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Abstract

Using a range of nonparametric methods, the paper examines the
specification of a model to evaluate the willingness-to-pay (WTP) for
travel time changes from binomial choice data from a simple time-
cost trading experiment. The analysis favours a model with random
WTP as the only source of randomness over a model with fixed WTP
which is linear in time and cost and has an additive random error
term. Results further indicate that the distribution of log WTP can
be described as a sum of a linear index fixing the location of the log
WTP distribution and an independent random variable representing
unobserved heterogeneity. This formulation is useful for parametric
modelling. The index indicates that the WTP varies systematically
with income and other individual characteristics. The WTP varies
also with the time difference presented in the experiment which is in
contradiction of standard utility theory.
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1 INTRODUCTION

The point of this paper is to apply nonparametric techniques to binary choice
data in order to identify a model specification that is at the same time sim-
ple and able to describe the data well. The data relate to trips by bus and
train and arise from a stated choice study designed to elicit the marginal
willingness-to-pay (WTP) for travel time. Results emerge that challenge
the classical model formulation using linear-in-parameters utility with addi-
tive independent error terms. The findings are evidence to the strength of
nonparametric techniques. It is therefore a second purpose of the paper to
illustrate the application of such techniques.

A large number of contributions have estimated logit models, mixed logit
models and other models with the common feature that they embody indexes
which are linear combinations of variables such as travel times and costs and
parameters that are interpreted as marginal utilities. This kind of model is
computationally convenient and consistent with random utility maximisation
(RUM). It is however not implied by RUM and it may not fit the data very
well. There may be other models which are equally RUM consistent and
which match data better.

This paper finds first that the classical formulation of the binary logit
model in terms of constant marginal utilities of time and cost is misspecified
for the current data. Instead a simple formulation is proposed where the
WTP is the only source of randomness. This is RUM consistent and fits the
data. Cameron and James (1987) is an early example of a similar model.
It circumvents the problem of specifying a distribution for the scale of the
model (Train and Weeks 2004). Second, it is found that a model whereby the
WTP depends on the absolute value of time difference offered and also on
the trip duration gives a good representation of the data. These findings are
robust as they emerge within a semiparametric model with weak assumptions
on the stochastic terms of the model and under various specifications of the
systematic variation in WTP. However, the dependence of the WTP on the
absolute value of the time difference is not consistent with the standard
assumptions of utility maximisation.

Much research has been devoted to the WTP for travel time changes
as they usually constitute the main benefit of transport infrastructure in-
vestment (Hensher 2001, Mackie, Jara-Diaz and Fowkes 2001). The micro-
economic formulation of the theory of the value of travel time was fundamen-
tally formulated by Becker (1965), Johnson (1966), Oort (1969) and DeSerpa
(1971). Jara-Diaz (2000) provides a review. The estimation of the WTP for
travel time is reviewed in Hensher (2001) and Gunn (2000). See Fosgerau
(2006) for warnings about estimating a mean WTP from discrete data.
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Previous applications of nonparametric techniques in a transport con-
text include Fosgerau (2006) who uses nonparametric regression, Horowitz
(1993), Fosgerau (2005) and Fosgerau (2006) apply the Klein-Spady estima-
tor. Fosgerau and Bierlaire (2006) suggest a seminonparametric extension of
the binary mixed logit model. A particular strength of some of these tech-
niques is that they allow one to visually inspect various distributions and
relationships prior to the imposition of any specific functional form. Models
estimated using nonparametric techniques may be used in their own right
or they can be used as a prelude to guide later parametric modelling. This
paper may be viewed in this perspective.

The layout of the paper is as follows. Section 2 provides some microeco-
nomic foundation while section 3 reviews some nonparametric and semipara-
metric methods. Section 4 provides details about the data and presents the
empirical analysis. Section 5 concludes.

2 MICROECONOMIC FOUNDATION

2.1 The setting

We shall be concerned with stated choice data arising from a particularly
simple design, with two unlabelled alternatives described only by in-vehicle
travel time and cost. This simplicity is very much a virtue in the present
context since it allows us to undertake a concise analysis of the specification
of an econometric model for such data. With more complicated designs
there are many things going on at the same time and it may be difficult if
not outright impossible to arrive at similarly firm conclusions. The insights
that are obtained here in this simple context may later be tested in more
complicated settings.

Consider a binary route choice for some transport mode between unla-
belled alternatives 0 and 1, described by in-vehicle travel times t0 and t1 and
travel costs c0 and c1. In every choice situation there is a fast and expensive
alternative and a slow and cheap alternative, such that the choice involves a
trade-off between time and money. The fact that alternatives are unlabelled
allows us to freely exchange them in order to simplify the analysis. Rearrange
the alternatives such that

∆c = c1 − c0 < 0 < ∆t = t1 − t0.

In other words, we rearrange such that the first alternative 0 is always rela-
tively fast and expensive, while the second alternative 1 is always relatively
slow and cheap.
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The choice indicator, denoted by y, is defined with the convention that
y = 1 if the slow and cheap alternative 1 is chosen, otherwise y = 0. So
we disregard whether the first or the second alternative is chosen but focus
on the issue of interest, namely whether the cheap or the fast alternative is
chosen.

Now consider the choice probability P (y = 1|x) as a function of some
variables x. These variables include (∆c, ∆t) or transformations of (∆c, ∆t).
Any (parametric) model that we may want to estimate is a specification of
P (y = 1|x) up to some parameters to be estimated. Certain specifications
restrict the shape of this function in certain ways. In the following sections
we shall see what restrictions on P (y = 1|x) arise from two simple, but very
different, models based on utility maximization. The fundamental properties
of these models are described in McConnell (1990).

The first is the classical formulation which directly parametrises the util-
ity difference between alternatives. The second approach is based on the
difference between alternatives of the expenditure function which is an equiv-
alent representation of preferences. The difference arises from the way ran-
domness is introduced. Later we shall look at the empirical counterpart of
P (y = 1|x) using nonparametric methods and use this information to distin-
guish between the two models.

2.2 Model A

The first type of model includes the familiar binary logit or probit models.
We may start with an assumption of homogenous individuals. If we assume
that the marginal utilities are constant across individuals and further that
the residual utilities are independent of ci and ti, i = 0, 1, then we obtain
under utility maximisation that y = 1 when

0 < α∆c + β∆t + ǫ.

Model A specifies that the choice depends on constant marginal utilities of
time and cost and an additive independent random error. This is a strong as-
sumption, see McFadden (1998). The error term is the only random element
in this model and it is unrelated to the WTP. If ǫ is assumed to be normal
or logistic, then the familiar probit or logit models arise. In this paper we
do, however, not need to assume any particular distribution for ǫ.

Model A implies that

P (y = 1) = P (0 < α∆c + β∆t + ǫ) = 1 − Fǫ(−α∆c − β∆t),
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where Fǫ is the distribution function corresponding to ǫ. The shape of the
contours in (∆c, ∆t)-space where the probability is constant is readily ob-
tained:

P (y = 1) = q ⇔ ∆c = −F−1

ǫ (1 − q)/α − (β/α)∆t.

So the constant probability contours for model A are straight lines in (∆c, ∆t)-
space. The spacing between these lines depends on the distribution of ǫ.

2.3 Model B

We now look at an alternative model, which is equally simple but has rad-
ically different implications for the shape of the function P (y = 1). This
model postulates that

y = 1 ⇔ w < −∆c/∆t,

where w is the individual random value of travel time. Now w is the only
stochastic element of the model. We assume that the w are i.i.d. with distri-
bution function Fw. For the moment we also assume that w is independent
of (∆c, ∆t).

Then we can again find the contours in (∆c, ∆t)-space where the proba-
bility P (y = 1) is constant. We have

P (y = 1) = P (w < −∆c/∆t) = Fw(−∆c/∆t)

such that P (y = 1) = q when

−∆c = F−1

w (q)∆t.

So for model B, in contrast to model A, the constant probability contours in
(∆c, ∆t)-space are straight lines that fan out from the origin.

In the empirical section 4 we shall plot P (y = 1) against (∆c, ∆t). Under
model A we will expect to find probability contours to be parallel straight
lines. Under model B we will expect these to be straight lines that fan out
from the origin.

Recall that ∆c < 0 < ∆t. We may take logs to find the constant proba-
bility contours in (log(−∆c), log(∆t))-space defined by the equation

log(−∆c) = log(F−1

w (q)) + log(∆t).

Hence with model B, the constant probability contours are parallel straight
lines with slope 1 in (log(−∆c), log(∆t))-space and with spacing depend-
ing on the distribution of w. Define v = −∆c/∆t as the boundary value
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of time presented in the choice such that log(v) = log(−∆c) − log(∆t).
Then the constant probability contours will be slope zero straight lines in
(log(v), log(∆t))-space. Moreover,

P (y = 1) = P (w < v) = P (log(w) < log(v)).

Consider now some other variable x. Plotting P (y = 1) against log(v) and
x will yield slope zero straight lines when w is independent of x. This will not
be the case if w is not independent of x, which gives a way of detecting such
dependence. In the case when log(w) = γx + u, then constant probability
contours will be parallel straight lines. We shall make use of this property in
the empirical section 4.

2.4 Some remarks

2.4.1 Remarks on the two model formulations

The two models A and B are equivalent in a deterministic setting without
random elements. Omitting the random error term and fixing (α, β), we
simply specify the utility difference as α∆c + β∆t. Then, defining w = β/α,
we have

0 < α∆c + β∆t ⇔ w < v

The difference between the two models then just lies in the way randomness
is introduced.

The mixed logit model (McFadden and Train 2000) in its standard for-
mulation in terms of marginal utilities is a hybrid of models A and B, where
the ǫ of model A is assumed to be logistic and (α, β) is assumed to random
as in model B following some prespecified joint distribution.

2.4.2 Remarks on WTP and the travel time difference

In the econometric analysis below, we shall see how the WTP depends on
covariates and we will focus particularly on ∆t and trip duration t.

In general, it is possible for the WTP for a time change to vary with
∆t under utility maximisation. This occurs when indifference curves (in
(t, c)-space) are non-linear, as the slope of an arc between two points on
an indifference curve depends on the distance between them. The slope is
the value of time that leaves the individual indifferent in such a pairwise
comparison. Fixing one point, the slope will increase with the absolute value
of ∆t on one side and decrease on the other when indifference curves are
convex. Thus the WTP depends on the travel time in both alternatives in
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a comparison, but the WTP is not monotonous in the absolute value of the
travel time difference.

Prospect theory (Kahneman and Tversky 1979) describes the process of
editing which might plausibly produce an increasing relationship between the
WTP and ∆t since small values of ∆t may tend to be ignored by respon-
dents. Under prospect theory, reference dependence may also induce such
an effect (Tversky and Kahneman 1991, Bateman, Munro, Rhodes, Starmer
and Sugden 1997, Borger and Fosgerau 2006). Reference dependence is ruled
out under classical utility theory, while it could be possible to include the
editing effect through some kind of decision cost. We shall return briefly to
these issues in the conclusion but they are not the main the interest of this
paper.

Finally, the WTP will in general depend on trip duration under the clas-
sical assumptions of RUM. However, trip duration is clearly an endogenous
variable since it is chosen by the individual partly based on his WTP. It is
therefore not immediately possible to say more than that the two are corre-
lated. Causality may go either way.

3 A REVIEW OF SOME NONPARAMET-

RIC TECHNIQUES

This paper makes extensive use of nonparametric techniques. Since these
methods are still fairly new in transport research, I will review the techniques
that I employ in more detail than usual in order to provide a feel for how
they work.

For more details one may wish to consult the sources. Härdle (1990),
Horowitz (1998), Pagan and Ullah (1999) and Yatchew (2003) are good gen-
eral references to the vast literature on nonparametric and semiparametric
econometrics. The term nonparametric generally relates to models that leave
functional form and distributional assumptions unspecified. Semiparametric
models are between the nonparametric and the parametric and mix nonpara-
metrics with some parametric element. Some of the techniques reviewed in
this section are actually semiparametric.

Consider first the general situation where we have a dependent binary
variable y and a vector of independent variables x ∈ R

d. To model such data
we only need to describe the unknown function P (x) = P (y = 1|x), since
P (y = 0|x) = 1 − P (x). We seek to describe P (x) from data with minimal
assumptions imposed. Denote the data by {yn, xn}n≤N
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3.1 Local constant regression

Even though y is binary, it is useful to define an error term by writing y =
P (x) + η such that η is the residual in a regression of y on P (x). Then
E(η|x) = 0 since E(y|x) = P (x). This is sufficient to estimate the function
P () of x by a so called local constant regression.

Suppose we have many observations of y at some particular point x0.
Then P (x0) may be estimated just as the average of these y’s. In general,
when the variables in x are continuous, there will not be many observations
available with the same x. We can instead estimate P (x0) as the weighted
average of y in a small neighbourhood of x0. This amounts to fitting a
constant locally, hence the term local constant regression.

A kernel K and a bandwidth h are introduced to define this neighbour-
hood. The kernel is a general function used to weight observations. This
paper uses either a triangular kernel based on a triangular density or a stan-
dard normal density kernel. For one-dimensional x, the triangular kernel is
defined as K(x) = (1 − |x|)1{|x| ≤ 1}.1 For more dimensions one may just
take the product of such one-dimensional K’s. Then K is positive, symmet-
ric, has maximum at zero and tends to zero as ‖x‖ increases. The same is
true when K is taken to be the product of standard normal densities.

The bandwidth h is used to determine the size of the neighbourhood over
which to average. Define weights around the point x0 by Kh(x − x0) =
K(x−x0

h
). Now Kh is large near x0 and diminishes as ‖x − x0‖ increases.

Kh = 0, when x is far away from x0.
It is possible to estimate P at some point x0 by forming a weighted average

of yn around x0

P̂ (x0) =

∑

n≤N ynKh(xn − x0)
∑

n≤N Kh(xn − x0)
(1)

The weighting ensures that y’s near x0 receive the largest weight. If the (co-
ordinatewise) distance between an xn and x0 is greater than the bandwidth
h, then xn receives weight zero from the triangular kernel. The term in the
denominator ensures that the weights sum to one.

We can get a view of the shape of P by computing this average for a
range of values of x0. As the sample size tends to infinity we can let the
bandwidth h tend to 0, such that the bias from averaging disappears and P̂
tends to P . The selection of h is discussed in section 3.5.

1The indicator function 1{} is 1 if the condition is true and 0 otherwise.
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3.2 The Klein-Spady estimator

The main virtue of the local constant constant regression is its simplicity.
The estimate of P at any point has a closed form expression and is fast to
compute. This is utilised by the Klein and Spady (1993) estimator.

Suppose we are willing to assume that y = 1{γx > ǫ}. This index
assumption turns the model into a semiparametric model. It is a quite strong
restriction on the shape of the function P . The model assumes that x ∈ R

d

can be collapsed into a single dimension via the index γx. In fact, since

P (x) = P (y = 1|x) = P (γx > ǫ) = Fǫ(γx)

such that

P (x1) = P (x2) ⇔ γ(x1 − x2) = 0,

only changes of x in the direction of γ will affect P . Changes of x in directions
that are orthogonal to γ will not affect P .

If Fǫ was known, then γ could be estimated by maximising the log-
likelihood function

L(γ) =
∑

n

ynlog(Fǫ(γxn)) + (1 − yn)log(1 − Fǫ(γxn)) (2)

The Klein-Spady estimator simply replaces Fǫ(γxn) in (2) by a nonparametric
estimate using local constant regression as in (1). For a given γ we can regress
{ym}m6=n on {γxm}m6=n at the point γxn to obtain an estimate F̂ǫ(γxn) of
Fǫ(γxn). This estimate has a closed form that can be plugged directly into
(2). The result is a likelihood function that can be maximised using standard
optimisation routines.

Klein and Spady (1993) present Monte Carlo evidence indicating that
there may be only modest efficiency losses with their estimator relative to
maximum likelihood estimation when the distribution of ǫ is known. In
general, of course, the distribution of ǫ is not known.

All discrete choice models must be normalised since the scale of the pa-
rameters is not identified separately from the variance of the error term. It is
customary to introduce the normalisation by fixing the variance of the error
term to some value. This is impractical when the error term is not specified.
The normalisation is instead imposed by fixing the parameter for one of the
explanatory variables to 1. This variable should be continuous with a strong
impact on the dependent variable.
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3.3 The local logit model

A (local) constant is often not a very good approximation to an unknown
function to be estimated. The poorer this approximation is, the more the
bandwidth must be decreased in order to avoid bias. This leads to more
uncertain estimates as fewer observations are then used for averaging. More-
over, local constant regression does not utilise the information that y can
only take values 0 and 1.

This situation may be improved on by fitting a local model for a binary
dependent variable rather than just a constant. This local model will fit
at least as well as a constant and so more observations can be used for the
estimate of each P (x0) without increasing bias. Hence the optimal bandwidth
is larger for an appropriate local model.

This is the idea of the local logit model of Fan, Heckman and Wand
(1995). It uses the same local weights defined by a kernel and a bandwidth,
but now a local logit model is estimated at the point x0. This is just a
plain binary logit model where again the observations are weighted such that
observations near x0 receive large weight while observations far away receive
small weight. Consider a local approximation to P () at the point x0 using
P (x) ≈ F (a + b(x− x0)) where now F is the logistic distribution. Note that
P (x0) = F (a) and hence F (a) will be our estimate of P (x0). Maximise

L(x0, a, b) =
∑

n

Kh(xn − x0)[ynlog(F (a + b(xn − x0))) + (1 − yn)log(1 − F (a + b(xn − x0)))]

with respect to (a, b) at each point x0. This means that the estimates for
(a, b) depend on x0. When the bandwidth is large these estimates become
more alike and when the bandwidth is infinite the model is just the ordinary
logit model which has the same value of (a, b) for all datapoints.

3.4 The Zheng test

Say we have obtained parameter estimates γ̂ for the model P (y|γx), using in
our case the Klein-Spady estimator. We can then calculate

P̂ (x) = P (γ̂x) = P (y = 1|γ̂x)

from this model as an estimate of P (x). We now wish to test whether this
model fits the data, that is test whether P (x) = P̂ (x). The Zheng (1996)
test is useful in this situation.2

2A number of similar tests are discussed in Pagan and Ullah (1999).
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Define the residuals ε = y − P̂ (x). Then E(ε|x) = P (x) − P̂ (x). If the
model is correct, then E(ε|x) = 0. This implies that also

T̃ = E[εE(ε|x)p(x)] = 0,

where p(·) is the density of x. If, on the other hand, the model is not correct,
then

T̃ = E[E(ε|x)2p(x)]

= E[(E(y|x) − P̂ (x))2p(x)] > 0

A standardised sample analogue of T̃ is

T =

∑N
n=1

∑N
m=1,m 6=n Kh(xn − xm)εnεm

[

∑N
n=1

∑N
m=1,m 6=n 2K2

h(xn − xm)ε2
nε

2
m

]1/2

Zheng shows that this statistic is distributed as standard normal under the
null hypothesis that the model is correct. Thus we can calculate T and reject
our model if |T | is large. Zheng further shows that under the alternative,
T diverges to infinity as the sample size increases. This implies that the
power of the test to reject false null hypotheses tends to 1 as the sample size
increases.

3.5 Bandwidth selection

The choice of kernel is generally less important as results will not be much af-
fected. Selecting an appropriate bandwidth is, however, a genuine issue with
no easy solution. If the bandwidth is too large then there is oversmooth-
ing. Too much detail disappears and there will be bias. If the bandwidth is
too small, then there will be undersmoothing: that is, overfitting to random
fluctuations in data. Thus the choice of bandwidth is about balancing the
trade-off between bias and variance. A significant part of the nonparametric
literature is devoted to the issue of bandwidth selection but without any sin-
gle method emerging as a clear winner. Here we shall discuss just the three
simplest approaches.

Pagan and Ullah (1999) support the use of so called ”eye-balling” when
x is at most two-dimensional. It consists of looking at the estimates to select
a bandwidth where the estimated function has an appropriate number of
features.

Another more automatic approach is to use cross-validation (Härdle 1990,
Pagan and Ullah 1999). This is performed using the estimated prediction
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error EPE(h) = N−1
∑

n(yn − mn(xn, h))2, where the estimate mn(xn, h) is
computed with bandwidth h, leaving out the n’th observation. A bandwidth
can then be selected by minimising EPE(h).

A third approach is to determine an optimal bandwidth from convergence
properties of the estimator. This approach relates the bandwidth to the
sample size.

3.6 Technical implementation details

For the sake of completeness, this section gives some details on the implemen-
tation of the various procedures. The less technically inclined may skip this
section. All programming for this paper is carried out in Ox (Doornik 2001).

The local logit model is implemented with a triangular product kernel.
Prior to the application of the local logit model, each explanatory variable
is rescaled to the unit interval. The bandwidths stated below relate to the
rescaled data and are chosen by cross-validation.

The Klein-Spady estimator is implemented with a normal density kernel.
The cross-validated bandwidth from the local logit model is first reduced to
account for the different kernels (Härdle 1990, Ch. 5.4). Then a further
reduction by a factor 0.3 is applied to account for the higher bias of the local
constant regression applied by the Klein-Spady estimator.

The Zheng test is implemented using a normal density kernel and the
optimal bandwidth suggested by Zheng of c ∗ N−m/5, where c is a constant
arbitrarily set to 1, N is the sample size and m is the number of dimensions
of the domain of the unknown function to be tested.

4 ECONOMETRIC ANALYSIS

With the machinery now in place we can begin the econometric analysis.
Recall that the aim is to find a simple model that is able to describe the data
well. We will therefore start with something very simple and then gradually
elaborate the model. But first the dataset must be presented.

4.1 Data

The data origin from the Danish value of time study conducted for the Danish
Ministry of Transport and Energy. The questionnaire design is discussed in
Burge and Rohr (2004) and in Burge, Rohr, Vuk and Bates (2004). This
paper uses binary stated choice data from a simple within-mode experiment,
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conducted for the respondent’s current mode. I have selected respondents
using the two main public transport modes, bus and train, for this analysis.

Respondents choose between unlabelled alternatives differing only with
respect to in-vehicle travel time and cost. The alternatives are generated rel-
ative to a reference trip, which is a recent trip undertaken by the respondent.

Four types of choices are generated as time and cost gains or losses relative
to the reference trip. In this way, the (t, c) plane is divided into four quadrants
with origin at the reference trip. One quadrant compares the reference trip
with a slower but cheaper trip. The opposite quadrant compares the reference
with a faster but more expensive trip. Also one quadrant compares a trip
with reference time but higher cost with a slower trip with reference cost.
The opposite quadrant compares a trip with reference time but lower cost
with a faster trip with reference cost.

The eight choice situations were generated in the following way. First,
eight choices were assigned to quadrants at random: two to each quadrant in
random sequence. Second, two absolute travel time differences were drawn
from a set, depending on the reference travel time, in such a way that respon-
dents with short reference trips were only offered small time differences. Thus
there is no asymmetry in the size of the time differences up and down. Both
travel time differences were applied to the two situations assigned to each of
the four quadrants. Third, eight trade-off values of time were drawn from
the interval [2 : 200] Danish Kroner (DKK) per hour3, using stratification to
ensure that all subjects were presented with both low and high values. The
absolute cost difference was then found for each choice situation by multiply-
ing the absolute time difference by the trade-off value of time. Fourth, the
sign of the cost and time differences relative to the reference were determined
from the quadrant. The differences were added to the reference to get the
numbers that were presented to respondents on screen. Travel costs were
rounded to the nearest 0.5 DKK.

The data have been trimmed prior to analysis by removing the about 5%
of observations with the largest journey times and time and cost differences as
otherwise the data would have been very thin at these large values. This left
8763 bus and 6688 train observations for analysis. Some summary statistics
for the data employed are given in Table 1.

4.2 Local logit in (∆t, ∆c)-space

We begin the econometric analysis by estimating a local logit model where
the expected choice is viewed as an unspecified function of ∆t and ∆c. The

31 EUR = 7.5 DKK.

13



local logit model is estimated in a grid of 21 × 21 points over the range of
∆t and ∆c using a cross-validated bandwidth of .25.

The results for the bus and train modes are shown in Figure 1. Sev-
eral findings emerge. First, from the estimated regression surfaces we note
that the constant probability contours generally have a positive slope, which
corresponds to a positive value of time. This is reassuring, but of course
not so surprising. Second, the figures suggest there might be a tendency
for the slopes to increase as the time difference gets larger. Thus the WTP
distribution may not be independent of the time difference.

Most importantly, the constant probability contours are clearly not par-
allel, as they would be in model A with constant marginal utilities and in-
dependent error terms. It rather seems as if the contours fan out from the
origin as they would in model B. It is thus apparent that the data are much
more consistent with model B than with model A. We therefore use model
B as the starting point for our further elaboration of a model specification.

4.3 Local logit in WTP space

A local logit regression is then performed in (log(v), log(∆t))-space, where
v is the boundary value of time. This uses cross-validated bandwidths of
0.5 for bus and 0.4 for train. These bandwidths relate to data rescaled to
the unit interval so they are comparable to those above. The fact that the
bandwidths are higher suggests that the local model fits the data a lot better
in (log(v), log(∆t))-space. The results from this local logit regression, shown
in figure 2, seem to support this view.

The constant probability contours are roughly parallel, indicating that
their spacing shows the distribution of the WTP. It is apparent that this
picture would arise from a model like model B.

The constant probability contours do however seem to depend on ∆t,
which contradicts the assumption that w is independent of ∆t. Thus, the
WTP per minute seems to depend on the absolute value of the time differ-
ence. Following the discussion in section 2.4.2 it is clear that the standard
utility theoretic model for choices determined only by time and cost cannot
accommodate this effect of ∆t - a broader theory is required. Dependence of
the WTP on ∆t is not a new finding, refer for example to Bates and Whe-
lan (2001), Hultkrantz and Mortazavi (2001) and Cantillo, Heydecker and
de Dios Ortuzar (2006).

To capture the relationship, we introduce a parameter for log(∆t) to the
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model. Consider the extension

y = 1{log(w) < log(v)} (3)

log(w) = γlog(∆t) + u

where u is independent of (v, ∆t) with unknown distribution. Thus the
distribution of u is taken as fixed and the location of log(w) is shifted linearly
by γlog(∆t). Based on figure 2 we expect a positive estimate of γ.

The parameter γ is estimated using Klein-Spady, which can be done
without having to specify the distribution of u. The Zheng test statistic
is applied to test the restriction of model (3) against the general model
P (y|log(v), log(∆t)), that merely specifies that the choice probability de-
pends on log(v) and log(∆t). Results are shown in Table 2. It appears that
the dependency on log(∆t) is strongly significant and of the expected sign.
The restriction that the relationship can be captured by the parameter γ is
accepted by the Zheng test. It thus seems that model (3) is an adequate
model for the data after allowing for dependence of log(w) on ∆t.

4.4 Introducing journey time

In section 2.4.2 it was argued that the WTP may depend on travel time.
Therefore the model is expanded by including the variable jtime for travel
time in the main mode. This variable measures the main mode travel time of
the actual current trip, which was reported by the respondents and around
which the choice alternatives are pivots. Expand the model in (3) by

log(w) = γlog(∆t) + ηlog(jtime) + u

Again, parameters are estimated using Klein-Spady and the linear restriction
is tested using the Zheng test. The results are shown in Table 3.

The parameters γ for log(∆t) are still positive and significant. The pa-
rameter η for journey time is not significantly different from zero for bus
while it is strongly significant and positive for train. Train trips are gener-
ally much longer than bus trips. The Zheng test accepts the restrictions of
the model against the general alternative.

Local logit regressions of y on (log(jtime), log(v)−log(∆t)) are performed
in figure 3 to show the dependency of choices on the journey time. The slopes
estimated in Table 3 are also in evidence in the figure. Independence of u and
the index implies that the constant probability contours should be parallel
in Figure 3, which they seem to be. Thus the assumption of independence
seems to be a fair approximation to the data.
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4.5 Introducing more covariates

The conclusions of the previous section 4.4 are checked by adding a number
of variables to the model. Expand the definition of log(w) to

log(w) = δx + u (4)

where now the variables in the vector x include log(∆t), jtime and a number
of other variables. Descriptive statistics for the variables are provided in
Table 4.

The variable Sex is 1 for females and 0 otherwise; income is net personal
annual income; inc1 is a dummy for the lowest income group (less than
100,000 DKK/year); incNA is a dummy for missing income information;
Commute is 1 when the travel purpose is commuting; Passengers is 1 when
there is at least one accompanying person on the trip. Note that log(income)
and age have been demeaned before input to the estimation procedure.

The parameters in Table 5 are estimated using Klein-Spady. The results
make intuitive sense. The coefficients for log(∆t) and log(jtime) are much
the same as before. Income has a strong influence on the location of the
WTP distribution with a significantly positive coefficient. The age terms
indicate decreasing WTP with age. Women have lower WTP than men with
similar values of the coefficients for all modes. The travel purpose dummy
for commuters is not significant and the presence of accompanying persons
has no detectable influence on WTP.

This final model is tested by the Zheng test for the hypothesis that
E(y|log(v), δx) = E(y|log(v) − δx) with δ fixed at the estimates in Table
5. This hypothesis is accepted indicating that conditional on the definition
of the index δx, we can accept the model in (4), whereby log WTP is equal
to the linear index plus an independent error.

5 CONCLUSION

Even though the mixed logit model can, in principle, approximate any RUM
discrete choice model by using enough mixing (McFadden and Train 2000),
this can easily be very demanding in terms of data and the complexity of the
model. It is thus still worthwhile to look for good model specifications. Our
results indicate quite clearly that the present data are rather more consistent
with a random WTP determining choices than with the classical determin-
istic utility difference and an independent error term. So it is likely that a
model taking the random WTP as a fundamental feature will be simpler and
less demanding on data.
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For the present data we have formulated a simple model that focuses
directly on the quantity of interest: the WTP. The problems of estimating
the WTP as the ratio of two possibly random parameters are avoided by this
model.

Furthermore, we have found that the model whereby the log WTP is
described as a linear index plus an additive independent residual describes
the data well. This is a very useful result for parametric modelling. Based
on this result one could specify

yt = 1{log(wt) < log(vt) + ǫt}

log(wt) = δxt + u

where subscript t indexes the choice situation to allow for panel data, and ǫt

are choice specific logistic errors. The WTP is given a log-linear formulation
and contains a random component u. Such a model has in fact been estimated
in Fosgerau and Bierlaire (2006) where u has a normal distribution and the
model is shown to greatly outperform the classical formulation. They accept
the normality assumption for u in tests against general alternatives.

The model can be estimated with commercially (and freely) available
software. Indeed, one may just specify one ”utility function” to be ǫ1t and
the other to be

−µlog(vt) + δxt + σu + ǫ2t,

where u is for example a random normal variable, σ is a standard deviation
to be estimated and µ takes care of the scale of the error terms ǫ, such that
the estimate of log(w) becomes

log(wt) =
δ

µ
xt +

σ

µ
u.

Returning to the results of this paper, the local logit model was used to
visualise the relationship between independent variables and choice proba-
bilities. This technique is not hard to use and one can imagine many other
circumstances where it would be useful for inspecting the data prior to the
development of complicated models. In general it seems very worthwhile to
start a modelling exercise using methods that do not impose many assump-
tions before moving on to more models of more explicit form.

Also the possibility to check a functional form against a general alter-
native should be noted. I chose the Zheng test among several candidates
since it is easy to implement and theoretically powerful. This kind of test
offers the possibility to check a discrete choice model against a more general
alternative.
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The log WTP formulation enabled the estimation of a number of determi-
nants of individual WTP, something which otherwise could have been hard
to achieve.

A conclusion for the present data is that the distribution of WTP depends
on the absolute value of the time difference. This is not a new finding. Using
similar data, Hultkrantz and Mortazavi (2001) find also that small travel
time changes are valued less than large. The effect has also been found in
the Netherlands and the UK (Bates and Whelan 2001). This raises the issue
of how to interpret this finding, particularly if the interest is to measure a
single WTP for use in project evaluation. The subject of small travel time
changes in project evaluation is discussed in Welch and Williams (1997) and
Mackie et al. (2001). Hultkrantz & Mortazawi argue mainly in favour of an
explanation in terms of decision costs whereby the effort in deciding whether
a given time saving is worth the cost may outweigh the potential gain. This
is similar to the editing of prospect theory (Kahneman and Tversky 1979).
Cantillo et al. (2006) consider the similar idea of perception thresholds, which
also produce a lower value for small travel time changes. The form of the
dependency of the WTP distribution on the time difference is useful, since the
time difference has been found to only affect the location of the distribution
of log WTP. The distribution of log WTP is otherwise unchanged.
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