2.28) that is similar to Ku(t) (2.25) and the 

factor M(t;2,2) (2.29) that is similar to θ2
(t) (2.27). The factors M(t;4) and M(t;2,2) are non-

negative and determined by the weight function w(ti;4) (2.10). We derive the 4-th market-

based statistical moment a(t;4) as the solution of equation (2.30) that provides non-negativity 

of (2.25; 2.27). We set that the product of (2.25) and (2.27) should be equal to the product of 

M(t;4) (2.28) and M(t;2,2) (2.29): 𝑀(𝑡; 4) = ∑ (𝑝(𝑡𝑖) − 𝑎(𝑡; 1))4𝑤(𝑡𝑖; 4)𝑁𝑖=1 = ∑ [𝑝(𝑡𝑖)−𝑎(𝑡;1)]4𝑈4(𝑡𝑖)𝑁𝑖=1 ∑ 𝑈4(𝑡𝑖)𝑁𝑖=1   (2.28) 𝑀(𝑡; 2,2) = ∑ (𝑝2(𝑡𝑖) − 𝑎(𝑡; 2))2𝑤(𝑡𝑖; 4)𝑁𝑖=1 = ∑ (𝑝2(𝑡𝑖)−𝑎(𝑡;2))2 𝑈4(𝑡𝑖)𝑁𝑖=1 ∑ 𝑈4(𝑡𝑖)𝑁𝑖=1   (2.29) 𝑀(𝑡; 4) = 𝑝(𝑡; 4,4) − 4𝑝(𝑡; 3,4)𝑎(𝑡; 1) + 6𝑝(𝑡; 2,4)𝑎2(𝑡; 1) − 4𝑝(𝑡; 1,4)𝑎3(𝑡; 1) + 𝑎3(𝑡; 1) 𝑀(𝑡; 2,2) = 𝑝(𝑡; 4,4) − 2𝑝(𝑡; 2,4)𝑎(𝑡; 2) + 𝑎2(𝑡; 2) 

One can present (2.26; 2.27), as 𝐸𝑚[(𝑝(𝑡𝑖) − 𝑎(𝑡; 1))4] = 𝑎(𝑡; 4) − 𝐹(𝑡)  ;    𝐹(𝑡) = 4𝑎(𝑡; 3)𝑎(𝑡; 1) − 6𝑎(𝑡; 2)𝑎2(𝑡; 1) + 3𝑎4(𝑡; 1) 

To derive the 4-th statistical moment a(t;4), we set the equation: 𝐸𝑚[(𝑝(𝑡𝑖) − 𝑎(𝑡; 1))4]𝐸𝑚[(𝑝2(𝑡𝑖) − 𝑎(𝑡; 2))2] = 𝑀(𝑡; 4)𝑀(𝑡; 2,2) [𝑎(𝑡; 4) − 𝐹(𝑡)][𝑎(𝑡; 4) − 𝑎2(𝑡; 2)] = 𝑀(𝑡; 4)𝑀(𝑡; 2,2)  (2.30) 𝑎2(𝑡; 4) − [𝐹(𝑡) + 𝑎2(𝑡; 2)]𝑎(𝑡; 4) + [𝐹(𝑡)𝑎2(𝑡; 2) − 𝑀(𝑡; 4)𝑀(𝑡; 2,2)] = 0 (2.31) 

One can verify that (2.31) always has two roots a1,2(t;4) and one of the roots ensures that 

market-based price kurtosis Ku(t) (2.25; 2.32) and volatility of squares of price θ2
(t) (2.27; 

2.33) are non-negative (App.B):  𝐾𝑢(𝑡)𝜎4(𝑡) = 𝐸𝑚[(𝑝(𝑡𝑖) − 𝑎(𝑡; 1))4] = 𝑎(𝑡; 4) − 𝐹(𝑡) ≥ 0  (2.32) 𝜃2(𝑡) = 𝐸𝑚[(𝑝2(𝑡𝑖) − 𝑎(𝑡; 2))2] = 𝑎(𝑡; 4) − 𝑎2(𝑡; 2) ≥  0  (2.33) 

That makes the first four market-based statistical moments a(t;n) (2.8), n=1,2,3,4, self-

consistent; nevertheless, they are determined by different weight functions w(ti;n), n=1,2,3,4 

(2.10). Thus, the statistical moments a(t;n) (2.7; 2.19; 2.20; 2.23; 2.24) and the root of the 

equation (2.31) define a 4-finite approximation of market-based price characteristic function 

and probability measure (App.A). In this paper, we reduce the approximation of market-based 

price probability by the first four statistical moments. 

Further execution of recursive procedures that are similar to those above will define equations 

on market-based price n-th statistical moments a(t;n) for n=5,6,.. .  

Let us highlight the important result of our consideration. We introduced the first four 

market-based price statistical moments a(t;n), n=1,2,3,4 that describe the 4-approximation of 
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market-based price characteristic function and probability measure (App.A). These 

approximations reveal the direct dependence of market-based price statistical moments, price 

characteristic function and price probability measure on statistical moments of market trade 

values and volumes.  

Let us consider this issue in more detail. From (2.12), obtain equations (2.15) on p(t;n,n) that 

describe dependence on the statistical moments of market trade value C(t;n) and volume 

U(t;n). However, the factors p(t;n,m) for n<m describe the joint statistical moments of 

market trade values and volumes. Indeed, from (2.11), for n<m, obtain: 𝑝(𝑡; 𝑛, 𝑚)𝑈(𝑡; 𝑚) = 1𝑁 ∑ 𝑝𝑛(𝑡𝑖)𝑈𝑚(𝑡𝑖)𝑁𝑖=1 = 1𝑁 ∑ 𝐶𝑛(𝑡𝑖)𝑈𝑚−𝑛(𝑡𝑖)𝑁𝑖=1 = 𝐶𝑈(𝑡; 𝑛, 𝑚 − 𝑛)   (2.34) 

We denote the joint statistical moments of market trade value and volume as CU(t;n,m-n): 𝐶𝑈(𝑡; 𝑛, 𝑚 − 𝑛) = 𝐸[𝐶𝑛(𝑡𝑖)𝑈𝑚−𝑛(𝑡𝑖)] = 1𝑁 ∑ 𝐶𝑛(𝑡𝑖)𝑈𝑚−𝑛(𝑡𝑖)𝑁𝑖=1   (2.35) 𝐶𝑈(𝑡; 𝑛, 𝑚 − 𝑛) = 𝐶(𝑡; 𝑛)𝑈(𝑡; 𝑚 − 𝑛) + 𝑐𝑜𝑟𝑟{𝐶𝑛(𝑡𝑖)𝑈𝑚−𝑛(𝑡𝑖)}  (2.36) 

Relations (2.34-2.36) reveal the direct dependence of the market-based price statistical 

moments, characteristic function, and probability measure on statistical moments of market 

trade value C(t;n) (2.13), volume U(t;n) (2.14), and on joined statistical moments of trade 

value and volume CU(t;n,m-n) (2.35) or on correlations (2.36) between the n-th power of 

value Cn
(ti) and the (m-n)-th power of volume Um-n

(ti). Relations (2.34-2.36) allow present 

market-based price volatility σ2
(t) (2.20) and the 2-d price statistical moment a(t;2) (2.19) as 

follows: 𝜎𝑝2(𝑡) = Ω𝐶2 (𝑡)+𝑎2(𝑡;1)Ω𝑈2 (𝑡)−2𝑎(𝑡;1)𝑐𝑜𝑟𝑟{𝐶(𝑡𝑖)𝑈(𝑡𝑖)}𝑈(𝑡;2)    (2.37) 𝑎(𝑡; 2) = 𝐶(𝑡;2)+2𝑎2(𝑡;1)Ω𝑈2 (𝑡)−2𝑎(𝑡;1)𝑐𝑜𝑟𝑟{𝐶(𝑡𝑖)𝑈(𝑡𝑖)}𝑈(𝑡;2)    (2.38) 

Here we introduce trade value volatility ΩC
2
(t) and trade volume volatility ΩU

2
(t) (2.39) Ω𝐶2(𝑡) = 𝐶(𝑡; 2) − 𝐶2(𝑡; 1)   ;     Ω𝑈2 (𝑡) = 𝑈(𝑡; 2) − 𝑈2(𝑡; 1)  (2.39) 

Relations (2,37; 2.38) highlight direct dependence of market based price σ2
(t) (2.20) and 

statistical moment a(t;2) on trade statistical moments C(t;2) and U(t;2), their volatilities 

ΩC
2
(t) and ΩU

2
(t) (2.39) and mutual correlation (2.36). That dependence highlights the hidden 

difficulties in performing any predictions of market-based price volatility σ2
(t) (2.16). Such 

hidden complexity reduces the accuracy and reliability of price volatility forecasts, which 

neglect the above dependence. 

3. Asset pricing and value-at-risk 

In this section, we briefly argue some consequences of the use of market-based price 

statistical moments.  
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Asset-pricing 

The introduction of market-based price statistical moments a(t;n) that are determined 

by statistical moments of the market trade value and volume (2.7; 2.19; 2.23; 2.31) makes 

predictions of the price probability one of the most complex problems of finance. Indeed, to 

forecast price probability at time horizon T, one should predict the statistical moments and 

correlations of market trade value and volume at the same time horizon T. That requires 

forecasts of economic and financial factors that impact market trade trends and fluctuations at 

horizon T. One should predict supply and demand, production function and investment, 

economic development and growth, etc. Forecasts of the first four market-based price 

statistical moments a(t;n), n=1,2,3,4, should match predictions of market trade statistical 

moments C(t,n) (2.13), U(t,n) (2.14), and their correlations (2.34-2.36). 

Value-at-risk 

 The approximate predictions of asset price probability determine the accuracy and 

reliability of Value-at-Risk (VaR) – one of the most widespread tools for hedging the risk of 

a random market price change. The foundation for VaR was developed more than 30 years 

ago (Longerstaey and Spencer, 1996; CreditMetrics™, 1997; Choudhry, 2013). “Value-at-

Risk is a measure of the maximum potential change in value of a portfolio of financial 

instruments with a given probability over a pre-set horizon” (Longerstaey and Spencer, 

1996). Despite the great progress in VaR performance since then, the core features of VaR 

remain the same. To assess VaR at horizon T one should forecast at horizon T the integral of 

the left tail of the returns or price probability density function.  

 Such predictions limit the possible capital loss due to market price random variations 

for a selected time horizon T with a given probability. VaR is used by the largest banks and 

investment funds to hedge their AUM and portfolios valued at billions of USD from the risk 

of a random market price change. The large size of AUM under risk requires considering the 

impact of large trades on market price probability. Hence, the largest banks and investment 

funds should take into account market-based price probability. 

 As we show above, the predictions of market-based price statistical moments and 

probability depend on the forecasts of market trade statistical moments and correlations. 

Hence, VaR as a method to hedge large AUM from risks of market price change at horizon T 

is based on forecasts of the market trade value and volume statistical moments at the same 

horizon T. The accuracy of VaR assessment at horizon T is determined by the accuracy of 

forecasting the market trade value and volume statistical moments. The more statistical 

moments of market trade are predicted, the higher the accuracy of VAR. Simply put, VaR 
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assessment almost equals the prediction of the joint probability of market trade values and 

volumes. However, an imaginable exact forecast of the market trade value and volume 

statistical moments at horizon T would provide that lucky man with a unique opportunity to 

manage the market alone. That is much more profitable than any VaR assessments. One who 

succeeds in predicting market trade joint statistical moments will forget about VaR and will 

enjoy beating the market alone! However, there still remains a “negligible” problem – how 

can one exactly predict market trade statistical moments? It is a good issue for further 

research.  

 The accuracy of any assessments of VaR at horizon T is bounded by the precision of 

possible predictions of market trade value and volume statistical moments at horizon T.  

4. Price-volume correlations 

Price-volume correlations have been studied in numerous papers (Tauchen and Pitts, 

1983; Karpoff, 1987; Campbell et al., 1993; Llorente et al., 2001; DeFusco et al., 2017). These 

researchers investigate the frequency-based correlations of price-volume time series. 

Actually, the correlations of two random variables are determined by their joint probabilities. 

The choice of probabilities determines the value of mutual correlations. The choice of 

frequency-based price and trade volume probabilities determines the results of the above 

authors. However, the consideration of price-volume correlations as a result of market trade 

randomness and the use of market-based price statistical moments give results that differ from 

those presented by (Tauchen and Pitts, 1983; Karpoff, 1987; Campbell et al., 1993; Llorente et 

al., 2001; DeFusco et al., 2017). 

The use of VWAP as the average market-based price a(t;1) (2.4; 2.7) immediately highlights 

that price-volume correlations equal zero: 𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈(𝑡𝑖)} = 𝐸[𝑝(𝑡𝑖)𝑈(𝑡𝑖)] − 𝐸𝑚[𝑝(𝑡𝑖)]𝐸[𝑈(𝑡𝑖)]   (4.1) 

Indeed, from (2.4-2.6; 2.15), obtain: 𝐸[𝑝(𝑡𝑖)𝑈(𝑡𝑖)] = 𝐸[𝐶(𝑡𝑖)] = 1𝑁  ∑ 𝐶(𝑡𝑖)𝑁𝑖=1 = 1𝑁  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 =    = 1∑ 𝑈(𝑡𝑖)𝑁𝑖=1  ∑ 𝑝(𝑡𝑖)𝑈(𝑡𝑖)𝑁𝑖=1 ∙ 1𝑁 ∑ 𝑈(𝑡𝑖)𝑁𝑖=1 =  𝐸𝑚[𝑝(𝑡𝑖)]𝐸[𝑈(𝑡𝑖)]    

Hence, the correlation corr{p(ti)U(ti)} (4.1) between price p(ti) and trade volume U(ti) is zero: 𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈(𝑡𝑖)} = 0      (4.2) 

Now let us derive correlation corr{p(ti)U
2
(ti)} between price p(ti) and squares of volumes U2

(ti). 𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈2(𝑡𝑖)} = 𝐸[𝑝(𝑡𝑖)𝑈2(𝑡𝑖)] − 𝑎(𝑡; 1)𝑈(𝑡; 2)  (4.3) 𝐸[𝑝(𝑡𝑖)𝑈2(𝑡𝑖)] = 𝐸[𝐶(𝑡𝑖)𝑈(𝑡𝑖)] = 𝐶(𝑡; 1)𝑈(𝑡; 1) + 𝑐𝑜𝑟𝑟{𝐶(𝑡𝑖)𝑈(𝑡𝑖)}   

From (2.4), obtain:      
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𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈2(𝑡𝑖)} = 𝑐𝑜𝑟𝑟{𝐶(𝑡𝑖)𝑈(𝑡𝑖)} − 𝑎(𝑡; 1)𝜎𝑈2(𝑡)   (4.4) 𝜎𝑈2(𝑡) = 𝑈(𝑡; 2) − 𝑈2(𝑡; 1) 

Let us derive correlation corr{p
2
(ti)U

2
(ti)} between squares of price and trade volume: 𝑐𝑜𝑟𝑟{𝑝2(𝑡𝑖)𝑈2(𝑡𝑖)} = 𝐸[𝑝2(𝑡𝑖)𝑈2(𝑡𝑖)] − 𝑎(𝑡; 2)𝑈(𝑡; 2) 𝐸[𝑝2(𝑡𝑖)𝑈2(𝑡𝑖)] = 𝐸[𝐶2(𝑡𝑖)] = 𝐶(𝑡; 2) 

After simple transformations, obtain the form of corr{p
2
(ti)U

2
(ti)}: 𝑐𝑜𝑟𝑟{𝑝2(𝑡𝑖)𝑈2(𝑡𝑖)} = 2𝑎(𝑡; 1)𝑈(𝑡; 2)[𝑝(𝑡; 1,2) − 𝑎(𝑡; 1)]   (4.5)  

The factor p(t;1,2) in (4.5) can be presented using (2.34-2.36) and we obtain: 𝑐𝑜𝑟𝑟{𝑝2(𝑡𝑖)𝑈2(𝑡𝑖)} = 2𝑎(𝑡; 1)[𝑐𝑜𝑟𝑟{𝐶(𝑡𝑖)𝑈(𝑡𝑖)} − 𝑎(𝑡; 1)𝜎𝑈2(𝑡)]  (4.6) 

From (4.4) and (4.6), obtain: 𝑐𝑜𝑟𝑟{𝑝2(𝑡𝑖)𝑈2(𝑡𝑖)} = 2𝑎(𝑡; 1)𝑐𝑜𝑟𝑟{𝑝(𝑡𝑖)𝑈2(𝑡𝑖)} 

The use of different probabilities gives different expressions of correlations between the same 

random variables. 

5. Conclusion 

The price probability and its predictions are the most wanted issues for traders and 

investors. The conventional and generally accepted frequency-based price probability 

describes random market prices under the implicit assumption that all trade volumes are 

constant during the averaging interval. That is not the best imitation of random market trade. 

As opposed to the frequency-based approach, market-based price statistical moments 

directly depend on the statistical moments and correlations of random market trade values 

and volumes. That highlights the complex impact of trade randomness on market price 

stochasticity and reveals the dependence of large trade deals on price variations. Market-

based statistical moments help derive direct expressions for the dependence of price-volume 

correlations on statistical moments and correlations of random trade values and volumes. 

That could help investors much more than the frequency-based assessments of correlations 

between price-volume time series. 

The complexity of predictions of market-based price statistical moments is hidden in 

the difficulties of forecasting market trade statistical moments. In particular, we show that 

predictions of price volatility depend on forecasts of the first two statistical moments and 

correlations of trade values and volumes. Market-based price probability reveals the 

economic bounds and restrictions for the reliability and accuracy of Value-at-Risk. 

The development of a market-based approach to price probability can benefit market, 

financial, and economic modeling and management.   
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Appendix A.  

Approximations of the price characteristic function and probability measure 

We consider price as a random variable during the averaging interval Δ (2.2). One can 

equally describe a random variable by its characteristic function F(t;x) (A.1), probability 

measure μ(t;p) (A.2), and a set of the n-th statistical moments a(t;n) (2.8) (Shephard, 1991; 

Shiryaev, 1999; Shreve, 2004). The Taylor series expansion of the market-based 

characteristic function F(t;x) presents it through the set of the n-th statistical moments a(t;n): 𝐹(𝑡; 𝑥) = 1 + ∑ 𝑖𝑛𝑛!∞𝑛=1 𝑎(𝑡; 𝑛) 𝑥𝑛    (A.1) 𝜇(𝑡; 𝑝) = 1√2π ∫ 𝐹(𝑡; 𝑥) exp(−𝑖𝑥𝑝) 𝑑𝑥   (A.2) 𝑎(𝑡; 𝑛) =  𝑑𝑛(𝑖)𝑛𝑑𝑥𝑛 𝐹(𝑡; 𝑥)|𝑥=0 = ∫ 𝑝𝑛𝜇(𝑡; 𝑝) 𝑑𝑝   ;    ∫ 𝜇(𝑡; 𝑝) 𝑑𝑝 = 1   (A.3) 

In (A.1;A.2), i is the imaginary unit. For simplicity, we take price as a continuous random 

variable during Δ (2.2). Any predictions of the market-based price probability μ(t;p) and 

characteristic function F(t;x) at a horizon T should match the forecasts of price n-th statistical 

moments a(t;n). The direct dependence of market-based price n-th statistical moments a(t;n) 

on statistical moments of market trade values and volumes and their correlations highlights 

the dependence of forecasts of price probability μ(t;p) and characteristic function F(t;x) on 

predictions of market trade statistical moments at the same horizon T.  

Finite number q of price statistical moments a(t;n), n=1,2,..q determines finite q-

approximation of price characteristic function Fq(t;x) (A.4): 𝐹𝑞(𝑡; 𝑥) = 1 + ∑ 𝑖𝑛𝑛!𝑞𝑛=1 𝑎(𝑡; 𝑛) 𝑥𝑛    (A.4) 

We present a simple example of approximation. Statistical moments determined by Fq(t;x) 

for n>q can be different, but the first q moments are equal to a(t;n), n=1,2,..q. Taylor 

expansion (A.4) is not too useful to derive Fourier transform (A.2) and to obtain q-

approximation of the price probability measure μq(t;p). Let us consider price characteristic 

function Gq(t;x) (A.5): 𝐺𝑞(𝑡; 𝑥) = 𝑒𝑥𝑝 {∑ 𝑖𝑛𝑛!𝑞𝑛=1  𝑏(𝑡; 𝑛) 𝑥𝑛 − 𝐵 𝑥2𝑄}  ;   𝑞 = 1, 2, … ;  𝑞 < 2𝑄 ;  𝐵 > 0    (A.5) 

and require that Gq(t;x) (A.5) obey relations (A.3): 𝑎(𝑡; 𝑛) =  𝑑𝑛(𝑖)𝑛𝑑𝑥𝑛 𝐺𝑞(𝑡; 𝑥)|𝑥=0   ;     𝑛 ≤ 𝑞   (A.6) 

Relations (A.6) define terms b(t;n) in (A.5) through price statistical moments a(t;n), n≤q. The 

term Bx
2Q

, B>0, 2Q>q don’t impact relations (A.3; A.6) but guarantees existence of the price 

probability measures μq(t;p) as Fourier transform (A.2) of the characteristic functions Gq(t;x) 



 14 

(A.5). The uncertainty of B>0 and power 2Q>q in (A.5) highlights the well-known fact that 

the first q statistical moments don’t explicitly determine the characteristic function and 

probability measure of a random variable. Relations (A.5) describe the set of characteristic 

functions Gq(t;x) with different B>0 and 2Q>q and the corresponding set of probability 

measures μq(t;p) that match (A.2; A.5; A.6).  

For q=1 the approximate price characteristic function G1(t;x) and probability μq(t;p) are 

trivial: 𝐺1(𝑡; 𝑥) = 𝑒𝑥𝑝{𝑖 𝑏(𝑡; 1)𝑥}  ;  𝑎(𝑡; 1) = −𝑖 𝑑𝑑𝑥 𝐺1(𝑡; 𝑥)|𝑥=0 = 𝑏(𝑡; 1)  (A.7) 𝜇1(𝑡; 𝑝) = ∫ 𝑑𝑥  𝐺1(𝑡; 𝑥) 𝑒𝑥𝑝(−𝑖𝑝𝑥) = 𝛿(𝑝 −  𝑏(𝑡; 1))  (A.8) 

For q=2 approximation G2(t;x) describes Gaussian probability measure μ2(t;p): 𝐺2(𝑥; 𝑡) = 𝑒𝑥𝑝 {𝑖 𝑏(𝑡; 1)𝑥 − 𝑏(𝑡;2)2 𝑥2}    (A.9) 

It is easy to show that  𝑎(𝑡; 2) = − 𝑑2𝑑𝑥2 𝐺2(𝑡; 𝑥)|𝑥=0 = 𝑏(𝑡; 2) + 𝑏2(𝑡; 1)     𝑏(𝑡; 2) = 𝑎(𝑡; 2) − 𝑎2(𝑡; 1) = 𝜎2(𝑡)   (A.10) 

Coefficient b(t;2) equals price volatility σ2
(t) (2.16; 2.20) and the Fourier transform (A.2) for 

G2(t;x) gives Gaussian price probability measure μ2(t;p): 𝜇2(𝑡; 𝑝) =  1(2𝜋)12𝜎(𝑡) 𝑒𝑥𝑝 {− (𝑝−𝑏(𝑡;1))22𝜎2(𝑡) }   (A.11) 

For q=3 approximation G3(t;x) has form: 𝐺3(𝑡; 𝑥) = 𝑒𝑥𝑝 {𝑖 𝑏(𝑡; 1)𝑥 − 𝜎2(𝑡)2 𝑥2 − 𝑖 𝑏(𝑡;3)6 𝑥3 − 𝐵 𝑥2𝑄}  (A.12) 

𝑎(𝑡; 3) = 𝑖 𝑑3𝑑𝑥3 𝐺3(𝑡; 𝑥)|𝑥=0 = 𝑏(𝑡; 3) + 3𝑏(𝑡; 1)𝜎2(𝑡) +  𝑏3(𝑡; 1) 𝑏(𝑡; 3) = 𝐸𝑚 [(𝑝 − 𝑏(𝑡; 1))3] = 𝑆𝑘(𝑡)𝜎3(𝑡)     (A.13) 

Coefficient b(t;3) (A.13) depends on price skewness Sk(t), which describes the asymmetry of 

the market-based price probability from the normal distribution.  

For the q=4 approximation G4(t;x) depends on the choice of B>0 and power 2Q>4: 𝐺4(𝑡; 𝑥) = 𝑒𝑥𝑝 {𝑖 𝑏(𝑡; 1)𝑥 − 𝜎2(𝑡)2 𝑥2 − 𝑖 𝑏(𝑡;3)6 𝑥3 + 𝑏(𝑡;4)24 𝑥4 − 𝐵𝑥2𝑄}  ;   2𝑄 > 4 (A.14) 

Simple, but long calculations give: 𝑏(𝑡; 4) = 𝑎(𝑡; 4) − 4𝑎(𝑡; 3)𝑎(𝑡; 1) + 12𝑎(𝑡; 2)𝑝2(𝑡; 1) − 6𝑎4(𝑡; 1) − 3𝑎2(𝑡; 2) 𝑏(𝑡; 4) = 𝐸𝑚 [(𝑝 − 𝑏(𝑡; 1))4] − 3𝐸𝑚2 [(𝑝 − 𝑏(𝑡; 1))2] 
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Price kurtosis Ku(p) (B.11) describes how the tails of the price probability measure ηK(t;p) 

differ from the tails of a normal distribution. 𝐾𝑢(𝑡)𝜎𝑝4(𝑡; 𝑝) = 𝐸𝑚 [(𝑝 − 𝑏(𝑡; 1))4]   (A.15) 𝑏(𝑡; 4) = [𝐾𝑢(𝑡) − 3]𝜎4(𝑡)      

Even the simplest Gaussian approximation G2(t;x), μ2(t;p) (A.9; A.11) highlights the direct 

dependence of the market-based price volatility σ2
(t) (2.16; 2.20; A.10) on the first two 

statistical moments of trade value C(t;1), C(t;2) and volume U(t;1), U(t;2) and their 

correlations (2.36). Thus, prediction of price volatility σ2
(t) for Gaussian measure μ2(t;p) 

(A.9) should follow non-trivial forecasting of the first two statistical moments (2.13; 2.14) 

and correlations (2.34-2.36) of the market trade value and volume. 

Appendix B.  

The proof of non-negativity of price kurtosis Ku(t) and θ2
(t)   

Let us consider the quadratic equation (2.31): 𝑎2(𝑡; 4) − [𝐹(𝑡) + 𝑎2(𝑡; 2)]𝑎(𝑡; 4) + [𝐹(𝑡)𝑎2(𝑡; 2) − 𝑀(𝑡; 4)𝑀(𝑡; 2,2)] = 0 (B.1) 

The existence of two real roots valid if: [𝐹(𝑡) + 𝑎2 (𝑡; 2)]2 − 4 [𝐹(𝑡)𝑎2(𝑡; 2) − 𝑀(𝑡; 4)𝑀(𝑡; 2,2)] > 0  (B.2) 

The inequality (B.2) is always valid because it takes form of (B.3): [𝐹(𝑡) − 𝑎2(𝑡; 2)]2 + 4𝑀(𝑡; 4)𝑀(𝑡; 2,2) > 0   (B.3) 

If prices p(ti) are not constant for i=1,2,..N during Δ then from (2.28) and (2.29) always valid:  𝑀(𝑡; 4) > 0      ;       𝑀(𝑡; 2,2) > 0    (B.4) 

To prove that at least one root a(t;4) of equation (B.1) results in Ku(t) (2.25) and θ2
(t) (2.27) are 

non-negative together, consider θ2
+(t) (B.5) that is determined by the root a+(t;4) (B.6): 𝜃+2(𝑡)𝑑 = 𝑎+(𝑡; 4) − 𝑎2(𝑡; 2) > 0   (B.5) 𝑎+(𝑡; 4) = 𝐹(𝑡)+𝑎2(𝑡;2)+√[𝐹(𝑡)−𝑎2(𝑡;2)]2+4𝑀(𝑡;4)𝑀(𝑡;2,2)2    (B.6) 

Substitute (B.6) into (B.5), and obtain: √[𝐹(𝑡) − 𝑎2(𝑡; 2)]2 + 4𝑀(𝑡; 4)𝑀(𝑡; 2,2) > 𝑎2(𝑡; 2) − 𝐹(𝑡) 

The square of two parts of the above inequality give: [𝐹(𝑡) − 𝑎2(𝑡; 2)]2 + 4𝑀(𝑡; 4)𝑀(𝑡; 2,2) > [𝑎2(𝑡; 2) − 𝐹(𝑡)]2  (B.7) 

Hence, due to (B.4) inequality (B.7) is always valid and hence θ2
+(t) > 0 always. Due to (2.30), 

obtain Ku(t) >0 always valid. 

If all prices p(ti) are constant during Δ, then σ2
(t)=Ku(t)=θ2

(t)=0.   
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