
MPRA
Munich Personal RePEc Archive

Smooth Regulatory Intervention

Schilling, Linda

Washington University in St Louis Olin Business School

3 February 2024

Online at https://mpra.ub.uni-muenchen.de/120041/
MPRA Paper No. 120041, posted 12 Feb 2024 14:44 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/120041/


Smooth Regulatory Intervention

Linda M. Schilling∗

Olin Business School WUSTL, CEPR

February 3, 2024

Abstract

Policy makers have developed different forms of policy intervention for stopping,
or preventing runs on financial firms. This paper provides a general framework to
characterize the types of policy intervention that indeed lower the run-propensity
of investors versus those that cause adverse investor behavior, which increases the
run-propensity. I employ a general global game to analyze and compare a large set
of regulatory policies. I show that common policies such as Emergency Liquidity
Assistance, and redemption (withdrawal) fees either exhibit features that lower firm
stability ex ante, or have offsetting features rendering the policy ineffective.
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1 Introduction

L’enfer est plein de bonnes volontés ou désirs
[The road to hell is paved with good intentions]

- Bernard of Clairvaux (1090 – 1153)

The prevention of runs on financial institutions such as banks, money market mutual
funds, and, more recently, stablecoins and central bank digital currency (CBDC) concerns
a vast academic literature1 and policy institutions today (McCrank, 2022). This paper
contributes to a critical debate on financial regulation aimed at reducing a firm’s run-
propensity and its unintended consequences. The paper develops a flexible framework for
analyzing the effectiveness of a large class of financial policy interventions at preventing
runs on firms. Because the framework is general, I can identify features of regulation,
and ultimately classify common policy regulation according to types that improve versus
reduce firm stability.

The paper makes three contributions. The main contribution stems from characteriz-
ing policy interventions that improve versus deteriorate firm stability based on how the
policy acts on the investors’ withdrawal-contingent payoffs to roll over versus withdraw
their funds. Policy-driven changes in the relative payoffs alter the investors’ ex ante
run-propensity, and thus the firm’s proneness to runs. I determine two large classes of
policy, “smooth” and “harsh.” Both smooth and harsh policies can increase or lower the
run-propensity of investors but do so in distinct ways. Among regulation that possibly
worsens stability is emergency liquidity assistance because it may benefit the “wrong”
investor group, that is, those that decide to withdraw.

To classify policy and determine how policy impacts firm stability, I consider the rela-
tive investor payoffs to roll over versus withdraw as a function of aggregate withdrawals,
where high aggregate withdrawals implicate a run on the firm. Absent regulation and
intervention (the status quo), the payoff difference (PI) to roll-over versus withdrawal is
generally a continuous function of the aggregate withdrawals, see Goldstein and Pauzner
(2005). I define “smooth policy intervention” as a regulation that acts on the PI by shifting
relative incentives gradually while preserving the continuity of the PI in the withdrawals.
In contrast, “harsh policy” causes discontinuities (jumps) in the PI at certain withdrawal
thresholds, and possibly shifts these jump points as policy intensity picks up. For intuition
on the difference between smooth and harsh intervention, any policy intervention needs
to start and finish at some aggregate withdrawal threshold. These thresholds have an

1See Diamond and Dybvig (1983); Allen and Gale (2000, 2004); Goldstein and Pauzner (2005); Rochet
and Vives (2004); Andolfatto, Nosal, and Sultanum (2017); Ennis and Keister (2009); Diamond and
Kashyap (2016); Keister (2015); Green and Lin (2003); Peck and Shell (2003); Gorton and Metrick (2012,
2009); Morris and Shin (2016); Ennis and Keister (2006); Garratt and Keister (2009); Kacperczyk and
Schnabl (2013); Allen, Carletti, and Gale (2014); Schmidt, Timmermann, and Wermers (2016); Schilling
(2019, 2023); Fernández-Villaverde, Sanches, Schilling, and Uhlig (2021); Schilling, Fernández-Villaverde,
and Uhlig (2020)
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interpretation as withdrawal-contingent entry and exit points to intervention. A smooth
policy may set or shift these entry and exit points to intervention but only in a way that
preserves the continuity of the PI in the withdrawals. That is, entry and exit to inter-
vention shall not be too abrupt with regard to its impact on investor payoffs, otherwise
a discontinuity in the PI arises, and policy intervention becomes harsh.

A smooth policy is not always beneficial to firm stability, and a harsh policy is not
always detrimental. If smooth policy strictly raises the PI to roll over versus withdraw
over an interval of aggregate withdrawals (intervention interval) and nowhere lowers the
PI, the run-propensity drops and firm stability increases. If harsh policy causes at least
one upwards jump and no downwards jump of the PI, meaning that there exists a with-
drawal threshold at which the policy intervention increases the favorability of roll-over
versus withdraw in an ad-hoc way, then likewise firm stability increases. A change in
harsh policy can occur in two forms: Either in the form of a “piecewise smooth policy”
that shifts payoffs gradually between jump points without causing additional jumps, and
acts prudently if the PI is shifted upwards. Alternatively, a change in harsh policy can
occur due to a shift in the jump-point. “Jump-shifts” raise stability ex ante, only if the
policy shifts a down-jump point of the PI up to a higher withdrawal level or an up-jump
point down to a lower withdrawal level. Stability declines either if smooth policy shifts
the PI down or if harsh policy causes a down-jump in the PI. A shift in the jump point
lowers stability if it shifts a down-jump down to a lower or an up-jump upwards to a
higher withdrawal level. These abstract concepts are brought to life in the application
section 5 where I assess existing policy methods.

As the second contribution, the generality of the framework allows me to study condi-
tions under which different policy types offset each other. Many common policies belong
to multiple classes, exhibiting harsh and piecewise smooth features such as Emergency
Liquidity Assistance. Within the class of smooth policies the paper points out that both
bail-ins and bail-outs can either increase or lower firm stability depending on the in-
vestor group they benefit. As an application of this result, Schilling (2024) constructs
“stability-equivalent“ but less costly bailin policies for a given bailout policy, and analyzes
the welfare difference between bailout and stability-equivalent bailin policies. Therefore,
generically a bailout does not improve firm stability, moreover, it lowers firm stability
when paid to the withdrawing agent group. As an application of these results, I demon-
strate that imposing and raising a fee on withdrawals is not an effective policy because
it gives rise to both stability-improving and stability-deteriorating effects that partially
offset each other. There, I also show that lowering the entry threshold to the withdrawal
fee is more effective, because it avoids these offsetting effects. Likewise, the provision
of Emergency Liquidity Loans to a bank during a fire sale can in fact lower instead of
raise bank stability ex ante because the loan constitutes a transfer from the roll-over to
the withdrawing agent group, acting like a bail-in to roll-over agents and a bail-out of
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withdrawing agents, as discussed in section 5.2. As the second result I point out the
possibility of a smoke and mirrors effect of policy (“smoke policy”): I show that policy
that acts harshly (causes or shifts jumps) can undo smooth policy and vice versa. As
an application of this smoke and mirrors effect, section 5.2 shows that providing and
raising Emergency Liquidity Loans to a bank can lower instead of raise bank stability
ex ante because the ELA provision causes a jump in the payoff difference function if
the lender of last resort charges interest on the loan. Likewise, section 5.3 discusses a
result of Schilling (2023) which shows that the suspension of convertibility of deposits
is a smoke policy since it can lower stability, creating harsh changes in relative investor
payoffs (jumps) that offset the stabilizing effect of the intervention. The stability analysis
of imposing and raising withdrawal fees or granting and raising an ELA loan at a varying
entry threshold are contributions of their own in section 5.1 and 5.2.

Last, this paper makes a technical contribution by extending the jump-free Goldstein
and Pauzner (2005) model to general payoff functions with finitely many jump points.

This framework is widely applicable. The firm I consider can be any institution that
is exposed to its investors’ decision whether to roll over funds or withdraw. Therefore,
the firm can be a bank, a money market mutual fund (MMF), a central bank, a stable-
coin, or a start-up that requires the roll-over of seed money. Funds can be short-term
debt, long-term debt, commercial papers, seed money of start-ups, cryptocurrency and
stablecoins, CBDC, or money market mututal fund shares. The framework solely requires
that the payoffs to roll over versus withdraw be denominated in the real unit of account
(consumption units). Therefore, payoffs need to be pinned down after an adjustment for
inflation or an exchange rate.

The framework is general in that the types of regulation and contracts that are studied
here solely need a description of the ex post payoffs to investors after the contract, asset
returns, and regulation have been applied. More specifically, for the classification of
regulation into classes that do improve versus those that lower firm stability, it is sufficient
to observe how regulation acts on the investors’ payoffs to roll over versus withraw funds,
depending on the aggregate withdrawals of all firm investors. The types of regulation and
policy interventions that are included in this framework are, though not limited to, bail-
ins, bail-outs, emergency liquidity assistance (ELA) by a lender of last resort, suspension
of convertibility of deposits or gates or withdrawal fees for money market mutual fund
redemptions, and deposit insurance (guarantees), all possibly in a withdrawal contingent
way.

The framework is specific in that it imposes sufficient structure on the payoffs to
guarantee the selection of a unique equilibrium of the investor’s coordination game in a
global games framework (Carlsson and Van Damme, 1993; Morris and Shin, 2001), and
thus a unique, model-implied ex ante run probability on the firm. For this purpose, I
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generalize the Goldstein and Pauzner (2005) framework to a setting that considers general
withdrawal-contingent payoffs to investors, and allows for jumps in the payoff differences.

1.1 Literature

The paper contributes to three strands of literature, namely the literature on runs on
financial firms, the literature on global games, and the literature on financial regulation
to improve the resilience of the financial sector. The closest related papers are the bank
run global game model in Goldstein and Pauzner (2005), the run model with a lender
of last resort application in Rochet and Vives (2004), the firm-regulator interaction with
subsidies and runs in Frankel (2017), and the book chapter on global games in Morris
and Shin (2001).

This paper adds to the literature on bank and money market mutual fund runs and
their prevention. In Diamond and Dybvig (1983), a sufficiently conservative suspension
policy deters runs completely. Chari and Jagannathan (1988) study the prevention of
panic runs via suspension policies when depositors have asymmetric information. Rochet
and Vives (2004) study bank runs with and without lender of last resort policies. Ennis
and Keister (2009) consider ex-post optimal intervention delay when a run happens. He
and Manela (2016) study dynamic rumor-based bank runs with endogenous information
acquisition. Andolfatto, Nosal, and Sultanum (2017) study the prevention of runs by
allowing agents to report that a run is happening. Zeng (2017) studies mutual fund
runs in a dynamic model but does not consider intervention or run prevention. Schilling
(2019, 2023) studies the impact of suspension of convertibility policies on bank stability.
Zhong and Zhou (2021) study the impact of bankruptcy code design on run incentives in
a dynamic setting. Unlike all these papers, this paper analyzes a very general framework
that allows for a wide range of policy interventions and contracts.

Unlike the majority of the mentioned papers, this paper employs a global games in-
formation environment (Carlsson and Van Damme, 1993; Morris and Shin, 2001, 1998;
Frankel, Morris, and Pauzner, 2003; Angeletos, Hellwig, and Pavan, 2006; Szkup and
Trevino, 2015; Inostroza and Pavan, 2018; Morris and Yang, 2022) for attaining a unique
equilibrium which enables me to conduct unique comparative statics in the ex ante run
likelihood under policy changes. In the context of runs on firms, global games have been
employed as an equilibrium selection device by Goldstein and Pauzner (2005); Rochet
and Vives (2004); Morris and Shin (2016, 2004); Vives (2014); Frankel (2017); Eisen-
bach (2017); Allen, Carletti, Goldstein, and Leonello (2018); Schilling (2019, 2023, 2018).
This paper deviates from the existing global games literature by analyzing a general
global games environment into which I build different types of regulation that impact
firm stability. In doing so I build on the general structure in Morris and Shin (2001)
to generalize the payoff functions of the classic run model by Goldstein and Pauzner
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(2005). I then define types of policy by how they act on the payoff difference function
under the constraint of maintaining the global games equilibrium selection. In doing
so I explicitly allow for regulation that causes jumps in the payoff difference function
while maintaining action single-crossing and (one-sided) strategic complementarity. In
the global game by Frankel (2017), a regulator can set transfers to investors to imple-
ment the efficient equilibrium whereas the firm can shirk the transfer by altering the
contract with its investors. This paper differs from Frankel (2017) by focussing on dif-
ferent types of transfers to and across the coordinating investors. I show, depending on
whether transfers are continuity-preserving or discontinuity-causing, positive or negative,
they impact stability differently, either improving or deteriorating stability. I show that
different types of transfers can, nevertheless, have equivalent effects on stability and I
show that commonly applied intervention methods such as emergency loans, and the im-
position of withdrawal fees are policies that exhibit mixed features, some improving and
some lowering stability ex ante. Frankel (2017) explicitly allows for moral hazard whereas
I abstract from that. Similar to Angeletos, Hellwig, and Pavan (2006), this paper studies
how a firm’s proneness to runs changes with policy. In Angeletos et al. (2006), however,
the policy maker observes a payoff-relevant state realization which is not observed by the
coordinating investors. Therefore, the policy conveys additional information which gives
rise to equilibrium multiplicity. Here, in contrast, the policy does not serve as a signal,
and a unique equilibrium attains. Morris and Shin (2016) and Vives (2014) consider
the regulation of intermediary balance sheets to impact insolvency and illiquidity risk. I
study regulation in a broader sense where I do not pin down balance sheets, contracts
and regulation explicitly but rather consider very general payoffs to investors ex post of
asset returns, contracts, seniority and regulation. This allows me to nest many common
bank run models and regulation, and characterize stability improving regulation on a
more abstract level without pinning down the regulation and contracts in detail.

With regard to the literature on unintended consequences of financial regulation, in a
setting of self-fulfilling runs, Keister (2015) shows that if financial intermediaries expect
bailouts in times of crises, the anticipation of bailouts causes intermediaries to choose
illiquid and fragile asset positions. In the context of sovereign debt crises, Fink and
Scholl (2016) show that the prevention of sovereign default via bailouts in the short run
may come at the cost of a higher default probability in the long run. Farhi and Tirole
(2012) show that private leverage choices of banks become strategic complements if the
policy response during crises is imperfectly targeted. This model features a simultaneous-
move game, as in Diamond and Dybvig (1983) and Goldstein and Pauzner (2005). The
withdrawal-contingent intervention policies considered here, however, resemble the lit-
erature on random and sequential withdrawals where each arriving depositor obtains a
distinct allocation (Wallace et al., 1988; Chari, 1989; Peck and Shell, 2003; Green and
Lin, 2003).
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2 Model

I first introduce the model, and then discuss its assumptions in section 2.1.
There are three time periods, t = 0, 1, 2, and no explicit discounting. Implicitly, a

discount factor can be accommodated via the payoffs to investors, as described below.
There exists a firm, a regulator and a continuum of investors i ∈ [0, 1]. All of them
are risk-neutral. The firm can be a bank, a money market mututal fund, a stablecoin,
a central bank issuing CBDC, or a start-up that requires investors and the roll-over
of funding seeds. Likewise one can think of the investors as depositors, investors in a
money market mututal fund or general investors who at a future point in time need to
decide whether to roll-over funds or withdraw. The regulator can represent the FDIC,
the government or the lender of last resort (central bank). There is a single good in the
economy that agents value for consumption. All payoffs are denominated in terms of that
good.

At time zero, the investors are symmetric, and each is endowed with one unit to invest.
All investors enjoy consumption at both t = 1 and t = 2. The firm requires funding for
investment, and for that purpose collects endowments from the investors in t = 0. I
assume that investing is individually rational to investors. Returns to scale are constant.
The initial firm investment and thus funding via investors is normalized to one unit.

I do not model the firm and the regulator separately but rather think of them as one
entity that jointly provides payoffs to investors. Therefore, in the benchmark model I do
not model the firm’s investment payoff structure, the contracts between investors and the
firm, and the regulator’s subsidy explicitly. Rather, I pin down investor payoffs condi-
tional on the choice of action, ex post of firm revenue, contract payments and regulatory
intervention. On an abstract level, I can collapse payoffs because, as I will outline below
in the analysis, optimal investor behavior does not depend on the origin of payoffs rather
than joint payoffs provided by the firm and the regulator conditional on an action. This
stark abstraction has pros and cons. On the positive side, it allows me to analyze a very
general policy framework that nests many common intervention methods, contracts, and
asset payoff structures. But the collapse of firm-regulator payoffs requires me to abstract
from moral hazard from the side of the firm towards its investors or between the firm and
the regulator. The firm-regulator entity has aligned incentives to maximize firm stability,
to be defined below. This set-up does nest a model where the firm and the regulator
are modeled separately, as long as the firm faces no moral hazard problem towards the
regulator or its investors, see the application section 5 for examples. For a nice example
where the firm can shirk a regulatory intervention, see Frankel (2017).

I follow and outline the information structure in Goldstein and Pauzner (2005) but
generalize firm (bank) and investor payoffs.
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State Let θ ∼ U [0, 1] denote the unobservable, random state of the economy. Gen-
eralizing Goldstein and Pauzner (2005), as stated above, I do not impose a particular
state-dependent firm asset payoff structure. Yet, I assume that the state realization is
payoff relevant to investors. One may think of θ as parametrizing the payoff probability
of a risky firm asset or a random asset return.

Contract and payoffs In t = 0, the firm offers a contract to the investors to
raise funds for investment in the risky asset. All investors invest their endowment in the
contract with the firm. At t = 1, an investor needs to decide on her action. She either
“withdraws” her investment and thus opts for the short-term payoff u1(n, θ) payable in
t = 1, or she “rolls over” her investment until t = 2, opting for the payoff u2(n, θ) payable
in t = 2 where n ∈ [0, 1] denotes the endogenous share of investors who withdraw in
t = 1 (aggregate withdrawals). One should think about the payoffs u1(n, θ) and u2(n, θ)
not only as functions of firm asset payoffs, the contract and withdrawals but also ex
post of firm profits and regulatory intervention, that is, the payment of bail-outs, bailins,
suspension or withdrawal fees. The payoffs u1 and u2 are denominated in real terms.
Therefore, if the firm is a stablecoin or a CBDC-issuing central bank, then u1 and u2 are
ex post of a correction for the exchange rate and the price level (inflation). The payoff u2
can be thought of incorporating a discount factor. The reason for why this generality is
possible is because the investors’ only care for final per period consumption and due to
rational expectations. For roll-over incentives, only final real payoffs matter. The firm and
the regulator jointly have deep pockets so that payoffs u1(n, θ) and u2(n, θ) at a given state
θ and aggregate withdrawal level n are feasible, and this is common knowledge among all
investors. Observe that the payoffs are not necessarily hard claims but can be state- and
withdrawal-contingent. Therefore, the contract I am considering here is not necessarily
a demand-deposit or debt contract. The payoffs satisfy monotonicity conditions in the
state θ, and the aggregate withdrawals n, as summarized below in assumption 2.1. The
functional forms of u1(n, θ) and u2(n, θ) are known to the depositors ex ante.

Signals Before the investors choose actions in t = 1, they observe noisy, private signals
about the state θ,

θi = θ + εi. (1)

The idiosyncratic noise term εi is independent of the state θ and is distributed iid ac-
cording to the uniform distribution εi ∼ U [−ε,+ε].

Policy and Regulatory Intervention I assume that at t = 0, the regulator sets and
commits to a policy parameter p ∈ [0,∞)M whereM is the dimension of the policy, where
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the regulator can steer each dimension independently of the other.2 For that same reason,
in the remainder of the theory part I set M = 1, assuming that every policy dimension
corresponds to its own policy p. The case p = 0 corresponds to a committment to not
interfere, or alternatively the absence of a regulatory institution. One can think of p as a
policy intensity that is raised under policy intervention. The policy parameter is common
knowledge among all investors. A change in p is supposed to act on the investors’ payoffs
u1 and u2 which is why, from now on, I subindex investor payoffs with p. For the first part
of the paper, I study investor behavior for a general, given policy intensity p ∈ [0,∞),
and then characterize different types of policy and policy changes by how they act on the
investors’ payoffs. Define the payoff difference of rolling over versus withdrawing as

υp(n, θ) = u2,p(n, θ)− u1,p(n, θ). (2)

Note, that the aggregate withdrawals n and the state θ are random in t = 0. Following
Morris and Shin (2001) section 2.2.2. and 2.2.3., I impose monotonicity conditions on the
investor’s relative payoffs that guarantee equilibrium existence and uniqueness. That is,
this model tries to attain maximum generality with regard to the payoffs u2 and u1 and
thus possible regulatory interventions but within the class of global games.

Assumption 2.1. Fix policy intensity p ∈ [0,∞). It holds
(1) (Strict state Monotonicity:) υp(n, θ) is non-decreasing in θ, and strictly increasing in
θ for all θ ∈ [θp, θp].
(2a) (Action single crossing:) For every state θ ∈ [θp, θp], there exists n∗(p) ∈ (0, 1) such
that υp(n, θ) > 0 for all n < n∗(p) and υp(n, θ) < 0 for all n > n∗(p).
(2b) (One-sided strategic complementarity:) For every state θ ∈ [θp, θp], whenever n is
such that υp(n, θ) > 0, then υp(n, θ) is strictly decreasing in n.
(3) (Uniform limit dominance:) There exist upper and lower regions of action dominance:
There exist θp, θp ∈ (0, 1) and ε > 0 such that: if θ ∈ [0, θp], then withdraw is dominant,
υp(n, θ) < −ε, for all n ∈ [0, 1] while for θ ∈ [θp, 1], roll-over is dominant υp(n, θ) >
ε, for all n ∈ [0, 1].

Note that assumption 2.1 includes global strategic complementarity in actions. But
the assumption imposes sufficiently strong additional structure to also guarantee equi-
librium existence and uniqueness under one-sided strategic complementarity which is
common in games of runs on financial institutions.

Timing
2For instance, a regulation of imposing harcuts needs to pin down the haircut and the withdrawal

entry threshold to the haircut. An emergency loan needs to pin down the loan amoun, the interest rate
on the loan, and the withdrawal entry threshold.
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• In t = 0, the regulator sets and fully commits to her policy p without observing the
state. The policy p is common knowledge among all agents, and the policy choice
conveys no information. Then, the state θ realizes unobservably to all agents. All
investors invest in the firm contract.

• In t = 1, all investors observe their private signal θi. Based on the signal and
the policy, they decide whether to request withdrawal. The firm and the regulator
jointly observe the aggregate withdrawal requests n ∈ [0, 1], and depending on
the policy p, allocate payoffs u1(n, θ) to depositors who withdraw, where the state
realization θ ∈ [0, 1] remains unobserved by all agents until t = 2.

• In t = 2, θ is revealed, and payoff u2(n, θ) is paid to investors that chose roll-over.

The equilibrium concept is perfect Bayes Nash. Proofs that are not in the main text
can be found in the appendix.

2.1 Discussion of model assumptions

Generically, I allow the payoff to withdrawal, u1(n, θ), to depend on state θ since the
payoff may be paid in t = 2 due to regulatory intervention even though the choice to
withdraw was made in t = 1. One may consider here a mandatory deposit stay where
a depositor chooses to withdraw but an intervention in t = 1 prevents her from doing
so. If the payoff to withdraw is paid in t = 1, it cannot depend on θ since the state
is revealed only later in t = 2. The payoff to roll over is paid in t = 2 and therefore
can always depend on the state. I allow the payoffs to depend on aggregate withdrawals
since in classic bank run models (Diamond and Dybvig, 1983; Ennis and Keister, 2006;
Goldstein and Pauzner, 2005), regulatory intervention is triggered by high withdrawals,
thus, altering the payoffs to all agents.

To gain intuition for Assumption 2.1, state monotonicity means that the action to
“roll over” becomes relatively more favorable than withdraw for high state realizations.

One-sided strategic complementarity and single-crossing mean that, unless the state
realizes in either of the dominance regions, for low withdrawals, roll over is optimal, but
the optimality of roll over strictly declines in the withdrawals until a critical withdrawal
level n∗(p) is reached where the optimal response flips to “withdraw.” For all higher
withdrawals, withdraw is optimal, and the critical withdrawal level n∗(p) is unique. To
put these assumptions in context, in the bank run literature, at policy intensity p, the
aggregate investor withdrawals determine whether a run occurs or not. The critical
withdrawal level n∗(p) is known as the critical withdrawal level at which the bank becomes
illiquid, meaning for higher withdrawals n ≥ n∗(p) the bank is unable to fully serve
depositors who roll over and withdrawal becomes optimal to depositors. To understand
the single-crossing condition, note that policy impacts the relative favorability of roll-over
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versus withdrawal by altering the payoffs u2,p and u1,p. Thus, changes in policy can or are
supposed to cause changes in optimal behavior by investors. Alternatively, the threshold
n∗(p) can be understood as a regulatory intervention that occurs once withdrawals exceed
n∗(p), which may cause optimal investor behavior to switch at the intervention threshold,
see section ??. In applications, the threshold n∗(p) depends on the asset payoffs, budget
constraints, the contracted investor’s payoffs, the discount factor, and in case of nominal
contracts, the price level or an exchange rate.3

The assumption on action single-crossing, introduces a coordination game among the
investors.4 The existence of dominance regions is important for the equilibrium selection
argument. The subscript p clarifies that policy intensity impacts not only investor payoffs
but can also determine the regions of states, [0, θp] and [θp, 1], for which investors have
dominant actions.

Allover, assumption 2.1 is important to attain a unique coordination equilibrium and
later, for maintaining equilibrium uniqueness under policy changes.

3 Equilibrium Existence and Uniqueness with Jumps

Any policy intervention is relative to a prevailing status quo. This benchmark status quo
needs to be clearly defined so that I can compare equilibrium outcomes before and after
a policy intervention or a change in policy. A comparison of outcomes, in particular,
requires that the status quo yields a unique equilibrium of the investors’ coordination
game, and that the equilibrium remains unique as the policy changes.

The status quo environment “p” should comprise the standard setting where a policy
or regulation are absent, and , for instance, no regulator exists to intervene during a run
(p = 0). In such settings, the investors’ payoffs to roll-over versus withdraw are typically
continuous in the aggregate withdrawals; see (Goldstein and Pauzner, 2005). As a regu-
lator puts a policy in place, though, it affects the shape of the investors’ payoff-difference

3In classic bank run appliations, for instance, a run occurs if aggregate cash withdrawals nu1(n, p)
exceed a budget B1(p) available to early withdrawing agents. For attaining equilibrium uniqueness of
the coordination game, a classic assumption yielding action single-crossing is that the product nu1(n, p)
be strictly increasing in the aggregate withdrawals n. Therefore, at fixed policy p there exists a unique
critical withdrawal level n̂(p) such that if and only if n ≥ n̂(p) then nu1(n, p) ≥ B1(p). In that case,
there exists a unique n∗(p) ≤ n̂(p) for which n∗(p)u1(n∗(p), p) ≤ B1(p) and the payoff difference changes
sign in n∗(p).

4As one interpretation for n∗(p) one can imagine depositors that finance a bank’s investment in illiquid
assets. The depositors have the possibility to withdraw from the bank at the interim stage if they believe
that the asset quality θ will realize low. If the state θ realizes above the lower dominance region θ ∈ [θ, 1]
and as long as the aggregate withdrawals are sufficiently low, n < n∗, the bank can finance all withdrawals
by selling assets, and rolling over yields a higher payoff than withdraw. Therefore, υp(n, θ) > 0 and “roll
over” is the best response to the aggregate action n < n∗. If however the withdrawals pick up, the bank
needs to liquidate many illiquid assets, and the remaining investment is insufficient to pay a high payoff
to depositors who roll over. That is, “withdraw” is the optimal response to high withdrawals n > n∗(p),
υp(n, θ) < 0.
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function. Because I want to consider a large range of possible policy interventions, the
status quo environment should also comprise more extreme (“harsh”) cases of policy that
have strong local and global effects on the investors’ incentives to roll-over versus with-
draw. Such local effects can take the form of discontinuities (jumps) in the payoff dif-
ference function at particular withdrawal thresholds, so that small changes in policy can
cause shifts in the discontinuities, and thus large changes in expected payoffs. At the
status quo, a payoff difference has jumps, if, for instance, an intervention mechanism is
already implemented, p > 0, and the regulator contemplates about adjusting the policy.

Assumption 3.1 (Status quo: Discontinuous payoff difference). Fix policy p ∈ [0,∞).
(i) The payoff difference function has at most finitely many jump points (if any): There
exist withdrawal thresholds (jump points) {n1, . . . , nk} with n1 < · · · < nk ∈ [0, 1], 0 ≤
k < ∞, k ∈ N0, such that υp(n, θ) is continuous in (n, θ) on [0, 1] \ {n1, . . . , nk} × [0, 1],
and differentiable in θ on (θp, θp).
(ii) Every jump is finite: For all jump-points {(n)i}i=1,...,k the left- and right-sided limits
of the payoff difference function exist (are finite)

| lim
n↗(n)i

υp(n, θ(n, θ
∗
p))| =: ci,l <∞, | lim

n↘(n)i
υp(n, θ(n, θ

∗
p))| =: ci,r <∞ (3)

Possible causes of or reasons for these preference jumps are (multiple) entry or exit
points to some staggered intervention in the form of threshold levels to intervention.
For instance, an Emergency liquidity loan can be granted at a withdrawal threshold
n1 when withdrawals realize above that withdrawal level. Altenatively, a suspension of
convertibility, or a bail-in can cause such jumps.

While k is the total number of jump points of the PI, I allow that only some of these
jump points depend on the policy p.5 Let m with 0 ≤ m ≤ k the number of policy-
dependent withdrawal jump-thresholds, that change with policy p. For m > 0, without
loss of generality, I reorder the policy-dependent jump points by (n)1 < . . . , < (n)m. Set
(n)0 = 0 and (n)k+1 = 1. The renaming of jump points to (n)1, . . . , (n)m allows me to
directly address all of the policy-dependent jump-points.

I need to establish further conditions to attain equilibrium existence and uniqueness
of the trigger equilibrium under jumps. I maintain assumption 2.1 but need to adopt the
one-sided strategic complementarity assumption.

Assumption 3.2 (Preserving single-crossing with jumps). The payoff difference function
υp(n, θ) is strictly decreasing in the aggregate withdrawals n whenever υp(n, θ) is non-
negative:
(i) As long as the payoff difference function is positive, it is strictly decreasing in n:

5This captures that policy can be multi-dimensional, M > 1, where differend policy dimensions affect
the jump points differently. For instance, an increase in the emergency loan does not affect the jump
point whereas a shift in the entry threshold shifts the jump point.
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For withdrawals between adjacent jump points n ∈ (ni, ni+1), i = 0, . . . , k it holds:
whenever υ(n, θ) ≥ 0 then υ(n, θ) > υ(n+ h, θ) for all h > 0 with n+ h < ni+1

(ii) As long as the payoff difference function is weakly positive, only downwards jumps
may occur: If the left-sided limit of the payoff difference function towards a jump point
ni, i = 1, . . . , k is non-negative, limn↗ni

υp(n, θ) ≥ 0, then that jump point must be a
downwards jump, ci,l − ci,r > 0.

The assumptions (i) and (ii) of assumption 3.2 imply single-crossing of the payoff
difference function while allowing for discontinuities. The requirement (ii) imposes that
the payoff difference may jump upwards only across negative values of the payoff difference
function. Jumps across positive values or from a positive to a negative value must be
downwards jumps.

The Goldstein and Pauzner (2005) model is nested in the environment described in
this section. When setting k = 0 in assumption 3.1, the payoff difference function is
continuous at p (has no jumps). Assumptions 3.2 and 3.1 generalize the Goldstein and
Pauzner (2005) environment to allow for general investor payoffs with discontinuities of
the payoff difference function. Both assumptions are necessary for preserving the equi-
librium existence and uniqueness of a trigger equilibrium when allowing for the jumps.6

The next result states that under the right monotonicity assumptions, the existence
and uniqueness of equilibrium is preserved under harsh policy intervention.

Proposition 3.1 (Equilibrium existence and uniqueness under jumps)
Fix the status quo p ≥ 0. Assume the payoff difference function υp(n, θ) exhibits at most
finitely many jump-points {(n)i}i=1,...,k, where each jump is finite, satisfying assumptions
2.1, 3.1 and 3.2. As noise vanishes, ε → 0, there exists a unique equilibrium and the
equilibrium is in threshold strategies θ∗(p) where all investors withdraw if they observe a
signal below the trigger and otherwise roll over.

For tie-breaking reasons, I assume that an investor rolls over the investment whenever
observing the equilibrium trigger, θi = θ∗(p). Given an equilibrium trigger θ∗(p), the
equilibrium withdrawals are described by a deterministic function of the state, n(θ, θ∗),
given in the appendix, equation (??).

The proof to Proposition 3.1 is a contribution to the global games literature beyond
the general characterization in Morris and Shin (2001), and is given in the appendix. It
generalizes the existence and uniqueness proof of the model in Goldstein and Pauzner
(2005) to allow for finitely many jumps in the payoff difference function in addition
to having general payoffs, subject to assumptions 3.1 and 3.2. Essentially the proof

6By assumption 3.1, the payoff difference υp(n, θ) is bounded in n over the interval [0, 1] because the
jumps are finite and because the payoff difference is continuous over the intervals (ni, ni+1), i = 0, . . . , k.
Therefore, and because the discontinuities have measure zero, the payoff difference function remains
integrable over [0, 1].
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amounts to showing that expected relative payoffs conditional on a signal realization
remain continuous, and strictly increasing in the signal when having finitely many jumps
in withdrawal points of the payoff difference function.

For an intuition on how the equilibrium trigger is attained, fix the policy parameter
p ∈ [0,∞) and jump points n1, . . . nk ∈ [0, 1]. Consider the marginal investor’s expected
payoff difference to roll-over versus withdraw when observing the trigger signal θi = θ∗.
Because of the finitely many finite jumps in the PI, the expected payoff difference equation
can be written as the sum of multiple integrals, where the jump points define the integral
bounds,

H(p, θ∗) =

∫ n1

0

υp(n, θ(n, θ
∗)) dn+ · · ·+

∫ 1

nk

υp(n, θ(n, θ
∗)) dn. (4)

and where θ(n, θ∗(p)) is the inverse of n(θ, θ∗), that is, the state consistent with measure
n withdrawals if all depositors play the equilibrium trigger strategy around θ∗,

θ(n, θ∗) = θ∗ + ε(1− 2n), θ∗ ∈ [θ − ε, θ + ε] (5)

As is standard in global games theory, the equilibrium trigger signal θ∗(p) is implicitly
characterized as the zero, H(p, θ∗(p)) = 0. The formula (4) incorporates that from the
perspective of the marginal investor, the aggregate withdrawals are uniformly distributed
on [0, 1] (“Laplacian Belief”), because aggregate withdrawals equal, by a law of large
numbers, the share of investors who observe signals below θ∗(p), and given the observation
of the marginal investor, θi = θ∗(p), the true state is located only ε away from θ∗. Note
that this property holds independently of policy p, so that policy changes leave the
marginal investor’s posterior beliefs on the aggregate withdrawals unchanged but affect
her payoffs vp and possibly the jump-points n1, . . . nk.

By the single-crossing assumption in 2.1, the optimality of roll-over versus withdraw
switches as the aggregate withdrawals n(θ, θ∗) exceed the critical withdrawal level n∗(p),
where n∗ is the unique withdrawal level where the PI crosses zero. In the remaining
part of the paper, I say that “a run on the firm occurs” if the withdrawals exceed the
critical withdrawal level n∗(p).7 Given the trigger signal θ∗(p), a unique cut-off state
θb(p) ∈ [θ, θ], the critical state, exists at which the aggregate withdrawals push the firm
to the edge of a run:

n(θb(p), θ
∗(p)) = n∗(p). (6)

If and only if θ < θb(p), a run occurs because sufficiently many investors receive a signal
below the trigger θ∗(p), and withdraw from the firm. Because the state is uniformly
distributed, the ex-ante probability of a run equals θb. But as noise vanishes, ε→ 0, the

7In contrast, the bank run literature often defines a run as the incident where withdrawals reach the
level at which the bank runs out of assets to liquidate, that is, as u2(n) hits zero. This however occurs
at a withdrawal level n > n∗ where the optimal response has already switched to “withdraw”.
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equilibrium trigger θ∗(p) converges to the critical state θb(p). I therefore write:

Definition 3.1 (Firm stability). Firm stability increases in policy p if the ex-ante prob-
ability of a run θb(p) or equivalently8 the equilibrium trigger θ∗(p) decline in p.

Generically, the regulator wants to design a policy p in a way that reduces the ex ante
run-likelihood, that is, reduces (and never raises) the trigger θ∗(p).

The main focus of this paper is to determine what types of policy lower versus raise the
probability of runs and thus firm stability. Note, generically, the objective to maximize
stability is different from efficiency maximization.9

4 Smooth and Harsh Policy Intervention

In this section I introduce different policy classes, characterized by the way they act on
the payoff difference function.

4.1 Policy classes

The first policy class contains policies that preserve continuity of the payoff difference
function as a regulatory intervention takes place (going from p = 0 to p > 0), or, as a
policy intervention changes intensity (increasing p).

Definition 4.1 (Smooth policy intervention). Let p ≥ 0 describe the status quo. A
regulator conducts “(piecewise) smooth policy” on the intervention interval N (p) ⊂ [0, 1]

via increasing policy intensity p if:
(i) a marginal increase in policy p alters the investors’ payoffs ro roll-over u2(n, θ) versus
withdrawal u1(n, θ) for aggregate withdrawals (run size) n ∈ N (p) in a way that creates
no additional discontinuities of the payoff difference function, υp(n, θ), in the aggregate
withdrawals n ∈ [0, 1] for all θ ∈ [0, 1].
(ii) the change in payoffs due to the marginal change in policy p preserves the properties
of υp(n, θ) stated in assumption 2.1.

The intervention interval N (p) may not contain any jump points. A smooth policy
intervention changes the investors’ payoffs to roll-over versus withdraw gradually along
the withdrawal-interval N (p), and preserves the contintuity of the PI in the withdrawals

8As noise vanishes, ε→ 0, the trigger and the critical state are undistinguishable and their derivatives
coincide.

9See for instance (Schilling, 2019) where the provision of high deposit insurance can lead to inefficient
losses to the deposit insurance fund because the depositors roll over their deposits for bad signals.
For analyzing efficiency, one would need to explicitly model the asset’s state-contingent payoffs and
liquidation values which would impose additional structure on the investor payoffs and the economy. I
prefer to keep the payoffs more general for now. An efficiency analysis can be reintroduced once the
policy is explicit such as in the application section 5.
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over that interval, including the boundary points. In particular, a smooth policy does
not cause harsh local changes in the investors’ incentives at single withdrawal points, in
particular not at the entry and exit points to intervention, that is, the boundary points of
N (p). Requirement (i) says that either the PI is continuous before and after the smooth
policy change in p, or the PI has exactly as many jump points before and after the change
in p, which are located outside of N (p).

The second requirement (ii) means that smooth policy intervention should preserve the
payoff properties stated in assumption 2.1 which is important for maintaining equilibrium
uniqueness as the policy changes. Generically, a policy intervention must be carefully
designed. Consider, for instance, increasing the relative favorability to “roll over” versus
“withdraw” via the provision of a bailout. If roll over becomes as favorable as withdrawal
for low but also for high aggregate withdrawals, equilibrium uniqueness is lost because
the payoff difference function is no longer strictly decreasing in the withdrawals when
positive, or lacks the single-crossing property. In that case, the global games equilibrium
selection approach is no longer applicable, and the impact of policy on firm stability is
undetermined since multiple equilibria arise.

In contrast to smooth policy, the following policy class captures the possibility of harsh
policy intervention that may initiate or finish abruptly at some entry or exit threshold,
thus, causing (additional) discontinuities of the payoff difference function.

Definition 4.2 (Harsh policy intervention). Fix the status quo policy p ≥ 0. A policy
intervention is “harsh” if its implementation causes (additional) discontinuities of the
payoff difference function υp(n, θ) in the aggregate withdrawals n ∈ [0, 1], exhibiting at
least one up- or downwards jump point ni ∈ (0, 1), i = 1, . . . , k, k ≥ 1. I call a policy
intervention “adverse harsh” if it causes a downwards jump and “prudent harsh” if it
causes an upwards jump of the payoff difference function in some withdrawal level.

I call downward jumps adverseley and upward jumps prudent, because by Proposition
4.1 (i) down-jumps lower firm stability ex ante whereas up-wards jumps increase stability.
One might be tempted to call this harsh intervention type “threshold intervention.” Note,
however that smooth policy intervention likewise starts at a threshold (left endpoint of
Np) and ends at a threshold (right endpoint of Np) if Np does not comprise the full
interval [0, 1].

In section 5, I show that the imposition of withdrawal fees, an ELA provision via the
lender of last resort, or the suspension of convertibility of deposits are examples of harsh
intervention.

The difference between smooth and harsh intervention boils down to continuous ver-
sus discontinuous effects on the payoff difference function. This distinction may appear
artificial at first sight because functions with a finite number of finite discontinuities,
as studied here, can be approximated with continuous functions. I leave the distinction
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between smooth and harsh policy nevertheless because, first, the existence and unique-
ness proof of an equilibrium in the coordination game is more involved in the case of
discontinuities rather than the continuous case. Second, the harshness of policy is often
an unwanted side-effect of the main regulation which targets a gradual shift of the PI
over an interval Np but, perhaps unintendedly, also causes a jump at the entry point to
the intervention interval, that is, the left boundary point of Np. Third, in the context
of harsh policy, a change in such a policy can, but does not have to, cause a shift in the
according jump-points with large consequences for ex ante roll-over incentives.

Definition 4.3 (Jump-shifts). A change in harsh policy p causes a “jump-shift” if it shifts
at least one jump point of the payoff difference function vp(n, θ) up or down, meaning the
jump occurs at a higher or lower withdrawal level of the PI. That is, it holds m > 0 and
∂
∂p
(n)i 6= 0 for i ∈ {1, . . . ,m}, m ≤ k

Jump-shifts cannot occur with smooth policy since, by its definition, jumps are absent
from the PI. A jump-shift should be interpreted as a modification of a harsh policy that
is already in place. Section 5, for instance, shows that granting an emergency loan at
a positive interest rate at some withdrawal threshold constitutes harsh policy since it
causes a jump in the payoff difference at that withdrawal threshold. ELA constitutes
a 3-dimensional policy, pinning down the loan amount, the interest rate and the entry
threshold to intervention. Going from a loan amount of zero to ε > 0 causes a jump at
the entry threshold to intervention if the interest rate on the loan is positive. Likewise, at
a loan amount of ε > 0 going from a zero interest rate to an interest rate r > 0 causes a
policy shift from smooth to harsh including a jump point at the entry to ELA. Once this
harsh policy is in place, a change in the entry threshold constitutes a jump-shift whereas
at an interest rate r = 0, a change of the entry threshold leaves the PI continuous (but
extends the intervention interval Np).

4.2 Effects of Policy on Stability

A change in policy can affect the payoff difference function and thus ex ante firm stability
in two kinds of ways: either via a gradual shift of the function by altering payoffs over
an entire interval Np (piecewise smooth policy)10 and / or via shifting at least one of the
jump-points.

In practice, a policy change can involve several smooth shifts of the PI that go in
different directions as well as shifts of jump points. The following Proposition captures
the effect of an isolated policy change on ex ante firm stability, holding every other feature
of the PI fixed. The next proposition is my second main result.

10In that case, it is necessary that the intervention interval is located inbetween jump points.
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Proposition 4.1 (Policy effects on stability)
Fix policy p ≥ 0, and let assumption 3.1 hold.

1. Assume the payoff difference function υp(n, θ) exhibits at least one jump point, k >
0, where {n1, . . . , nk} denote all of the jump points of the payoff difference function.

(a) Stability-impairing jump-shift: Consider a change in a single jump point ni,
leaving all other jump points and values of the payoff difference function con-
stant. Firm stability declines ex ante (the trigger θ∗(p) and the critical state
θb(p) strictly increase in p) if and only if

• either jump point i ∈ {1, . . . , k} constitutes a down-jump in ni, ci,l−ci,r >
0 and the policy change shifts the jump point ni to a lower withdrawal level
(left-shift), ∂

∂p
(n)i < 0, or

• jump point i is an up-jump, ci,l − ci,r < 0, and the policy shifts ni to a
higher withdrawal level (to the right), ∂

∂p
(n)i > 0.

(b) Stability-improving jump-shift: Firm stability improves ex ante (the trigger
θ∗(p) and the critical state θb(p) strictly decline in p.) if the policy

• shifts a down-jump ni to a higher withdrawal level (to the right) or

• an up-jump to a lower withdrawal level (to the left).

2. Consider an open interval of aggregate withdrawals N (p) ⊂ [0, 1] on which the
payoff difference function is continuous in n, and differentiable in p. Assume a
change in policy p is piecewise smooth, that is, alters the payoffs to withdrawal
or roll-over gradually along n ∈ N (p) in a way that preserves the continuity of the
payoff difference on N (p), and leaves all of the possible jump-points outside of N (p)

constant.

(a) Stability-improving (piecewise) smooth policy: A piecewise smooth policy im-
proves firm stability ex ante if it pushes the PI upwards (an nowhere down-
wards) with
(i) ∂

∂p
υp(n, θ) ≥ 0, for all withdrawals n ∈ [0, 1] \ {n1, . . . , nk} and

(ii) ∂
∂p
υp(n, θ) > 0 for withdrawals n ∈ N (p).

(b) Stability-impairing (piecewise) smooth policy: A piecewise smooth policy lowers
firm stability ex ante if it pushes the PI downwards (an nowhere upwards) with
(i) ∂

∂p
υp(n, θ) ≤ 0, for all withdrawals n ∈ [0, 1] \ {n1, . . . , nk} and

(ii) ∂
∂p
υp(n, θ) < 0 for withdrawals n ∈ N (p).

The policy effects above are evaluated in isolation, assuming that the policy solely
affects either one jump point or the PI over a particular range of withdrawals N (p).
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To gain insight in how a policy change affects firm stability, recall that a policy
change alters the relative payoffs to roll-over versus withdraw conditional on the aggre-
gate withdrawal realization n. Recall that the investors’ withdrawal decisions take place
simultaneously, so that an individual withdrawal decision cannot be made contingent on
the realization n. Ex ante, before the investors make their withdrawal decision, the aggre-
gate withdrawals are therefore random. For the marginal investor though, the posterior
belief on the aggregate withdrawals is uniformly distributed on [0, 1], meaning that policy
changes affect the marginal investors’ expected payoffs to roll-over versus withdraw. As a
consequence, the equilibrium trigger signal θ∗(p) that makes the marginal investor indif-
ferent between actions needs to adjust. The change in the investors’ trigger equilibrium,
in return, alters firm stability ex ante.

A stability-improving smooth policy intervention marginally raises the relative favor-
ability of “roll-over” versus “withdraw” by gradually shifting the according payoffs over
the interval of withdrawals N (p) in a way that preserves the continuity of the payoff
difference function υp(n).
A stability-improving smooth policy can be attained by either increasing the payoffs to
roll-over (bailout to investors who roll over), u2, or equivalently by reducing the payoffs
to withdraw (bail-in of investors that withdraw, suspension or withdrawal fee), u1. A
stability-impairing smooth policy, perhaps by mistake, does the opposite, increasing u1
via, for instance, a lender of last resort emergency liquidity provision, see section 5.2
or lowers u2 via a bail-in of investors that roll over. The equivalence demonstrates the
power of this general approach11: To the investors, only relative payoffs matter for roll-
over incentives, meaning a raise in u2 and a lowering of u1 have equivalent effects on firm
stability.

With regard to smooth policy, technically, a smooth policy can act on several disjoint
and disconnected intervalsN1(p) andN2(p) simultaneously, meaning that the intervention
interval becomes a disconnected intervention set N (p) = N1(p)∪N2(p) in the form of the
union of several disjoint smaller open intervention intervals. The intervention set N (p)

may not contain any jump points. Likewise, N (p) cannot be a single point threshold
since this creates a discontinuity (jump), rendering it a harsh policy.

Important for the definition of a stability-improving smooth intervention is that
there exists no subinterval of [0, 1], on which that same policy acts adverselely via
∂
∂p
υp(n) < 0. Obviously, there can exist policy interventions that are mixtures between

stability-improving and stability-deteriorating smooth policies in the sense that there ex-
ist intervals Na(p) and Nb(p) such that the payoff difference function of roll-over versus
withdrawal, υp(n, θ), strictly increases in p along Na(p) but strictly declines on Nb(p).
These cases are not clear-cut, and require a more thorough analysis, see the proof to

11This equivalence is not suprising within the global games literature where payoff differences are the
bread and butter of every comparative statics anaysis.
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Proposition 4.1 for the general treatment below, as well as section ?? and the application
section 5.

I allow the intervention interval N (p) to depend on p, meaning that a change in pol-
icy p can widen the intervention interval, see for instance sections 5.1 and 5.2 where a
change in policy lowers the entry threshold to imposing a withdrawal fee respectively
an emergency liquidity loan. The intervention interval cannot depend on the state since
otherwise the regulator’s announcement of the interval in t = 0 would convey information
on the state, which would give rise to equilibrium multiplicity, see (Angeletos et al., 2006).

To see the similarity between a stability impairing jump-shift and a stability impairing
smooth policy, both of these policies reduce the payoffs to roll-over versus withdraw at
some or several withdrawal levels n, thus reducing the favorability of the action “roll-
over.” Even though these policies have broadly the same effect on the payoff difference,
the exact way how they act on the PI is very different. The proof to Proposition 4.1
shows, for instance, that the length of the intervention interval Np of a smooth policy
plays a similar role as the depth of a jump in the payoff difference when shifting that
jump-point. That is, the range of withdrawals Np in the case of smooth policy has a
comparable role to the payoff difference in a jump point.

Commonly, a policy change has more than one effect, smooth and or harsh, on the
PI, which can lead to ambiguous effects on stability (mixtures). For instance, a policy
change can act smoothly over several intervals N (p), potentially stability improving over
one interval and stability-impairing over another interval. Also, a policy can act smoothly
and harshly at the same time, shifting a jump-point, and simultaneously causing a grad-
ual shift in the PI over some intervention interval. A policy may also shift several jump
points, possible in opposite directions. To evaluate the overall effect on stability, one
can either think about the impact of concatenated policy change on stability, using the
Proposition above. If the effects go in opposite directions, a general statement on the
impact on stability is tricky, but can be derived along the lines of the proof in Proposi-
tion 4.1. Consider, for instance, harsh combination policy: if a downward (upward) jump
point declines (increases) fast in the policy and if the payoff difference makes large jumps
in the policy-dependent thresholds {(ni)}mi=1, then the equilibrium trigger increases and
stability drops in policy p even though the policy may simultaneously act in a prudent
piecewise smooth way over some interval N (p).

A jump-shift alters the payoff difference function only at discrete points, whereas
a (piecewise) smooth policy intervention shifts the payoff difference function gradually
over an entire intervals of withdrawals. Every jump-shift is either stability-improving
or impairing. In contrast, there exist mixtures of stability-improving and -impairing
piecewise smooth policies. While I do not formally define these, their analysis is included
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in Proposition 4.1 and its proof below.
Smoothness of policy requires that entry and exit to an intervention do not occur too

sudden at the boundaries to the intervention interval N (p). But there are intervention
types where the immediacy of the intervention cannot preserve continuity. A simple intu-
itive example of smooth-harsh combination policy is the case where the regulatory policy
intervention starts harsh at a withdrawal threshold n1, causing a jump, but simultane-
ously raises the payoff difference function on the interval N (p) = (n1, 1], see subsection
5.3.

Section 5 demonstrates that ELA provision via a lender of last resort or the suspension
of convertibility of deposits constitute smooth-harsh combination policy that causes and
shifts a jump point while also conducting piecewise smooth policy on subintervals of
withdrawals.

Policy changes that trigger a combination of jump-shifts and piecewise smooth policy
are common in applied settings, see section 5.

Proposition 4.1 not only concerns stability changes when altering existing harsh pol-
icy. It also covers stability changes when a harsh policy is imposed for the first time,
transitioning from a continuous payoff difference (absent intervention, p = 0) to a dis-
continuous PI, under harsh policy. Generically, in bank run settings absent of regulatory
policy (p = 0) the payoff difference function is continuous, that is, without jumps, see
Goldstein and Pauzner (2005). For analyzing the change in stability under the transition
from no policy (continuity) to harsh policy (with jumps) one would study the frame-
work above (with jumps), where the jump point is shifted from the boundary ni = 1 (no
policy intervention and no jumps) towards the interior, ni ∈ (0, 1) (harsh policy with
jumps). We know that left-shifts of downwards jumps constitute stability-deteriorating
harsh policy. Therefore, the imposition of harsh policy that causes a downwards jump in
a previously continuous PI constitutes adverse harsh policy, and rationalizes the Defini-
tion 4.2. The other way around, the imposition of harsh policy that causes an upwards
jump in a previously continuous PI constitutes stability-improving harsh policy.

The proof to Proposition 4.1 gives insight into why shifts in the jump points of the
payoff difference function cause preemptive investor behavior. Therefore, I prove the
proposition here in the text.

Proof. [Proposition 4.1] Consider the payoff difference equation (4). To prove Proposi-
tion 4.1, recall that the equilibrium trigger θ∗ is implicitly defined as the zero of the payoff
indifference equation H(θ∗, p) = 0, (4). It holds ∂H

∂θ∗
> 0 by assumption 2.1 (1). Using the

implicit function theorem, we know that the trigger declines in p if and only if the change
in the payoff difference equation due to a change in p is positive,

{
∂θ∗

∂p
< 0
}
⇔ {∂H

∂p
> 0}.

By the Leibniz rule for parameter integrals, the change in the payoff difference equation
due to a change in p equals
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∂

∂p
H(p, θ∗) =

∫
[0,n1]∩N (p)

∂

∂p
υp(n, θ(n, θ

∗)) dn+ · · ·+
∫
[nk,1]∩N (p)

∂

∂p
υp(n, θ(n, θ

∗)) dn

(7)

+
m∑
i=1

∂(n)i
∂p

( lim
n↗(n)i

υp(n, θ(n, θ
∗))− lim

n↘(n)i
υp(n, θ(n, θ

∗))) (8)

The integrals in (7) describe how a change in policy affects the payoff difference
function over the intervention intervals Ni(p) = [ni−1, ni] ∩ N (p), i = 1, . . . k + 1, n0 ≡
0, nk+1 ≡ 1 (adverse versus prudent piecewise smooth), while the summation term (8)
describes how the jump points, e.g. entry and exit points, shift in the policy and whether
jumps are up- or downwards jumps.

Concerning the proof of part (ii), under a pure piecewise smooth policy, a change in
the policy either leaves all jump points constant or no jump points exist, so that the
summation term (8) equals zero. The sign of the derivative ∂

∂p
H(p, θ∗) is, thus, solely

determined by the sign of the terms in (7), and is positive only if the piecewise smooth
policy is prudent. Further, if the piecewise smooth policy is prudent, then ∂θ∗

∂p
< 0, and

bank stability increases.
Concerning the proof of part (i), under a harsh policy change that is purely due to

jump-shifts, there exists no interval of withdrawals N (p) over which the payoff difference
changes gradually, and the integrals in (7) are all zero. Moreover, the payoff difference
jumps in the withdrawal points (n)i. Therefore, the left- and right-sided limits in each
jump point are distinct, implying that the differences

lim
n↗(n)i

υp(n, θ(n, θ
∗))− lim

n↘(n)i
υp(n, θ(n, θ

∗)) (9)

are non-zero. A difference is positive if the according jump point (n)i, i = 1, . . . , k, implies
a down jump, whereas a difference is negative if the jump point implies an up-jump. The
boundary derivatives in (8) are, thus, non-zero if at least one jump point is shifted by
the policy.

If a difference (9) is positive (down jump), the boundary derivative in (8) is negative
if the jump point strictly declines in the policy ∂(n)i

∂p
< 0. If a difference (9) is negative

(up jump), the boundary derivative in (8) is negative if the jump point strictly increases
in the policy ∂(n)i

∂p
> 0.

Therefore, a jump-shift strictly increases the trigger θ∗p (lowers stability) if either all
down-jump points (weakly) decline and or all up- jump points (weakly) increase in the
policy parameter p, with at least one jump-shift being strict.

Concerning (iii), under a harsh combination policy, the intervention intervals Ni(p)
are non-empty. Further, the gradual change in payoffs ∂

∂p
υp(n, θ(n, θ

∗)) over at least one
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of the intervention intervals is positive under a prudent piecewise smooth policy. Thus,
at least one of the integrals in (7) is positive. Therefore, the trigger may decline (stability
can improve) in the policy p, if the change in payoffs is stronger than the change in the
jump point. If the jump points alter fast in the policy and if the intervention causes
harsh changes in incentives (deep jumps) at the intervention points, stability can decline
in the policy under an adverse jump-shift even though the relative incentives to roll over
improve over the set of withdrawals N (p).

5 Applications

This section discusses several common policy interventions to provide examples of smooth,
and harsh policies. To construct the examples, I need to define a status quo where policy
is absent. For that purpose, I next describe a risk-neutral version of the banking model in
Goldstein and Pauzner (2005) (GP) which serves as the benchmark model before policy
intervention is introduced.

Benchmark before policy intervention (Goldstein-Pauzner)

There exists a continuum of depositors [0, 1]. Unlike in GP, all depositors are risk-neutral
and can consume in t = 1 and t = 2 (are “patient”). Let θ ∼ U [0, 1] parametrize the
random, unobservable state of the economy, and let θ ∈ (0, 1) an upper threshold state
close to 1. Besides storage, there exists a risky asset in the economy to shift consumption
across time. For every unit investment, if the state realizes in θ ∈ [0, θ) the asset pays
R > 2 in t = 2 with probability p(θ) and otherwise zero, and in case of liquidation
in t = 1 pays 1 like storage. If the state realizes high in θ ∈ [θ, 1], the asset pays R
already in t = 1 and with probability p(θ) = 1. The function p(θ) is positive, strictly
increasing, and differentiable in θ for θ ∈ [0, θ) and is constant at 1 for θ ∈ [θ, 1]. The
bank offers a demand-deposit contract to depositors to raise funds for investment in the
risky asset. Following GP, assume the contract offers a short-term coupon r1 > 1 in the
case a depositor withdraws the deposit12 in t = 1, and offers a long-term coupon R(1−nr1)

1−n

in the case a depositor rolls over the deposit to t = 2, where n ∈ [0, 1] is the endogenous
measure of depositors who withdraw in t = 1. Risk-sharing imposes a payoff externality:
As long as withdrawals are low, n < 1/r1, the bank can service all withdrawal requests
by liquidating assets. But if the withdrawals reach the threshold nIll := 1/r1, the bank
can no longer finance all withdrawals by liquidation, and becomes illiquid (bank run).
In that case, the depositors who roll over receive zero. The depositors who withdraw
queue in front of the bank. With probability 1

nr1
, a withdrawing depositor is early in the

12GP show that risk-sharing, that is, setting r1 > 1 is socially optimal with risk-averse, and some
impatient depositors even though it gives rise to runs. I impose risk-sharing even though agents are
risk-neutral and patient here to keep the possibility of runs alive.
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queue and receives the face value of the deposit r1, whereas with probability 1− 1
nr1

she
is late in the queue and receives zero. The payoff difference function in the liquid case
n ∈ [0, nIll) equals υL(n) = p(θ) R(1−nr1)

1−n − r1 whereas in the illiquid case n ∈ [nIll, 1],
υIll(n) = 0−

(
nIll

n
× r1 + (1− nIll

n
)× 0

)
.

5.1 Redemption (withdrawal) fees

The following example is to the best of my knowledge new to the literature13, and analyzes
the marginal change of firm stability when the regulator imposes a withdrawal fee c ∈
(0, r1) as soon as the aggregate withdrawals n ∈ [0, 1] exceed a cutoff nc ≥ 0. The firm
can be a bank, a money market mutual fund (MMF) or a stablecoin. Henceforth, I call
the firm a bank.

Assume the imposition of the withdrawal fee attains before the bank becomes illiquid,
nc < 1/r1. The imposition of a withdrawal fee constitutes a 2-dimensional policy tool
(nc, c) because the intervention threshold and the fee can be move independently of one
another. I discuss changes in either policy variable. As long as the endogenous aggregate
withdrawals realize below the intervention threshold nc, no fee is imposed and the payoff
difference function equals

υL(n) = p(θ)
R(1− nr1)

1− n︸ ︷︷ ︸
u2(n)

− r1︸︷︷︸
u1

, n ∈ [0, nc). (10)

As soon as the withdrawals are high enough to trigger the fee, n ≥ nc, the claim of a
withdrawing investor is reduced by the amount of the fee. Importantly, in my example,
the reduced claim allows the bank to reduce the speed of its asset liquidation for servicing
withdrawals.14 The reduced speed of asset liquidations pushes the illiquidity threshold of
the bank up from n = 1/r1 (when never imposing a fee) to

nIll(c) ≡ nc +
(1− r1nc)
(r1 − c)

, (11)

meaning the bank can now survive larger runs, that is, stays liquid for a greater range of
withdrawals. If the withdrawals are high enough to trigger the fee but low enough so that
the bank remains liquid, n ∈ [nc, nIll), a withdrawing investor receives the face value r1 if
she is sufficiently early in the queue so that she is served before the fee is imposed. The

13The imposition of fees to prevent MMF runs has previously been studied in Cipriani et al. (2014)
and Voellmy (2021) in a Diamond-Dybvig (1983) style model. Voellmy (2021) studies first best imple-
mentation via gates and fees when investors can incur liquidity shocks. There, the probability of a run is,
however, not uniquely determined so that a marginal change in bank stability due to a marginal change
in the fee or the threshold cannot be analyzed.

14One could alternatively design payoffs to instead redistribute the fee from the withdrawing depositors
to depositors who roll over but the original idea of withdrawal fees is to reduce asset liquidations.
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probability of that event is nc/n. If she is late in the queue, with probability 1 − nc/n,
she is served after the fee is imposed, and receives the face value reduced by the fee. The
payoff difference for n ∈ [nc, nIll), thus, becomes

υL,c(n) = p(θ)
R(1− ncr1 − (n− nc)(r1 − c))

1− n︸ ︷︷ ︸
u2(n,θ)

−
(
nc
n
r1 +

n− nc
n

(r1 − c)
)

︸ ︷︷ ︸
u1(n)

. (12)

As soon as the bank becomes illiquid, n ∈ [nIll, 1], investors who roll-over receive zero.
Investors who withdraw receive the face value r1 if they are early in the queue before the
withdrawal fee is triggered, they receive the reduced face value r1 − c if they withdraw
after the fee is imposed but before the bank becomes illiquid, and otherwise receive zero.
The payoff difference becomes

υIll(n) = 0︸︷︷︸
u2

−
(
nc
n
r1 +

nIll(c)− nc
n

(r1 − c) +
n− nIll(c)

n
× 0

)
︸ ︷︷ ︸

u1(n)

. (13)

5.1.1 Analysis: Raising the withdrawal fee

I first consider a change in the withdrawal fee, holding the intervention threshold constant,
and consider a change in the intervention threshold in the next subsection. The imposition
of the constant withdrawal fee constitutes smooth intervention: the payoff difference
function jumps neither at the intervention threshold n = nc, where the imposition of
the fee is triggered, nor at the illiquidity threshold n = nIll. To determine whether this
smooth intervention acts prudent or adverse, consider the withdrawal range over which
the fee is imposed but the bank is not yet illiquid, n ∈ [nc, nIll). An increase in the
withdrawal fee raises the payoff difference to roll over versus withdraw, ∂

∂c
υL,c(n) > 0, for

two reasons. First, the fee reduces the payoff to withdraw directly and, second, it slows
down the required asset liquidation for servicing further withdrawals which increases the
roll-over payoff at the margin. The fee, thus, simultaneously acts like a bail-in of investors
that withdraw and a bail-out to investors that roll-over, in comparison to the benchmark
where no intervention exists. Next consider the withdrawal range where the bank is
illiquid, n ∈ [nIll, 1]. The allover impact on payoffs is zero in this withdrawal range,
∂
∂c
υIll(n) = 0, but, there are two effects at play here that cancel each other out: First,

as in the case of the range [nc, nIll), increasing the fee reduces the payoff to withdraw
directly. On the other hand, the fee pushes the illiquidity threshold nIll(c) up because
the additional slow down of asset liquidations allows the bank to survive larger runs.
Perhaps surprisingly, the latter effect acts against bank stability because it increases the
expected payoff to withdraw15 because the positive payoff upon withdrawing r1 − c is

15Here, expectation is taken over the range of possible withdrawals n ∈ [0, 1].
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attained with a greater probability. In fact, this latter effect exactly undoes the stability
improving first effect, both effects offset each other such that the payoff difference stays
exactly constant.

Consequentially, the interval on which intervention is effective is not [nc, 1] but the
smaller interval Nc = [nc, nIll], meaning the imposition of the withdrawal fee is not
effective for preventing runs on n ∈ [nIll, 1] even though the fee is imposed in this range,
see Figure 1a versus 1b. As a Corollary of Proposition ??(i), I obtain:

n1/r1

Payoff difference between roll-over versus withdrawal as function of withdrawal fee c
Withdrawal fee c>0, nc<1 

(Goldstein Pauzner, 2005)
No fee c=0, nc=1

(agg. withdrawals)

Payoff difference partiall shifts up and becomes flatter as the withdrawal fee c increases

nc nIll(c)nIll(c)

υL(n)

υL,c(n)
υIll(n)

(a) The payoff difference function υ(n)
shifts up in the range [nc, nIll] the larger
the withdrawal fee c.

n1/r1

Payoff difference between roll-over versus withdrawal as function of intervention entry nc

Withdrawal fee c>0, nc<1 

(Goldstein Pauzner, 2005)
No fee c=0, nc=1

(agg. withdrawals)

Payoff difference partiall shifts up and becomes flatter as the intervention entry point nc declines

nc nIll(nc)nIll(nc)

υL(n)

υL,c(n)

υIll(n)

nc

(b) The payoff difference function υ(n)
shifts up in the range [nc, 1] as the inter-
vention entry point nc is lowered.

Figure 1

Corollary 5.1 (Raising the withdrawal fee)
Assume the regulator imposes a fee on withdrawals, c ∈ [0, r1), if the aggregate withdrawals
exceed threshold nc ∈ (0, 1/r1). A policy change that raises the withdrawal fee c holding nc
constant constitutes prudent smooth intervention on Nc = [nc, nIll], and, thus, increases
bank stability ex ante monotonically. The larger fee allows the bank to survive greater
runs which is, however, a feature that acts against bank stability by increasing the expected
payoff to withdraw, which reduces the effectiveness of the intervention.

The feature that an increased survival range acts against bank stability is not unique
to withdrawal fees, see section 5.2 on raising the Emergency Liquidity Assistance by a
lender of last resort. To study the stability change when transitioning from not imposing
to imposing a withdrawal fee at nc, one can study the case c→ 0, because the PI under
fees converges to the PI of the Goldstein-Pauzner setting when not imposing a fee, where
convergence is in L1.

5.1.2 Altering the entry point to policy intervention

Next, I consider a change in policy by lowering the intervention point nc while leaving the
fee constant. Lowering the intervention point allows the bank to reduce asset liquidations
sooner, and consequentially, the bank can survive larger runs. Therefore, the illiquidity
threshold nIll(nc) rises as the intervention point nc declines. Because the payoff difference
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is continuous in nc and nIll(nc), a change in nc will not create or shift any jumps so that
a decline in nc constitutes smooth policy intervention, if at all.

To evaluate how a change in the intervention threshold nc effects bank stability, con-
sider the change in the payoff differences due to an increase in nc. It holds ∂

∂nc
υL,c(n) < 0

because as the fee is imposed later overall more asset liquidation is required which lowers
the roll-over payoff. Further, ∂

∂nc
υIll(n) < 0 because as the intervention is delayed, a with-

drawing depositor is served with a higher probability which increases the expected payoff
to withdraw. The intervention interval when altering the intervention entry threshold
equals Np = [nc, 1] and is thus larger than the intervention interval when raising the fee.
As a consequence, altering the intervention entry point is potentially the more effective
prudent smooth policy in comparison to raising the withdrawal fee. Thus, as a Corollary
to Proposition ??,

Corollary 5.2 (Lowering the entry point to impose the withdrawal fee)
Assume the regulator imposes a fee on withdrawals, c ∈ [0, r1), if the aggregate withdrawals
exceed threshold nc ∈ (0, 1/r1). A policy that lowers the intervention entry threshold nc
constitutes prudent smooth policy, and, thus, raises bank stability ex ante monotonically.
The intervention interval equals Np = [nc, 1], and is larger than the intervention interval
of a policy that raises the withdrawal fee.

5.2 Emergency Liquidity Assistance

The following example is, to the best of my knowledge, also new to the literature, and
complements the analysis of lender of last resort policies given in Rochet and Vives (2004),
section 6.

5.2.1 Motivation

Lender of last resort policies exist because banks can be solvent and yet illiquid, suffering
from a bank run that pushes the bank into default (Rochet and Vives). The reaon for such
incidents is that banks invest in illiquid assets to conduct maturity transformation. If
agents panic and withdraw even though they have no instantaneous consumption needs,
the bank is forced to liquidate illiquid assets, which forces the bank into default even
though the bank assets are of high quality (Diamond and Dybvig). In the analysis
of Rochet and Vives (and later Morris and SHin), a lender of last resort observes the
quality of the bank’s assets perfectly, and serves the bank with unbounded liquidity if a
run occurs. In that case, the run is always stopped, and the bank is rescued.

In this analysis, I take a different approach: The LOLR does not perfectly observe the
bank’s asset quality, and thus does not lend unboundedly but lends a bounded amount
B which should be sufficient if the bank was only illiquid but truly solvent. As a second

26



difference, I model the depositors’ payoffs direcly instead of considering payoffs of fund
managers. This has the consequence that depositors who stay with the bank need to
repay the ELA with interest which gives rise to inventives that have not been observed
in the literature before.

5.2.2 Model

Assume there exists a lender of last resort (LOLR) that is willing to lend a bounded
amount of emergency liquidity assistance (ELA) B > 0 at gross rate r > 1 once the bank
is perceived as facing a run, and before the bank becomes illiquid. Assume the bank is
perceived as facing a run if the withdrawals exceed a threshold nB ∈ (0, 1/r1). Akin to the
imposition of a withdrawal fee, ELA provision is a 3-dimensional policy tool (nB, B, r).
Until ELA is triggered, the bank services withdrawals by liquidating assets. Once ELA is
active, the bank no longer needs to liquidate assets, but can draw on the liquid resources
B to repay the face value r1 to withdrawing depositors. The borrowed amount B needs
to be repaid with interest in t = 2 by the depositors who roll over. Assume that the
asset’s return is high enough to repay ELA as long as withdrawals are sufficiently low,
R > B(r − 1), see the discussion on insolvency below. The borrowed funds allow the
bank to fully repay withdrawing depositors for a larger range of withdrawals, meaning
the ELA provision defers the illiquidity of the bank, pushing the illiquidity threshold up
from threshold n = 1/r1 to nIll(B) = (1+B)

r1
. If the ELA provision is sufficiently large,

with B ≥ r1 − 1, then illiquidity of the bank is ruled out, 1+B
r1
≥ 1. I henceforth assume

that the ELA provision is partial, B < r1 − 1, because I want to understand how the
withdrawal incentives of depositors change as the ELA provision increases from zero
onwards. Because ELA is partial, the bank is forced to resume the liquidation of assets
once the resources B are used up, that is, for nr1 > nBr1 + B. I call the withdrawal
threshold at which all funds B are used up and liquidation resumes nres(B) ≡ nB + B

r1
.

The payoff difference before ELA is triggered equals

υL(n) = p(θ)
R(1− nr1)

1− n︸ ︷︷ ︸
u2(n)

− r1︸︷︷︸
u1

, n ∈ [0, nB). (14)

Once the ELA intervention starts, asset liquidation is halted as long as ELA is sufficient to
serve withdrawals. The payoff difference16 on [nB, nres) becomes

υL,B(n) = p(θ) max

(
R(1− nBr1) +B − (n− nB)r1 − rB

1− n
, 0

)
︸ ︷︷ ︸

u2(n)

− r1︸︷︷︸
u1

. (15)

I assume that the bank borrows the entire funds B, and cannot borrow a withdrawal-contingent
amount. Borrowed funds that are not utilized to repay withdrawing agents in t = 1 are invested

16Observe, if the ELA intervention threshold nB is chosen too high, then the bank is insolvent before
all funds are utilized.
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in storage, and jointly with the returns on the asset are used to repay the loan to the LOLR in
t = 2. I apply the max operator in (15) and following because the bank has limited commitment,
and because the bank becomes insolvent before it becomes illiquid in t = 1. This is an observation
that the literature has made before, see also Rochet and Vives (2004): The ELA loan allows
more withdrawals at the expense of agents who roll-over, meaning the loan is a transfer from
the roll-over depositors whom need to repay the loan to withdrawing depositors. Ultimately,
this is the reason why the ELA provision is a double-edged sword, lowering illiquidity risk in the
short-run at the expense of raising credit risk in the long run. A policy that imposes withdrawal
fees, in contrast, constitutes a transfer from the withdrawing to the roll-over agent group. Thus,
its impact on stability will turn out to be very different from ELA’s impact.

I henceforth assume nB < R−B(r−1)
Rr1−B(r−1) so that the acceptance of ELA, n ≥ nB, does not cause

the bank’s insolvency right away. This assumption can be rationalized by demanding that ELA
is provided only to illiquid but solvent banks, as in Rochet and Vives (2004). If the withdrawals
are so high that the ELA funds B are insufficient to cover all withdrawals, n ≥ nres, the bank
is forced to resume the liquidation of assets and the payoff difference becomes

υL,B+(n) = p(θ) max

(
R(1− nr1 +B)− rB

1− n
, 0

)
︸ ︷︷ ︸

u2(n)

− r1︸︷︷︸
u1

, n ∈ [nres, nIll). (16)

until the bank becomes illiquid for nr1 ≥ 1 + B. As soon as the bank becomes illiquid, the
payoff difference becomes

υIll(n) = 0︸︷︷︸
u2

−
(
nIll(B)

n
× r1 +

(
1− nIll(B)

n

)
× 0

)
︸ ︷︷ ︸

u1(n)

, n ∈ [nIll(B), 1] (17)

because a withdrawing depositor is served the face value only if she is early in the queue. The
expected payoff difference equals

H(B,nB, r, θ
∗) =

∫ nB

0

(
p(θ(n, θ∗))

R(1− nr1)
1− n

− r1
)
dn (18)

+

∫ nres(B,nB)

nB

(
p(θ) max

(
R(1− nBr1) +B − (n− nB)r1 − rB

1− n
, 0

)
− r1

)
dn

(19)

+

∫ nIll(B)

nres(B,nB)

(
p(θ) max

(
R(1− nr1 +B)− rB

1− n
, 0

)
− r1

)
(20)

−
∫ 1

nIll(B)

(
nIll(B)

n
× r1 +

(
1− nIll(B)

n

)
× 0

)
dn (21)

5.2.3 ELA where interest is only paid on used liquidity

The formulation above assumes that a loan B is paid in full, so that interest rB is owed even if not
the entire liquidity provision was necessary. Now assume instead, that there is a finite liquidity
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window B. The bank pays interest on the amount min((n − nB)r1, B). Then the investors’
payoff in the range [nB, nres] changes. In that range ELA is not fully used up, (n− nB)r1 < B

so that interest (n− nB)r1r accrues instead of rB.

H(B,nB, r, θ
∗) =

∫ nB

0

(
p(θ(n, θ∗))

R(1− nr1)
1− n

− r1
)
dn (22)

+

∫ nres(B,nB)

nB

(
p(θ) max

(
R(1− nBr1)− (n− nB)r1r

1− n
, 0

)
− r1

)
dn (23)

+

∫ nIll(B)

nres(B,nB)

(
p(θ) max

(
R(1− nr1 +B)− rB

1− n
, 0

)
− r1

)
(24)

−
∫ 1

nIll(B)

(
nIll(B)

n
× r1 +

(
1− nIll(B)

n

)
× 0

)
dn (25)

Then the result on raising the ELA provision is robust. It holds

∂

∂B
H(B, θ∗) = +

∫ nIll

nres

p(θ(n, θ∗))

(
R− r
1− n

)
dn−

∫ 1

nIll

1

n
dn (26)

the stabilizing first effect though vanishes as nB → 1/r1 so that granting and raising ELA
reduces stability if it is granted too late.

5.2.4 Analysis: Raising the ELA provision

First, observe that the ELA provision B > 0 causes a downward jump of the payoff difference
function as the withdrawals hit the ELA entry point nB if the LOLR charges interest on the
loan, r > 1, see Figure 2b: limn↗nB

υL(n) − limn↘nB
υL,B(n, γ) = p(θ) (r−1)B1−nB

> 0. Thus, ELA
constitutes harsh policy intervention if the LOLR charges positive net interest r > 1. The depth
of the jump increases with the ELA loan B because more interest becomes due in t = 2. If the
LOLR charges no interest, r = 1, then no jump occurs in the entry threshold nB, see Figure 2a.
There is no jump at the ELA exit point nres where the funds are used up. Therefore, raising the
ELA provision constitutes piecewise smooth policy when holding the jump point nB constant.

I next analyse how an increase in B affects the payoff difference function, holding the ELA
entry point nB fixed. I discuss shifting the ELA entry point in the next subsection. Once
ELA is triggered, n ∈ [nB, nres), the payoff to roll-over declines in the ELA provision because
depositors who roll-over need to repay more funds with interest to the LOLR given survival
of the bank, ∂

∂BυL,B(n, γ) < 0, see Figure 2b. This effect negatively affects bank stability, it,
however, becomes void if the LOLR charges zero interest, r = 1. Thus, a rise in the ELA
provision impacts the roll-over incentives adversely piecewise smooth in the range n ∈ [nB, nres)

if interest is charged, r > 1, and otherwise has no impact.
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n1/r1

ELA loan B>0, nB<1, r=1 

(Goldstein Pauzner, 2005)
No ELA B=0, nB=1

(agg. withdrawals)

Payoff difference partially shifts to the right and down as ELA loan B is raised

nB

υL(n)

υL,B(n)

υIll(n)

nIll(B)nres(B)

-r1

υL,B+(n)

Payoff difference between roll-over versus withdrawal when introducing and raising ELA at nB

-
+

(a) Zero interest Ela loan r = 1

n1/r1

ELA loan B>0, nB<1, r>1 

(Goldstein Pauzner, 2005)
No ELA B=0, nB=1

(agg. withdrawals)nB

υL(n)

υL,B+(n)

υIll(n)

nIll(B)nres(B)

-r1

υL,B(n)

Payoff difference between roll-over versus withdrawal when introducing and raising ELA at nB

Payoff difference partially shifts to the right and down as ELA loan B is raised

+

-

-

(b) Interest on ELA loan, r > 1

Figure 2: When an ELA loan B is provided at threshold nB, the payoff difference function
υ(n) shifts to the right, allowing the bank to survive larger runs as B increases (the
illiquidity threshold nIll rises). The payoff difference function υ(n) shifts up for all n ∈
[nres, nIll], but the PI shifts down over the range n ∈ [nB, nres] and [nIll, 1] because ELA
is expensive and because given bank illiquidity, the payoff to withdraw increases with the
ELA provision because the likelihood of getting served in the queue goes up. If the LOLR
charges interest on the ELA loan, r > 1, a jump in the PI occurs at nB. The depth of
the down-jump increases with B.

In the withdrawal range for which the ELA provision is used up but the bank is not illiquid
yet, n ∈ [nres, nIll) the change in relative payoffs due to an increase in ELA ∂

∂BυL,B+(n, γ) can
go in either direction: On the one hand, as the lender of last resort (LOLR) raises the ELA
provision, the depositors who roll-over need to repay more funds and interest to the LOLR
given survival. This negative effect does not vanish if the LOLR charges zero interest. On
the other hand, as more ELA is provided, the liquidation of assets can be deferred for longer.
Overall, whether the payoff to roll over increases or declines with the ELA provision in this
withdrawal range depends on whether the return on the asset R exceeds the cost of the ELA
loan r. A sufficient and reasonable condition for the latter, ∂

∂BυL,B+(n, γ) > 0, is that the
LOLR charges lower interest on the ELA loan than the return on the asset, r ≤ R, for instance,
r = 1 (zero net interest). The withdrawal threshold at which the bank needs to resume the asset
liquidations, nres, shifts upwards as more ELA is provided, see Figures 2b and 2a. Likewise,
the bank’s illiquidity is deferred: the threshold nIll increases, as the LOLR provides more ELA.
That is, the withdrawal interval for which the ELA funds are used up but the bank is not
illiquid yet, n ∈ [nres(B), nIll(B)) = NB, shifts upwards with the ELA funds B but maintains
its length constant. Even though the payoff difference is continuous at nIll, the rise in the
illiquidity threshold nIll matters directly for incentives because it increases the probability that
a depositor is served the face value when withdrawing, once the bank is illiquid: Because the
ELA provision pushes the illiquidity point nIll(B) upwards, it holds ∂

∂BυIll(n) < 0. That is, the
increase in the ELA provision constitutes adverse piecewise smooth policy and has a negative
effect on the roll-over incentives, acting like a bail-in of depositors that roll over in this withdrawal
range. The intervention interval equals NB = [nB, 1] for positive net interest r > 1, and equals
NB = [nres, 1] for zero net interest, r = 1. Allover by Proposition 4.1 (ii),

Corollary 5.3 (Increasing the ELA funds)
Assume the LOLR provides an ELA loan B > 0 at interest rate r ∈ [1, R) if the withdrawals
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realize above a threshold nB ∈ (0, 1/r1). A policy that raises the ELA provision B, holding the
entry threshold nB constant, has ambiguous effects on stability. A rise in ELA lowers ex ante
bank stability if the entry threshold nB is set too close to the illiquidity point 1/r1, even if the
ELA loan is granted at zero net interest r = 1.

The Corollary implies that a commitment to a “too late” ELA provision is an unfortunate
policy because it implies making things worse ex ante. Intuitively, as ELA is granted late, much
of the assets are already liquidated, leaving only few incentives to the depositors to roll over. If
the emergency loan is granted on top of that, the burden of repaying that loan at an interest
rate accrues additionally to depositors that roll-over, causing them to withdraw as well.

The result is alarming also for a second reason. The LOLR does not perfectly observe the
asset quality p(θ). A bounded amount of emergency liquidity is granted in the belief that the
run should stop at some point if the bank only faces liquidity issues but is solvent. This result
shows that the granting of the loan can increase the run incentive ex ante. That is, to the LOLR
is becomes undistinguishable whether a run continues because the bank is insolvent or whether
the run goes on because ELA was granted. The question that arises how to grant emergency
liquidity without making runs more likely ex ante.

Proof. [Corollary 5.3] I need to consider the expected change in the payoff difference for deter-
mining the overall impact of policy on stability. Via equation (7), and with a policy variable
p = B it holds

∂

∂B
H(B, θ∗) = −

∫ nres

nB

p(θ(n, θ∗))
(r − 1)

1− n
dn+

∫ nIll

nres

p(θ(n, θ∗))

(
R− r
1− n

)
dn−

∫ 1

nIll

1

n
dn

(27)

Observe that the raise in B does not shift the jump point. If the ELA entry threshold nB
is chosen below but close to the original illiquidity threshold absent intervention, 1/r1, then
by Lebesgue’s dominated convergence theorem, the only stability-improving effect on stability
via the ELA provision vanishes, limnB→1/r1

∫ (1+B)/r1
nB+B/r1

p(θ(n, θ∗))
(
R−r
1−n

)
dn → 0, whereas all

the adverse effects on stability remain: It holds limnB→1/r1
∂
∂BH(B, θ∗) < 0 and thus, with the

implicit function theorem, ∂θ
∗

∂B = − ∂
∂BH(B, θ∗)/ ∂

∂θ∗H(B, θ∗) > 0, meaning the trigger increases,
and range of miscoordination becomes larger, increasing the ex ante run probability. This holds
even for net interest zero r = 1. Thus, bank stability strictly declines as the LOLR increases
the ELA provision B.

5.2.5 Lowering the ELA entry point

From the previous result, one key take-away for the LOR should be that ELA intervention
should not occur “too late.” That is, the intevention should be triggered at a lower withdrawal
threshold. I next discuss how an ELA policy that commits to intervening at a lower entry point,
nB, affects the investors’ behavior and thus bank stability ex ante, holding the liquidity provision
B fixed.

31



To determine the overall change in incentives, I need to consider the shift in the jump point
as well as changes in the payoff difference function υB(n) due to changes in nB. First, we
know that the payoff difference function jumps down in the ELA entry point nB if the LOLR
charges interest r > 1 because as ELA is granted, the depositors that roll over additionally owe
the interest on the ELA loan. Lowering the entry point, thus, affects the roll-over incentives
adversely by Proposition 4.1(i). The ELA exit point nres depends on the ELA entry point but the
payoff difference function is continuous in nres, so its boundary derivative vanishes. Concerning
changes in the payoff difference function υB(n), when ELA is active and asset liquidation has not
resumed yet, [nB, nres), lowering the ELA entry point raises the PI because the bank can stop
costly asset liquidations sooner, it holds ∂

∂nB
υL,B(n, γ) < 0, independently of interest r. Thus,

lowering the entry point acts prudent piecewise smooth on the intervention interval [nB, nres).
For r > 1, the downwards shift of the down-jump point nB and the prudent piecewise smooth
effect on [nB, nres) act against one another.

n1/r1

Payoff difference between roll-over versus withdrawal when introducing ELA at nB

ELA loan B>0 fix, nB<1, r=1 

(Goldstein Pauzner, 2005)
No ELA B=0, nB=1

Payoff difference partially shifts up and to the right as the ELA entry point is lowered

nB

υL(n)
υL,B(n)

υIll(n)

nIll(B)

nres

-r1

υL,B+(n)

nB

nres

 

(a) Zero interest Ela loan r = 1: no jump
at threshold nB

n1/r1

ELA loan B fix, nB<1, r>1 

(Goldstein Pauzner, 2005)
No ELA B=0, nB=1

nB

υL(n)

υL,B+(n)
υIll(n)

nIll(B)nres

-r1

υL,B(n)

Payoff difference between roll-over versus withdrawal when introducing ELA at nB

Payoff difference jumps in nB and partially shifts up to the right as the ELA entry point nB is lowered

nB

nres

(b) Interest on ELA loan, r > 1, causes a
jump at ELA entry point nB

Figure 3: When lowering the ELA entry point nB holding the loan amount B constant,
the interval [nB, nres] over which ELA is active shifts down but maintains its length. The
PI over [nB, nres] declines slower and thus shifts up as nB shifts down. The illiquidity
threshold is unchanged. If r > 1, the depth of the down-jump increases with nB and
lowering nB causes an adverse jump-shift which acts against bank stability, lowering the
effectiveness of ELA.

Corollary 5.4 (Lowering the ELA entry point)
Consider the provision of an ELA loan B at entry point nB at interest rate r ≥ 1. Lowering
the ELA entry threshold nB while holding B fixed raises bank stability ex ante independently
of whether interest is charged on the loan or not. But if the LOLR charges interest, r > 1,
lowering the ELA entry point nB is not as effective in improving stability because it gives rise
to a stability-deteriorating side-effect, a jump-shift, at the ELA entry point nB.

Proof. [Corollary 5.4] To determine the overall effect on stability when lowering the entry thresh-
old to ELA, I need to consider the expected change in the PI when raising nB which is given
by

∂

∂nB
H(B,nB, r, θ

∗) = p(θ(nB, θ
∗))

(
B(r − 1)

1− nB

)
−
∫ nres(B,nB)

nB

p(θ)
r1(R− 1)

1− n
dn (28)
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where p(θ(nB, θ∗))
(
B(r−1)
1−nB

)
is the change in the PI due to the shift in the jump point. The two

terms have opposite sign. It turns out that the effect due to the jump point is always weaker
than the smooth effect due to the shift in the PI over the interval [nB, nres]: Because R > r,
it holds

∫ nB+B/r1
nB

p(θ(n, θ∗)) r1(R−1)
1−n dn > p(θ(nB + B/r1, θ

∗)) B(r−1)
1−nB

→ p(θ(nB, θ
∗)) B(r−1)

1−nB
as

ε → 0. Therefore, the overall change in the expected PI when raising nB is negative for any
ELA interest rate r ≥ 1: ∂

∂nB
H(nB, θ

∗) ≤ 0. By Proposition 4.1(ii), thus, bank stability strictly
decreases as the threshold nB increases, and stability increases as the entry threshold to ELA,
nB is lowered.

We can compare the policy that raises the ELA loan B to a policy that lowers the entry
threshold nB.17

It is clear from result X that, if at all, ELA should not be provided “too late.”

5.3 Suspension of convertibility and Budget Interdependence

The imposition of withdrawal fees or an ELA provision, discussed above, provide examples where
the intervention threshold and the policy-implied budget transfer across agent groups can be set
independently of one another. I next present an intervention type, the suspension of convert-
ibility followed by the bank’s resolution under receivership (in short “receivership resolution”),
where the policy jointly pins down the intervention threshold and the transfer. As a consequence,
receivership intervention is particularly tricky to handle when it comes to designing stability-
maximizing policy. The following example is based on the analysis of suspension interventions
followed by resolution under receivership in Schilling (2019, 2023) for the special case of zero
deposit insurance.

As previously, the depositors can withdraw the face value of their deposit r1 at the interim
period, and the bank finances withdrawals by liquidating assets. As the standard bank run
externality, high withdrawals reduce the remaining bank investment and thus the payoffs to
depositors that roll over. This payoff externality via the withdrawals creates interdependence
of budgets available to the withdrawing and the not withdrawing agent group which in return
leads to a reduction of the policy variables: A regulator observes withdrawals at the bank level,
and has the authority to stop runs by suspending the convertibility of deposits before the bank
becomes illiquid. The regulator sets the intervention delay p ∈ [0, 1] as the policy variable, where
1 − p denotes the measure of cash withdrawals the regulator tolerates until intervention. The
regulator intervenes to stop the run once the cash withdrawals reach 1 − p ∈ [0, 1], and thus
imposes the t = 1 budget constraint nr1 ≤ 1 − p. Policy p pins down the critical suspension
entry threshold

nc(p) :=
1− p
r1
∈ (0, 1/r1) (29)

at which the regulator intervenes. Absent regulatory intervention, p = 0, the bank is illiquid
if the cash withdrawals reach the liquidation value of the asset, nu1 ≥ 1. Therefore, 1 is

17We can do that because the policy-driven change in ex ante bank stability θ∗ due to a change in
policy p = B versus p = nB only differs in the numerator ∂

∂BH(B, θ∗) versus ∂
∂nB

H(nB , θ
∗) and not in

the denominator − ∂
∂θ∗H(B, θ∗) = − ∂

∂θ∗H(nB , θ
∗), recall the proof to Proposition 4.1.
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the maximum budget to early withdrawing investors. The policy contingent budget available
to early withdrawing investors is given as G1(p) = max(1 − p, 0). The remaining investment
in the asset accrues interest until t = 2. The budget to late withdrawing agents is given
as G2(p) = H (1−min(nr1, 1− p)) . The budgets to early and late withdrawing agents are
interdependent: As policy intensity p increases, the regulator tolerates fewer withdrawals until
intervention, thus, the budget to early withdrawing agents G1(p) declines whereas the budget to
agents that roll over, G2(p), increases. As I will explain next, this budget interdependence makes
the suspension policy a harsh combination policy. To determine the payoff difference function:
If the aggregate cash withdrawals remain below the policy dependent budget, nr1 ≤ G1(p), then
no policy intervention occurs. In that case, investors who withdraw receive r1, and the investors
who roll over receive an equal share of the budget in t = 2, u2 satisfies (1− n)u2(n, θ) = G2(p).
Thus whenever n ≤ nc(p) (no policy intervention “np”), the payoff difference equals

υnp(n, θ) = p(θ)
H(1− nu1)

1− n︸ ︷︷ ︸
u2(n)

− r1︸︷︷︸
u1

. (30)

If the cash withdrawals however reach or exceed the budget G1, the regulator intervenes, stops
the run, takes over control of the remaining assets, and continues the investment of the remaining
asset share p at a reduced return r ∈ (0, H) that is likewise subject to aggregate risk, p(θ). The
regulator’s reduced effectiveness in managing assets implies a costliness of intervention, which
in return creates a jump of the payoff difference function in the intervention threshold nc, see
below. Withdrawals that would exceed budget G1 are no longer served. Instead, these agents
enter a regulatory procedure, a “mandatory deposit stay,” jointly with the agents that rolled over.
Under a mandatory deposit stay, all these investors share the proceeds of remaining investment.
The proportion p of the asset that was protected by intervention matures, and yields a policy-
dependent, risky pro rata share to agents under the mandatory stay up = p(θ) rp

1−G1(p)/r1
. where

G1(p)/r1 = 1 − nc(p) is the share of depositors that may withdraw before policy intervention
occurs. Conditional on policy intervention, n > nc(p), the payoff difference equals

υp(n, θ) = p(θ)
pr

1−G1(p)/r1︸ ︷︷ ︸
u2

−
(
G1(p)/r1

n
r1 +

(
1− G1(p)/r1

n

)
p(θ)

pr

1−G1(p)/r1

)
︸ ︷︷ ︸

u1(n)

(31)

where G1(p)/r1
n is the probability that an investor who requests withdrawal is served the face value

r1 and thus does not enter the mandatory stay. The payoff difference conditional on intervention
is always negative because for states for which withdrawal is not dominant, θ ∈ (θ, 1], it must
hold r1 − p(θ) pr

1−G1(p)/r1
> 0.18

18For all states in the lower dominance region θ ∈ [0, θ) withdrawal (by definition) is dominant, meaning
the payoff difference is negative for all realizations of n. For all states between the upper and lower
dominance region θ ∈ [θ, θ] the sign of the payoff difference function depends on the realization of the
aggregate withdrawals n. If for some θ ∈ (θ, 1] it held r1− p(θ) pr

1−G1(p)/r1
< 0, then also r1− p(θ)H(1−nr1)

1−n < 0

for all n < nc(p), contradicting that withdrawal is not dominant, see (Schilling, 2019, 2023) for the
construction of the lower dominance region for this example.
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n1/r1

Lax Suspension intervention, p1>0, nc(p1)<1/r1

(Goldstein Pauzner, 2005)
No suspension p=0, nc=1

Conservative Suspension intervention, p2>p1>0, 
nc(p2)< nc(p1)<1/r1

υnp(n)

υp(n)
-r1

Payoff difference between roll-over versus withdrawal when suspending convertibility at nc

nc(p1)nc(p2)

Figure 4: Assume the regulator suspends the convertibility of deposits as withdrawals
exceed nc(p). The intervention causes a down-jump in nc(p) simultaneously to an upwards
shift of the PI in the rangeNp = [nc(p), 1]. As fewer withdrawals are tolerated, p increases
from p1 to p2, corresponding to a lower intervention entry threshold nc(p2) < nc(p1), and
thus a lower jump point (adverse harsh), as well as an additional upwards shift of the PI
on Np = [nc(p), 1] (prudent piecewise smooth).

5.3.1 Analysis

The budget interdependence creates a harsh policy combination: The intervention jump thresh-
old nc(p) depends on and shifts in policy intensity p, and generically constitutes a discon-
tinuity. By r < H, the payoff difference jumps down in n = nc: limn↗nc(p) υnp(n, θ) −
limn↘nc(p) υp(n, θ) = p(θ) (H−r)p

1− 1−p
r1

> 0. As the regulator tolerates fewer withdrawals until in-

tervention, p increases, and the down-jump point nc(p) declines (comes forward), implying
an adverse harsh effect on bank stability via Proposition 4.1(ia). Simultaneously, a policy
that tolerates fewer withdrawals acts prudent piecewise smoothly on the intervention interval
N (p) = (nc, 1] because it increases the budget G2(p) to investors that roll-over by lowering the
budget available to investor that withdraw. Consequently, the payoff difference function υp(n, θ)
shifts upwards in p conditional on intervention.

Corollary 5.5 (Schilling (2019): Suspension of convertibility and receivership)
Assume a regulator sets a policy p ∈ (0, 1) whereby it stops runs by suspending the convertibility
of deposits if the cash withdrawals at the bank exceed the level 1 − p, that is, for withdrawals
above a threshold nc(p) ∈ (0, 1/r1). Lowering the suspension entry threshold nc constitutes harsh
combination policy. If r is large and close to H, lowering the entry threshold improves stability
ex ante. But if r is low, lowering the entry threshold can deteriorate stability ex ante.

Similar to an ELA provision, the suspension of convertibility is a policy that can backfire,
and a policy that imposes withdrawal fees is the the safer policy with regard to assuring a
positive impact on bank stability. The online appendix gives an additional prudent smooth
policy example, namely partial deposit insurance where the intervention interval is the full
range N (γ) = [0, 1].
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6 Conclusion

This paper provides a general framework to analyze the effectiveness of policy interventions with
regard to their capacity to prevent or ease runs on firms such as banks, money market mutual
funds, or stablecoins. The paper establishes two different classes of policy based on how the
policy acts on the investor’s payoffs, “smooth” or “harsh”. Every real-world policy belongs to at
least one class. For each class I determine how it impacts the investors’ ex ante run propensity
and, thus, firm stability. The range of policies that lower bank stability ex ante is large, and
act by either lowering the favorability of roll-over versus withdrawal gradually or in a way that
gives rise to discontinuities in the relative payoffs of investors.

I then show that common policies such as emergency liquidity provision (ELA) by a lender
of last resort, the imposition of withdrawal fees or the suspension of convertibility belong to
multiple classes, and thus have mixed effects on stability. I show that if a policy belongs to
multiple classes, and exhibits the according features, it can become ineffective with regard to
improving stability since different features can partially offset each other. Bailins can act like
bailouts and can both improve or deteriorate stability. An ELA provision can lower stability, and
the imposition of withdrawal fees is partially ineffective with regard to lowering firm stability
because it allows firms to survive greater runs, thus, acting like a bailout to withdrawing investors
which is equivalent to a bail-in of investors that roll-over.
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7 Appendix

7.1 Equilibrium Existence and uniqueness with jumps

Proof. [Proposition 3.1] To show existence and uniquenss of a trigger equilibrium, assume again
that all investors follow the same strategy that maps signals θi to actions. Assume that investors
follow a threshold strategy around θ∗. Then the measure of agents that run at each state, n(θ, θ∗)
is deterministic. Observe that n(θ, θ∗) is at one for θ < θ∗− ε, because all agents oberve signals
below the trigger signal and withdraw. Further, n(θ, θ∗) is strictly decreasing in state θ for
θ ∈ [θ∗ − ε, θ∗ + ε], and attains zero for θ > θ∗ + ε. Therefore, as θ increases in [θ∗ − ε, θ∗ + ε],
n transitions through all jump points n1, . . . , nk of the payoff difference function.

Consider the inverse of n(θ, θ∗), θ(n, θ∗), as given in (5). Let θ1, . . . , θk the states for which
n(θ, θ∗) attains the jump points, that is, θ1 = θ(n1, θ

∗), . . . , θk = θ(nk, θ
∗). In this proof, I call
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these states the “jump-states”, and address them using the subscript θj , not to be confused with
signal θi. Note, due to n1 < · · · < nk−1 < nk, I have θk < θk−1 < · · · < θ1. Set θ0 = 1 and
θk+1 = 0. Note that in a trigger equilibrium around θ∗, it holds that θ1, . . . , θk ∈ (θ∗− ε, θ∗+ ε)

because n(θ, θ∗) is continuous and because n(θ∗ − ε, θ∗) = 1, n(θ∗ + ε, θ∗) = 0. Then [0, 1] =

∪kj=0[θj+1, θj ], and for every signal θi and ε > 0, it holds [θi − ε, θi + ε] ⊂ ∪kj=0[θj+1, θj ]. I
want to partition the interval [θi − ε, θi + ε] by the jump states it contains, by considering
[θi − ε, θi + ε] ∩

(
∪kj=0[θj+1, θj ]

)
. Let n ∈ {0, 1, . . . , k} the number of jump states contained in

the interval [θi − ε, θi + ε]. If n = 0, then there exists no partition by jump points and I write
[θi − ε, θi + ε] ∩

(
∪kj=0[θj+1, θj ]

)
= [θi − ε, θi + ε].

If n ≥ 1, I address the jump states in this interval directly by calling them θj1 , . . . θjn , where
θj1 is the smallest one among them, and thus, θjn the largest, and where because of the reverse
numbering of the jump states, it holds j1 ≤ k and jn ≥ 1. This yields a partition of [θi−ε, θi+ε]
according to [θi − ε, θi + ε] ∩

(
∪kj=0[θj+1, θj ]

)
= [θi − ε, θj1 ] ∪ [θj1 , θj2 ] ∪ · · · ∪ [θjn , θi + ε].

By assumption 3.1, the payoff difference function is continuous on all open intervals [θi −
ε, θj1), (θj1 , θj2), . . . (θjn , θi + ε]. Further by assumption 3.1, the right and left sided limits of
the payoff difference function exist at each jump state θji , i = 1, . . .m,

| lim
θ↗θji

υp(n(θ, θ
∗), θ)| = | lim

n↘nji
≡n(θji ,θ∗)

υp(n, θ(n, θ
∗))| =: ci,r <∞ (32)

| lim
θ↘θji

υp(n(θ, θ
∗), θ)| = | lim

n↗nji
≡n(θji ,θ∗)

υp(n, θ(n, θ
∗))| =: ci,l <∞ (33)

Given a signal θi, the true state must be located in [θi− ε, θi+ ε]. If this interval contains jump
states, n ≥ 1, an agent’s expected payoff difference to roll over versus withdraw when observing
signal θi can therefore be rewritten as

H(θi, n(·, θ∗)) =
1

2ε

(∫ θj1

θi−ε
υp(n(θ, θ

∗), θ) dθ +

∫ θj2

θj1

υp(n(θ, θ
∗), θ) dθ + · · ·+

∫ θi+ε

θjn

υp(n(θ, θ
∗), θ) dθ

)
(34)

If an investor observes the trigger signal θi = θ∗, the interval of possible states [θ∗ − ε, θ∗ + ε]

contains all jump states, n = k, and her expected payoff difference equals

H(θ∗, n(·, θ∗)) = 1

2ε

(∫ θj1

θ∗−ε
υp(n(θ, θ

∗), θ) dθ +

∫ θj2

θj1

υp(n(θ, θ
∗), θ) dθ + · · ·+

∫ θ∗+ε

θjk

υp(n(θ, θ
∗), θ) dθ

)
(35)

I first argue, there exists a unique θ∗, that satisfies H(θ∗, n(·, θ∗)) = 0. To see that, note that
H(θ∗, n(·, θ∗)) is strictly increasing in θ∗ for θ∗ < θ+ε, because by assumption 2.1 υp(n(θ, θ∗), θ)
is non-decreasing and is strictly increasing in θ for θ ∈ [θp, θp]. Further, H(θ∗, n(·, θ∗)) > 0 for
θ∗ ∈ [θp + ε, 1], and H(θ∗, n(·, θ∗)) < 0 for θ∗ ∈ [0, θp − ε]. Last,

Lemma 7.1. H(θ∗, n(·, θ∗)) is continuous in θ∗

Because H(θ∗, n(·, θ∗)) is strictly increasing and continuous in θ∗, exceeding 0 for high values
of θ∗ and undercutting 0 for low values of θ∗, there exists a unique θ∗ with H(θ∗, n(·, θ∗)) = 0,
the candidate for a trigger equilibrium.
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It remains to show that θ∗ is an equilibrium. That is, one needs to show that for all sig-
nals θi < θ∗ it follows H(θi, n(·, θ∗)) < 0 whereas for all θi > θ∗ it follows H(θi, n(·, θ∗)) > 0.
By assumption 2.1, υp(n, θ) is positive for high values of θ, negative for low values of θ, and
satisfies single-crossing. Therefore, for this part, the existence proof on page 1313 in Gold-
stein and Pauzner (2005) also applies here. They show, if θi < θ∗, then H(θi, n(·, θ∗)) < 0 =

H(θ∗, n(·, θ∗)). This holds because υp(n, θ) is positive for high values of θ, negative for low values
of θ, crosses zero only once, and because agent i forms expectations about the payoff difference
over a lower range of fundamentals than for θi = θ∗. Likewise for θi > θ∗. Allover, there exists
a unique threshold equilibrium around trigger θ∗.

No non-threshold equilibria
It remains to show that there are no non-threshold equilibria. I follow the notation in Goldstein
and Pauzner (2005): A mixed strategy for investor i is a measurable function si : [−ε, 1 + ε]→
[0, 1] that maps the investor’s private signal into a probability to withdraw. A strategy profile
is then denoted by {si}i∈[0,1]. A state realization θ generates random signals θi = θ + εi in
the range [θ − ε, θ + ε]. The signals jointly with the strategy profile {si}i∈[0,1] generate the
aggregate withdrawals ñ(θ) at state θ which is a random variable. For a given state θ, define
the cumulative distribution function of ñ(θ) as

Fθ(n) = P(ñ(θ) ≤ n|θ) = P

(∫
i∈[0,1]

si(θ + εi)di ≤ n|θ

)
(36)

where the probability is measured with respect to the signal noise distribution εi ∼ U [−ε, ε].
An investor’s expected payoff difference when observing signal θi and given a strategy profile
{si}i∈[0,1] can, via the law of iterated expectation, be written as

H(θi, ñ(·)) =
1

2ε

∫ θi+ε

θi−ε

(∫ n1

0
υ(θ, n) dFθ(n) + · · ·+

∫ 1

nk

υ(θ, n) dFθ(n)

)
dθ (37)

where n1, . . . nk are the jump points of υ(θ, n) in the aggregate withdrawals n, and where
the inner integrals of (37) are well-defined Lebesgue-Stieltjes integrals by assumption 3.1. The
non-existence proof in Goldstein and Pauzner (2005) fully applies, because

Lemma 7.2. H(θi, ñ(·)) is continuous in signal θi

and because by the assumptions 2.1, and 3.2, the payoff difference function υ(n, θ) satisfies
single-crossing in n. Moreover, υ(n, θ) is strictly decreasing in n whenever positive in the sense
of assumption 3.2 and because υ(n, θ) strictly increases in the state for state realizations in [θ, θ].
The proofs to Lemmata 7.1 and 7.2 can be found in the online appendix.

7.2 Comparative statics under smooth intervention

Proof. [Proposition ??] By Proposition ??, for given p > 0 there exists a unique equilibrium
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trigger θ∗ which is implicitly defined as the zero to

H(p, θ∗) ≡
∫ 1

0
υp(n, θ(n, θ

∗)) dn = 0 (38)

For sake of brevity, I suppress the dependence of θ∗ on the policy p. The implicit function
theorem delivers how θ∗ changes as a function of p. By assumption, υp(n, θ) is increasing in
the state θ while θ(n, θ∗) is strictly increasing in θ∗. Thus, ∂H

∂θ∗ > 0. Next, since υp(n, θ) is
continuous in n, the boundary derivatives are zero, and we have ∂H

∂p =
∫ 1
0

∂
∂pυp(n, θ(n, θ

∗)) dn =∫
n∈N (p)

∂
∂pυp(n, θ(n, θ

∗)) dn which is positive under a prudent and negative under an adverse
smooth policy. Altogether, ∂θ

∗

∂p = −(∂H∂p )/(
∂H
∂θ∗ ) < 0 if and only if the policy is prudent.

8 Supplementary Appendix

8.1 Additional Applications

8.1.1 Prudent smooth policy intervention via providing and raising partial
Deposit Insurance (Guarantee)

The next regulatory policy I discuss is the provision of an increasing share of deposit insurance.
I show, raising the partial deposit insurance provision constitutes prudent smooth intervention,
thus raising bank stability ex ante by Proposition ??. I consider partial insurance because if
insurance is full there is no policy parameter to alter.19 The following example revisits Schilling
(2019) for the special case where there is no suspension of convertibility a = 1 (laissez-faire) but
where the regulator provides partial deposit insurance, described by the share γ ∈ (0, 1). The
resulting model is essentially the just-described Goldstein and Pauzner (2005) model, enriched
by a partial deposit guarantee. The example nests the risk-neutral version of the Goldstein and
Pauzner (2005) model when setting γ = 0.

Assume, deposits are insured up to the amount γ ∈ [0, 1), γ ≤ r1. Insurance alters the
depositors’ payoffs in the following way in comparison to the benchmark: In the case of a bank
run n ≥ 1/r1, the depositors who roll over receive a positive payoff γ ≥ 0, and the depositors
who withdraw receive the face value r1 with probability 1

nr1
(early in the queue) and receive the

insured fraction γ with probability 1 − 1
nr1

(late in the queue). Absent a run, if the asset does
not pay off then the deposit insurance repays the depositors the insured share of their deposit.

To pin down payoffs, for a given state realization θ ∈ [0, θ)20, and in the case where the bank

19Considering partial insurance is reasonable, because from different models we know that full insurance
does not lead to efficient allocations due to moral hazard because depositors stop monitoring the bank
(Cooper and Ross, 2002) or because of inefficient continuation of investment because depositors liquidate
the bank too seldom (Schilling, 2019, 2023). The literature that analyzes the economics of deposit
insurance is large, and the example here serves to provide one example where deposit insurance acts
smoothly on payoffs. For a different analysis of partial insurance, see Dávila and Goldstein (2016) who
analyze optimal insurance provision in the case of asymmetric deposits and lump-sum deposit insurance
in a Diamond and Dybvig (1983) model.

20For states in [θ, 1] all depositors roll over because this is the dominant action, see (Goldstein and
Pauzner, 2005). We therefore exclude these states from the analysis here.
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remains liquid (L) in t = 1, n < 1/r1, the payoff difference between roll-over and withdrawal
equals

υL(n, γ) =

(
p(θ)max

(
R(1− nr1)

1− n
, γ

)
+ (1− p(θ))× γ

)
︸ ︷︷ ︸

u2(n,θ)

− r1︸︷︷︸
u1

(39)

In the case where the bank becomes illiquid (Ill), n ≥ 1/r1, the payoff difference becomes

υIll(n, γ) = γ︸︷︷︸
u2

−
(

1

nr1
× r1 +

(
1− 1

nr1

)
× γ
)

=
1

nr1
(γ − r1)︸ ︷︷ ︸

u1(n)

(40)

The payoff difference function is continuous in n for every insurance choice γ ∈ [0, 1). Thus, the
provision of partial deposit insurance constitutes smooth policy intervention. Further, increasing
the share of deposit insurance provision γ constitutes prudent smooth intervention:

n

-r1

1/r1

Payoff difference between roll over versus withdraw
Positive insurance γ>0 

-(r1  - γ )-

      max(          ,γ)+(1-p(θ))γ -r1

     

     (r1    γ)1
nr1

-  -

1
n

-

(Goldstein Pauzner, 2005)
No insurance γ=0

(agg. withdrawals)

p(θ) R(1-nr1)
(1-n)

Payoff difference shifts up as insurance γ increases

Figure 5: The payoff difference function υ(n) shifts up the more insurance coverage γ is
provided.

In the liquid case, n < 1/r1, it holds ∂
∂γυL(n, γ) > 0. Similarly, in the illiquid case, n ≥ 1/r1,

∂
∂γυIll(n, γ) > 0. Allover, ∂

∂γυ(n, γ) > 0 for all n ∈ [0, 1], and the intervention interval is given
as Nγ = [0, 1]. As a Corollary of Proposition ??(i), I obtain:

Corollary 8.1 (Raising partial deposit insurance is prudent smooth policy)
An increase of partial deposit insurance γ ∈ [0, 1) constitutes prudent smooth policy intervention.
In the unique equilibrium, ex ante bank stability improves in the guaranteed share γ ∈ (0, 1).
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8.2 Proofs of Lemmata

Proof. [Proof Lemma 7.1] Consider two triggers θ∗x and θ∗y. Without loss of generality, θ∗x < θ∗y,
and I can write θ∗y = θ∗x + d, d > 0. I want to show: limd→0H(θ∗y, n(·, θ∗y)) = H(θ∗x, n(·, θ∗x)). As
the state θ increases in [θ∗ − ε, θ∗ + ε], the function n(θ, θ∗) crosses all jump points n1, . . . nk.
The according jump states, however, depend on the trigger θ∗: By θ∗x < θ∗y, we have n(θ, θ∗x) ≤
n(θ, θ∗y). Because we require for all jump points j = 1, . . . k

n(θxj , θ
∗
x) = nj = n(θyj , θ

∗
x), (41)

and because n(θ, θ∗x) is increasing in the trigger but decreasing in the state it follows θxj < θyj for
all j = 1, . . . k. Further, note that n(θxj , θ

∗
x) = n(θyj , θ

∗
x) implies that θ∗x − θ∗y = θxj − θ

y
j for all j.

That is, θ∗y = θ∗x + d implies θyj = θxj + d. Therefore,

2ε H(θ∗y, n(·, θ∗y)) =
∫ θyj1

θ∗y−ε
υ(θ, n(θ, θ∗y))dθ + · · ·+

∫ θ∗y+ε

θyjk

υ(θ, n(θ, θ∗y))dθ (42)

=

∫ θxj1
+d

θ∗x+d−ε
υ(θ, n(θ, θ∗y))dθ + · · ·+

∫ θ∗x+d+ε

θxjk
+d

υ(θ, n(θ, θ∗y))dθ (43)

=

∫ θxj1

θ∗x−ε
υ(θ + d, n(θ + d, θ∗y))dθ + · · ·+

∫ θ∗x+ε

θxjk

υ(θ + d, n(θ + d, θ∗y))dθ (44)

=

∫ θxj1

θ∗x−ε
υ(θ + d, n(θ, θ∗x))dθ + · · ·+

∫ θ∗x+ε

θxjk

υ(θ + d, n(θ, θ∗x))dθ (45)

where the last step follows from n(θ + d, θ∗y) = n(θ + d, θ∗x + d) = n(θ, θ∗x). Therefore,

|H(θ∗x, n(·, θ∗x))−H(θ∗y, n(·, θ∗y))| (46)

=
1

2ε

∣∣∣ ∫ θxj1

θ∗x−ε
(υ(θ, n(θ, θ∗x))− υ(θ + d, n(θ, θ∗x))) dθ (47)

+ · · ·+
∫ θ∗x+ε

θxjk

(υ(θ, n(θ, θ∗x))− υ(θ + d, n(θ, θ∗x))) dθ
∣∣∣ (48)

≤ 1

2ε

(∫ θxj1

θ∗x−ε
|υ(θ, n(θ, θ∗x))− υ(θ + d, n(θ, θ∗x))| dθ (49)

+ · · ·+
∫ θ∗x+ε

θxjk

|υ(θ, n(θ, θ∗x))− υ(θ + d, n(θ, θ∗x))| dθ
)

(50)

The payoff difference function υ(θ, n(θ, θ∗x)) is continuous between the jump points, imply-
ing limd→0 |υ(θ, n(θ, θ∗x))− υ(θ + d, n(θ, θ∗x))| = 0. Moreover, the payoff difference function is
bounded by assumption 3.1. Thus, |H(θ∗x, n(·, θ∗x))−H(θ∗y, n(·, θ∗y))| → 0 as d→ 0 by Lebesgue’s
dominated convergence theorem.

Proof. [Proof Lemma 7.2] To show continuity of H(θi, ñ(·)) in signal θi, I show that for h >

0, limh→0 |H(θi + h, ñ(·)) − H(θi, ñ(·))| = 0. Observe that for a small h > 0, the intervals
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[θi − ε, θi + ε] and [θi + h− ε, θi + h+ ε] overlap. Therefore,

H(θi + h, ñ(·))−H(θi, ñ(·)) (51)

=
1

2ε

∫ 1

0
(1{θ∈[θi+h−ε,θi+h+ε]} − 1{θ∈[θi−ε,θi+ε]})

(∫ n1

0
υ(θ, n) dFθ(n) + · · ·+

∫ 1

nk

υ(θ, n) dFθ(n)

)
dθ

=
1

2ε

∫ 1

0
(1{θ∈[θi+ε,θi+h+ε]} − 1{θ∈[θi−ε,θi+h−ε]})

(∫ n1

0
υ(θ, n) dFθ(n) + · · ·+

∫ 1

nk

υ(θ, n) dFθ(n)

)
dθ

where I have used that on [θi−ε, θi+ε]∩[θi+h−ε, θi+h+ε] the indicator functions cancel out to
zero. For every state θ, the Lebesgue-Stieltjes integrals

(∫ n1

0 υ(θ, n) dFθ(n) + · · ·+
∫ 1
nk
υ(θ, n) dFθ(n)

)
exist, that is, are bounded by assumption 3.2. Further, as h → 0, it holds 1{θ∈[θi+ε,θi+h+ε]} →
1{θ∈[θi+ε,θi+ε]} = 0 almost everywhere. Likewise, for h→ 0, 1{θ∈[θi−ε,θi+h−ε]} → 1{θ∈[θi−ε,θi−ε]} =

0 almost everywhere. Thus, |1{θ∈[θi+ε,θi+h+ε]}−1{θ∈[θi−ε,θi+h−ε]}| → 0, and |1{θ∈[θi+ε,θi+h+ε]}−
1{θ∈[θi−ε,θi+h−ε]}| ≤ 1. Thus, by Lebesgue’s dominated convergence theorem, limh→0 |H(θi +

h, ñ(·))−H(θi, ñ(·))| = 0.
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