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Abstract

We model sequencing problems as coalitional games and study the Shapley value

and the non-emptiness of the core. The ”optimistic” cost of a coalition is its minimum

waiting cost when the members are served first in an order. The ”pessimistic” cost of

a coalition is its minimum waiting cost when the members are served last. We take

the weighted average of the two extremes and define the class of ”weighted optimistic

pessimistic (WOP)” cost games. If the weight is zero, we get the optimistic scenario

and if it is one, we get the pessimistic scenario. We find a necessary and sufficient

condition on the associated weights for the core to be non-empty. We also find a

necessary and sufficient condition on these weights for the Shapley value to be an

allocation in the core. We impose ”upper bounds” to protect agents against arbitrarily

high disuilities from waiting. If an agent’s disutility level is his Shapley payoff from

the WOP cost game, we find necessary and sufficient conditions on the upper bounds

for the Shapley value to conform to them.

Keywords: Sequencing, disutility upper bounds, core, cooperative game, Shapley

value
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1 Introduction

Waiting lines are pervasive in our daily lives. Several activities involve waiting, such as,

standing in line at a grocery store checkout, waiting for public transportation, or lining

up for a popular coffee shop. In the digital realm, online customer support and streaming

services often entail waiting for assistance or content delivery. Healthcare systems wit-

ness waiting lines in clinics and hospitals, emphasizing the importance of efficient patient

flow. Waiting is costly. Long waiting lines result in time loss, fostering customer dissat-

isfaction and subsequently contributing to business losses. Moreover, increased waiting

times indicate inefficient resource utilization, resulting in heightened operational costs,

particularly within the manufacturing, transportation, and health sectors. Economists

have studied the class of sequencing problems with an objective to design waiting lines

(the order in which agents wait for a service) that satisfy certain desirable properties. Ef-

ficiency is one such fundamental property that minimizes the total cost of waiting. We

now introduce the premise of sequencing problems more formally.

There is a finite set of agents in need of a service. Each agent has one job to process

and the service provider can only serve one agent at a time. An agent is identified by two

parameters, his per unit time waiting cost and his job processing time. We allow both

parameters to differ across agents. We also allow for monetary compensations that can

be positive (an agent receives money) or negative (an agent pays money). An allocation

in a sequencing problem specifies the order in which agents are served and the monetary

compensations they pay or receive. Preferences are defined over pairs specifying - 1) the

position of an agent in an order, which in turn determines the amount of time an agent

waits to get served and, 2) their consumption of money. Preferences are continuous and

quasi linear. The disutility of an agent is equal to their waiting cost to get served minus

their consumption of money. The literature has extensively studied sequencing problems
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from both incentive and normative point of views 1.

We solve this class of problems using tools from cooperative game theory. In our

day-to-day lives, cooperation among individuals waiting for a service can be motivated

through several practical and ethical considerations. For instance,

1. During times of high demand for medical services or vaccination clinics, individuals

often form universal alliances while waiting in an organized queue. Cooperation is

essential to ensure that those in need receive services in a fair manner.

2. During emergencies or evacuations, it is essential for people to cooperate in larger

groups for the safety and well-being of everyone involved.

3. Large-scale events often involve queueing for entry. Attendees typically cooperate

by identifying themselves as a part of a comprehensive group to ensure a smooth

and safe entry process. This cooperation helps prevent congestion and maintains a

positive experience for all participants.

Such instances highlight the importance of cooperation to facilitate smooth functioning of

queues. It enhances overall customer satisfaction and instills a sense of solidarity among

the agents awaiting the service.

This paper addresses the following concerns:

1. How to divide the (minimum) aggregate cost across all agents in a ”fair” and ”sta-

ble” manner?

• We first define the “urgency” of an agent as the ratio of their per unit time

waiting cost to their job processing time. Minimizing the aggregate waiting

cost requires serving agents in a non-increasing order of their urgency indices.

1For sequencing problems with incentives, see Dolan [12], Mendelson and Whang [19], Suijs [28], Mitra
([21], [22]), De [10], Banerjee et al. [1]. For the normative studies, see Chun [3], Chun, Mitra and Mutuswami
([5], [6], [7]), Chun and Yengin [?], and De [11]
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• For fairness, we use the widely recognized notion of Shapley value. It is the

unique division of payoffs which satisfies the axioms of efficiency, symmetry,

linearity and dummy player ([26]). An agent’s Shapley payoff is the expected

value of their contribution to each coalition when all permutations of agents

are equally likely.

• For stability, we use the concept of core. A payoff vector is in the core if no

subgroup of agents can benefit by deviating and forming their own coalition.

The division of payoff is such, that it is possible to sustain cooperation among

all agents.

We begin by associating a sequencing problem to a cost sharing game. There are

multiple ways of calculating the cost of serving the members of a coalition. The lit-

erature studies two such extreme definitions that depend on when the coalitional

members are served relative to the non-coalitional members in a queue. In the

optimistic definition, the members of a coalition are served first (before the non-

coalitional members). Under an optimistic assessment, the cost of a coalition is the

minimum waiting cost of serving its members when they are served first. In the

pessimistic definition, the members of a coalition are served last (after the non-

coalitional members). Under a pessimistic assessment, the cost of a coalition is the

minimum waiting cost of its members when they are served last. In this paper, we

propose a more general way of defining the cost of serving coalitional members. We

refer to this class of cost sharing games as ”weighted optimistic-pessimistic (WOP)

games”. As the name suggests, each game is defined as a weighted average of the

aforementioned optimistic and pessimistic cost games. The weight can be inter-

preted as the priority received by the non-coalitional members while calculating the

cost of serving the coalitional members. Specifically, in the optimistic definition,

this weight is zero while in the pessimistic definition, it is one. We then calculate the

Shapley value of this weighted optimistic-pessimistic game and ask the following:
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• Under what condition on the associated weights does the Shapley value of the

weighted optimistic-pessimistic game qualify as a member of the core of this

game?

• Under what condition on the associated weights is core of this game non-

empty?

We get the following results.

• For a given weight, the Shapley value of the weighted optimistic-pessimistic

game belongs to the core of this game if and only if the value of the associated

weight is at least one-half.

• For a given weight, the core of the weighted optimistic pessimistic game is

non-empty if and only if the value of the associated weight is at least one-half.

When the associated weight is exactly one-half, it means that the coalitional mem-

bers have an equal chance of being served consecutively anywhere in the queue.

2. Unpredictability of waiting time in certain situations might lead to agents suffering

arbitrarily high levels of disutility. To safeguard them against such adversities, we

impose an upper bound on each agent’s disutility level, which in turn acts as a safety

net for that agent. We ask the following question: if each agent’s disutility is equal to

his Shapley payoff from the associated WOP cost game, then under what necessary

and sufficient condition on the upper bounds will the Shapley payoffs conform to

them?

• We begin by introducing the concept of “disutility upper bounds”. Alternatively,

this has also been addressed as the ”generalized welfare lower bounds (GWLB)”

and extensively analysed by Banerjee et. al [1]. It collectively represents a

family of several bounds (for instance, identical costs bound, expected costs
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bound, bound with respect to a status quo, such as, initial arrival order, etc)

that have been previously studied in the literature 2.

• Given a sequencing problem, each agent’s upper bound is represented as a

product of two components: 1) his per unit time waiting cost, and 2) a ”bench-

mark” function which can be any strictly positive function of the vector of job

processing times. This is a more general way of defining an upper bound since

it encompasses several bounds of such multiplicative forms within itself (see

Banerjee et. al [1] for a more detailed discussion). It means that the functional

form of a benchmark will vary depending on the particular bound under con-

sideration. We also assume that there is no consumption of money while com-

puting an upper bound.

• Finally, we introduce the “disutility upper bound relative to a benchmark” prop-

erty which ensures that each agent’s disutility from waiting does not exceed

his upper bound. The ”Shapley rule” is an allocation rule 3 that maps each se-

quencing problem to a set of allocations, such that, every agent’s disutility at

those allocations coincides with his Shapley payoff from the WOP cost sharing

game. The Shapley rule satisfies disutility upper bound relative to a benchmark if

and only if each agent’s upper bound on his disutility is at least as high as his

expected cost of waiting when all orders are equally likely.

2 Literature

One of the very first study of cooperation in sequencing situations is by Curiel et al. [9].

They show that the equal gain splitting rule belongs to the core of a cost saving coali-

2See Moulin [24] and Yengin [29] (study identical costs bound (ICB)), Maniquet [18], Chun [4], Baner-
jee et. al [1], Kayi and Ramaekars [16], and Mitra [23] (study both identical costs bound (ICB) and ex-
pected costs bounds ( ECB)), Chun and Yengin [8] (study the k-welfare bounds), Gershkov and Schweinzer
[13](study individual rationality constraints with respect to an initial order of arrival)

3An allocation rule maps each sequencing problem to a non-empty subset of allocations (defined earlier).
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tional game. The worth of a coalition is its maximal cost saving when members rearrange

themselves into an efficient order given a status quo order of arrival .

The special case of a sequencing problem when agents have equal job processing times

is referred to as a ”queueing problem”. Queueing problems have been studied as coali-

tional games when the worth of a coalition is defined in an optimistic manner [Maniquet

[18]], alternatively, when it is defined in a pessimistic manner [Chun [4]]. Both papers

axiomatically characterize the Shapley values of the resulting coalitional games.

An immediate extension characterizes the Shapley value (in the optimistic scenario)

for sequencing games [Mishra and Rangarajan [20]]. The corresponding monetary com-

pensation has been referred to as ”minimal transfer rule” in the literature. The minimal

transfer rule is the only rule satisfying Pareto indifference, individual rationality from random

arrival, consistency, and cost monotonicity [Chun[2]]. Consider a scenario where individual

preferences are known to the server, and job size is observable. A new kind of coopera-

tive manipulation stems from the inability of the server to detect the true identity of users,

and the users’ ability to request a job without revealing its true beneficiary. The optimistic

game is mergeproof (coalitions merging to form a single entity) and the pessimistic game

is splitproof (a single agent splitting thier job ) [Moulin [25]].

3 Model

A finite set of agents N = {1, 2, . . . , n} are in need of a service. A facility provider pro-

cesses their jobs but can only do so one job at a time. For each i ∈ N, agent i is identified

by a pair of parameters (θi, li) ∈ R2
++ where θi is their per unit time waiting cost and li

is their job processing time. Let Li ∈ R+ be the amount of time an agent has to wait to

get served. Agents also consume money. Let τi ∈ R be the amount of money agent i

consumes. Preferences are defined on R++ ×R and are both continuous and quasi linear:

agent i’s disutility at (Li, τi) is πi(Li, τi) = θiLi − τi where θiLi is their cost of waiting Li
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units of time and τi is their consumption of money. A sequencing problem with agent

set N is a list (θ, l) ∈ R++
n ×R++

n where θ = (θ1, . . . ,θn) is the vector of per unit waiting

costs and l = (l1, . . . , ln) is the vector of job processing times. The set of all sequencing

problems is denoted by SN.

An order on N is a bijection σ : N → N that assigns a position to each agent i ∈ N.

For instance, ifσ(i) = 3 then i occupies the third position. Let ΣN be the set of all serving

orders on N. For an order σ ∈ ΣN, let Pi(σ) = { j ∈ N \ {i} | σ( j) < σ(i)} be the set

of predecessors of i and Fi(σ) = { j ∈ N \ {i} | σ( j) > σ(i)} the set of his successors.

Given σ ∈ ΣN, the waiting time of agent i is Li(σ) = ∑ j∈Pi(σ)
l j. For each (θ, l) ∈ SN

and σ ∈ ΣN, agent i’s cost of waiting is Ci(σ) = θiLi(σ). Let τ ∈ RN be the vector

of agents’ money consumptions. An allocation is a pair (σ , τ) ∈ ΣN × RN. Let XXXN be

the set of allocations. For each (θ, l) ∈ SN and each (σ , τ) ∈ XXXN, agent i’s disutility is

πi(σ , τi) = θiLi(σ)− τi = θi ∑ j∈Pi(σ)
l j − τi.

Let FN = {(σ , τ) ∈ XXXN : ∑i∈N τi ≤ 0} be the set of feasible allocations. An allocation

(σ , τ) ∈ FN is efficient at (θ, l)(θ, l)(θ, l) if there is no other allocation (σ
′
, τ

′
) ∈ FN such that:

1. for each i ∈ N, π(σ
′
, τ

′
) ≤ π(σ , τ),

2. there exists at least one k ∈ N such that πk(σ
′
, τ

′
) < πk(σ , τ) and,

3. ∑i∈N τi = 0 .

Let E(θ, l) be the set of all efficient allocations for (θ, l) ∈ SN.

Lemma 1. If (σ , τ) ∈ E(θ, l) then for any arbitrary redistribution of money τ
′ ∈ Rn such

that, ∑i∈N τ
′
i = ∑i∈N τi, we have (σ , τ

′
) ∈ E(θ, l).

Lemma 1 is a direct implication of quasi linearity. Thanks to Lemma 1, it is meaningful

to speak of the efficiency of an order. Given (θ, l) ∈ SN, the aggregate cost of waiting at

σ ∈ ΣN is given by C(σ) = ∑i∈N θiLi(σ). An order σ ∈ ΣN is efficient for (θ, l)(θ, l)(θ, l) if

σ ∈ argmin
σ
′ C(σ

′
). Let ΣN

∗ (θ, l) be the set of efficient orders on N. Let the ratio of the
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waiting cost to the processing time of agent i, given byθi/li, be agent i’s urgency index. It

is well known thatσ ∈ ΣN
∗ (θ, l) if and only if for each pair i, j ∈ N, such that θi/li > θ j/l j

we have σ(i) < σ( j) (Smith [27]). Given S ⊂ N, the restriction of an order σ ∈ ΣN to

S ⊂ N is denoted by σS ∈ Σ S. For (θ, l) ∈ SN and S ⊂ N, let (θS, lS) ≡ (θi, li)i∈S. Let

Σ S
∗ (θS, lS) be the set of all efficient orders on S ⊂ N.

An allocation rule ψ associates to each (θ, l) ∈ SN a non-empty subset of allocations

in XXXN(θ, l).

4 Coalitional games

In order to identify solutions to sequencing problems that satisfy fairness properties, the

tools of cooperative game theory can be invoked. This requires that sequencing problems

be modeled as coalitional games. We propose here to apply to these games the solution

concepts of Shapley value (for fairness) and core (for stability). Let GN be the set of all

coalitional games with agent set N. First, to each (θ, l) ∈ SN should be associated a

cost sharing game c(θ, l) ∈ GN. There are multiple ways of defining such a game. The

literature discusses two extreme scenarios based on whether the coalitional members are

served first or last. For each S ⊆ N, in the optimistic scenario, the cost of coalition S,

denoted by cOpt(S)(θ, l)cOpt(S)(θ, l)cOpt(S)(θ, l), is the minimum waiting cost of S when its members are served

first. This scenario has been studied by Maniquet [18] for queueing problems 4. Formally,

for each (θ, l) ∈ SN and each S ⊆ N,

cOpt(S)(θ, l) = ∑
i∈S
θi( ∑

j∈Pi(σS)

l j) = ∑
i∈S
θiLi(σS). (1)

where cOpt(θ, l) ∈ GN and σS ∈ Σ S
∗ (θS, lS).

For each S ⊆ N, according to the pessimistic scenario, the cost of a coalition S, de-

4In queueing, the job processing time of each agent is identical and normalized to 1. The vector of job
processing times is l = (1, 1, . . . , 1)
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noted by cPes(S)(θ, l)cPes(S)(θ, l)cPes(S)(θ, l), as the minimum waiting cost of S when its members are served

last. Formally, for each (θ, l) ∈ SN and each S ⊆ N,

cPes(S)(θ, l) = ∑
i∈S
θi( ∑

j∈N\S
l j + ∑

j∈Pi(σS)

l j) = cOpt(S)(θ, l) + ∑
i∈S
θi( ∑

j∈N\S
l j) (2)

where cPes(θ, l) ∈ GN and σS ∈ Σ S
∗ (θS, lS).

4.1 Generalized sequencing games

The optimistic and pessimistic scenarios are somewhat extreme ways to compute the cost

of serving the members of a coalition. We thus propose a more general way of associating

a sequencing problem to a sequencing game. It includes the optimistic and pessimistic

scenarios as special cases. For each S ⊆ N, let |S| = s where s = {1, 2, . . . , n}. Define

I = {(s, k) | 0 < k ≤ s ≤ |N|}. Given (s, k) ∈ I , the variable s specifies the size of

coalition S and k specifies the position of agent i ∈ S when its members are ordered

efficiently. A weighting function a : I → R associates a real number to each pair (s, k) ∈

I . We now associate with a sequencing problem (θ, l) ∈ SN and a weighting function

a, a generalized sequencing game ca(θ, l) ∈ GN. For each (θ, l) ∈ SN and each S ⊆ N,

ca(S)(θ, l) is the minimum aggregate ”weighted” waiting cost of its members. Then, the

cost of serving the members of S will depend on two things. First is how a coalition

S is treated in comparison to its complement N\S. This determines which positions in

the order are allotted to the members of S. Second, how positions are treated within S.

We allow for the possibility of weighing positions differently instead of assigning equal

weights to all positions. Generalized queueing games have been studied by Kar et al. [15].

We extend the notion to define generalized sequencing games. Let the weight function

satisfy the following. For each i ∈ N,

1. a(|N|,σ(i)) = ∑ j∈Pi(σ)
l j where σ ∈ ΣN

∗ (θ, l) and,
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2. a(1, 1) ∈ [0, ∑ j ̸=i l j].

Then for each (θ, l) ∈ SN and eachφ ̸= S ⊆ N let,

ca(S)(θ, l) = ∑
i∈S

a(|S|,σS(i))θi (3)

where σS ∈ Σ S
∗ (θS, lS).

If for each S ⊆ N, a(|S|,σS(i)) = ∑ j∈Pi(σS)
l j, we get the optimistic scenario according

to which S is served before N\S. If a(|S|,σS(i)) = ∑k∈N\S lk + ∑ j∈Pi(σS)
l j, we get the

pessimistic scenario according to which S is served after N\S. The restriction a(1, 1) ∈

[0, ∑ j ̸=i l j] is a natural one. The left endpoint of the interval [0, ∑ j ̸=i l j] corresponds to

the best-case scenario when an agent is served first in the queue. The right endpoint

corresponds to the worst-case when he is served last (all other agents being served before

him).

Let δ(a) = a(1,1)
∑ j ̸=i l j

∈ [0, 1]. The ”weighted optimistic pessimistic” (WOP) game rela-

tive to δ(a) , denoted by cδ(a) ∈ GN, is the generalized sequencing game associated with

the weighting function a defined as follows: for each (θ, l) ∈ SN and each S ⊆ N let,

cδ(a)(S)(θ, l) = ∑
i∈S

[
δ(a) ∑

j∈N\S
l j + ∑

j∈Pi(σS)

l j

]
θi. (4)

where σS ∈ Σ S
∗ (θS, lS).

For each S ⊆ N, a(|S|,σS(i)) has two components. The component δ(a)∑ j∈N\S l j is the

additional waiting time imposed on i by the members of N\S. The component ∑ j∈Pi(σS)
l j

is the additional waiting time incurred by an agent i ∈ S due to members of S.

5 The Shapley value

The Shapley value is a solution concept from cooperative game theory that assigns a

unique distribution of a total payoff among a group of agents. For a game c ∈ GN, the
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burden imposed by agent i ∈ N on each S ⊆ N\{i} is defined by c(S ∪ {i})− c(S). For

each (θ, l) ∈ SN and each i ∈ N, the Shapley value of i in c is the expected value of the

burden imposed by i on each coalition when all orders are equally likely (Shapley [17]),

namely,

Shi(c) = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! [c(S ∪ {i})− c(S)]. (5)

The following lemma gives an explicit expression the Shapley value of cδ(a) ∈ GN.

Proposition 1. Let (θ, l) ∈ SN and σ ∈ ΣN
∗ (θ, l). For each i ∈ N, the Shapley payoff of i

in cδ(a) ∈ GN is

Shi(cδ(a)) =(1 − δ(a))( ∑
j∈Pi(σ)

θil j/2 + ∑
j∈Fi(σ)

θ jli/2)

+ δ(a)(θi ∑
j ̸=i

l j − ∑
j∈Pi(σ)

θ jli/2 − ∑
j∈Fi(σ)

θil j/2).
(6)

For a set of agents N, we first define a game uT ∈ GN on a coalition T ⊆ N before

proving the lemma.

Definition 1. Let T ⊆ N. The unanimity game on T is the game (N, uT) defined by

setting for each T ⊆ N, uT(S) = 1 if T ⊆ S, and uT(S) = 0 otherwise [Shapley[26]].

Remark 1. A coalitional game c ∈ GN can be uniquely expressed as a linear combination

of unanimity games, i.e., for each c ∈ GN and each S ⊆ N there exists a unique vector

of real numbers (∆S)S⊆N, such that, c = ∑S⊆N ∆SuS. For each S ⊆ N, the dividend of

S in c, the number ∆S, is defined as follows: if |S| = 1, ∆S = c(S) and if |S| > 1,∆S =

c(S)− ∑
T⊂S
T ̸=S

∆T [Shapley[26]].
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Lemma 2. Let cδ(a) ∈ GN. For each S ⊆ N, the dividend ∆S is

∆S =


δ(a)θi(∑ j ̸=i l j) if |S| = 1

(1 − δ(a))mini, j∈S{θi/li,θ j/l j}lil j − δ(a)maxi, j∈S{θi/li,θ j/l j}lil j if |S| = 2

0 if |S| ≥ 3
(7)

Proof.

• Case 1: |S| = 1. Let S = {i}. Then ∆{i} = cδ(a)(i) = δθi(∑ j ̸=i l j).

• Case 2: |S| = 2. Let S = {i, j} and without loss of generality suppose that θi/li ≥

θ j/l j. We have ∆{i, j} = cδ(a){i, j} − ∆{i} − ∆{ j} = (1 − δ)θ jli − δθil j = (1 −

δ)min{θi/li,θ j/l j}lil j − δmaxi, j∈S{θi/li,θ j/l j}lil j.

• Case 3: |S| = 3. Let S = {i, j, k} and without loss of generality suppose that θi/li ≥

θ j/l j ≥ θk/lk. Then ∆{i, j,k} = cδ(a){i, j, k} − ∆{i, j} − ∆{ j,k} − ∆{i,k} − ∆{i} − ∆{ j} −

∆{k} = δθi(∑m∈N\{i, j,k} lm)+δθ j(∑m∈N\{i, j,k} lm)+θ jli +δθk(∑m∈N\{i, j,k} lm)+θk(li +

l j)− [(1 − δ)

θ jli −δθil j]− [(1− δ)θkl j −δθ jlk]− [(1− δ)θkli −δθilk]−δθi(∑m ̸=i lm)−δθ j(∑m ̸= j lm)−

δθk(∑m ̸=k lm) = 0 (all the terms cancel out).

We proceed by induction on the size of the coalition S. Let us assume ∆S′ = 0 for all

S
′

such that 3 ≤ |S′ | ≤ |S|. Without loss of generality, let S = {1, 2, . . . k} be such that
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θ1/l1 ≥ θ2/l2 ≥ . . . ≥ θk/lk. Using the induction hypothesis,

∆S =cδ(a)(S)− ∑
T⊂S;|T|=2

∆T − ∑
T⊂S;|T|=1

∆T

= ∑
i∈S
θi(δ( ∑

j∈N\S
l j) + ∑

j∈Pi(σS)

l j)− [(1 − δ) ∑
i∈S
θi( ∑

j∈Pi(σS)

l j)− δ ∑
i∈S
θi( ∑

j∈Fi(σS)

l j)]− δ ∑
i∈S
θi(∑

j ̸=i
l j)

=δ ∑
i∈S
θi( ∑

j∈N\S
l j) + δ ∑

i∈S
θi( ∑

j∈S\{i}
l j)− δ ∑

i∈S
θi(∑

j ̸=i
l j)

=0

This proves the claim and we can now show Lemma 2.

Proof. The Shapley value is obtained by distributing the dividend of each coalition among

its members. The Shapley payoff of agent i ∈ N in the game c is given by Shi(c) = ∑
S⊆N
i∈S

∆S
|S|

[Harsanyi [14]. By substituting Eq. (7) in this expression, we obtain

Shi(cδ(a)) =δθi(∑
j ̸=i

l j) +
(1 − δ)

2 ∑
j∈N\{i}

min{θi/li,θ j/l j}lil j −
δ

2 ∑
j∈N\{i}

max{θi/li,θ j/l j}lil j

=δθi ∑
j ̸=i

l j +
(1 − δ)

2
(θi ∑

j∈Pi(σ)

l j + li ∑
j∈Fi(σ)

θ j)−
δ

2
(θi ∑

j∈Fi(σ)

l j + li ∑
j∈Pi(σ)

θ j)

=(1 − δ)( ∑
j∈Pi(σ)

θil j/2 + ∑
j∈Fi(σ)

θ jli/2) + δ(θi ∑
j ̸=i

l j − ∑
j∈Pi(σ)

θ jli/2 − ∑
j∈Fi(σ)

θil j/2).

(8)

The desired conclusion.

Remark 2. For each (θ, l) ∈ SN and each i ∈ N, if i’s disutility is his Shapley payoff from

the associated cost sharing game cδ(a) ∈ GN (in Lemma 2) then his consumption of money

is

τi = (1 − δ)( ∑
j∈Pi(σ)

θil j/2 − ∑
j∈Fi(σ)

θ jli/2) + δ( ∑
j∈Pi(σ)

θ jli/2 − ∑
j∈Fi(σ)

θil j/2).

where σ ∈ ΣN
∗ (θ, l) is an efficient order on N.
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6 Disutility upper bound (DUB)

This section imposes upper bounds on agents’ disutilities from waiting. Such upper

bounds act as safety nets and shield agents from arbitrarily high disutilities due to un-

predictability of waiting times. The “disutility upper bound relative to a benchmark” has

been formally defined below. We also define the Shapley rule and find a necessary and

sufficient condition on the upper bounds for the Shapley rule to satisfy this property.

Its counterpart, namely the ”generalized welfare lower bound relative to a benchmark”

guarantees every agent a minimum level of utility and has been studied by Banerjee et.

al [1].

Let O : Rn
++ → Rn

++. Given a sequencing problem (θ, l) ∈ SN, let agent i’s upper bound

be given by θiOi(l). This expression encompasses all upper bounds of multiplicative

form since Oi(l) can be any function of the vector of job processing times l. Specifically,

for identical costs bound (ICB), i’s upper bound isθi(n− 1)li/2 where Oi(l) = (n− 1)li/2.

For expected costs bound (ECB), i’s upper bound is θi ∑ j ̸=i l j/2 where Oi(l) = ∑ j ̸=i l j/2.

The functional form of Oi(l) varies depending on the particular bound being consid-

ered. For ease of verbal expression, we will call Oi(l) to be ”agent i’s benchmark” and

O(l) := (O1(l), . . . , On(l)) ∈ Rn to be the vector of such benchmarks.

Definition 2. (Banerjee et.al [1]) An allocation rule ψ satisfies the disutility upper bound

relative to benchmark O if for each (θ, l) ∈ SN, each (σ , τ) ∈ X(θ, l), and each i ∈ N we

have:

πi(σ , τi) ≤ θiOi(l)

The definition implies that, in the absence of any consumption of money, agent i is

assured that his disutility will not exceed his upper bound θiOi(l).

Let us associate to each sequencing problem a weighted optimisic pessimistic cost

game. The “Shapley rule” maps each sequencing problem to a set of allocations such that

disutility of every agent at that allocation is equal to his Shapley payoff from the asso-
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ciated WOP cost game. We show that the Shapley rule satisfies disutility upper bound

relative to benchmark O if and only if each agent’s benchmark is greater than or equal

to half the aggregate job processing times of all other agents (excluding him). The lat-

ter can be interpreted as follows: each agent’s upper bound is at least as much as his

expected cost of waiting when all orders are equally likely, i.e, for each i ∈ N, we have

θiOi(l) ≥ θi ∑ j ̸=i l j/2 where the right hand side is i’s expected waiting cost when all or-

ders are equally likely.

We formally define the Shapley rule and state the result.

Let ψSh : SN →→ Σ ×RN. To each (θ, l) ∈ SN is associated cδ(a)(θ, l) ∈ GN where

δ(a) ∈ [0, 1]. Define X̂(θ, l) = {(σ , τ) ∈ Σ × RN | πi(σ , τi) = Shi(cδ(a)(θ, l)) for each

i ∈ N}.

Theorem 1. The following statements are equivalent:

1. For each (θ, l) ∈ SN, each (σ , τ) ∈ X̂(θ, l) and each i ∈ N,

πi(σ , τi) ≤ θiOi(l)

where πi(σ , τi) = Shi(cδ(a)(θ, l)).

2. For each (θ, l) ∈ SN and each i ∈ N, Oi(l) ≥ ∑ j ̸=i
l j
2 .

Proof.

(A) 1 ⇒ 2: For (θ, l) ∈ SN and each i ∈ N, πi(σ , τi) the disutility of i ∈ N (correspond-

ing to his Shapley payoff in the game cδ(a)) satisfies the DUB property relative to O
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if,

Shi(cδ(a)) ≤ θiOi(l) ⇒(1 − δ)( ∑
j∈Pi(σ)

θil j/2 + ∑
j∈Fi(σ)

θ jli/2)+

δ(θi ∑
j ̸=i

l j − ∑
j∈Pi(σ)

θ jli/2 − ∑
j∈Fi(σ)

θil j/2) ≤ θiOi(l)

⇒(1 − δ)( ∑
j∈Pi(σ)

θil j/2 + ∑
j∈Fi(σ)

θ jli/2)+

δ(θi ∑
j ̸=i

l j − ∑
j∈Pi(σ)

θ jli/2 − ∑
j∈Fi(σ)

θil j/2)−θiOi(l)

≤0.

For each i ∈ N, let Oi(l) = ∑ j ̸=i l j/2 +ϵi. Adding and subtracting δθi(∑ j ̸=i l j)/2 we

get,

(1 − δ)
2

( ∑
j∈Fi(σ)

θ jli − ∑
j∈Fi(σ)

θil j) +
δ

2
( ∑

j∈Pi(σ)

θil j − ∑
j∈Pi(σ)

θ jli)−θiϵi ≤ 0.

Since σ ∈ ΣN
∗ (θ, l) is an efficient ordering on N, for each i ∈ N, if j ∈ Fi(σ) we have

θi/li ≥ θ j/l j. This implies that the term ∑ j∈Fi(σ)
θ jli − ∑ j∈Fi(σ)

θil j ≤ 0. Further, for

each i ∈ N, if j ∈ Pi(σ) we have θ j/l j ≥ θi/li. This implies that the second term

∑ j∈Pi(σ)
θil j − ∑ j∈Pi(σ)

θ jli ≤ 0. With the entire expression being non-positive and

θi ∈ R++ we have ϵi ≥ 0. This proves the necessity of Oi(l) ≥ ∑ j ̸=i
l j
2 .

(B) 2 ⇒ 1: For each i ∈ N, Oi(l) ≥ ∑ j ̸=i l j/2. The disutility of i is given by his Shap-

ley payoff Shi(cδ(a)). For each such agent, let Oi(l) = ∑ j ̸=i l j/2 and consider the
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expression,

Shi(cδ(a))−θiOi(l) =(1 − δ)( ∑
j∈Pi(σ)

θil j/2 + ∑
j∈Fi(σ)

θ jli/2)+

δ(θi ∑
j ̸=i

l j − ∑
j∈Pi(σ)

θ jli/2 − ∑
j∈Fi(σ)

θil j/2)−θi ∑
j ̸=i

l j/2

=(1 − δ)( ∑
j∈Pi(σ)

θil j/2 + ∑
j∈Fi(σ)

θ jli/2)+

δ( ∑
j∈Pi(σ)

θil j + ∑
j∈Fi(σ)

θil j/2 − ∑
j∈Pi(σ)

θ jli/2)−θi ∑
j ̸=i

l j/2

(By adding and subtracting the term δθi ∑
j ̸=i

l j/2)

=
1 − δ

2
( ∑

j∈Fi(σ)

θ jli − ∑
j∈Fi(σ)

θil j) +
δ

2
( ∑

j∈Pi(σ)

θil j − ∑
j∈Pi(σ)

θ jli).

Since σ ∈ ΣN
∗ (θ, l) is an efficient ordering on N, for each i ∈ N, if j ∈ Fi(σ) we

have θi/li ≥ θ j/l j. This implies that the first term ∑ j∈Fi(σ)
θ jli − ∑ j∈Fi(σ)

θil j ≤

0. Further, for each i ∈ N, if j ∈ Pi(σ) we have θ j/l j ≥ θi/li. This implies

that the second term ∑ j∈Pi(σ)
θil j − ∑ j∈Pi(σ)

θ jli ≤ 0. Thus, Shi(cδ(a)) − θiOi(l) =

1−δ
2 (∑ j∈Fi(σ)

θ jli − ∑ j∈Fi(σ)
θil j) +

δ
2(∑ j∈Pi(σ)

θil j − ∑ j∈Pi(σ)
θ jli) ≤ 0. For each i ∈ N,

we have Shi(cδ(a)) ≤ θiOi(l) = θi ∑ j ̸=i l j/2 ≤ θi ∑ j ̸=i l j/2 +ϵi where ϵi ≥ 0. Hence,

proved.

Remark 3. The lower bound ∑ j ̸=i
l j
2 has a very natural interpretation. It is the average

waiting time of each agent when all orders are equally likely. For each σ ∈ Σ (θ, l) and

each i ∈ N, define σ c
i = n + 1 −σi. Let σ c ∈ Σ (θ, l) be the complement order of an order

σ ∈ Σ (θ, l). An agent j ̸= i precedes agent i in an order σ ∈ Σ (θ, l) if and only if he does

not precede i in its complement orderσ c ∈ Σ (θ, l). When all orders are equally likely, the

processing time of each j ̸= i appears in i’s waiting time with probability 1
2 .
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7 The core

This section explores the cost sharing concepts of core and anticore in the optimistic sce-

nario. Let GN be the set of all coalitional games with player set N. Let c ∈ GN be a cost

sharing game. An allocation for c is vector x = (x1, x2, . . . , xn) ∈ Rn where for each i ∈ N,

xi is the cost share of agent i. For each coalition S ⊆ N, x(S) is the sum of individual cost

shares of the members of S. An allocation x ∈ RN is efficient for c ∈ GN if x(N) = c(N).

The set of efficient allocations in c is denoted by X(c). The core of c, denoted by Core(c),

is the set {x ∈ X(c) | x(S) ≤ c(S) for each S ⊆ N}.

The next theorem provides a necessary and sufficient condition on δ for the Shapley

payoff vector to be a core stable allocation in a WOP sequencing game.

Theorem 2. For cδ(a) ∈ GN relative to δ(a) we have {Shi(cδ(a))}i∈N ∈ Core(cδ(a)) if and

only if δ(a) ≥ 1
2 .

Proof.

Case A: Given δ(a) ≥ 1
2 , we prove that the Shapley payoff vector satisfies all the core

constraints.

1. For each i ∈ N, ∑i∈N Shi(cδ(a)) = cδ(a)(N).
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Proof: For each i ∈ N, using equation (6) in proposition (1) we have,

∑
i∈N

Shi(cδ(a)) = (1 − δ) ∑
i∈N

( ∑
j∈Pi(σ)

θil j/2 + ∑
j∈Fi(σ)

θ jli/2)+

δ ∑
i∈N

(θi ∑
j ̸=i

l j − ∑
j∈Pi(σ)

θ jli/2 − ∑
j∈Fi(σ)

θil j/2)

= (1 − δ) ∑
i∈N

(θi ∑
j∈Pi(σ)

l j)+

δ ∑
i∈N

[θi( ∑
j∈Pi(σ)

l j + ∑
j∈Fi(σ)

l j)− ∑
j∈Pi(σ)

θ jli/2 − ∑
j∈F(σ)

θil j/2]

= (1 − δ) ∑
i∈N

(θi ∑
j∈Pi(σ)

l j)+

δ ∑
i∈N

[θi( ∑
j∈Pi(σ)

l j) + ∑
j∈Fi(σ)

θil j/2 − ∑
j∈Pi(σ)

θ jli/2]

= (1 − δ) ∑
i∈N

(θi ∑
j∈Pi(σ)

l j)+

δ ∑
i∈N

θi( ∑
j∈Pi(σ)

l j)− δ ∑
i∈N

( ∑
j∈Fi(σ)

θil j)/2 + δ ∑
i∈N

( ∑
j∈Pi(σ)

θ jli)/2

= (1 − δ) ∑
i∈N

(θi ∑
j∈Pi(σ)

l j) + δ ∑
i∈N

θi( ∑
j∈Pi(σ)

l j)

= cδ(a)(N)

(9)

where σ ∈ Σ , as claimed.

2. For each i ∈ N, Shi(cδ(a)) ≤ cδ(a)({i}).

Proof. For cδ(a) ∈ GN, consider the following for each i ∈ N,
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Shi(cδ(a))− cδ(a)({i}) = (1 − δ)( ∑
j∈Pi(σ)

θil j/2 + ∑
j∈Fi(σ)

θ jli/2)+

δ(θi ∑
j ̸=i

l j − ∑
j∈Pi(σ)

θ jli/2 − ∑
j∈Fi(σ)

θil j/2)− δ(∑
j ̸=i
θil j)

= (1 − δ)( ∑
j∈Pi(σ)

θil j/2 + ∑
j∈Fi(σ)

θ jli/2)− δ( ∑
j∈Pi(σ)

θ jli/2 + ∑
j∈Fi(σ)

θil j/2)

By efficiency of σ ∈ ΣN
∗ (θ, l), for each i ∈ N we have ∑ j∈Pi(σ)

θ jli ≥ ∑ j∈Pi(σ)
θil j and

∑ j∈Fi(σ)
θil j ≥ ∑ j∈Fi(σ)

θ jli. Combining this with the fact that δ ≥ 1
2 , we get for each

i ∈ N, Shi(cδ(a))− cδ(a)({i}) ≤ 0.

3. For each S ⊂ N, ∑i∈S Shi(cδ(a)) ≤ cδ(a)(S).

Proof: For cδ(a) ∈ GN, using proposition 1 we can write,

∑
i∈S

Shi(cδ(a)) = (1 − δ) ∑
i∈S

(
∑

j∈Pi(σ)

θil j/2 + ∑
j∈Fi(σ)

θ jli/2
)
+ δ∑

i∈S

(
θi ∑

j ̸=i
l j − ∑

j∈Pi(σ)

θ jli/2 − ∑
j∈Fi(σ)

θil j/2
)

= (1 − δ) ∑
i∈S

(
∑

j∈Pi(σ)
j∈S

θil j/2 + ∑
j∈Pi(σ)

j/∈S

θil j/2 + ∑
j∈Fi(σ)

j∈S

θ jli/2 + ∑
j∈Fi(σ)

j/∈S

θ jli/2
)
+ δ∑

i∈S

(
θi ∑

j ̸=i
l j

)
−

δ∑
i∈S

(
∑

j∈Pi(σ)
j∈S

θ jli/2 + ∑
j∈Pi(σ)

j/∈S

θ jli/2 + ∑
j∈Fi(σ)

j∈S

θil j/2 + ∑
j∈Fi(σ)

j/∈S

θil j/2
)

Note that ∑i∈Sθi

(
∑

j∈Pi(σ)
j∈S

l j

)
= ∑i∈S li

(
∑

j∈Fi(σ)
j∈S

θ j

)
. Similarly, ∑i∈S li

(
∑

j∈Pi(σ)
j∈S

θ j

)
= ∑i∈Sθi

(
∑

j∈Fi(σ)
j∈S

l j

)
.

We can write the following,
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∑
i∈S

Shi(cδ(a)) = ∑
i∈S
θi

[
(1 − δ) ∑

j∈Pi(σ)
j∈S

l j − δ ∑
j∈Fi(σ)

j∈S

l j + δ∑
j ̸=i

l j

]
+

∑
i∈S

[
(1 − δ)

(
∑

j∈Pi(σ)
j/∈S

θil j/2 + ∑
j∈Fi(σ)

j/∈S

θ jli/2
)
− δ

(
∑

j∈Pi(σ)
j/∈S

θ jli/2 + ∑
j∈Fi(σ)

j/∈S

θil j/2
)]
(10)

.

Claim 1. For cδ(a) ∈ GN and each S ⊆ N we have the following:

∑
i∈S
θi

[
(1 − δ) ∑

j∈Pi(σ)
j∈S

l j − δ ∑
j∈Fi(σ)

j∈S

l j + δ∑
j ̸=i

l j

]
− cδ(a)(S) = 0 (11)

where σ ∈ ΣN
∗ (θ, l).

Proof. Consider the expression on the left hand side of equation 11. Using equations 3

and 4 we have, ∑
i∈S
θi

[
(1−δ) ∑

j∈Pi(σ)
j∈S

l j −δ ∑
j∈Fi(σ)

j∈S

l j

]
+δ ∑

i∈S
θi

(
∑

j∈N\S
l j + ∑

j∈Pi(σ)
j∈S

l j + ∑
j∈Fi(σ)

j∈S

l j

)
−

∑
i∈S
θi

[
δ( ∑

j∈N\S
l j) + ∑

j∈Pi(σS)
l j

]
= 0. As claimed.

Using claim (1) in equation (10) we have the following:

∑
i∈S

Shi(cδ(a))− cδ(a)(S) = ∑
i∈S

[
(1 − δ)

(
∑

j∈Pi(σ)
j/∈S

θil j/2 + ∑
j∈Fi(σ)

j/∈S

θ jli/2
)

− δ
(

∑
j∈Pi(σ)

j/∈S

θ jli/2 + ∑
j∈Fi(σ)

j/∈S

θil j/2
)]
(12)

By efficiency ofσ ∈ ΣN
∗ (θ, l), for each i ∈ S, ∑

j∈Pi(σ)
j/∈S

θ jli ≥ ∑
j∈Pi(σ)

j/∈S

θil j and ∑
j∈Fi(σ)

j/∈S

θil j ≥ ∑
j∈Fi(σ)

j/∈S

θ jli.

Combining this with the fact that δ(a) ≥ 1
2 , we get for each S ⊂ N, ∑i∈S Shi(cδ(a))− cδ(a)(S) ≤ 0.

22



This proves sufficiency.

Case B: For cδ(a) ∈ GN, {Shi(cδ(a))}i∈N ∈ Core(cδ(a)) ⇒ δ(a) ≥ 1
2 .

Proof. For cδ(a) ∈ GN, by definition of the core, ∑i∈N Shi(cδ(a)) = cδ(a)(N) and for each

S ⊂ N, ∑i∈S Shi(cδ(a)) ≤ cδ(a)(S). Using the expression in equation 12 we can write for

each S ⊂ N,

∑
i∈S

Shi(cδ(a))− cδ(a)(S) ≤ 0

⇒ ∑
i∈S

[
(1 − δ)

(
∑

j∈Pi(σ)
j/∈S

θil j/2 + ∑
j∈Fi(σ)

j/∈S

θ jli/2
)
− δ

(
∑

j∈Pi(σ)
j/∈S

θ jli/2 + ∑
j∈Fi(σ)

j/∈S

θil j/2
)]

≤ 0

Let δ(a) = 1
2 +ϵ. Rewriting the above expression,

⇒ ∑
i∈S

[
(

1
2
−ϵ)

(
∑

j∈Pi(σ)
j/∈S

θil j/2 + ∑
j∈Fi(σ)

j/∈S

θ jli/2
)
− (

1
2
+ϵ)

(
∑

j∈Pi(σ)
j/∈S

θ jli/2 + ∑
j∈Fi(σ)

j/∈S

θil j/2
)]

≤ 0

⇒ ∑
i∈S

[
1
2

(
∑

j∈Pi(σ)
j/∈S

θil j/2 + ∑
j∈Fi(σ)

j/∈S

θ jli/2
)
− 1

2

(
∑

j∈Pi(σ)
j/∈S

θ jli/2 + ∑
j∈Fi(σ)

j/∈S

θil j/2
)]

−ϵ∑
i∈S

[(
∑

j∈Pi(σ)
j/∈S

θil j/2 + ∑
j∈Fi(σ)

j/∈S

θ jli/2
)
+

(
∑

j∈Pi(σ)
j/∈S

θ jli/2 + ∑
j∈Fi(σ)

j/∈S

θil j/2
)]

≤ 0

By efficiency ofσ ∈ ΣN
∗ (θ, l), for each i ∈ S we have ∑

j∈Pi(σ)
j/∈S

θ jli ≥ ∑
j∈Pi(σ)

j/∈S

θil j and ∑
j∈Fi(σ)

j/∈S

θil j ≥ ∑
j∈Fi(σ)

j/∈S

θ jli.

The first term, ∑i∈S

[
1
2

(
∑

j∈Pi(σ)
j/∈S

θil j/2 + ∑
j∈Fi(σ)

j/∈S

θ jli/2
)
− 1

2

(
∑

j∈Pi(σ)
j/∈S

θ jli/2 + ∑
j∈Fi(σ)

j/∈S

θil j/2
)]

≤ 0.

Since the entire expression is non-positive and for each S ⊂ N, the term,

∑i∈S

[(
∑

j∈Pi(σ)
j/∈S

θil j/2 + ∑
j∈Fi(σ)

j/∈S

θ jli/2
)
+

(
∑

j∈Pi(σ)
j/∈S

θ jli/2 + ∑
j∈Fi(σ)

j/∈S

θil j/2
)]

> 0, we must have ϵ ≥ 0.

This proves the necessary condition and shows that δ(a) ≥ 1
2 .

23



8 Player specific games

In this section, we define a class of games called ”player specific (PS) games” for which the Shapley

value and the prenucleolus of the game coincide (Kar et.al [15]). We first define the PS-property

which states that the sum of a player’s contribution (burden) to any coalition S and its complement

N\S ∪ {i} is a player specific constant. For c ∈ GN , for each S ⊆ N\{i} and each i ∈ N, let

∆ic(S) = c(S ∪ {i})− c(S) be the burden imposed on S when agent i joins S.

Definition 3. A game c ∈ GN satisfies the PS-property if for each S ⊆ N\{i} and each i ∈ N, there

exists ζi ∈ R such that ∆ic(S) + ∆ic(N\S ∪ {i}) = ζi.

A game which satisfies the PS-property is called a PS-game and this class of games is denoted

by GN
PS.

For c ∈ GN , the excess of a coalition S at an allocation x ∈ Rn, denoted by e(S, x, c), is defined

as c(S)− x(S). Construct the vectorγ(x) by arranging the 2n − 2 excesses corresponding to proper

non-empty subsets of N in a non-decreasing order 5. If y, z ∈ X(c) then y ≻L z means that γ(y) is

lexicographically larger than γ(z). We use y ≻L z to indicate that either y ⪰L z or y = z.

Definition 4. The prenucleolus of game c ∈ GN is the set PreN(c) = {x ∈ X(c) | γ(x) ⪰L

γ(y) for each

y ∈ X(c)}.

We state the following result from Kar et. al [15].

Theorem 3. If c ∈ GN
PS, then Sh(c) = PreN(c).

Our next result shows that the weighted optimistic pessimistic sequencing game relative to

δ(a) satisfies the PS-property.

Theorem 4. For each a, cδ(a) ∈ GN is a PS-game.

5We ignore the grand coalition since for each x ∈ X(c), e(N, x, c) = 0.
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Proof. For cδ(a) ∈ GN , consider the following for each i ∈ N and each S ∈ N\S ∪ {i}.

∆icδ(a)(S) + ∆icδ(a)(N\S ∪ {i})

= θi

(
δ ∑

j∈N\S∪{i}
l j + ∑

j∈Pi(σS∪{i})

l j

)
+ ∑

k∈S
θk

[
δ

(
∑

j∈N\S∪{i}
l j − ∑

j∈N\S
l j

)
+ ∑

j∈Pk(σS∪{i})

l j − ∑
j∈Pk(σS)

l j

]

+θi

(
δ ∑

j∈S
l j + ∑

j∈Pi(σN\S)

l j

)
+ ∑

k∈N\S∪{i}
θk

[
δ

(
∑
j∈S

l j − ∑
j∈S∪{i}

l j

)
+ ∑

j∈Pk(σN\S)

l j − ∑
j∈Pk(σN\S∪{i})

l j

]

= θi

(
δ ∑

j∈N\{i}
l j + ∑

j∈Pi(σ)

l j

)
− δli ∑

k∈N\{i}
θk + li ∑

k∈Fi(σ)

θk

(13)

where σ ∈ ΣN
∗ (θ, l) and σS ∈ Σ S

∗ (θS, lS). The right hand side of equation (13) is independent of

S.

Corollary 1. For cδ(a) ∈ GN , Sh(cδ(a)) = PreN(cδ(a)).

Theorem 5. For cδ(a) ∈ GN relative to δ(a), Core(cδ(a)) ̸= φ iff δ(a) ≥ 1
2 .

Proof. The ”if” part follows directly from theorem (2). To show the ”only if” part, let us assume

that δ(a) < 1
2 . Using theorem (2) and corollary (1) we can say that for cδ(a) ∈ GN , PreN(cδ(a)) /∈

Core(cδ(a)). Since it is given that Core(cδ(a)) ̸= φ, the prenucleolus coincides with the nucleolus

of the game. This contradicts the fact that if the core is non-empty, then the nucleolus is in the

core.

9 Conclusion

This paper takes a cooperative game theoretic approach to study sequencing problems. We as-

sociate to each sequencing problem a cost sharing game and identify a necessary and sufficient

condition for allocations to be efficient, fair (in the spirit of Shapley value) and stable (defined by

core-stability). There are a few immediate extensions to this paper. One, what happens if we do

not assume linearity of costs? Two, what are the characterizing axioms of the Shapley value from

the weighted optimistic pessimistic game? Three, what happens if there are multiple machines

instead of a single server? Four, can we allow for dynamic arrival of agents instead of a fixed set

25



of agents who arrive at the same time to process their jobs? It will be interesting and worthwhile

to explore each of these questions for future research.
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