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Abstract

The Common Correlated Effects (CCE) estimator is a popular method to estimate panel data regression
models with interactive effects. Due to its simplicity in approximating the common factors with cross-
section averages of the observables, it lends itself to a wide range of applications. They include static
and dynamic models, homogeneous or heterogeneous coefficients or possibly very general types of fac-
tor structure. Despite such flexibility, with very few exceptions, CCE properties are usually examined
under a restrictive assumption that all the observed variables load on the same set factors, which en-
sures joint identification of the factor space. In this paper, we explore an empirically relevant scenario
when the dependent and explanatory variables are driven by distinct but correlated factors. In doing
this, we consider panel dimensions such that TN−1 → τ < ∞ as (N, T) → ∞, which is known to in-
duce an asymptotic bias in CCE setting. We subsequently develop a toolbox to perform asymptotically
valid inference in homogeneous and heterogeneous panels.

JEL classification: C33, C38, C15
Keywords: panel data, bootstrap, interactive effects, CCE, factors, information criterion

1 Introduction

We consider the following interactive effects model for unit i = 1, . . . , N and period t = 1, . . . , T:

yi,t = β′xi,t + ei,t, ei,t = γ′
ift + ε i,t, (1.1)

where yi,t ∈ R is the dependent variable, xi,t ∈ Rk represents explanatory variables, and β is the param-
eter vector of interest. Equation (1.1) defines a multi-factor error structure permitting the cross-section
units to be affected by common unobserved factors ft ∈ Rm to which they can respond with heteroge-
neous intensities (loadings) γi ∈ Rm. Factors drive the co-movements in the variable yi,t and induce
“strong” cross-section dependence (see e.g. Chudik et al., 2011), while the idiosyncratic mean-zero inno-
vations ε i,t ∈ R are assumed to be covariance stationary and weakly dependent over time. Interactive
effects come natural in macroeconomic applications with panel data where both N and T are large (see
Westerlund et al., 2019, for small T, or micro, examples). Here, ft may represent the unobserved global
technological progress (with γi representing the local absorption intensity) that is relevant for modelling
long-run growth (see e.g. Eberhardt and Teal, 2011), or business cycles that mediate the relationship be-
tween public debt and economic growth (see e.g. Eberhardt and Presbitero, 2015, or Chudik et al., 2017).

It is natural for ft to be correlated with xi,t. Therefore, by following Pesaran (2006) we let

xi,t = Γ′
ift + vi,t, (1.2)
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where Γi ∈ Rm×k is the loading matrix and vi,t ∈ Rk is the vector of idiosyncratic errors. Hence, the
model in (1.1) - (1.2) exhibits not only strong cross-section dependence, but also endogeneity making it
essential to control for ft. The Common Correlated Effects (CCE) approach by Pesaran (2006) estimates
the factor space with the cross-section averages (CAs) of the observables f̂t = zt =

1
N ∑N

i=1 zi,t, where zi,t =
[yi,t, x′i,t]

′ ∈ Rk+1, and adds them as regressors to (1.1), which is in turn estimated by Least Squares (LS).
CCE enjoys popularity due to its simplicity and excellent small sample performance (see e.g. Westerlund
and Urbain, 2015), hence it has been used in various settings such as structural breaks modelling or unit
root testing (see Karavias et al., 2023, and Norkutė and Westerlund, 2021).

A necessary condition for informativeness about the factor space is m ≤ k + 1, which means that we
have enough CAs to proxy ft. If the CAs are informative, then f̂t is consistent for (the space spanned by)
the factors and LS yields consistent estimates of β as N → ∞ for T fixed or growing (see Westerlund et al.,
2019). In large T panels, if TN−1 → 0, standard normal inference ensues, whereas if TN−1 → τ < ∞,
a bias-correction is unavoidably needed due to accumulation of the factor estimation error generated at
every t = 1, . . . , T (see e.g. Westerlund and Urbain, 2015). The structure of the bias depends on whether
m = k + 1 or m < k + 1, because in the latter case the excess CAs result in nuisance parameters due to
asymptotic singularity of 1

T ∑T
t=1 f̂t f̂′t (see Karabiyik et al., 2017; also see Westerlund and Urbain, 2013, or

De Vos and Stauskas, 2024, for the potential solutions). Both fixed- and large-T settings need a strong
assumption that all the factors are estimable by the CAs. However, if some factors are unattended, then
even consistency of CCE might break down. Therefore, in the current paper we put this assumption to
test. While there are several situations in which the CAs can be uninformative (e.g. when C is very sparse),
we focus on the very estimation mechanics of CCE, where the dependent and explanatory variables load
on the same set of factors, and yt alone can proxy only one unique factor at most.

To make the above discussion a little more precise, by inserting (1.2) into (1.1), we get zi,t = C′
ift + ui,t

and zt = f̂t = C
′
ft + ut, where C ∈ Rm×(k+1) is a function of Γ and γ, and ut is negligible as N → ∞

under a wide variety of empirically relevant assumptions (see e.g. Pesaran and Tosetti, 2011). If the row
rank of C is m for all N including N → ∞, then

ft = (C
′
)+
[
f̂t − ut

]
≈ (C

′
)+ f̂t, (1.3)

where C
+
= C

′
(CC

′
)−1 is the Moore-Penrose (MP) inverse of C. The result in (1.3) implies that the CAs

jointly span the factor space asymptotically. While the row rank condition is sufficient for the approxima-
tion, it is not guaranteed to hold in many empirically relevant scenarios. Indeed, by following Cui et al.
(2022), we split the total factors into ft = [f′y,t, f′x,t]

′, such that m = my + mx and Cov(fy,t, fx,t) ̸= 0my×mx .
Plus, the rank of Γ is mx, so that xt is informative for fx,t. The cases interesting to us are the following:

1. fy,t ∩ fx,t = Ø, so that (1.1) - (1.2) are driven by the “distinct” sets of factors.

2. fx,t ⊂ fy,t, so that yi,t contains additional factors.

If my > 1, it is possible that m > k + 1, thus C
+

does not exist and the representation in (1.3) is not valid,
which renders the CCE estimator inconsistent. It is so, because yt is a single CA, and it contributes to
estimation of the total ft when fy,t = fx,t = ft, i.e. all CAs estimate the same factors. Otherwise, we need
my = 1, so that yt is informative about its single factor in case 1, or there is at most one additional factor
in case 2. Neither of these cases can typically be tested in practice, therefore, a robust approach is needed.

Several versions of the distinct factor case have been considered in the literature with clear advantages
and drawbacks. For example, Bai (2009) or Moon and Weidner (2015) in the Principal Components (PC)
context assume factors in ei,t from (1.1) only as they use high-level conditions to determine correlation
between fy,t and xi,t. While flexible, such approach relies on a non-linear optimization problem, therefore
convergence issues may arise (see e.g. Jiang et al., 2021). For CCE, Juodis (2022) considers ft = [f′1,t, f′2,t]

′
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that drives xi,t, while yi,t loads on f1,t only, which can be nested in (1.1) - (1.2). Here, f2,t is not estimable
from the CAs since its average loading has zero rank. After the appropriate regularization of the CCE
estimator, zt remains informative about f1,t, which means that yi,t and xi,t again jointly identify the factor
space. The setup closest to ours is discussed in Cui et al. (2022), who aim to produce an unbiased estima-
tor of β with the Two Stage Instrumental Variable (2SIV) approach. Specifically, fx,t is estimated with PC,
and xi,t is purged of their effect thus “de-correlating” it with ei,t in (1.1) and ensuring consistency (see their
Proposition 3.1). Next, PC is applied to the first stage residuals yi,t − β̂

′
xi,t to extract fy,t. This leads to the

second stage, where fy,t is asymptotically purged ensuring an asymptotically standard normal inference.
We utilize the latter strategy in the CCE context to solve the problem of a limited informativeness of

yt. As the rank condition of Γ holds, it validates the (first stage) de-correlation step. Our central finding
is that the remaining fy,t may still seriously affect the asymptotic distribution of CCE. Moreover, the dis-
tribution is non-standard if mx < k, so that the excess CAs still retain a non-trivial effect (see a similar
finding in Juodis, 2022). As f̂y,t is typically unavailable, we aid the second stage with the cross-section
(CS) bootstrap scheme introduced by Kapetanios (2008) in panel data context, and formalized by De Vos
and Stauskas (2024) for the CCE regressions when N and T are large. In particular, we demonstrate that
the variance of the asymptotic distribution and the bias depend on the unknown covariance between fx,t

and fy,t, and in turn we formulate conditions under which CS bootstrap is able to replicate this distribu-
tion. As a result, this enables estimation of the asymptotic variance and allows accommodation of the
usual TN−1 → τ < ∞ bias in the spirit of Gonçalves and Perron (2014) or Djogbenou et al. (2015).

In the pursuit of re-establishing asymptotically valid inference, we consider homogeneous and het-
erogeneous panels. Specifically, we let β be either constant or vary across individuals, which leads to
the analysis of the so-called Pooled (CCEP) or Mean Group (CCEMG) estimators. Under homogeneous
slopes, irrespective if TN−1 → τ < ∞ or TN−1 → 0, the asymptotic distribution of the CCEP estimator is
non-standard if any redundant CAs (mx < k) are used to estimate the factor space, and this result echoes
findings of Juodis et al. (2021) (see their Theorem 1). The reason for this is interaction between the accu-
mulated factor estimation error and covariance between the two sets of factors. In such case, CS bootstrap
is not consistent as the non-normal part driven by the redundant averages is exacerbated by the bootstrap-
induced randomness. In order to exactly match the number of CAs and mx, we employ an Information
Criterion in the spirit of Margaritella and Westerlund (2023). In case of heterogeneous slopes, both CCEP
and CCEMG estimators are asymptotically normal and unbiased irrespective if mx = k or mx < k, which
corresponds to the result in Theorem 2 of Cui et al. (2022) in the PC setting. The intuition lies in the fact
that slope heterogeneity dominates the asymptotic distribution of both estimators, meaning that fy,t plays
the same role as the idiosyncratic error component. This result is also captured by the CS bootstrap. The
major implication of our proposed toolbox is that as long as the rank of Γ is mx, then asymptotically valid
inference can ensue irrespective of whether yt is informative or not, mx = k or mx < k, or the slopes are
heterogeneous or not. This significantly boosts applicability of the CCE methods.

The remainder of this paper is organized as follows: in Section 2 we provide our assumptions with
the details on the estimators and an explanation of the CS bootstrap scheme. In Section 3, we derive the
asymptotic distribution of CCEP and CCEMG in the original and bootstrap samples and discuss inference
by exploring the asymptotic variance estimator. Monte Carlo evidence and a comparison 2SIV approach
by Cui et al. (2022) are provided in Section 4. We use the following notation: rk(A), det(A) and tr(A)
denote respectively the rank, determinant, and trace of an arbitrary matrix A, while vec(A) vectorizes
A by stacking its columns on top of each other. ∥A∥ =

√
tr(A′A) is the Frobenius (Euclidean) norm,

while ’→d’ stands for convergence in distribution. By diag(A, B), we represent a matrix with A and B
as diagonal blocks. Next, ∥An∥ = Op(an) means that a random vector sequence An is at most of order
an in probability, where an ∈ R++ is a generic deterministic sequence. ∥An∥ = op(an) means it is of
smaller order in probability than an. Finally, the symbols →p∗ (→p) and →d∗ (→d) represent convergence
in probability, and convergence in distribution with respect to the induced (generic) probability measure.
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2 Econometric Setup

2.1 Assumptions and Estimation

Consider model (1.1) - (1.2) in time-stacked notation

yi = Xiβ + Fyγi + εi, Xi = FxΓi + Vi, (2.1)

where, yi = [yi,1, . . . , yi,T]
′ ∈ RT×1 for i = 1, . . . , N, Xi = [xi,1, . . . , xi,T]

′ ∈ RT×k, Vi = [vi,1, . . . , vi,T]
′ ∈

RT×k and εi = [ε i,1, . . . , ε i,T]
′ ∈ RT×1, F = [f1, . . . , fT]

′ ∈ RT×m. Because we focus on a realistic case when
my > 1, y is uninformative. Therefore, the factors Fx can be estimated by

F̂x = X = FxΓ + V, (2.2)

which implies that

Fx = (F̂x − V)Γ
+, (2.3)

where Γ
+ is the MP inverse of Γ that exists if rk(Γ) = mx. Note that (2.1) excludes individual fixed effects

(FE). However, this is only for the ease of exposition, because the CCE distributions discussed in the up-
coming sections will stay invariant to FE if a column of ones is added to the CAs. That is, F̂ι,ẋ = [ιT, X],
such that we now use MF̂ι,x

. This means that we employ time-demeaned observables ỹi = yi − y.

We apply the following set of assumptions:

Assumption 1 (Idiosyncratic errors) ε i,t and vi,t are stationary variables, independent across i with E(ε i,t) = 0,
E(vi,t) = 0k×1, σ2

i = E(ε2
i,t), Σi = E(vi,tv′

i,t), Ωi = E(εiε
′
i), with Ωi, Σi positive definite and E(ε6

i,t) < ∞,
E(∥vi,t∥6) < ∞ for all i and t. Additionally, let ũi,t = (ε i,t, v′

i,t)
′. Then

1
T3

T

∑
t=1

T

∑
q=1

T

∑
r=1

T

∑
s=1

∥E(ũi,tũ′
i,qũi,rũ′

i,s)∥ = O(1),
1
T

T

∑
t=1

T

∑
s=1

∥E(ũi,tũ′
i,s)∥ = O(1)

as T → ∞, whereas 1
N ∑N

i=1 σ2
i → σ2 < ∞ and 1

N ∑N
i=1 Σi → Σ < ∞ as N → ∞.

Assumption 2 (Distinct factors) Let ft = (f′y, f′x)′ be covariance stationary with E(∥ft∥4) < ∞, absolute
summable autocovariances and T−1F′F →p ΣF as T → ∞, such that

ΣF =

[
ΣFy Σ′

Fx,y

ΣFx,y ΣFx

]

with ΣFx,y = plimT→∞ T−1F′
xFy denoting the covariance between Fx and Fy. Also ΣFx and and ΣFy are positive

definite.

Assumption 3 (Factor loadings, distinct factors) The factor loadings are given by

γi = γ + ηγ,i ηγ,i ∼ I ID(0my×1, Ωγ)

Γi = Γ + ηΓ,i vec(ηΓ,i) ∼ I ID(0kmx×1, ΩΓ)

where γ, Γ are constant matrices, ΣγΓ = E(ηγ,i ⊗ ηΓ,i) is a covariance matrix, ηγ,i, ηΓ,i are independent across i
and of the other model components, and ∥γ∥ , ∥Γ∥ , ∥ΣγΓ∥, ∥Ωγ∥ , ∥ΩΓ∥ are finite.

Assumption 4 (Rank condition) rk(Γqẍ) = m, with qẍ a k × g selector matrix.
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Assumption 5 (Independence) ft, ε i,s, vj,l , η̃n are mutually independent for all i, j, n, t, s, l.

Assumption 6 (Slope heterogeneity) The slopes βi follow

βi = β + υi, υi ∼ I ID(0k×1, Ωυ)

with Ωυ a finite nonnegative definite k × k matrix and the υi are independent of ft, ε i,s, vj,l , η̃n for all i, j, n, t, s, l.

Assumption 7 (Identification) Q̂ẋ,i = T−1X′
iMF̂ẋ

Xi, with F̂ẋ = Xqẍ, is non-singular for all N, T, and

E

(∥∥∥(T−1V′
iMF̂ẋ

Vi)
−1
∥∥∥2
)
< ∞

also when F̂ẋ = Fx, where MF̂ẋ
= IT − F̂ẋ(F̂′

ẋF̂ẋ)+F̂′
ẋ.

The assumptions that we use are very similar to those in Pesaran (2006); Karabiyik et al. (2017) or West-
erlund (2018). Assumption 1, however, generalizes the aforementioned studies by allowing the idiosyn-
cratic innovations vi,t and ε i,t to be both serially correlated and heteroskedastic, unlike in e.g. Karabiyik
et al. (2017). The combination of time series dependence and TN−1 → τ < ∞ asymptotics also ne-
cessitates some stronger requirements, as reflected in the additional summability conditions for higher
moments given in Assumption 1. Assumption 2 imposes covariance stationarity on the factors specific to
the dependent and explanatory variables and is similar to the one in Cui et al. (2022). Assumption 3 also
generalizes Pesaran (2006) by allowing the loadings to be correlated within, but not between, individuals.
Next, Assumption 4 enables a flexible specification of the CAs employed to approximate the factors by
introducing a selector matrix qẍ ∈ Rk×g, and thus avoids the restriction in our theory that CAs of all
the explanatory variables are required the CCE specifications. This corresponds to practice where some
observables (e.g. the dependent variable, dummy variables, or regressors with low (cross-section) varia-
tion) are excluded from the set of CA to enable computation and identification (see e.g. Westerlund and
Petrova, 2018; De Vos and Westerlund, 2019, for details). Assumption 6 formalizes the slope heterogene-
ity, while Assumption 7 is sufficient for identification of the mean β when the sloeps are heterogeneous.

We further define the CCEP and CCEMG estimators. By letting Qẋ = 1
N ∑N

i=1 Q̂ẋ,i , we have

β̂CCEP,ẋ = Q
−1
ẋ

1
N

N

∑
i=1

T−1X′
iMF̂ẋ

yi,

= β + Q
−1
ẋ

1
N

N

∑
i=1

T−1
(

Iν ̸=0 × X′
iMF̂ẋ

Xiνi + X′
iMF̂ẋ

Fyγi + X′
iMF̂ẋ

εi

)
(2.4)

and

β̂CCEMG,ẋ =
1
N

N

∑
i=1

Q̂−1
ẋ,i T−1X′

iMF̂ẋ
yi

= β + Iν ̸=0 × ν +
1
N

N

∑
i=1

Q̂−1
ẋ,i T−1(X′

iMF̂ẋ
Fyγi + X′

iMF̂ẋ
εi), (2.5)

where Iν ̸=0 is an indicator function which equals to Ik or 0k×k depending whether the slopes are hetero-
geneous or not. The typical estimators of the asymptotic variance suggested by Pesaran (2006) are given
by

Θ̂CCEP,ẋ = Q
−1
ẋ

(
1

N(N − 1)

N

∑
i=1

Q̂ẋ,i(β̂ẋ,i − β̂CCEMG,ẋ)(β̂ẋ,i − β̂CCEMG,ẋ)
′Q̂ẋ,i

)
Q

−1
ẋ , (2.6)

Θ̂CCEMG,ẋ =
1

N(N − 1)

N

∑
i=1

(β̂ẋ,i − β̂CCEMG,ẋ)(β̂ẋ,i − β̂CCEMG,ẋ)
′ (2.7)
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for CCEP and CCEMG estimators, respectively. Clearly, the expansions in (2.4) and (2.5) reveal that Fy

enters the asymptotic analysis of both estimators non-trivially. Intuitively, because Fy is not projected out
as y is uninformative, it should affect the asymptotic distribution by altering the variance and possibly
the mean because Fy is typically not mean-zero. Moreover, because my is unknown and it is potentially
bigger than 1, we are also running the risk of having more factors than the available CAs. In order to take
these major deviations from the classical CCE setup into account, we will employ the cross-section (CS)
bootstrap theory by De Vos and Stauskas (2024) built for the CCE estimators. We begin with a general
description and a practical implementation of the CS bootstrap algorithm.

Remark 1. Note that if qẍ = Ik, such that the whole X is employed, then (2.4) can be simplified by noticing that

1
N

N

∑
i=1

X′
iMF̂ẋ

Fy(γ + ηγ,i) =
1
N

N

∑
i=1

X′
iMF̂ẋ

Fyηγ,i,

since X
′
MF̂ẋ

= 0k×T then. We conduct our analysis for the upcoming theorems with an arbitrary qẍ as long as the
rank condition is satisfied to accommodate general choices.

2.2 Bootstrap Algorithm

The CS bootstrap scheme is straightforward to implement, and has the advantage that factors are repli-
cated in the bootstrap realm without requiring a decision on their number. The core assumption behind
the CS resampling algorithm is that N → ∞ and that Zi, Zj are independent for each i and j ̸= i con-
ditional on σ{F}. To present the resampling scheme, let B∗

b = {Z∗
1 , . . . , Z∗

N} denote bootstrap sample
b = 1, . . . , B, obtained as described in Algorithm 1 below. Accordingly, for s ∈ {CCEP, CCEMG}, we use
β̂
∗
s,b = β̂s(ẋ,B∗

b ), denote the estimates in bootstrap sample b following the same specification ẋ.

Algorithm 1: Cross-section resampling scheme.

1) Initialization: Choose the combination of the CAs with the appropriate qẍ. Estimate β̂s = β̂s(ẋ,B)
based on the original sample.

2) for b = 1 : B do:

i) Generate B∗
b = {Z∗

1 , . . . , Z∗
N} according to

Z∗
i = Zi∗ f or i = 1, . . . , N

where i∗ is for each i an independent random draw from I = {1, . . . , N}.

ii) Obtain F̂∗
ẋ = X

∗
qẍ and estimate β̂

∗
s,b = β̂s(ẋ,B∗

b )

3) Save the results B∗
s = [β̂

∗
s,1, . . . , β̂

∗
s,B]

′ and form the following confidence interval widely used in the
bootstrap literature (see Davison and Hinkley, 1997, p. 194) to test the null β0:

CI(α, β̂
∗
s ) =

[
2β̂s − θ∗(1−α/2)(β̂

∗
s ) , 2β̂s − θ∗α/2(β̂

∗
s )
]

, (2.8)

where θ∗α(·) is the empirical α-quantile of the obtained bootstrap distribution for the statistic inside
the brackets and the quantiles are understood element-wise.

We refer to the Supplement for the formal representation of the resampling scheme and expressions of the
estimators for asymptotic analysis. It also straightforwardly follows that a bootstrap sample B∗

b generated
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according to Algorithm 1 adheres to:

y∗
i = yi∗ = Xi∗ β + Fyγi∗ + εi∗ (2.9)

X∗
i = Xi∗ = FxΓi∗ + Vi∗ (2.10)

such that the unobserved factors Fx and Fy are indeed copied in the bootstrap realm, regardless of their
number or the data generating process. The factor loadings and innovation matrices also are copied in
their entirety, but implicitly permuted across units under the assumption that these are cross-sectionally
independent. This retains the within-unit correlations and variances of loadings and innovations, as well
as their time series properties. The bootstrap factor space estimator can then be expressed as

F̂∗
ẋ =

1
N

N

∑
i=1

X∗
i qẍ = X

∗
qẍ = (FxΓw + Vw)qẍ, (2.11)

where Γw = 1
N ∑N

i=1 siΓi and Vw = 1
N ∑N

i=1 siVi are unobserved bootstrap quantities, and si denotes the
sampling frequency of unit i in the bootstrap dataset B∗

b , which follows a multinomial distribution. The
properties of si imply that Vw →p∗ 0T×k and Γwqẍ →p∗ Γẍ as N → ∞, and in turn (Γwqẍ)+ →p∗ Γ+

ẍ . This
confirms that the asymptotic information content in the cross-section averages is also replicated in the
bootstrap sample.

3 Asymptotic Results

In this section we will discuss the asymptotic distribution of both CCEP and CCEMG estimators in the
original and bootstrap samples, based on Algorithm 1. We consider both heterogeneous and homoge-
neous slopes and demonstrate that as long as the condition mx = g can be met, asymptotically standard
normal inference can ensue. To begin with, we assume that Iν ̸=0 = 0k×k.

3.1 Homogeneous Slopes

Theorem 1. Under Assumptions 1 - 5 as (N, T) → ∞ such that TN−1 → τ < ∞ the following asymptotic
representations:

(a) If mx < g:
√

NT(β̂CCEP,ẋ − β) →d N
(

0k×1, Σ−1(Ψ + Ψ f )Σ
−1
)
+ Σ−1(

√
τh1 + h2)

with Γẍ = Γqẍ, Ψ = limN,T→∞
1
N ∑N

i=1 E
(
T−1V′

iεiε
′
iVi
)
, h1 = h1,1 + h1,2 − h1,3, where

h1,1 = Σ′
γΓvec

(
(Γ+

ẍ )
′q′

ẍΣqẍTẋHẋ,mx ΣFx ΣFx,y

)
,

h1,2 = ĨẍΓ′(Γ+
ẍ )

′q′
ẍΣqẍTẋHẋ,mx Σ+

Fx
ΣFx,y γ,

h1,3 = ĨẍΣqẍTẋHẋ,mx Σ+
Fx

ΣFx,y γ,

and Tẋ is a g× g partitioning matrix such that ΓẍTẋ = [Γẍ,mx , Γẍ,−mx ], where Γẍ,mx is an mx ×mx full rank matrix,
Γẍ,−mx is mx × (g−mx), and Hẋ,mx = [Γ−1

ẍ,mx
, 0mx×(g−mx)]

′. Moreover, Ĩẍ = diag
(
[1(X1 /∈F̂ẍ)

, 1(X2 /∈F̂ẍ)
, . . . , 1(Xk /∈F̂ẍ)

]
)

.
The definition of Ψ f and h2 are provided in the Supplement.

(b) If mx = g:
√

NT(β̂CCEP,ẋ − β) →d N
(

0k×1, Σ−1(Ψ + Ψ̃ f )Σ
−1
)
+
√

τΣ−1h̃1,
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where h̃1 = h̃1,1 + h̃1,2 − h̃1,3, where

h̃1,1 = Σ′
γΓvec

(
(Γ+

ẍ )
′q′

ẍΣqẍ(Γ
′
ẍΣFx Γẍ)

+ΓẍΣFx,y

)
,

h̃1,2 = ĨẍΓ′(Γ+
ẍ )

′q′
ẍΣqẍ(Γ

′
ẍΣFx Γẍ)

+Γ′
ẍΣFx,y γ,

h̃1,3 = ĨẍΣqẍ(Γ
′
ẍΣFx Γẍ)

+Γ′
ẍΣFx,y γ.

The definition of Ψ̃ f is provided in the Supplement.

Theorem 1 (a) and (b) confirm our prediction that presence of the unaccounted Fy affects both the mean
and the variance of the asymptotic CCEP distribution as TN−1 → τ < ∞. In particular, the variance
is affected irrespective of the N, T expansion rate. The bias is also a function of the remaining factors
due to the presence of ΣFx,y . Importantly, under part (a) we have a term h2 which is stochastic and does
not follow normal distribution, therefore making the total distribution non-standard. This term is mainly
driven by the interaction of two components: the error part of the g−mx redundant CAs and a covariance
between Fx and Fy. Unlike the deterministic bias components, h2 cannot be eliminated even if TN−1 → 0.
The asymptotic variance estimator in (2.6) is inconsistent, because it necessarily requires the restriction of
Fx = Fy = F; otherwise it cannot identify Ψ f (See Proposition 3 in the supplementary material of De Vos
and Stauskas, 2024). Due to these reasons, using bootstrap methods is necessary.

On the other hand, part (b) demonstrates that if we have exactly mx = g, then the asymptotic distribu-
tion does not include any non-standard terms impeding normal inference. Nevertheless, the bias h̃1 still
depends on ΣFx,y . This means that the bias cannot be estimated in spirit of Westerlund and Urbain (2013)
even under mx = g, because Fy is neither observed, nor estimated. Similarly to part (a), the variance esti-
mator in (2.6) is inconsistent for the Ψ̃ f component, which means that it is essential to consider bootstrap
distributions for both cases.

Theorem 2. Under Assumptions 1 - 5 we have as (N, T) → ∞ such that TN−1 → τ < ∞ the following asymp-
totic representations:

(a) If mx < g:
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) →d∗ N (0k×1, Σ−1(Ψ + Ψ f )Σ

−1) + Σ−1(
√

τh1 + h2 + h+)

where h+ = 2(h∗
2 − h2) with the definition of h∗

2 provided in the Supplement. The remaining quantities are as
defined in Theorem 1.

(b) If mx = g:

√
NT(β̂

∗
CCEP,ẋ − β̂CCEP,ẋ) →d∗ N

(
0k×1, Σ−1(Ψ + Ψ̃ f )Σ

−1
)
+
√

τΣ−1h̃1,

where the quantities are the same as in Theorem 1 (b), and we have under the same conditions:

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣→p 0,

where the inequalities should be interpreted coordinate-wise.

It is evident from part (a) that while the asymptotic variance is replicated in the bootstrap realm, the
mean is not due to the presence of an extra noise h+

2 . This is so, because the stochastic term h2 has a very
complicated functional form, and it becomes exacerbated in the bootstrap realm once it is augmented
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with the bootstrap weights. However, if mx = g, then the original sample and bootstrap distributions
coincide due to the fact that the excess mx − g CAs are now absent. Therefore, ensuring the condition of
mx = g is quintessential for the normal asymptotic inference to ensue under the distinct factor case.

In order to asymptotically guarantee that mx = g, we use the following Information Criterion (IC) that
was adapted from Margaritella and Westerlund (2023) by De Vos and Stauskas (2024):

IC(Mẋ) = log
(
det(Qẋ)

)
+ g · k · pN,T, (3.1)

where Mẋ is a combination of column indices of X, and qẍ picks the corresponding g = cols(qẍ) averages
in practice as before. Let accordingly Mẋ,0 denote the set of averages from X such that rk(Γqẍ) = mx,
cols(qẍ) = mx, and pN,T is a penalty term in function of the panel dimensions N, T, such that pN,T → 0.
This leads to the following selector for the CAs such that mx = g, which should be implemented in Step
1 of Algorithm 1:

M̂ẋ = arg min
Mẋ⊆Mẋ

IC(Mẋ), (3.2)

where Mẋ denotes the index set of all possible combinations of CAs. Provided that (N, T) → ∞ such that
pN,TC2

N,T → ∞ where CN,T = min{
√

N,
√

T}, we have that

P(M̂ẋ = Mẋ,0) → 1 and P(g = mx) → 1.

This condition on the penalty is satisfied by several suggestions made by Bai and Ng (2002), among oth-
ers. For instance, pN,T = N+T

NT log(C2
N,T) showcases the best small sample performance provided that T is

sufficiently large, which is a suitable option as we consider TN−1 → τ < ∞. Importantly, Mẋ,0 does not
have to be unique as the selected set of CAs will be the one with the most informative loadings Γqẍ (see
the characterisation of such set in Proposition 3 of De Vos and Stauskas, 2024).1 The rank condition in As-
sumption 4, which ensures that the selection exercise is feasible in the first place, can be checked with the
methodology of De Vos et al. (2023). In summary, the consistency of (3.1) guarantees that the conditions
of part (b) of Theorem 2 can be met, so that the asymptotic bias and the variance can be estimated by the
means of CS bootstrap.

3.2 Heterogeneous Slopes

We now consider the case of heterogeneous slopes by letting Iν ̸=0 = Ik and explore both CCEP and
CCEMG estimators.

Theorem 3. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞

√
N(β̂CCEP,ẋ − β) →d N

(
0k×1, Σ−1ΨνΣ−1

)
,

where Σ = plimN→∞
1

NT ∑N
i=1 V′

iVi and Ψν = limN→∞
1
N ∑N

i=1 ΣiΩνΣi.

Theorem 3 reveals that the CCEP estimator is
√

N-consistent, it also has an asymptotically normal distri-
bution, and the relative N, T expansion rate does not play a role. The theorem puts forward two striking
and somewhat counter-intuitive results, which are major deviations from the homogeneous setup. The
first is that the CCEP estimator is asymptotically normal and unbiased irrespective if mx < g or mx = g.
Moreover, Fy does not affect the asymptotic variance. This result coincides with the findings of Stauskas

1In the original paper of Margaritella and Westerlund (2023), that set minimizes the mean squared error σ̂2
ẋ =

1
NT ∑N

i=1 υ̂′iMF̂ẋ
υ̂i, with υ̂i = yi − Xi β̂z.
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(2022) and the heterogeneous slopes analysis of De Vos and Stauskas (2024), where Fx = Fy = F in both
studies. To the best of our knowledge, Theorem 3 is the first to highlight CCE robustness to distinct fac-
tors in heterogeneous panels. The intuition behind this result follows from the two facts. Firstly, the slope
heterogeneity νi dominates the asymptotic distribution through

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi =
1√
N

N

∑
i=1

Σiνi + op(1), (3.3)

which obeys the standard Central Limit Theorem (CLT), and the term driven by the idiosyncratic error
εi in the expansion in (2.4) is of the lower order. Secondly, the component driven by Fy can similarly be
treated as an idiosyncratic term. This is so, because MF̂ẋ

Xi is asymptotically uncorrelated with Fy as Fx is
projected out. Therefore,∥∥∥∥∥ 1√

N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

∥∥∥∥∥ = op(1). (3.4)

In effect, Fy can be asymptotically neglected, as long as Fx can be consistently estimated in the heteroge-
neous panels. We further turn to the CCEMG estimator.

Theorem 4. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞ with TN−1 → τ > 0
√

N(β̂CCEMG,ẋ − β) →d N (0k×1, Ων) ,

where Ων = E(νiν
′
i) .

Similarly to Theorem 3, the main takeaway is that the CCEMG estimator is asymptotically normal and
unbiased with the variance unaffected by the presence of Fy irrespective if mx < g or mx = g.2 The
rationale behind this outcome is the same as behind Theorem 3, meaning that the slope heterogeneity is
dominant:

√
N(β̂CCEMG,ẋ − β) =

1√
N

N

∑
i=1

νi + op(1). (3.5)

While this result is new in the CCE literature, it also coincides with Proposition 4.1 in Cui et al. (2022) in
the PC context. Particularly, their two-stage procedure can now be reduced to the first stage estimation of
Fx only, where the dominance of νi relegates the effect Fy to the idiosyncratic components.3 This is also
the main message of our Theorem 4 in the CCE context.

Remark 2. Given that CCE can accommodate a wide variety of factors without changing the rate of convergence
(see Westerlund, 2018, or Stauskas, 2022), it is important to see whether it is still possible in a distinct factors
case. Turns out, only to a limited degree: Fx cannot be stochastically trending, and Fy remains stationary. The
limitation can be illustrated with the following example. Let F be such that D−1

T F′FD−1
T is asymptotically full-rank

and (Ik+1 ⊗ D−1
T )vec(F′Ui) converges weakly for some normalization matrix DT = diag(DT,x, DT,y). Take the

CCEP expansion in (2.4) for either homogeneous or heterogeneous slopes (CCEMG case is similar). By using (2.3),
we can show that one of the key terms in the asymptotic analysis is

1
NT

N

∑
i=1

V′
iMF̂ẋ

Fyγi =
1

NT

N

∑
i=1

V′
iFyγi −

1
NT

N

∑
i=1

V′
iPFx Fyγi −

1
NT

N

∑
i=1

V′
i(MFx − MF̂ẋ

)Fyγi = I − II − III.

2Note that the requirement of TN−1 → τ < ∞ is only a sufficient condition to asymptotically eliminate the accumulated
errors. While it is suitable under our N, T configurations, it may not be necessary as in Theorem 3.

3Note that according to (2.5) and Theorem 4, under homogeneous β, we have
√

N(β̂CCEMG,ẋ − β) = op(N−1/2). This means
that we can always consistently estimate the homogeneous β by CCEMG , but inference should be based on

√
NT(β̂CCEMG,ẋ −

β), as suggested by Theorem 1 and 2. We skip such analysis in the interest of space.
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We must have
√

NI = op(1) under heterogeneous slopes. This happens only when Fy is stationary. In the same
fashion,

√
NII and

√
NIII should be negligible under heterogeneous slopes, as well. Again, this is ensured only if

Fy is stationary. Let DT,y =
√

TImy . Then, by using self-normalization of the projection matrix:

∥∥∥√NII
∥∥∥ ≤ 1√

T

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′

i ⊗ V′
iFxD−1

T,x

)∥∥∥∥∥ ∥∥∥(D−1
T,xF′

xFxD−1
T,x)

+
∥∥∥ ∥∥∥D−1

T,xF′
xFyD−1

T,y

∥∥∥ = op(1),

where
√

NIII behaves similarly as the expansion of MFẋ − MF̂x
produces self-normalizing terms. In homogeneous

case,
√

NTI,
√

NTII and
√

NTIII are Op(1) when Fy is stationary. Plus, if Fx is not stochastically trending, the
terms involving 1√

N ∑N
i=1 T−1/2vec(F′

yVi) and 1√
N ∑N

i=1(Ik ⊗ D−1
T,x)vec(F′

xVi) will contribute to asymptotically

normal distribution (see Phillips and Moon, 1999), whereas the ”covariance” term D−1
T,xF′

xFyD−1
T,y will stay deter-

ministic and contribute to the mean. Overall, we will avoid having a non-standard distribution.

Theorem 3 and Theorem 4 suggest that the variance estimators in (2.6) - (2.7) should be consistent, unlike
under Theorem 1. Theorem 5 confirms this.

Theorem 5. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞

(a) NΘ̂CCEP,ẋ →p Σ−1ΨνΣ−1,

(b) NΘ̂CCEMG,ẋ →p Ων.

Clearly, inference does not require to be aided by the means of bootstrap if it is known that β is hetero-
geneous. Additionally, we do not need to take into consideration whether mx = k or mx < k, which is a
major convenience. As it is a priori unclear whether the factors are distinct, in the same fashion, it is un-
clear if the slopes are heterogeneous or not. While this can be tested4, the most suitable approach would
be to have a robust procedure, which does not require discrimination between the two cases. Indeed,
because we can rely on a handy CS bootstrap as long as mx = g is guaranteed in the homogeneous slopes
case, it is natural to attempt the same in the heterogeneous panels. It is especially beneficial, because the
asymptotic properties of CCEP and CCEMG are invariant to whether mx = g or mx < g, according to
Theorem 3 and Theorem 4. In Theorem 6 below, we provide the bootstrap consistency results for both
estimators under the heterogeneous slopes.

Theorem 6. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞,

(a) sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣→p 0,

(b) sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x]− P[

√
NT(β̂CCEMG,ẋ − β) ≤ x]

∣∣∣→p 0,

where inequalities are to be interpreted coordinate wise.

The major practical implication of Theorem 6 is that a researcher does not need to differentiate between
homogeneous and heterogeneous panels and whether yi and Xi are driven by the common or distinct
factors under the asymptotic configuration of TN−1 → τ < ∞. This holds as long as rk(Γqẍ) = mx,
and we can approximate the space spanned by Fx. Even if bootstrap is not strictly needed in heteroge-
neous panels, Theorem 7 in the supplementary material provides the bootstrap equivalent of Theorem 5
for completeness. Therefore, bootstrap t-statistics can be computed, as well, if a researcher prefers such

4See some tests discussed in Pesaran and Yamagata (2008); Blomquist and Westerlund (2013).
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inferential methods. In what comes next, we will verify our theoretical predictions in simulations.

Remark 3. Note that the cross-section independence of Vi and εi is not required if we know that the slopes
are heterogeneous. Independence is needed to implement CS bootstrap, but under heterogeneity it is not strictly
needed. We can therefore relax this assumption along the lines of Pesaran and Tosetti (2011) by requiring that
Ut = (MN ⊗ Ik+1)ξt, where Ut ∈ RN(k+1)×1 is a cross-section stack of ui,t and ξt obeys time-dependence require-
ments of Assumption 1. Here, MN is an N × N ”network matrix” with bounded row and column norms.

4 Monte Carlo Simulations

4.1 Design

We utilize the simulation design largely similar to the one in De Vos and Stauskas (2024). Particularly,
time varying unobservables follow:

fa,t = ρfa,t−1 +
√

1 − ρ2ν
f
t , ν

f
t ∼ N (0ma×1, Ima /ma), a ∈ {x, y}

ε i,t = ρε i,t−1 +
√

1 − ρ2νε
i,t, νε

i,t ∼ N (0, σ2
i )

vi,t = ρvi,t−1 +
√

1 − ρ2νx
i,t, νx

i,t ∼ N (0k×1, σ2
x,iIk)

where each variable is initiated at 0 and the first 50 periods are discarded as a burn-in to neutralize initial
conditions. We set the autocorrelation parameter to ρ = 0.8 for all experiments in accordance with the
high serial correlation that is typically encountered in practice. We set k = 3 and my = mx = 2 to let
distinct Fy and Fx drive yi and Xi, respectively. With mx < k and my > 1 we reflect our main theoretical
insights, where the rank condition of C fails and Fy cannot be estimated from a single CA. Hence, only
rk(Γ) = mx. Moreover, we induce a correlation of ρ f = corr(Fy, Fx) ∈ (0.3, 0.7) between them. We thus
consider both low and high dependence in the factors. To illustrate also robustness to heteroskedasticity,
variances are drawn from σ2

i ∼ σ2 + (χ2
1 − 1) and σ2

x,i ∼ σ2
x + (χ2

1 − 1) respectively, with σ2
x = 2 and σ2 = 1

for all experiments.
To simulate the correlated loadings, we let C̃ = [γi, Γi] = C̃ + η̃iι

′
1+k, with η̃i ∼ N (0m×1, σ2

η Im). This
implies that loadings are perfectly correlated within individuals. Because we only estimate Fx from the
CAs, we also regulate their informativeness through the population mean Γ. It is controlled through
d = det(ΓΓ′), and we generate given an upper bound du the entries in Γ independently from U [0, 2] such
that du − 0.1 ≤ d ≤ du. The obtained Γ is then fixed over Monte Carlo replications and sample sizes. We
take d = 10 as our baseline scenario with a standard information content, and study the impact of a less
informative setting by lowering d to 5.5 Slopes are generated as

βi = βιk×1 + υi, with υi,ℓ ∼ (χ2
1 − 1)

√
σ2

υ /2 for ℓ = 1, . . . , k

where υi,ℓ denotes the ℓ-th row of υi, so that σ2
υ ∈ {0, 1} considers respectively the common and variable

slopes setting. We let the slope population mean be β = 1.
We examine performance of CCEPA and CCEMGA in the experiments with A subscript referring to

the used specification of the CAs. We include 4 different specifications: 1) A = x: all CAs except for y, 2)
A = xin f : infeasible specifications with the optimal6 sub-selection from X such that g = mx, 3) A = ẑ is
the IC selection based on Margaritella and Westerlund (2023), and 4) A = x̂ with the selection from (3.1).

5These numbers are based on the (simulated) distribution of the determinant of 2 × 3 matrices with elements drawn from
U [0, 2], which ranges roughly from 0 to 40 (with a long right tail) with E(d) ≈ 9.2.

6The specified g = mx averages are optimal in the sense that ∥(Γqẍ)
+∥ is minimized. For completeness, this optimal

selection is [x1, x2].
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Note, as such, that mx < g for A = x, mx = g for A = xin f and A = x̂ versions are estimated versions
of the A = xin f specification. In the interest of space, we report the most relevant specifications for each
experiment, but note that others are available upon request. Empirical size is at the 5% significance level.
Further, ”bootA” denote bootstrap equivalents for the corresponding CCE specification, obtained from
B = 2000 bootstrap samples generated with CS-resampling. Reported size for the bootstrap methods is
from application of (2.8). As the main alternative to the CCE and bootstrap approaches, we include the
2SIV estimator recently proposed by Cui et al. (2022), where a two-stage PC method is used to arrive at
an asymptotically unbiased estimator as TN−1 → τ, with 0 < τ < ∞. The approach also accommo-
dates in its design potential distinct factors, and as such perfectly serves as a specific alternative to CCE
method. Clearly, the 2SIV thus achieves the same goal as the CS-bootstrap, therefore comparisons will
be informative for practice. We include the second stage IV estimator with the number of factors in both
stages estimated using the eigenvalue ratio approach of Ahn and Horenstein (2013), as per the authors’
suggestion.

4.2 Results: Homogeneous Slopes

To begin with, it is clear that that standard asymptotic t-tests with CCEP cannot be trusted if the factors are
distinct. Particularly, Table 1 reveals the near-zero size for all asymptotic t-tests with CCEP. This occurs,
because the standard errors in (2.6) are inconsistent in such case, and inference needs to be aided by the
means of bootstrap. Moreover, it is evident from the relatively poor bias and size of CCEPẑ that the IC of
Margaritella and Westerlund (2023) selects CA that are inconsistent for the X-specific factors. The bootẑ
correction has equally poor properties, which is explained by the bootstrap inability to save the estimator
that is inconsistent in the first place. However, bootstrap inference for the A ∈ {x, xin f , x̂} specifications
performs well. We find that bias and size are adequate for bootx when mx < g. On the other hand, bootxin f

(mx = g) is slightly more accurate with the size closer to the nominal one. As demonstrated in Theorem
2 (a), the size distortions in case of bootx are caused by mx < g condition, whereas the bootstrap was
shown to be consistent in part (b). This is illustrated by bootxin f for mx = g selections. Results suggest,
however, that the distortions for mx < g are not large and they have a fairly minor effect on testing.
The IC criterion in (3.1) can also clearly estimate the optimal set of averages for which mx = g, at least
given sufficiently large T.7 Clearly, the bootx̂ achieves practically the same bias and empirical size as
bootxin f when T > 100. This confirms a great effectiveness of the combination of CS-bootstrap and the IC
selector in the distinct factor case. Ultimately, we see that the 2SIV estimator achieves a close-to-nominal
size for sufficiently large T, but the bootstrap tests are generally more accurate, especially for smaller T.
Comparison of the bias in Table 1 with that for the low-dependence factors (available upon request) also
confirms the conclusion of Theorem 1 that asymptotic bias for CCEP is larger when correlation between
Fx and Fy is stronger. As before, performance of the bootstrap is practically unaffected, whereas the 2SIV
suffers some size distortions for T < 100.

7Selection frequencies in Table B-6 of Supplement B of De Vos and Stauskas (2024) confirm that mx = g is achieved with
probability approaching 1, and shows that the same averages are selected as for the a priori unknown xin f specification ([x1, x2]).
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Table 1: High dependence non-common factors
√

NT × bias size

N
T 25 50 100 500 25 50 100 500

CCEPẑ 25 -0.25 -0.27 -0.57 -0.46 0.15 0.11 0.14 0.09
50 -0.07 -0.10 -0.53 -0.45 0.09 0.07 0.12 0.08

100 -0.06 -0.09 -0.76 -0.39 0.10 0.08 0.19 0.09
500 -0.12 0.08 -2.01 -3.82 0.08 0.11 0.37 0.51

CCEPx 25 0.32 0.24 0.10 0.43 0.01 0.01 0.00 0.00
50 0.29 0.26 0.16 0.19 0.02 0.01 0.01 0.00

100 0.18 0.21 0.15 0.10 0.01 0.01 0.01 0.00
500 0.09 0.02 0.03 0.15 0.01 0.01 0.00 0.01

CCEPxin f 25 0.36 0.31 -0.07 0.54 0.02 0.02 0.00 0.00
50 0.27 0.32 0.02 0.31 0.03 0.02 0.01 0.00

100 0.16 0.22 -0.05 0.18 0.03 0.02 0.00 0.01
500 0.02 0.05 0.05 0.20 0.02 0.03 0.00 0.01

CCEPx̂ 25 0.41 0.32 -0.07 0.54 0.03 0.02 0.00 0.00
50 0.26 0.32 0.02 0.31 0.03 0.02 0.01 0.00

100 0.13 0.21 -0.05 0.18 0.04 0.02 0.00 0.01
500 -0.10 0.03 0.05 0.20 0.05 0.03 0.00 0.01

bootẑ 25 -0.28 -0.28 -0.33 -0.54 0.12 0.10 0.07 0.08
50 -0.10 -0.07 -0.17 -0.34 0.07 0.05 0.05 0.06

100 -0.08 -0.08 -0.27 -0.18 0.06 0.06 0.06 0.06
500 -0.09 0.13 -1.54 -2.55 0.04 0.06 0.23 0.34

bootx 25 0.13 0.02 -0.06 0.03 0.08 0.07 0.07 0.06
50 0.13 0.08 0.03 -0.09 0.07 0.06 0.08 0.05

100 0.05 0.07 0.08 -0.10 0.07 0.06 0.07 0.07
500 0.04 -0.07 0.00 0.07 0.06 0.06 0.04 0.06

bootxin f 25 0.18 0.04 -0.12 0.13 0.06 0.06 0.08 0.05
50 0.11 0.09 0.03 -0.02 0.05 0.06 0.06 0.05

100 0.04 0.03 -0.03 -0.08 0.06 0.04 0.06 0.06
500 -0.04 -0.05 0.08 0.08 0.04 0.05 0.06 0.05

bootx̂ 25 0.15 0.03 -0.12 0.13 0.07 0.06 0.08 0.05
50 0.01 0.09 0.02 -0.02 0.06 0.06 0.06 0.05

100 -0.11 0.02 -0.03 -0.08 0.07 0.05 0.06 0.06
500 -0.35 -0.10 0.07 0.08 0.06 0.05 0.06 0.05

2SIV 25 0.28 0.16 0.06 0.03 0.15 0.11 0.08 0.08
50 0.46 0.17 0.12 -0.12 0.09 0.07 0.07 0.06

100 0.68 0.18 0.18 0.05 0.08 0.05 0.07 0.07
500 1.67 0.36 0.06 0.03 0.21 0.06 0.05 0.05

Experiment parameters: (du, β, σ2, σ2
η , σ2

υ , ρ f ) = (10, 1, 1, 1, 0, 0.7). This experiment features
my = 2 y-specific factors Fy that are correlated (ρ f = 0.7) with mx = 2 x-specific factors Fx.
An A ∈ {ẑ, x̂} subscript denotes CCE specifications with CA selected from the IC criterion
of Margaritella and Westerlund (2023) and (3.1), respectively. A = xin f is the infeasible
CCEP specification with the optimal g = 2 averages from X (optimal in terms of their
information content on Fx). These are [x1, x2]. Size reported for bootA estimators are for
the bootstrap interval in (2.8).

4.3 Results: Heterogeneous Slopes

We begin with the CCEP estimator. Our immediate focus is on the plain CCEPx because the key message
of Theorem 3 is its robustness to the distinct factors case. Table 2 corroborates this. We see that the
estimator is virtually unbiased for all the combinations of larger N and T, and only for N = 25 we obtain
a minimal bias. However, even then it is substantially smaller than in the CCEP case under homogeneous
slopes documented in Table 1. The bias results essentially carry over when we employ the infeasible
selection of CAs (CCEPxin f ), where g = mx. For both A ∈ {x, xin f }, the empirical size is similar and
it revolves closely around the nominal 0.05 level for all the (N, T) combinations with the exception of
N = 25. This can be partially explained by the large N that CCE generally needs to approximate the
factor space. Also, the slight distortions, especially those that occur in medium-sized samples, can be
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attributed to the fact that the heterogeneity νi is simulated from a chi-squared distribution with σ2 = 1,
unlike in Pesaran and Tosetti (2011) or Stauskas (2022), where νi is normal and σ2 = 0.02. We also see
that the bootstrap CCEP estimators behave similarly to the original sample ones both in terms of bias and
size. Particularly, the infeasible bootxin f is almost identical to bootx̂, where the IC selector is employed in
the first stage. The latter even performs slightly better for a small N and T ≥ 50. Eventually, we see that
both CCEPA and bootA for all versions of A perform very similarly to 2SIV of Cui et al. (2022), which
is constructed to accommodate the distinct factor case. In fact, we see that the plain CCEP estimator
showcases a better performance in terms of the empirical size, especially in small and medium samples.
Because 2SIV is a PC-based estimator, this can be explained by the fact that it needs not only a large N but
also a large T to consistently estimate the factor space. Overall, the discussion implies that our theoretical
predictions in Theorems 3, 5 and 6 are borne out well.

Table 2: High dependence non-common factors (CCEP)
√

NT × bias size

N
T 25 50 100 500 25 50 100 500

CCEPx 25 -0.02 0.01 -0.01 -0.02 0.04 0.11 0.08 0.09
50 0.01 0.01 0.00 0.00 0.06 0.05 0.06 0.06

100 0.00 0.01 0.02 0.00 0.05 0.05 0.08 0.06
500 0.01 0.00 0.00 0.00 0.06 0.06 0.05 0.06

CCEPxin f 25 -0.01 0.01 -0.01 -0.02 0.08 0.11 0.07 0.09
50 0.01 0.01 0.00 0.01 0.07 0.06 0.06 0.06

100 0.00 0.00 0.02 0.00 0.06 0.06 0.08 0.06
500 0.01 0.00 0.00 0.00 0.06 0.06 0.05 0.07

bootxin f 25 -0.01 0.01 -0.02 -0.03 0.11 0.13 0.09 0.11
50 0.01 0.01 0.00 0.00 0.10 0.06 0.08 0.08

100 0.00 0.00 0.02 0.00 0.07 0.06 0.08 0.09
500 0.01 0.00 0.00 0.00 0.06 0.06 0.05 0.06

bootx̂ 25 -0.03 0.00 -0.02 -0.02 0.12 0.12 0.09 0.09
50 0.00 0.01 0.00 0.00 0.10 0.07 0.07 0.08

100 0.00 0.00 0.02 0.00 0.06 0.07 0.09 0.08
500 0.01 0.00 0.00 0.00 0.07 0.06 0.05 0.06

2SIV 25 -0.03 0.00 -0.02 -0.03 0.11 0.12 0.11 0.10
50 0.01 0.00 -0.01 0.00 0.10 0.07 0.06 0.07

100 -0.01 0.00 0.02 0.00 0.06 0.05 0.08 0.07
500 0.01 0.00 0.00 0.00 0.07 0.08 0.03 0.07

Experiment parameters: (du, β, σ2, σ2
η , σ2

υ , ρ f ) = (5, 1, 1, 1, 1, 0.7). This experiment features
my = 2 y-specific factors Fy that are correlated (ρ f = 0.7) with mx = 2 x-specific factors Fx.
An A ∈ {x̂, xin f } subscript denotes CCE specifications with CA selected from (3.1), and the
infeasible CCEP specification with the optimal g = 2 averages from X (optimal in terms of
their information content on Fx), respectively. These are [x1, x2]. Size reported for bootA
estimators are for the bootstrap interval in (2.8).

We further move on to Table 3, where the results for the CCEMG estimator under heterogeneous slopes
are depicted. The overall results are fairly similar to the CCEP case, especially when it comes the bias.
The plain CCEMG estimator is virtually unbiased even when N ≈ T, and the empirical size hovers
very closely to the nominal one. Again, some distortions can be contributed to the fact that a large N is
needed to approximate the factor space, and νi comes from a chi-squared distribution, therefore, the first
component of (3.5) is not normal for any finite sample size. This suggests that the results of Theorem 4
are borne out well. Plus, in comparison to the CCEP case, we can see smaller size distortions for N = 25
and T ≥ 100 across the board in both original and bootstrap samples. Moreover, bootA for both A ∈
{xin f , x̂} performs slightly better than its CCEP counterpart for (N, T) ≤ 100. Similarly to the CCEP case
displayed in Table 2, all the considered estimators behave similarly to the 2SIV estimator. However, the
plain CCEMG estimator does not exhibit a clear size advantage anymore, at least in small samples.
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Table 3: High dependence non-common factors (CCEMG)
√

NT × bias size

N
T 25 50 100 500 25 50 100 500

CCEMGx 25 -0.03 0.01 0.00 -0.01 0.05 0.08 0.04 0.06
50 0.02 0.00 -0.01 0.00 0.08 0.05 0.07 0.05

100 0.00 0.00 0.01 0.00 0.05 0.04 0.08 0.07
500 0.00 0.00 0.00 0.00 0.04 0.06 0.04 0.05

CCEMGxin f 25 -0.03 0.01 0.00 -0.01 0.04 0.08 0.05 0.06
50 0.02 0.00 -0.01 0.00 0.06 0.05 0.07 0.05

100 -0.01 0.00 0.01 0.00 0.06 0.04 0.08 0.07
500 0.00 0.00 0.00 0.00 0.06 0.06 0.04 0.05

bootxin f 25 -0.03 0.00 0.00 -0.01 0.05 0.08 0.06 0.06
50 0.01 0.00 -0.01 -0.01 0.06 0.06 0.07 0.05

100 -0.01 0.00 0.01 0.00 0.06 0.04 0.09 0.07
500 0.00 0.00 0.00 0.00 0.05 0.05 0.05 0.05

bootx̂ 25 -0.03 0.00 0.00 -0.01 0.05 0.09 0.05 0.06
50 0.02 0.00 -0.01 -0.01 0.06 0.05 0.07 0.06

100 -0.01 0.00 0.01 0.00 0.05 0.04 0.08 0.07
500 0.00 0.00 0.00 0.00 0.04 0.05 0.04 0.05

2SIV 25 -0.03 0.00 0.00 -0.02 0.06 0.07 0.04 0.06
50 0.02 0.00 -0.01 -0.01 0.07 0.06 0.06 0.05

100 -0.01 0.00 0.01 0.00 0.05 0.03 0.08 0.07
500 0.00 0.00 0.00 0.00 0.07 0.07 0.05 0.06

Experiment parameters: (du, β, σ2, σ2
η , σ2

υ , ρ f ) = (5, 1, 1, 1, 1, 0.7). This experiment features
my = 2 y-specific factors Fy that are correlated (ρ f = 0.7) with mx = 2 x-specific factors Fx.
An A ∈ {x̂, xin f } subscript denotes CCE specifications with CA selected from (3.1), and the
infeasible CCEMG specification with the optimal g = 2 averages from X (optimal in terms
of their information content on Fx), respectively. These are [x1, x2]. Size reported for bootA
estimators are for the bootstrap interval in (2.8).

5 Conclusions

In this study we considered a CCE problem, which is likely to often occur in practice. When the depen-
dent and explanatory variables are driven by two distinct sets of factors, their cross-section averages are
not consistent for the space spanned by the factors, unless the number of factors underlying the depen-
dent variable is equal to 1. To circumvent this problem, we develop a toolbox that is a CCE-equivalent of
the Two-Stage Instrumental Variable (2SIV) approach of Cui et al. (2022). We employ a user-friendly cross-
section bootstrap algorithm to approximate the asymptotic distribution that is affected by the unattended
factors in the dependent variable. We derive conditions for the bootstrap consistency and show that the
algorithm and the asymptoptic distributions remain the same in both homogeneous and heterogeneous
panels, which means that asymptotically normal inference can ensue without a need to discriminate be-
tween the different cases. Our Monte Carlo simulations show that the theoretical predictions are born out
well, and that our methodology performs well in comparison to the alternative estimators.
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Abstract

In this supplementary material we provide the proofs of Theorems 3 - 6 in the main text. Section 1
sets up assumptions, preliminary details and introduces to cross-section bootstrap. Section 2 states and
explains the original and bootstrap sample results for homogeneous slopes derived in a separate study.
In Section 3, Theorems 3 and 4 establish the asymptotic distribution of the CCEP and CCEMG estima-
tors, respectively. Theorem 6 establishes bootstrap consistency for both CCEP and CCEMG bootstrap
estimators. In Section 4, Theorem 5 demonstrates consistency of the asymptotic variance estimators,
while Theorem 7 demonstrates the same for their bootstrap equivalents for completeness.
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1 Preliminaries

1.1 Notation and Assumptions

In this supplement we use A+ to denote the Moore-Penrose pseudo-inverse of the matrix A, rk(A) for
its rank, det(A) for the determinant and let ∥A∥ =

√
tr (A′A) be the Euclidean (Frobenius) matrix norm.

Let furthermore ιa be an a-rowed vector of ones and the vec(.), ⊗ operators denote respectively the vec-
torization operation and the Kronecker products. Barred variables A denote the cross-section average
(CA) over the cross-section specific matrices Ai as in A = 1

N ∑N
i=1 Ai. For the analysis of the bootstrap,

starred objects A∗ denote observed variables (matrix or scalar) subject to bootstrap randomness (induced
by the resampling weights). On the other hand, Aw denotes a weighted (by resampling weights) un-
observed primitive of the model. On the other hand, Aw denotes a weighted (by resampling weights)
unobserved primitive of the model. Bootstrap probability laws are formalized similarly to Galvao and
Kato (2014). In particular, for any matrix bootstrap sequence A∗

n, which depends on a generic index
n, and a deterministic sequence an ∈ R++, we denote ∥A∗

n∥ = op∗(an) if for every ϵ > 0 and δ > 0
we have P(P∗(a−1

n ∥A∗
n∥ > ϵ) > δ) → 0 as n → ∞, where P∗(·) is a bootstrap-induced measure.

Accordingly, A∗
n = A∗ + op∗(1) implies ∥A∗

n − A∗∥ = op∗(1) for a limiting bootstrap matrix A∗. Simi-
larly, we use ∥A∗

n∥ = Op∗(an) if for every δ > 0 and η > 0, there exists a constant C > 0, such that
P(P∗(a−1

n ∥A∗
n∥ > C) > δ) < η for all n ≥ 1. The symbols →p∗ (→p) and →d∗ (→d) represent conver-

gence in probability and distribution with respect to the induced (generic) probability measure.

We apply the following set of assumptions:

Assumption 1 (Idiosyncratic errors) ε i,t and vi,t are stationary variables, independent across i with E(ε i,t) = 0,
E(vi,t) = 0k×1, σ2

i = E(ε2
i,t), Σi = E(vi,tv′

i,t), Ωi = E(εiε
′
i), with Ωi, Σi positive definite and E(ε6

i,t) < ∞,
E(∥vi,t∥6) < ∞ for all i and t. Additionally, let ũi,t = (ε i,t, v′

i,t)
′. Then

1
T3

T

∑
t=1

T

∑
q=1

T

∑
r=1

T

∑
s=1

∥E(ũi,tũ′
i,qũi,rũ′

i,s)∥ = O(1),
1
T

T

∑
t=1

T

∑
s=1

∥E(ũi,tũ′
i,s)∥ = O(1)

as T → ∞, whereas 1
N ∑N

i=1 σ2
i → σ2 < ∞ and 1

N ∑N
i=1 Σi → Σ < ∞ as N → ∞.

Assumption 2 (Distinct factors) Let ft = (f′y, f′x)′ be covariance stationary with E(∥ft∥4) < ∞, absolute
summable autocovariances and T−1F′F →p ΣF as T → ∞, such that

ΣF =

[
ΣFy Σ′

Fx,y

ΣFx,y ΣFx

]

with ΣFx,y = plimT→∞ T−1F′
xFy denoting the covariance between Fx and Fy. Also ΣFx and and ΣFy are positive

definite.

Assumption 3 (Factor loadings, distinct factors) The factor loadings are given by

γi = γ + ηγ,i ηγ,i ∼ I ID(0my×1, Ωγ)

Γi = Γ + ηΓ,i vec(ηΓ,i) ∼ I ID(0kmx×1, ΩΓ)

where γ, Γ are constant matrices, ΣγΓ = E(ηγ,i ⊗ ηΓ,i) is a covariance matrix, ηγ,i, ηΓ,i are independent across i
and of the other model components, and ∥γ∥ , ∥Γ∥ , ∥ΣγΓ∥, ∥Ωγ∥ , ∥ΩΓ∥ are finite.

Assumption 4 (Rank condition) rk(Γqẍ) = m, with qẍ a k × g selector matrix.
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Assumption 5 (Independence) ft, ε i,s, vj,l , η̃n are mutually independent for all i, j, n, t, s, l.

Assumption 6 (Slope heterogeneity) The slopes βi follow

βi = β + υi, υi ∼ I ID(0k×1, Ωυ)

with Ωυ a finite nonnegative definite k × k matrix and the υi are independent of ft, ε i,s, vj,l , η̃n for all i, j, n, t, s, l.

Assumption 7 (Identification) Q̂ẋ,i = T−1X′
iMF̂ẋ

Xi, with F̂ẋ = Xqẍ, is non-singular for all N, T, and

E

(∥∥∥(T−1V′
iMF̂ẋ

Vi)
−1
∥∥∥2
)
< ∞

also when F̂ẋ = Fx.

1.2 Rotation Matrix: mx < g vs. mx = g

Let F̂ẋ = Zqẋ = Xqẍ, where Z = [y, X] is the full set of available CAs and let qẋ = [0g×1, q′
ẍ]
′ be a (1 +

k)× g selection matrix that picks g cross-section averages determined by qẍ (a k × g matrix) exclusively
from X, such that

Xqẍ = (FxΓ + V)qẍ = FxΓẍ + Vẍ. (1.1)

Firstly, we consider mx < g case. To setup the key arguments in the proofs, we follow Karabiyik et al.
(2017) and notice that because ∥Vẍ∥ = Op(N−1/2) for the fixed T, we have

P
(

rk
[

T−1F̂′
ẋF̂ẋ

]
> rk

[
T−1Γ

′
ẍF′

xFxΓẍ

])
→ 1 (1.2)

as (N, T) → ∞, which means that the condition∣∣∣rk
[

T−1F̂′
ẋF̂ẋ

]
− rk

[
T−1Γ

′
ẍF′

xFxΓẍ

]∣∣∣→ 0 almost surely, (1.3)

which ensures convergence in MP inverses (see Andrews, 1987), is violated. To take this into account, we
introduce the following rotation matrix:

Hẋ =

[
Γ
−1
ẍ,mx

−Γẍ,mx Γẍ,−mx

0(g−mx)×mx Ig−mx

]
= [Hẋ,mx , Hẋ,−mx ], (1.4)

such that the average loading matrix is partitioned as ΓẍTẋ = [Γẍ,mx , Γẍ,−mx ], where Γẍ,mx ∈ Rmx×mx and
Γẍ,−mx ∈ Rmx×(g−mx) and Tẋ is the partitioning matrix. This leads to

F̂ẋTẋHẋ = F0
ẋ + VẍTẋHẋ, (1.5)

such that F0
ẋ = [Fx, 0T×(g−mx)] and VẍTẋHẋ = [VẍTẋHẋ,mx , VẍTẋHẋ,−mx ]. Because the upper-left block of

T−1H′
ẋT′

ẋF̂′
ẋF̂ẋTẋHẋ converges to ΣFx , but the lower-right block is Op(N−1), we still encounter a violation

of (1.3). Eventually, we introduce

DN =

[
Imx 0mx×(g−mx)

0(g−mx)×mx

√
NIg−mx

]
. (1.6)

Let Rẋ = TẋHẋDN . This matrix ensures that

F̂0
ẋ = F̂ẋRẋ = F̂ẋTẋHẋDN = F0

ẋ + [VẍTẋHẋ,mx ,
√

NVẍTẋHẋ,−mx ] = F0
ẋ + [V0

ẍ,mx
, V0

ẍ,−mx
] (1.7)
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does not have g − mx asymptotically degenerating columns since
∥∥∥V0

ẍ,−mx

∥∥∥ = Op(1). This ensures that

T−1F̂0′
ẋ F̂0

ẋ = T−1F0′
ẋ F0

ẋ + T−1F0′
ẋ V0

ẍ + T−1V0′
ẍ F0

ẋ + T−1V0′
ẍ V0

ẍ

= ΣF0
ẋ,v
+ Op(N−1/2) + Op(T−1/2), (1.8)

where the limiting matrix is

ΣF0
ẋ,v

= diag
[
ΣFx , (T−1V0′

ẍ,−mx
V0

ẍ,−mx
)
]

. (1.9)

This approximation holds because∥∥∥T−1F0′
ẋ V0

ẍ

∥∥∥ = Op(T−1/2), (1.10)∥∥∥T−1V0′
ẍ,mx

V0
mx

∥∥∥ = Op(N−1), (1.11)∥∥∥T−1V0′
ẍ,−mx

V0
ẍ,mx

∥∥∥ = Op(N−1/2), (1.12)

and so because
∣∣∣rk
[

T−1F̂0′
ẋ F̂0

ẋ

]
− rk

[
ΣF0

ẋ,v

]∣∣∣→ 0 almost surely, we obtain∥∥∥∥(T−1F̂0′
ẋ F̂0

ẋ

)+
− Σ+

F0
ẋ,v

∥∥∥∥ = Op(N−1/2) + Op(T−1/2). (1.13)

Because MF̂ẋ
= MF̂0

ẋ
due to Rẋ = TẋHẋDN being a full rank matrix, by using the same steps as in S25 -

S29 in Karabiyik et al. (2017), we then arrive at the following important expansion of projection matrices,
which will play a key role in our proofs:

MF0
ẋ
− MF̂ẋ

= MF0
ẋ
− MF̂0

ẋ
= T−1V0

ẍ,−mx
(T−1V0′

ẍ,−mx
V0

ẍ,−mx
)+V0′

ẍ,−mx
+ T−1V0

ẍ,mx
(T−1F′

xFx)
+V0′

ẍ,mx

+ T−1V0
ẍ,mx

(T−1F′
xFx)

+F′
x + T−1Fx(T−1F′

xFx)
+V0′

ẍ,mx

+ T−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ . (1.14)

However, if mx = g, then (1.3) is not violated by constrution and by definition the rotation matrix becomes
Rẋ = Γ

−1
ẍ so that MF0

ẋ
= MFx . Also, by the properties of the generalized inverse we have MF0

ẋ
= MFx =

MFxΓẍ
and also MF̂0

ẋ
= MF̂ẋ

. Here, all the components are well behaved. Next, we simplify and analyze
the decomposition in (1.14), given that now mx = g as

MF0
ẋ
− MF̂0

ẋ
= MFxΓẍ

− MF̂ẋ
= T−1Vẍ(T−1F̂′

ẋF̂ẋ)
+V′

ẍ + T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

x

+ T−1FxΓẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍ + T−1FxΓẍ[(T−1F̂′

ẋF̂ẋ)
+ − (Γ

′
ẍT−1F′

xFxΓẍ)
+]Γ

′
ẍF′

x, (1.15)

where now because
∥∥T−1F′

xVẍ
∥∥ = Op((NT)−1/2) and

∥∥∥T−1V′
ẍVẍ

∥∥∥ = Op(N−1) we have∥∥∥T−1F̂′
ẋF̂ẋ − Γ

′
ẍT−1F′

xFxΓẍ

∥∥∥ = Op(N−1) + Op((NT)−1/2), (1.16)∥∥∥(T−1F̂′
ẋF̂ẋ)

+ − (Γ
′
ẍT−1F′

xFxΓẍ)
+
∥∥∥ = Op(N−1) + Op((NT)−1/2). (1.17)

1.3 Cross-Section Bootstrap

We begin this section by describing the sampling scheme as given in De Vos and Stauskas (2024) in terms
of generic stack of b-rowed matrices A = (A′

1, A′
2, . . . , A′

N)
′. In what follows, →p∗ and →d∗ represent

convergence in probability and distribution with respect to the bootstrap induced probability measure,
while E∗(.) stands for bootstrap expectation (conditionally on the sample). This is how the scheme works:
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1. We model the pick of the matrix Ai from A through the 1 × N selection vectors wi = [wi,1, . . . , wi,N ],
which are drawn from a multinomial distribution with 1 trial and N events with a probability of
N−1. Hence, each wi is a unit-length vector with randomly realized 1 and zeros elsewhere. The
index of the non-zero element in wi denotes the unit (i∗) that is sampled from the stack A as unit i
in the bootstrap sample.

2. The selection vectors are further collected in the N × N matrix w = [w′
1, . . . , w′

N ]
′, which outlines

the allocation pattern in the bootstrap sample. In what follows,

ι′Nw =

[
N

∑
i=1

wi,1, . . . ,
N

∑
i=1

wi,N

]
= [s1, . . . , sN ] = s (1.18)

gives the total sampling frequency of each unit with the restriction ∑N
i=1 si = N. The random vector

s is a multinomial vector, where the coordinate si for every i has expectation 1, variance of 1 − N−1,
covariance between si and sj of −N−1 and a probability mass of N−1.

3. We ultimately define the cross-section bootstrap operator Wb = (w ⊗ Ib) ∈ RbN×bN which, given a
stack A of b-rowed matrices, produces a random draw with replacement of size N: WbA = A∗. An
example with N = 2 and A, B ∈ Rb×c would be

Wb

[
A
B

]
=

([
1, 0
1, 0

]
⊗ Ib

) [
A
B

]
=

[
A
A

]
or Wb

[
A
B

]
=

([
1, 0
0, 1

]
⊗ Ib

) [
A
B

]
=

[
A
B

]
.

The operator has the property W′
bWb = w′w ⊗ Ib = diag(s ⊗ ι′b), because w′w = diag(s). Let

also Ab = N−1(ι′N ⊗ Ib) be the cross-section average operator for stacked b−rowed matrices. Then, by
using the Kronecker properties, the CA of the bootstrap sample is obtained by

AbA∗ = AbWbA = N−1(ι′N ⊗ Ib)(w ⊗ Ib)A = N−1(s ⊗ Ib)A =
1
N

N

∑
i=1

siAi, (1.19)

which means that every summand is assigned a multinomial weight, such that E∗(AbA∗) = 1
N ∑N

i=1 Ai.

We implement the steps 1 - 3 above in the CCE context. We stack the T-rowed matrices over the individ-
uals:

X = Fx Γ + V ∈ RNT×k (1.20)

where X = [X′
1, . . . , X′

N ]
′, Fx = (IN ⊗ Fx), Γ = [Γ′

1, . . . , Γ′
N ]

′ and V = [V′
1, . . . , V′

N ]
′. Then, the draw is

given by

X∗ = WTX = (w ⊗ IT)(IN ⊗ Fx)Γ + WTV = (IN ⊗ Fx)(w ⊗ Imx)Γ + WTV = FxWmx Γ + WTV.
(1.21)

Simultaneously, the same is performed on y = [y′
1, . . . , y′

N ]
′ ∈ RNT×1, such that

y∗ = WTy = WTXβ + (w ⊗ IT)(IN ⊗ Fy)γ + WTε = (IN ⊗ Fy)(w ⊗ Imy)γ + WTε

= X∗β + FyWmy γ + WTε. (1.22)

By using the same Kronecker product properties as in (1.21), we can show that the cross-section average
of the bootstrap sample has the following expression:

F̂∗
x = X

∗
= ATX∗ = ATWTX = ATWT(Fx Γ + V) = FxAmx Wmx Γ + ATWTV = FxΓw + Vw (1.23)
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where Γw = 1
N ∑N

i=1 siΓi and Vw = 1
N ∑N

i=1 siVi. By implementing the selection of the averages, we get

F̂∗
ẋ = X

∗
qẍ = (FxΓw + Vw)qẍ = FxΓw,ẍ + Vw,ẍ. (1.24)

This representation ensures that Γw,,ẍ →p∗ Γẍ as N → ∞, and in turn Γ
+
w,ẍ →p∗ Γ+

ẍ . This confirms that the
asymptotic information content in the cross-section averages is replicated in the bootstrap samples. There-
fore, Assumption 3 holds in the original sample and in the bootstrap environment. Recall that asymptotic
singularity of T−1F̂′

ẋF̂ẋ under mx < g is the fundamental observation in the asymptotic analysis, which
requires introduction of the steps in (1.4) - (1.13). Hence, this information is also mapped to its bootstrap
equivalent T−1F̂∗′

ẋ F̂∗
ẋ.

2 Homogeneous Slopes

2.1 Pooled Estimator: Original Sample

Theorem 1. Under Assumptions 1 - 5 as (N, T) → ∞ such that TN−1 → τ < ∞ the following asymptotic
representations:

(a) If mx < g:
√

NT(β̂CCEP,ẋ − β) →d N
(

0k×1, Σ−1(Ψ + Ψ f )Σ
−1
)
+ Σ−1(

√
τh1 + h2)

with Ψ = limN,T→∞
1
N ∑N

i=1 E
(
T−1V′

iεiε
′
iVi
)
, h1 = h1,1 + h1,2 − h1,3, where

h1,1 = Σ′
γΓvec

(
(Γ+

ẍ )
′q′

ẍΣqẍTẋHẋ,mx ΣFx ΣFx,y

)
,

h1,2 = ĨẍΓ′(Γ+
ẍ )

′q′
ẍΣqẍTẋHẋ,mx Σ+

Fx
ΣFx,y γ,

h1,3 = ĨẍΣqẍTẋHẋ,mx Σ+
Fx

ΣFx,y γ, (2.1)

with Γẍ = Γqẍ, and Tẋ is a g× g partitioning matrix such that ΓẍTẋ = [Γẍ,mx , Γẍ,−mx ], where Γẍ,mx is an mx ×mx

full rank matrix, Γẍ,−mx is mx × (g − mx), and Hẋ,mx = [Γ−1
ẍ,mx

, 0mx×(g−mx)]
′. Lastly,

Ĩẍ = diag
(
[1(X1 /∈F̂ẍ)

, 1(X2 /∈F̂ẍ)
, . . . , 1(Xk /∈F̂ẍ)

]
)

,

Ψ f = lim
N,T→∞

1
N

N

∑
i=1

E
[
Ξẋ,y,i

(
T−1vec

(
V′

iF
)

vec
(
V′

iF
)′)

Ξ′
ẋ,y,i

]
with

h2 = Σ′
γΓ

(
ΣF0

ẋ,y
⊗ Dẋ,g−mx H′

ẋT′
ẋq′

ẍΣqẍΓ+
ẍ

)′
vec
(√

T
[
(T−1F̂0′

x F̂0
x)

+ − Σ+
F0

x,v

])
+ h2(Ĩẍ),

where h2(Ĩẍ) involves the terms depending on (T−1F̂0′
x F̂0

x)
+ − Σ+

F0
x,v

, which disappear if Ĩẍ = 0k×k. Next, for
Fx = Fpx and Fy = Fpy we have

Ξẋ,y,i = η′γ,i

(
py − pxΣ+

Fx
ΣFx,y

)′
⊗ Ik + Σ′

γΓ

[(
pxΣ+

Fx
ΣFx,y ⊗ qẍΓ+

ẍ

)′
−
(
py ⊗ (Ik − Dẋ,−mx Σ)qẍΓ+

ẍ
)′]

+ Ξẋ,y,i(Ĩẍ),

Dẋ,g−mx = diag(0mx , Ig−mx),

Dẋ,−mx = plim
N,T→∞

qẍTẋHẋ,−mx

(
T−1V0′

−mx
V0

−mx

)+
H′

ẋ,−mx
T′

ẋq′
ẍ,

where Ξẋ,y,i(Ĩẍ) summarizes the terms that disappear if Ĩẍ = 0k×k.
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(b) If mx = g:

√
NT(β̂CCEP,ẋ − β) →d N

(
0k×1, Σ−1(Ψ + Ψ̃ f )Σ

−1
)
+
√

τΣ−1h̃1,

with Γẍ = Γqẍ, h̃1 = h̃1,1 + h̃1,2 − h̃1,3, where

h̃1,1 = Σ′
γΓvec

(
(Γ+

ẍ )
′q′

ẍΣqẍ(Γ
′
ẍΣFx Γẍ)

+ΓẍΣFx,y

)
,

h̃1,2 = ĨẍΓ′(Γ+
ẍ )

′q′
ẍΣqẍ(Γ

′
ẍΣFx Γẍ)

+Γ′
ẍΣFx,y γ,

h̃1,3 = ĨẍΣqẍ(Γ
′
ẍΣFx Γẍ)

+Γ′
ẍΣFx,y γ. (2.2)

Also,

Ψ̃ f = lim
N,T→∞

1
N

N

∑
i=1

E
[
Θẋ,y,i

(
T−1vec

(
V′

iF
)

vec
(
V′

iF
)′)

Θ′
ẋ,y,i

]
,

Θẋ,y,i = η′γ,i

(
py − pxΣFx ΣFx,y

)′
⊗ Ik + Σ′

γΓ

[(
pxΣ+

Fx
ΣFx,y − py

)
⊗ qẍΓ+

ẍ

]′
+ Θẋ,y,i(Ĩẍ),

where Ξẋ,y,i(Ĩẍ) summarizes terms that disappear if Ĩẍ = 0k×k.

Proof. See the proof of parts (a) and (b) of Proposition 1 in De Vos and Stauskas (2024).

2.2 Pooled Estimator: Bootstrap Distribution

Theorem 2. Under Assumptions 1 - 5 we have as (N, T) → ∞ such that TN−1 → τ < ∞ the following asymp-
totic representations:

(a) If mx < g:
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) →d∗ N (0k×1, Σ−1(Ψ + Ψ f )Σ

−1) + Σ−1(
√

τh1 + h2 + h+)

where h+ = 2(h∗
2 − h2) and

h∗
2 = Σ′

γΓ

(
ΣF0

ẋ,y
⊗ Dẋ,g−mx H′

ẋT′
ẋq′

ẍΣqẍΓ+
ẍ

)′
vec
(√

T
[
(T−1F̂0∗′

ẋ F̂∗0
ẋ )+ − Σ+

w,F0
ẋ,v

])
+ h∗

2(Ĩẍ)

with ΣF0
w,ẋ,v

= diag
[
ΣFx , (T−1V0′

w,ẍ,−mx
V0

w,ẍ,−mx
)
]

.The remaining quantities are as defined in Theorem 1.

(b) If mx = g:

√
NT(β̂

∗
CCEP,ẋ − β̂CCEP,ẋ) →d∗ N

(
0k×1, Σ−1(Ψ + Ψ̃ f )Σ

−1
)
+
√

τΣ−1h̃1,

where the quantities are the same as in Theorem 1 (b), and we have under the same conditions:

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣→p 0,

where the inequalities should be interpreted coordinate-wise.

Proof. See the proof of part (a) and (b) of Proposition 2 in De Vos and Stauskas (2024).
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3 Heterogeneous Slopes

3.1 Pooled Estimator

Theorem 3. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞
√

N(β̂CCEP,ẋ − β) →d N
(

0k×1, Σ−1ΨνΣ−1
)

,

where Σ = plimN→∞
1

NT ∑N
i=1 V′

iVi and Ψν = limN→∞
1
N ∑N

i=1 ΣiΩνΣi.

Proof. To begin with, let mx < g. We use the model

yi = Xiβi + Fyγi + εi, (3.1)

Xi = FxΓi + Vi, (3.2)

which leads to the expansion of the CCEP estimator in the following way:

β̂CCEP,ẋ =

(
N

∑
i=1

X′
iMF̂ẋ

Xi

)−1 N

∑
i=1

X′
iMF̂ẋ

yi

=

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1

NT

N

∑
i=1

X′
iMF̂ẋ

yi

=

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xiβi +
1

NT

N

∑
i=1

X′
iMF̂ẋ

Fyγi +
1

NT

N

∑
i=1

X′
iMF̂ẋ

εi

)

= β +

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xiνi +
1

NT

N

∑
i=1

X′
iMF̂ẋ

Fy(γ + ηγ,i) +
1

NT

N

∑
i=1

X′
iMF̂ẋ

εi

)
.

(3.3)

This leads to

√
N(β̂CCEP,ẋ − β) =

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγ

= I + II + III + IV (3.4)

By using the fact that Fx = (F̂ẋ − Vẍ)Γ
+
ẍ , Xi = (F̂ẋ − Vẍ)Γ

+
ẍ Γi + Vi and hence MF̂ẋ

F̂ẋ = 0T×k, we obtain

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi =
1

NT

N

∑
i=1

(Vi − VẍΓ
+
ẍ Γi)

′MF̂ẋ
(Vi − VẍΓ

+
ẍ Γi)

=
1
N

N

∑
i=1

T−1V′
iVi + Op(T−1/2)

= Σ + Op(T−1/2), (3.5)
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which comes directly from Lemma B-7 leading up to Theorem 4 in De Vos and Stauskas (2024), in addition
to T−1V′

iVi = Σi +Op(T−1/2). There it is assumed that Fx = Fy = F and F̂ = [y, X], which means that (3.5)
is a special case and the same rate of convergence applies. By using the same Lemma B-7 and Theorem 4
in De Vos and Stauskas (2024) in connection to (3.5) we have that

III =

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi = op(1) (3.6)

and

I =

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi = Σ−1 1√
N

N

∑
i=1

(T−1V′
iVi)νi + op(1), (3.7)

which means that the slope heterogeneity dominates εi in the asymptotic distribution. Again, these results
follow, because in the heterogeneous slope analysis in De Vos and Stauskas (2024) we have Fx = Fy = F
and F̂ = [y, X], thus the rates of convergence here are preserved or faster when only X is employed. As
such,

√
N(β̂CCEP,ẋ − β) = Σ−1 1√

N

N

∑
i=1

(T−1V′
iVi)νi

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1

︸ ︷︷ ︸
Op(1)

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i

+

(
1

NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1

︸ ︷︷ ︸
Op(1)

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγ + op(1). (3.8)

Note that IV is algebraically equal to 0k if qẍ = Ik. Otherwise, it has nearly identical structure to II.
Therefore, we will now examine II, and we will focus on its numerator. Because MF̂ẋ

= MF̂0
ẋ

since

Rẋ = TẋHẋDN is full-rank, we now decompose the numerator of II as

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′MF̂ẋ
Fyηγ,i

=
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′MF̂0
ẋ
Fyηγ,i

=
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′MF0
ẋ
Fyηγ,i

− 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyηγ,i

=
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′Fyηγ,i −
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′PF0
ẋ
Fyηγ,i

− 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyηγ,i

= A − B − C. (3.9)
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We start from A, which leads to

A =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′Fyηγ,i =
1√
N

N

∑
i=1

T−1V′
iFyηγ,i −

1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍFyηγ,i

= Op(T−1/2), (3.10)

because∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍFyηγ,i

∥∥∥∥∥ =

∥∥∥∥∥ 1
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ

√
NV′

ẍFyηγ,i

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥ηγ,i

∥∥∥ ∥∥∥√NT−1V′
ẍFy

∥∥∥
= Op(T−1/2) (3.11)

and by cross-section independence of the error terms

E

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iFyηγ,i

∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

E
(

T−2tr
[
V′

iFyηγ,iη
′
γ,jF

′
yVj

])

=
1
N

N

∑
i=1

E
(

T−2tr
[
V′

iFyηγ,iη
′
γ,iF

′
yVi

])
=

1
N

N

∑
i=1

E
(

T−2tr
[
η′γ,iF

′
yViV′

iFyηγ,i

])
=

1
N

N

∑
i=1

(
tr
[
E(ηγ,iη

′
γ,i)E(T−2F′

yViV′
iFy)

])
=

1
N

N

∑
i=1

(
tr

[
E(ηγ,iη

′
γ,i)

1
T2

T

∑
t=1

T

∑
s=1

E(fy,tv′
i,tvi,sf′y,s)

])
= O(T−1) (3.12)

due to summable covariances. Further, we look into B, and in particular we get

B =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′PF0
ẋ
Fyηγ,i

=
1√
N

N

∑
i=1

T−1V′
iPF0

ẋ
Fyηγ,i −

1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍPF0
ẋ
Fyηγ,i

= Op(T−1/2),

because∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍPF0
ẋ
Fyηγ,i

∥∥∥∥∥ =

∥∥∥∥∥ 1
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ

√
NV′

ẍPF0
ẋ
Fyηγ,i

∥∥∥∥∥
≤ 1

N

N

∑
i=1

∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥ηγ,i

∥∥∥ ∥∥∥√NT−1V′
ẍF0

ẋ

∥∥∥ ∥∥∥(T−1F0′
ẋ F0

ẋ)
+
∥∥∥ ∥∥∥T−1F0′

ẋ Fy

∥∥∥
= Op(T−1/2) (3.13)
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as
∥∥∥√NT−1V′

ẍF0
ẋ

∥∥∥ = Op(T−1/2) and∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iPF0

ẋ
Fyηγ,i

∥∥∥∥∥ =

∥∥∥∥∥vec

(
1√
N

N

∑
i=1

T−1V′
iPF0

ẋ
Fyηγ,i

)∥∥∥∥∥
=

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iF
0
ẋ

)
vec

(
(T−1F0′

ẋ F0
ẋ)

+T−1F0′
ẋ Fy

)∥∥∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iF
0
ẋ

)∥∥∥∥∥︸ ︷︷ ︸
Op(T−1/2)

∥∥∥vec
(
(T−1F0′

ẋ F0
ẋ)

+T−1F0′
ẋ Fy

)∥∥∥
= Op(T−1/2) (3.14)

by the exact same argument as in (3.12). Particularly, by using the Kronecker properties, cross-section
independence of the error terms and tr(A′A) = tr(AA′), we obtain

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,i ⊗ T−1V′

iF
0
ẋ

)∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

E
(

tr
[
η′γ,iηγ,j ⊗ T−2V′

iF
0
ẋF0′

ẋ Vj

])

=
1
N

N

∑
i=1

E
(

tr
[
η′γ,iηγ,i ⊗ T−2V′

iF
0
ẋF0′

ẋ Vi

])
=

1
N

N

∑
i=1

E
(

η′γ,iηγ,i

)
tr
[
E
(
T−2V′

iF
0
ẋF0′

ẋ Vi
)]

=
1
N

N

∑
i=1

E
(

η′γ,iηγ,i

) 1
T2

T

∑
t=1

T

∑
s=1

tr
[
E
(
vi,tf0′

ẋ,tf
0
ẋ,sv

′
i,s
)]

= O(T−1). (3.15)

Lastly, we show that C is negligible as well. To demonstrate this, we re-state the fact that

MF0
ẋ
− MF̂0

ẋ
= T−1V0

−mx
(T−1V0′

−mx
V0

−mx
)+V0′

−mx
+ T−1V0

mx
(T−1F′

xFx)
+V0′

mx

+ T−1V0
mx
(T−1F′

xFx)
+F′

x + T−1Fx(T−1F′
xFx)

+V0′
mx

+ T−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ , (3.16)

which comes from performing the same manipulations as in S25 - S29 from the supplementary material
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of Karabiyik et al. (2017). Therefore, we obtain

C =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyηγ,i

=
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

+
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,mx

(T−1F′
xFx)

+V0′
ẍ,mx

Fyηγ,i

+
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,mx

(T−1F′
xFx)

+F′
xFyηγ,i

+
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1Fx(T−1F′
xFx)

+V0′
ẍ,mx

Fyηγ,i

+
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

= C1 + C2 + C3 + C4 + C5, (3.17)

where each of the terms is negligible. We will start with C1 and C5, which require the most work. In
particular,

C1 =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

=
1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

− 1
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ

√
NV′

ẍT−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

=
1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i + Op(T−1/2), (3.18)

since ∥∥∥∥∥ 1
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ

√
NV′

ẍT−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

∥∥∥∥∥
≤
∥∥∥T−1V0′

ẍ,−mx
Fy

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥∥T−1

√
NV′

ẍV0
ẍ,−mx

∥∥∥ 1
N

N

∑
i=1

∥∥∥Γ
+

Γi

∥∥∥ ∥∥∥ηγ,i

∥∥∥
= Op(T−1/2). (3.19)

By defining D̂ẋ,−mx = qẍHẋ,−mx(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+Hẋ,−mx q′
ẍ, the first term can be simplified in the fol-
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lowing way:

1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

=
1√
NT2

N

∑
i=1

NV′
iVqẍHẋ,−mx(T

−1V0′
ẍ,−mx

V0
ẍ,−mx

)+Hẋ,−mx q′
ẍV′Fyηγ,i

=
1

N
√

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iVjD̂ẋ,−mx V′

lFyηγ,i

=
k

∑
u=1

k

∑
v=1

d̂ẋ,−mx ,u,v
1

N
√

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iV

(u)
j V(v)′

l Fyηγ,i, (3.20)

where d̂ẋ,−mx ,u,v is an element in row u and column v in Dẋ,−mx . Therefore,∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

∥∥∥∥∥
=

∥∥∥∥∥ k

∑
u=1

k

∑
v=1

d̂ẋ,−mx ,u,v
1

N
√

NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iV

(u)
j V(v)′

l Fyηγ,i

∥∥∥∥∥
≤

k

∑
u=1

k

∑
v=1

∣∣∣d̂ẋ,−mx ,u,v

∣∣∣ 1√
N

∥∥∥∥∥ 1
NT2

N

∑
i=1

N

∑
j=1

N

∑
l=1

V′
iV

(u)
j V(v)′

l Fyηγ,i

∥∥∥∥∥︸ ︷︷ ︸
Op(T−1/2)

= Op((NT)−1/2), (3.21)

where the Op(T−1/2) component is established in (2.80) of the supplementary material of De Vos and
Stauskas (2024), where they demonstrate the the normalized triple sum of with the triples of the same
variable multiplied by the fourth independent variable follows this order under our assumptions. Indeed,
{f′yηγ,i}T

t=1 is a zero-mean process independent from the model errors. Therefore, in summary

∥C1∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyηγ,i

∥∥∥∥∥ = Op(T−1/2).

(3.22)

We next move on to C5:

C5 =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

=
1√
N

N

∑
i=1

T−1V′
iT

−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

− 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍT−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

=
1√
N

N

∑
i=1

T−1V′
iT

−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i + Op(T−1/2) + Op(N−1/2) (3.23)
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since ∥∥∥∥∥ 1√
N

N

∑
i=1

T−1Γ′
iΓ

+′
ẍ V′

ẍT−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

∥∥∥∥∥
≤
∥∥∥(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

∥∥∥ ∥∥∥T−1F̂0′
ẋ Fy

∥∥∥ ∥∥∥T−1
√

NV′
ẍF̂0

ẋ

∥∥∥ 1
N

N

∑
i=1

∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥ηγ,i

∥∥∥
= Op(T−1/2) + Op(N−1/2), (3.24)

because
∥∥∥T−1

√
NV′

ẍF̂0
ẋ

∥∥∥ ≤
∥∥∥T−1

√
NV′

ẍV0
ẍ

∥∥∥+ ∥∥∥T−1
√

NV′
ẍF0

ẋ

∥∥∥ =
∥∥∥T−1

√
NV′

ẍV0
ẍ

∥∥∥+ Op(T−1/2) = Op(1)

and
∥∥∥T−1F̂0′

ẋ Fy

∥∥∥ = Op(1). Next up, we re-write the first term in vectorized form to obtain

1√
N

N

∑
i=1

T−1V′
iT

−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

=
1√
N

N

∑
i=1

(
η′γ,iT

−1F′
yF̂0

ẋ ⊗ T−1V′
iF̂

0
ẋ

)
vec

[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]
︸ ︷︷ ︸

Op(N−1/2) + Op(T−1/2)


= Op(N−1) + Op(T−1), (3.25)

because the first component is asymptotically negligible, as well. Particularly, by using cross-section inde-
pendence of the loadings, multiplication properties of the Kronecker product and the fact that tr(A′A) =
tr(AA′), we obtain

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
η′γ,iT

−1F′
yF̂0

ẋ ⊗ T−1V′
iF̂

0
ẋ

)∥∥∥∥∥
2


=
1
N

N

∑
i=1

N

∑
j=1

E
(

tr
[
η′γ,iT

−1F′
yF̂0

ẋ(T
−1F̂0′

ẋ Fy)ηγ,j ⊗ T−1V′
iF̂

0
ẋ(T

−1F̂0′
ẋ Vj)

])
=

1
N

N

∑
i=1

E
(

tr
[
η′γ,iT

−1F′
yF̂0

ẋ(T
−1F̂0′

ẋ Fy)ηγ,i ⊗ T−1V′
iF̂

0
ẋ(T

−1F̂0′
ẋ Vi)

])
=

1
N

N

∑
i=1

E
(

η′γ,iT
−1F′

yF̂0
ẋ(T

−1F̂0′
ẋ Fy)ηγ,itr

[
T−1V′

iF̂
0
ẋ(T

−1F̂0′
ẋ Vi)

])
= O(N−1) + O(T−1), (3.26)

because
∥∥∥T−1F̂0′

ẋ Vi

∥∥∥ ≤
∥∥∥T−1V′

iV
0
ẍ

∥∥∥+∥∥T−1V′
iF

0
ẋ
∥∥ = (Op(N−1/2)+Op(T−1/2))+Op(T−1/2) = Op(N−1/2)+

Op(T−1/2). This means that overall

C5 =
1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyηγ,i

= Op(N−1/2) + Op(T−1/2). (3.27)
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We will finish by analysing C2, C3 and C4, which all have a similar structure. For instance,

∥C2∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,mx

(T−1F′
xFx)

+V0′
ẍ,mx

Fyηγ,i

∥∥∥∥∥
≤
∥∥∥(T−1F′

xFx)
+
∥∥∥ ∥∥∥√NT−1V0′

ẍ,mx
Fy

∥∥∥ 1
N

N

∑
i=1

∥∥∥T−1(Vi − VẍΓ
+
ẍ Γi)

′V0
ẍ,mx

)
∥∥∥ ∥∥∥ηγ,i

∥∥∥
= Op(T−1/2)

(
Op(N−1) + Op((NT)−1/2)

)
= Op(N−1T−1/2) + Op(N−1/2T−1) (3.28)

and

∥C3∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1V0
ẍ,mx

(T−1F′
xFx)

+F′
xFyηγ,i

∥∥∥∥∥
≤
∥∥∥T−1F′

xFy

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ 1

N

N

∑
i=1

∥∥∥T−1(Vi − VẍΓ
+
ẍ Γi)

′√NV0
ẍ,mx

∥∥∥ ∥∥∥ηγ,i

∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.29)

since
∥∥∥√NT−1V′

iV
0
ẍ,mx

∥∥∥ = Op(N−1/2) + Op(T−1/2) and
∥∥∥T−1V′

ẍV0
ẍ,mx

∥∥∥ = Op(N−1/2). Finally,

∥C4∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′T−1Fx(T−1F′
xFx)

+V0′
ẍ,mx

Fyηγ,i

∥∥∥∥∥
≤
∥∥∥√NT−1V0′

ẍ,mx
Fy

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ 1

N

N

∑
i=1

∥∥∥T−1(Vi − VẍΓ
+
ẍ Γi)

′Fx

∥∥∥ ∥∥∥ηγ,i

∥∥∥
= Op(T−1/2)

(
Op(T−1/2) + Op((NT)−1/2)

)
= Op(T−1). (3.30)

Hence, by combining the rates of C1 - C5, we have that

∥C∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyηγ,i

∥∥∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.31)

and in connection to the rates of A and B, we obtain

∥II∥ =

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
∥∥∥∥∥∥︸ ︷︷ ︸

Op(1)

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i

∥∥∥∥∥︸ ︷︷ ︸
Op(N−1/2) + Op(T−1/2)

= Op(N−1/2) + Op(T−1/2). (3.32)

We are left to deal with IV. Note that it follows exactly the same analysis as II and will retain the same
order results if we replace ηγ,i with γ in any of the equations above, because the steps do not depend on
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the statistical properties of the loadings. For example, (3.12) and (3.15) are solely driven by the covariance
summability and not the loading properties. This gives, respectively,

E

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iFyγ

∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

E
(

T−2tr
[
V′

iFyγγ′F′
yVj

])

=
1
N

N

∑
i=1

E
(

T−2tr
[
V′

iFyγγ′F′
yVi

])
=

1
N

N

∑
i=1

E
(

T−2tr
[
γ′F′

yViV′
iFyγ

])
=

1
N

N

∑
i=1

(
tr
[
γγ′E(T−2F′

yViV′
iFy)

])
=

1
N

N

∑
i=1

(
tr

[
γγ′ 1

T2

T

∑
t=1

T

∑
s=1

E(fy,tv′
i,tvi,sf′y,s)

])
= O(T−1) (3.33)

and similarly by cross-section independence

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′ ⊗ T−1V′

iF
0
ẋ

)∥∥∥∥∥
2
 =

1
N

N

∑
i=1

E
(
tr
[
γ′γ ⊗ T−2V′

iF
0
ẋF0′

ẋ Vi
])

=
1
N

N

∑
i=1

γ′γtr
[
E
(
T−2V′

iF
0
ẋF0′

ẋ Vi
)]

= γ′γ
1
N

N

∑
i=1

1
T2

T

∑
t=1

T

∑
s=1

tr
[
E
(
vi,tf0′

ẋ,tf
0
ẋ,sv

′
i,s
)]

= O(T−1). (3.34)

The two exceptions are (3.25) and (3.21), which slightly change. In particular,∥∥∥∥∥ 1√
N

N

∑
i=1

T−1V′
iT

−1F̂0
ẋ

[
(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]
F̂0′

ẋ Fyγ

∥∥∥∥∥
=

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′T−1F′

yF̂0
ẋ ⊗ T−1V′

iF̂
0
ẋ

)∥∥∥∥∥ ∥∥∥vec
([

(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

])∥∥∥
≤
∥∥∥γ′T−1F′

yF̂0
ẋ ⊗

√
NT−1V′F̂0

ẋ

∥∥∥
∥∥∥∥∥∥∥∥∥vec

[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]
︸ ︷︷ ︸

Op(N−1/2) + Op(T−1/2)


∥∥∥∥∥∥∥∥∥

= Op(N−1/2) + Op(T−1/2), (3.35)

because
√

NT−1V′F̂0
ẋ is bounded. Also,∥∥∥∥∥ 1√

N

N

∑
i=1

T−1V′
iT

−1V0
ẍ,−mx

(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+V0′
ẍ,−mx

Fyγ

∥∥∥∥∥
=
∥∥∥√NT−1V′V0

ẍ,−mx
Σ̂
+
v0

ẋ,−mx
T−1(V0

ẍ,−mx
)′Fyγ

∥∥∥
≤
∥∥∥√NT−1V′V0

ẍ,−mx

∥∥∥ ∥∥∥Σ̂
+
v0

ẋ,−mx

∥∥∥ ∥∥∥T−1(V0
ẍ,−mx

)′Fyγ
∥∥∥ = Op(T−1/2). (3.36)
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This means that

∥IV∥ ≤

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1
∥∥∥∥∥∥︸ ︷︷ ︸

Op(1)

∥∥∥∥∥ 1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγ

∥∥∥∥∥︸ ︷︷ ︸
Op(N−1/2) + Op(T−1/2)

= Op(N−1/2) + Op(T−1/2). (3.37)

By putting the results together, we simplify (3.8) and obtain the asymptotic distribution by standard
Lindeberg-Lévy Central Limit Theorem:

√
N(β̂CCEP,ẋ − β) = Σ−1 1√

N

N

∑
i=1

(T−1V′
iVi)νi + op(1)

= Σ−1 1√
N

N

∑
i=1

Σiνi + op(1)

→d N
(

0k×1, Σ−1ΨνΣ−1
)

(3.38)

as (N, T) → ∞, where Ψν = limN→∞
1
N ∑N

i=1 ΣiΩνΣi. The simplification comes from

E

∥∥∥∥∥ 1√
N

N

∑
i=1

[
(T−1V′

iVi)− Σi

]
νi

∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

tr
[

E

([
(T−1V′

iVi)− Σi

]
νiνj

[
T−1V′

jVj)− Σj

]′)]

=
1
N

N

∑
i=1

tr
[

E

([
(T−1V′

iVi)− Σi

]
Ων

[
T−1V′

iVi)− Σi

]′)]
=

1
N

N

∑
i=1

tr
[

ΩνE

([
(T−1V′

iVi)− Σi

]′ [
(T−1V′

iVi)− Σi

])]
= O(T−1). (3.39)

Now, we let mx = g, which means that we will use the expansion

MF0
ẋ
− MF̂0

ẋ
= MFxΓẍ

− MF̂ẋ
= T−1Vẍ(T−1F̂′

ẋF̂ẋ)
+V′

ẍ + T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

x

+ T−1FxΓẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍ + T−1FxΓẍ[(T−1F̂′

ẋF̂ẋ)
+ − (Γ

′
ẍT−1F′

xFxΓẍ)
+]Γ

′
ẍF′

x. (3.40)

Under mx = g case the results of De Vos and Stauskas (2024) hold, and so we arrive at the approximation
in (3.8), where the remainder is of even lower order. In order to verify that the results hold, we only look
at the most complex term C in (3.9) as the analysis of A and B would stay exactly the same and they will
be negligible. This is so, because

(F0′
ẋ F0

ẋ)
+ =

[
F′

xFx 0mx×(g−mx)

0(g−mx)×mx 0(g−mx)

]+
=

[
(F′

xFx)+ 0mx×(g−mx)

0(g−mx)×mx 0(g−mx)

]
,

leading to

PF0
ẋ
= F0

ẋ(F
0′
ẋ F0

ẋ)
+F0′

ẋ =
[

Fx, 0T×(g−mx)

] [ (F′
xFx)+ 0mx×(g−mx)

0(g−mx)×mx 0(g−mx)

] [
F′

x
0(g−mx)×T

]
= F′

x(F
′
xFx)

+Fx = PFx .
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Then, particularly for C, we have

∥C∥ =

∥∥∥∥∥ 1
N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyηγ,i

∥∥∥∥∥
≤
∥∥∥∥∥ 1

N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍFyηγ,i

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

xFyηγ,i

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1FxΓẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍFyηγ,i

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1FxΓẍ[(T−1F̂′
ẋF̂ẋ)

+ − (Γ
′
ẍT−1F′

xFxΓẍ)
+]Γ

′
ẍF′

xFyηγ,i

∥∥∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.41)

which is driven by the highest order component∥∥∥∥∥ 1
N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

xFyηγ,i

∥∥∥∥∥
≤
∥∥∥(T−1F̂′

ẋF̂ẋ)
+
∥∥∥ ∥∥∥T−1F′

xFy

∥∥∥ 1
N

N

∑
i=1

∥∥∥ηγ,i

∥∥∥ ∥∥Γẍ
∥∥ ∥∥∥√NT−1V′

iVẍ

∥∥∥
+
∥∥∥(T−1F̂′

ẋF̂ẋ)
+
∥∥∥ ∥∥∥T−1F′

xFy

∥∥∥ 1
N

N

∑
i=1

∥∥∥ηγ,i

∥∥∥ ∥∥Γẍ
∥∥ ∥∥∥√NT−1V′

ẍVẍΓ
+
ẍ Γi

∥∥∥
= Op(N−1/2) + Op(T−1/2). (3.42)

The same order result will hold in the expansion equivalent to (3.9) in case of IV, when we replace ηγ,i
with γ. By looking at the equivalent leading term, we obtain∥∥∥∥∥ 1

N

N

∑
i=1

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

xFyγ

∥∥∥∥∥
≤
∥∥∥(T−1F̂′

ẋF̂ẋ)
+
∥∥∥ ∥∥∥T−1F′

xFy

∥∥∥ 1
N

N

∑
i=1

∥γ∥
∥∥Γẍ

∥∥ ∥∥∥√NT−1V′
iVẍ

∥∥∥
+
∥∥∥(T−1F̂′

ẋF̂ẋ)
+
∥∥∥ ∥∥∥T−1F′

xFy

∥∥∥ 1
N

N

∑
i=1

∥γ∥
∥∥Γẍ

∥∥ ∥∥∥√NT−1V′
ẍVẍΓ

+
ẍ Γi

∥∥∥
= Op(N−1/2) + Op(T−1/2). (3.43)

3.2 Mean Group Estimator

Theorem 4. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞ with TN−1 → τ > 0
√

N(β̂CCEMG,ẍ − β) →d N (0k×1, Ων) ,

where Ων = E(νiν
′
i) .
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Proof. Firstly, we assume mx < g. We expand the CCEMG estimator in the following way:

β̂CCEMG,ẋ =
1
N

N

∑
i=1

(
X′

iMF̂ẋ
Xi

)−1
X′

iMF̂ẋ
yi

=
1
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
yi

=
1
N

N

∑
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Xi

)−1
T−1X′

iMF̂ẋ
(Xiβi + Fyγi + εi)

=
1
N

N

∑
i=1

βi +
1
N

N

∑
i=1

(
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iMF̂ẋ
Xi

)−1
X′

iMF̂ẋ
Fyγi +

1
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi

= β +
1
N

N

∑
i=1

νi +
1
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
Fyγi +

1
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi,

(3.44)

which implies that

√
N(β̂CCEMG,ẋ − β) =

1√
N

N

∑
i=1

νi +
1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
Fyγi

+
1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi

= I + II + III. (3.45)

Clearly, I is asymptotically normal by the standard arguments:

I =
1√
N

N

∑
i=1

νi →d N (0k×1, Ων) , (3.46)

as (N, T) → ∞. We further move to III, which is much simpler than its analog in Theorem 6 of De Vos and
Stauskas (2024). In particular, in the later study, ε is used to approximate the factor space via F̂ = [y, X],
which makes the numerator and the denominator dependent for each i. In the current case, we only use
X and hence (any subset of) V, which is independent from εi for all i. This implies that III is mean-zero
and by our assumptions on existence of moments, we obtain

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi

∥∥∥∥∥
2


=
1
N

N

∑
i=1

N

∑
j=1

E

(
tr
[(

T−1X′
iMF̂ẋ

Xi

)−1
T−2X′

iMF̂ẋ
εiε

′
jMF̂ẋ

Xj

(
T−1X′

jMF̂ẋ
Xj

)−1
])

=
1
N

N

∑
i=1

E

(
tr
[(

T−1X′
iMF̂ẋ

Xi

)−1
T−2X′

iMF̂ẋ
εiε

′
iMF̂ẋ

Xi

(
T−1X′

iMF̂ẋ
Xi

)−1
])

= O(T−1), (3.47)

which comes from the fact that
∥∥∥T−1/2X′

iMF̂ẋ
εi

∥∥∥ = Op(1). This can easily be seen from the expansion
similar to (3.9)

T−1/2X′
iMF̂ẋ

εi = T−1/2(Vi − VẍΓ
+
ẍ Γi)

′MF̂ẋ
εi

= T−1/2(Vi − VẍΓ
+
ẍ Γi)

′εi − T−1/2(Vi − VẍΓ
+
ẍ Γi)

′PF0
ẋ
εi

− T−1/2(Vi − VẍΓ
+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)εi, (3.48)
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where the leading terms are the ones with Vi from the left, because Vẍ will either preserve the same order
or bring it down. Clearly,∥∥∥T−1/2V′

iεi

∥∥∥ = Op(1), (3.49)∥∥∥T−1/2Γ′
iΓ

+′
ẍ V′

ẍεi

∥∥∥ = Op(N−1/2) (3.50)

under our assumptions. Next,∥∥∥T−1/2V′
iPF0

ẋ
εi

∥∥∥ ≤
∥∥∥T−1/2V′

iF
0
ẋ

∥∥∥ ∥∥∥(T−1F0′
ẋ F0

ẋ)
+
∥∥∥ ∥∥∥T−1F0′

ẋ εi

∥∥∥ = Op(T−1/2), (3.51)∥∥∥T−1/2Γ′
iΓ

+′V′PF0
ẋ
εi

∥∥∥ ≤
∥∥∥T−1/2Γ′

iΓ
+′
ẍ V′

ẍF0
ẋ

∥∥∥ ∥∥∥(T−1F0′
ẋ F0

ẋ)
+
∥∥∥ ∥∥∥T−1F0′

ẋ εi

∥∥∥ = Op((NT)−1/2). (3.52)

Eventually, by using the expansion in (3.16), we obtain∥∥∥T−1/2V′
i(MF0

ẋ
− MF̂0

ẋ
)εi

∥∥∥ ≤
∥∥∥T−1V′

iV
0
ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,−mx
εi

∥∥∥
+
∥∥∥T−1V′

iV
0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,mx
εi

∥∥∥
+
∥∥∥T−1V′

iV
0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2F′

xεi

∥∥∥
+
∥∥∥T−1V′

iFx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,mx
εi

∥∥∥
+
∥∥∥T−1V′

iF̂
0
ẋ

∥∥∥ ∥∥∥[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]∥∥∥ ∥∥∥T−1/2F̂0′
ẋ εi

∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.53)

and ∥∥∥T−1/2Γ′
iΓ

+′V′
(MF0

ẋ
− MF̂0

ẋ
)εi

∥∥∥ ≤
∥∥∥T−1Γ′

iΓ
+′
ẍ V′

ẍV0
ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,−mx
εi

∥∥∥
+
∥∥∥T−1Γ′

iΓ
+′V′V0

ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,mx
εi

∥∥∥
+
∥∥∥T−1Γ′

iΓ
+′V′

ẍV0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2F′

xεi

∥∥∥
+
∥∥∥T−1Γ′

iΓ
+′V′

ẍFx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1/2V0′

ẍ,mx
εi

∥∥∥
+
∥∥∥T−1Γ′

iΓ
+′V′

ẍF̂0
ẋ

∥∥∥ ∥∥∥[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]∥∥∥ ∥∥∥T−1/2F̂0′
ẋ εi

∥∥∥
= Op(N−1/2), (3.54)

since
∥∥∥T−1V′

iV
0
ẍ,−mx

∥∥∥ = Op(N−1/2) + Op(T−1/2),
∥∥∥T−1V′

ẍV0
ẍ,−mx

∥∥∥ = Op(N−1/2),
∥∥∥T−1/2V0′

ẍ,−mx
εi

∥∥∥ =

Op(1),
∥∥T−1V′

iFx
∥∥ = Op(T−1/2),

∥∥T−1/2F′
xεi
∥∥ = Op(1),

∥∥∥T−1/2F̂0′
ẋ εi

∥∥∥ = Op(1) and the rest of the terms
are of a lower order. Therefore,∥∥∥T−1/2X′

iMF̂ẋ
εi

∥∥∥ = Op(1), (3.55)∥∥∥T−1X′
iMF̂ẋ

εi

∥∥∥ = Op(T−1/2) (3.56)

and hence

∥III∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi

∥∥∥∥∥ = Op(N−1/2) + Op(T−1/2). (3.57)
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We will proceed with II. In particular, we can re-write it as

II =
1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
Fyγi

=
1√
N

N

∑
i=1

Σ−1
i T−1X′

iMF̂ẋ
Fyγi +

1√
N

N

∑
i=1

[(
T−1X′

iMF̂ẋ
Xi

)−1
− Σ−1

i

]
T−1X′

iMF̂ẋ
Fyγi

= A + B, (3.58)

which is not the “sharpest” split of this term, but as we will see, the restriction on N, T expansion will be
needed anyway. Here we will focus on A, first. We have

A =
1√
N

N

∑
i=1

Σ−1
i T−1X′

iMF̂ẋ
Fyγi =

1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′MF̂ẋ
Fyγi

=
1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′Fyγi −
1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′PF0
ẋ
Fyγi

− 1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

= A1 − A2 − A3, (3.59)

where ∥A1∥ = Op(T−1/2), because∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1Γ′

iΓ
+′
ẍ V′

ẍFyγi

∥∥∥∥∥ ≤
∥∥∥√NT−1V′

ẍFy

∥∥∥ 1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥γi∥ = Op(T−1/2), (3.60)

and by the cross-section independence of Vi

E

∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1V′

iFyγi

∥∥∥∥∥
2
 =

1
N

N

∑
i=1

tr
[
E
(
γiγ

′
i
)

E
(

Σ−1
i T−2V′

iFyF′
yViΣ

−1
i

)]
= O(T−1) (3.61)

since
∥∥∥T−1F′

yVi

∥∥∥ = Op(T−1/2). The term A2 follows a similar structure, because∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1Γ′

iΓ
+′
ẍ V′

ẍPF0
ẋ
Fyγi

∥∥∥∥∥
≤
∥∥∥(T−1F0′

ẋ F0
x)

+
∥∥∥ ∥∥∥T−1F0′

x Fy

∥∥∥ ∥∥∥√NT−1V′F0
ẋ

∥∥∥ 1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥γi∥ = Op(T−1/2) (3.62)

and ∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1V′

iPF0
ẋ
Fyγi

∥∥∥∥∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′

i ⊗ Σ−1
i T−1V′

iF
0
ẋ

)
vec

[
(T−1F0′

ẋ F0
ẋ)

+T−1F0′
ẋ Fy

]∥∥∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

(
γ′

i ⊗ Σ−1
i T−1V′

iF
0
ẋ

)∥∥∥∥∥︸ ︷︷ ︸
Op(T−1/2)

∥∥∥(T−1F0′
ẋ F0

ẋ)
+T−1F0′

ẋ Fy

∥∥∥
= Op(T−1/2), (3.63)
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where the order comes by exactly the same argument as in (3.61) by using the Kronecker properties:

E

∥∥∥∥∥ 1√
N

N

∑
i=1

(
γ′

i ⊗ Σ−1
i T−1V′

iF
0
ẋ

)∥∥∥∥∥
2
 =

1
N

N

∑
i=1

N

∑
j=1

E
(

tr
[
γ′

iγj ⊗ Σ−1
i T−2V′

iF
0
ẋF0′

ẋ VjΣ
−1
j

])

=
1
N

N

∑
i=1

E
(

tr
[
γ′

iγi ⊗ Σ−1
i T−2V′

iF
0
ẋF0′

ẋ ViΣ
−1
i

])
=

1
N

N

∑
i=1

E
(
γ′

iγi
)

tr
[
E
(

Σ−1
i T−2V′

iF
0
ẋF0′

ẋ ViΣ
−1
i

)]
= O(T−1). (3.64)

We now move to A3, where we again use (3.16):

A3 =
1
N

N

∑
i=1

Σ−1
i

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

=
1
N

N

∑
i=1

Σ−1
i

√
NT−1V′

i(MF0
ẋ
− MF̂0

ẋ
)Fyγi −

1
N

N

∑
i=1

Σ−1
i

√
NT−1Γ′

iΓ
+′
ẍ V′

ẍ(MF0
ẋ
− MF̂0

ẋ
)Fyγi

= A3.1 − A3.2, (3.65)

such that

∥A3.1∥ ≤ 1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥√NT−1V′
iV

0
ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1V0′

ẍ,−mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥√NT−1V′
iV

0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1V0′

ẍ,mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥√NT−1V′
iV

0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1F′

xFyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥T−1V′
iFx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥√NT−1V0′

ẍ,mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥T−1V′
iF̂

0
ẋ

∥∥∥√N
∥∥∥[(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]∥∥∥ ∥∥∥T−1F̂0′
ẋ Fyγi

∥∥∥
= Op(N−1/2) + Op(T−1/2) (3.66)

if we assume that TN−1 = O(1). Under this restriction, the first term, which is the dominant one, also be-
comes negligible, because

∥∥∥√NT−1V′
iV

0
ẍ,−mx

∥∥∥ =
√

N(Op(N−1/2) + Op(T−1/2)) = Op(1) then. A similar

logic applies to the last term, because
√

N
∥∥∥∥[(T−1F̂0′

ẋ F̂0
ẋ)

+ − Σ+
F0

ẋ,v

]∥∥∥∥ = Op(1),
∥∥∥T−1F̂0′

ẋ Fyγi

∥∥∥ = Op(1) and
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the total order is driven by the terms of the form
∥∥∥√NT−1V′

iV
0
ẍ,mx

∥∥∥ = Op(N−1/2) + Op(T−1/2). Further,

∥A3.2∥ ≤ 1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥Γ
+
ẍ Γi

∥∥∥∥∥∥ ∥∥∥√NT−1V′
ẍV0

ẍ,−mx

∥∥∥ ∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1V0′

ẍ,−mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥√NT−1V′
ẍV0

ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1V0′

ẍ,mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥√NT−1V′
ẍV0

ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1F′

xFyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥T−1V′
ẍFx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥√NT−1V0′

ẍ,mx
Fyγi

∥∥∥
+

1
N

N

∑
i=1

∥∥∥Σ−1
i

∥∥∥ ∥∥∥Γ
+
ẍ Γi

∥∥∥ ∥∥∥√NT−1V′
ẍF̂0

ẋ

∥∥∥ ∥∥∥[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]∥∥∥ ∥∥∥T−1F̂0′
ẋ Fyγi

∥∥∥
= Op(N−1/2) + Op(T−1/2) (3.67)

by similar arguments, but we do not need TN−1 = O(1). This means that overall

∥A∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1X′

iMF̂ẋ
Fyγi

∥∥∥∥∥ = Op(N−1/2) + Op(T−1/2). (3.68)

Eventually, we move to term B, which gives

∥B∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

[(
T−1X′

iMF̂ẋ
Xi

)−1
− Σ−1

i

]
T−1X′

iMF̂ẋ
Fyγi

∥∥∥∥∥
≤

√
N sup

i

∥∥∥∥[(T−1X′
iMF̂ẋ

Xi

)−1
− Σ−1

i

]∥∥∥∥︸ ︷︷ ︸
Op(1) if TN−1 = O(1)

1
N

N

∑
i=1

∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.69)

where the order is dictated by
∥∥∥T−1X′

iMF̂ẋ
Fyγi

∥∥∥, because
∥∥∥∥[(T−1X′

iMF̂ẋ
Xi

)−1
− Σ−1

i

]∥∥∥∥ = Op(T−1/2) uni-

formly as discussed below (3.5). Therefore, we have∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥ ≤
∥∥∥T−1(Vi − VẍΓ

+
ẍ Γi)

′Fyγi

∥∥∥+ ∥∥∥T−1(Vi − VẍΓ
+
ẍ Γi)

′PF0
ẋ
Fyγi

∥∥∥
+
∥∥∥T−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥
≤
∥∥∥T−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥+ Op(T−1/2), (3.70)

where the dominating order of the remainder is given by the first two terms since
∥∥T−1V′

iF
0
ẋ
∥∥ = Op(T−1/2)

and
∥∥∥T−1V′

ẍF0
ẋ

∥∥∥ = Op((NT)−1/2), and also
∥∥T−1V′

iFy
∥∥ = Op(T−1/2),

∥∥∥T−1V′
ẍFy

∥∥∥ = Op((NT)−1/2) . By

using the expansion in (3.16) and recognizing the fact that the terms involving Vẍ from the left will either
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preserve the same order or bring it down similarly to (3.48), we obtain∥∥∥T−1V′
i(MF0

ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥ ≤
∥∥∥T−1V′

iV
0
ẍ,−mx

∥∥∥︸ ︷︷ ︸
Op(N−1/2) + Op(T−1/2)

∥∥∥(T−1V0′
ẍ,−mx

V0
ẍ,−mx

)+
∥∥∥ ∥∥∥T−1V0′

ẍ,−mx
Fyγi

∥∥∥︸ ︷︷ ︸
Op(T−1/2)

+
∥∥∥T−1V′

iV
0
ẍ,mx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1V0′

ẍ,mx
Fyγi

∥∥∥
+

∥∥∥T−1V′
iV

0
ẍ,mx

∥∥∥︸ ︷︷ ︸
Op(N−1) + Op((NT)−1/2)

∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1F′

xFyγi

∥∥∥
+
∥∥∥T−1V′

iFx

∥∥∥ ∥∥∥(T−1F′
xFx)

+
∥∥∥ ∥∥∥T−1V0′

ẍ,mx
Fyγi

∥∥∥
+
∥∥∥T−1V′

iF̂
0
x

∥∥∥ ∥∥∥[(T−1F̂0′
ẋ F̂0

ẋ)
+ − Σ+

F0
ẋ,v

]∥∥∥ ∥∥∥T−1F̂0′
ẋ Fyγi

∥∥∥
= Op(T−1) + Op(N−1) + Op((NT)−1/2), (3.71)

with the drivers of the order indicated. In summary,

∥B∥ ≤
√

N sup
i

∥∥∥∥[(T−1X′
iMF̂ẋ

Xi

)−1
− Σ−1

i

]∥∥∥∥ 1
N

N

∑
i=1

∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥
= Op(N−1) + Op(T−1/2), (3.72)

under TN−1 = O(1) and so

∥II∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

(
T−1X′

iMF̂ẋ
Xi

)−1
T−1X′

iMF̂ẋ
Fyγi

∥∥∥∥∥ = Op(N−1/2) + Op(T−1/2), (3.73)

which ultimately leads to

√
N(β̂CCEMG,ẋ − β) =

1√
N

N

∑
i=1

νi + Op(N−1/2) + Op(T−1/2)

→d N (0k×1, Ων) (3.74)

as (N, T) → ∞ under TN−1 = O(1).

We now let mx = g, which means that we will again use the expansion in (3.40). Because now the con-
vergence rate will be quicker, (3.57) will hold as well, therefore it is sufficient to check II in the expansion
(3.44) and in particular we start with A3 as the analysis of A1 and A2 will be the same and these terms
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will be negligible. Hence,

∥A3∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

Σ−1
i T−1(Vi − VẍΓ

+
ẍ Γi)

′(MF0
ẋ
− MF̂0

ẋ
)Fyγi

∥∥∥∥∥
≤
∥∥∥∥∥ 1

N

N

∑
i=1

Σ−1
i

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍFyγi

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

Σ−1
i

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1Vẍ(T−1F̂′
ẋF̂ẋ)

+Γ
′
ẍF′

xFyγi

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

Σ−1
i

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1FxΓẍ(T−1F̂′
ẋF̂ẋ)

+V′
ẍFyγi

∥∥∥∥∥
+

∥∥∥∥∥ 1
N

N

∑
i=1

Σ−1
i

√
NT−1(Vi − VẍΓ

+
ẍ Γi)

′T−1FxΓẍ[(T−1F̂′
ẋF̂ẋ)

+ − (Γ
′
ẍT−1F′

xFxΓẍ)
+]Γ

′
ẍF′

xFyγi

∥∥∥∥∥
= Op(N−1/2) + Op(T−1/2), (3.75)

which is driven the highest order term which is almost identical to (3.42). Note that unlike in the case of
mx < g, we do not need to impose TN−1 = O(1). In fact, such restriction is not needed to demonstrate
that B term is negligible as well, since we only need to split II differently for mx = g case. Particularly,

II =
1√
N

N

∑
i=1

(T−1V′
iMFx Vi)

−1T−1X′
iMF̂ẋ

Fyγi

+
1√
N

N

∑
i=1

[(
T−1X′

iMF̂ẋ
Xi

)−1
− (T−1V′

iMFx Vi)
−1
]

T−1X′
iMF̂ẋ

Fyγi = A + B (3.76)

where ∥A∥ = op(1) still as
∥∥(T−1V′

iMFx Vi)
−1
∥∥ = Op(1) and under mx = g we have that∥∥∥∥(T−1X′

iMF̂ẋ
Xi

)−1
− (T−1V′

iMFx Vi)
−1
∥∥∥∥ = op(N−1/2) (3.77)

and hence

∥B∥ ≤
√

N sup
i

∥∥∥∥(T−1X′
iMF̂ẋ

Xi

)−1
− (T−1V′

iMFx Vi)
−1
∥∥∥∥ 1

N

N

∑
i=1

∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥ = op(1). (3.78)

3.3 Bootstrap Distributions

Theorem 6. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞,

(a) sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣→p 0,

(b) sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x]− P[

√
NT(β̂CCEMG,ẋ − β) ≤ x]

∣∣∣→p 0,

where inequalities are to be interpreted coordinate wise.
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Proof. (a) We assume mx < g. Let MF̂∗
ẋ
= IT − F̂∗

ẋ(F̂
∗′
ẋ F̂∗

ẋ)
+F̂∗′

ẋ and MF̂∗
ẋ
= (IN ⊗ MF̂∗

ẋ
). We derive the CCEP

estimator from the bootstrap sample:

β̂
∗
CCEP,ẋ =

(
X∗′MF̂∗

ẋ
X∗
)−1

X∗′MF̂∗
ẋ
y∗

=
(

X′W′
TMF̂∗

ẋ
WTX

)−1
X′W′

TMF̂∗
ẋ
WTy

=
(

X′W′
TWTMF̂∗

ẋ
X
)−1

X′W′
TWTMF̂∗

ẋ
y

=
(

X′diag(s ⊗ ι′T)MF̂∗
ẋ
X
)−1

X′diag(s ⊗ ι′T)MF̂∗
ẋ
y

=

(
N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1 N

∑
i=1

siX′
iMF̂∗yi

= β +

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xiνi +

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Fyγi +

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
εi

)
,

(3.79)

which implies that

√
N(β̂

∗
CCEP,ẋ − β) =

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1

×
(

1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Xiνi +

1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi +

1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
εi

)
.

(3.80)

Next, we can write
√

N(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) =

√
N(β̂

∗
CCEP,ẋ − β)−

√
N(β̂CCEP,ẋ − β)

=

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Xiνi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi −

1√
N

N

∑
i=1

T−1X′
iMF̂x

Fyγi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
εi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

)

+

( 1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1

−
(

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1


×
(

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi +
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi +
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

)
.

(3.81)

In what follows, we will use the crucial lemma from Cheng and Huang (2010), which connects the rates of
convergence in bootstrap and original (unconditional) probability measures. Particularly, given a vector
valued statistic △n which depends on Z1, . . . Zn and multinomial weights s1, . . . , sn (independent from
model primitives), then for a deterministic sequence an we have

△n = Op∗(an) in probability ⇔ △n = Op(an) unconditionally.
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Due to this result, we have

√
N(β̂

∗
CCEP,ẋ − β̂CCEP,ẋ) =

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Xiνi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
εi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

)

+

( 1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1

−
(

1
NT

N

∑
i=1

X′
iMF̂ẋ

Xi

)−1


︸ ︷︷ ︸
op∗ (1)

×
(

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi +
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyηγ,i +
1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

)
︸ ︷︷ ︸

Op∗ (1)

=

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Xiνi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

)

+

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
εi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

)
+ op∗(1)

= I + II + III + op∗(1) (3.82)

in probability, where
∥∥∥∥( 1

NT ∑N
i=1 siX′

iMF̂∗
ẋ
Xi

)−1
−
(

1
NT ∑N

i=1 X′
iMF̂ẋ

Xi

)−1
∥∥∥∥ = op∗(1) by Theorem 2 in De Vos

and Stauskas (2024). By using the bootstrap consistency results from the same study,

∥III∥ ≤

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1
∥∥∥∥∥∥
(∥∥∥∥∥ 1√

N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
εi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

T−1X′
iMF̂ẋ

εi

∥∥∥∥∥
)

= op∗(1) (3.83)

in probability and

I =

(
1

NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Xiνi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Xiνi

)

= Σ−1 1√
N

N

∑
i=1

(si − 1)Σiνi + Op∗(T−1/2)

→d∗ N
(

0k×1, Σ−1ΨνΣ−1
)

(3.84)
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in probability. We are left with evaluating II. For this, we introduce the bootstrap rotation matrix

Hw,ẋ = [Hw,ẋ,mx , Hw,ẋ,−mx ] =

[
Γ
−1
w,ẍ,mx

−Γ
−1
w,ẍ,mx

Γw,ẍ−mx

0(g−mx)×mx Ig−mx

]
, DN =

[
Imx 0mx×(g−mx)

0(g−mx)×mx

√
NIg−mx

]
(3.85)

with its limiting matrix Hẋ = [Hẋ,mx , Hẋ,−mx ] =

[
Γ−1

ẍ,mx
−Γ−1

ẍ,mx
Γẍ,−mx

0(g−mx)×mx Ig−mx

]
such that

F̂0∗
ẋ = F̂∗

ẋHw,ẋDN = F0
ẋ + [Vw,ẍHw,ẋ,mx ,

√
NVw,ẍHw,ẋ,−mx ] = F0

ẋ + [V0
w,ẍ,mx

, V0
w,ẍ,−mx

]. (3.86)

From now on, we can repeat exactly the same steps as in the analysis of II (and IV, which is now merged
together) in the original sample by using independence of bootstrap weights from the model primitives,
the rate conversion lemma of Cheng and Huang (2010) and a few key results, such as

(1)
∥∥Vw,ẍ

∥∥ = Op∗(N−1/2), (3.87)

(2)
∥∥∥T−1V′

w,ẍVi

∥∥∥ = Op∗(N−1) + Op∗((NT)−1/2), (3.88)

(3)
∥∥∥∥(T−1F̂0∗′

ẋ F̂0∗
ẋ

)+
− Σ+

w,F0
ẋ,v

∥∥∥∥ = Op∗(N−1/2) + Op∗(T−1/2), (3.89)

(4) E(si) = 1, (3.90)

(5) Var(si) = E[(si − 1)2] = 1 − N−1 (multinomial variance) (3.91)

where

Σw,F0
ẋ,v = diag

[
ΣFx , (T−1V0′

w,ẍ,−mx
V0

w,ẍ,−mx
)
]

. (3.92)

Therefore,

∥II∥ =

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1(
1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

)∥∥∥∥∥∥
≤

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1
∥∥∥∥∥∥
∥∥∥∥∥
(

1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi −

1√
N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

)∥∥∥∥∥
≤

∥∥∥∥∥∥
(

1
NT

N

∑
i=1

siX′
iMF̂∗

ẋ
Xi

)−1
∥∥∥∥∥∥︸ ︷︷ ︸

Op∗ (1)

(∥∥∥∥∥ 1√
N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

T−1X′
iMF̂ẋ

Fyγi

∥∥∥∥∥
)

= Op∗(N−1/2) + Op∗(T−1/2). (3.93)

Note how (3.91) ensures that whenever we analyze mean-square convergence, we will obtain the expec-
tation of the square of the main object of analysis, plus a lower order term, hence the limits will stay the
same. Hence,∥∥∥∥∥ 1√

N

N

∑
i=1

siT−1X′
iMF̂∗

ẋ
Fyγi

∥∥∥∥∥ ≤
∥∥∥∥∥ 1√

N

N

∑
i=1

(si − 1)T−1X′
iMF̂∗

ẋ
Fyγi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

T−1X′
iMF̂∗

ẋ
Fyγi

∥∥∥∥∥
= Op∗(N−1/2) + Op∗(T−1/2). (3.94)
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In summary, we obtain

√
N(β̂

∗
CCEP,ẋ − β̂CCEP,ẋ) = Σ−1 1√

N

N

∑
i=1

(si − 1)Σiνi + op∗(1)

→d∗ N
(

0k×1, Σ−1ΨνΣ−1
)

(3.95)

as (N, T) → ∞ in probability. The consistency holds uniformly by multivariate Polya’s Theorem, simi-
larly to the argument in Gonçalves and Perron (2014). The latter states that when

√
N(β̂CCEP,ẋ − β) →d

N (0k×1, Σ−1ΨνΣ−1) (proven in Theorem 1), then

sup
x∈Rk×1

∣∣∣P(
√

N(β̂CCEP,ẋ − β) ≤ x)− Φ(x; 0k×1, Σ−1ΨνΣ−1)
∣∣∣→ 0,

where Φ(x; µ, Ω) is the Gaussian CDF with mean µ and variance Ω. Hence, uniformity follows if also

sup
x∈Rk×1

∣∣∣P∗(
√

N(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x)− Φ(x; 0k×1, Σ−1ΨνΣ−1)

∣∣∣→p 0

which is in turn guaranteed by Polya’s Theorem because (3.95) holds in probability. Hence, uniform
consistency follows:

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣
= sup

x∈Rk×1

∣∣∣ (P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− Φ(x; 0k×1, Σ−1ΨνΣ−1

)
−
(

P[
√

NT(β̂CCEP,ẋ − β) ≤ x]− Φ(x; 0k×1, Σ−1ΨνΣ−1)
) ∣∣∣

≤ sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEP,ẋ − β̂CCEP,ẋ) ≤ x]− Φ(x; 0k×1, Σ−1ΨνΣ−1

∣∣∣
+ sup

x∈Rk×1

∣∣∣P[
√

NT(β̂CCEP,ẋ − β) ≤ x]− Φ(x; 0k×1, Σ−1ΨνΣ−1)
∣∣∣

= op(1), (3.96)

which completes the proof.

The argument for mx = g is exact the same as in the discussion of Theorem 3.

(b) The bootstrap CCEMG estimator is given by

β̂
∗
CCEMG, ˙̇x =

1
N

N

∑
i=1

si

(
X′

iMF̂∗
ẋ
Xi

)−1
X′

iMF̂∗
ẋ
yi

=
1
N

N

∑
i=1

siβi +
1
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
X′

iMF̂∗
ẋ
Fyγi +

1
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
εi

= β
1
N

N

∑
i=1

si︸︷︷︸
N

+
1
N

N

∑
i=1

siνi +
1
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
Fyγi

+
1
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
εi, (3.97)
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hence

√
N(β̂

∗
CCEMG,ẋ − β) =

1√
N

N

∑
i=1

siνi +
1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
Fyγi

+
1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
εi, (3.98)

and so
√

N(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) =

√
N(β̂

∗
CCEMG,ẋ − β)−

√
N(β̂CCEMG,ẋ − β)

=
1√
N

N

∑
i=1

(si − 1)νi

+
1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
Fyγi − T−1X′

iMF̂ẋ
Fyγi

)
+

1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
εi − T−1X′

iMF̂ẋ
εi

)
+

1√
N

N

∑
i=1

si

[(
T−1X′

iMF̂∗
ẋ
Xi

)−1
−
(

T−1X′
iMF̂ẋ

Xi

)−1
]

×
(

T−1X′
iMF̂ẋ

Fyγi + T−1X′
iMF̂ẋ

εi

)
=

1√
N

N

∑
i=1

(si − 1)νi

+
1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
Fyγi − T−1X′

iMF̂ẋ
Fyγi

)
+

1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
εi − T−1X′

iMF̂ẋ
εi

)
= I + II + III + op∗(1) (3.99)

in probability, because∥∥∥∥∥ 1√
N

N

∑
i=1

si

[(
T−1X′

iMF̂∗
ẋ
Xi

)−1
−
(

T−1X′
iMF̂ẋ

Xi

)−1
] (

T−1X′
iMF̂ẋ

Fyγi + T−1X′
iMF̂ẋ

εi

)∥∥∥∥∥
≤

√
N sup

i

∥∥∥∥(T−1X′
iMF̂∗

ẋ
Xi

)−1
−
(

T−1X′
iMF̂ẋ

Xi

)−1
∥∥∥∥ 1

N

N

∑
i=1

|si|
(∥∥∥T−1X′

iMF̂ẋ
εi

∥∥∥+ ∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥)
=

√
N sup

i

∥∥∥∥(T−1X′
iMF̂∗

ẋ
Xi

)−1
−
(

T−1X′
iMF̂ẋ

Xi

)−1
∥∥∥∥ 1

N

N

∑
i=1

|si|
∥∥∥T−1X′

iMF̂ẋ
εi

∥∥∥
+
√

N sup
i

∥∥∥∥(T−1X′
iMF̂∗

ẋ
Xi

)−1
−
(

T−1X′
iMF̂ẋ

Xi

)−1
∥∥∥∥ ∥∥∥T−1X′

iMF̂ẋ
Fyγi

∥∥∥
= op∗(1) (3.100)
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as TN−1 = O(1) in analogy to (3.69). Then

∥III∥ =

∥∥∥∥∥ 1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
εi − T−1X′

iMF̂ẋ
εi

)∥∥∥∥∥
≤
∥∥∥∥∥ 1√

N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂∗
ẋ
εi

∥∥∥∥∥+
∥∥∥∥∥ 1√

N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1
T−1X′

iMF̂ẋ
εi

∥∥∥∥∥
= op∗(1) (3.101)

in analogy to (3.47) by using the fact that bootstrap weights are independent from the model primitives
and the results in (3.87) - (3.89). Further,

II =
1√
N

N

∑
i=1

si

(
T−1X′

iMF̂∗
ẋ
Xi

)−1 (
T−1X′

iMF̂∗
ẋ
Fyγi − T−1X′

iMF̂ẋ
Fyγi

)
=

1√
N

N

∑
i=1

siΣ
−1
i

(
T−1X′

iMF̂∗
ẋ
Fyγi − T−1X′

iMF̂ẋ
Fyγi

)
︸ ︷︷ ︸

op∗ (1) in analogy to (3.68)

+
1√
N

N

∑
i=1

si

[(
T−1X′

iMF̂∗
ẋ
Xi

)−1
− Σ−1

i

] (
T−1X′

iMF̂∗
ẋ
Fyγi − T−1X′

iMF̂ẋ
Fyγi

)
︸ ︷︷ ︸

op∗ (1) in analogy to (3.69)

= op∗(1) (3.102)

under TN−1 = O(1) by using the independence of the bootstrap weights from the model primitives.
Eventually,

√
N(β̂

∗
CCEMG,ẋ − β̂CCEMG,ẋ) =

1√
N

N

∑
i=1

(si − 1)νi + op∗(1)

→d∗ N (0k×1, Ων) (3.103)

as (N, T) → ∞ in probability. Similarly to part a), consistency holds uniformly by multivariate Polya’s
Theorem. We have

sup
x∈Rk×1

∣∣∣P(
√

N(β̂CCEMG,ẋ − β) ≤ x)− Φ(x; 0k×1, Ων)
∣∣∣→ 0.

Hence, uniformity follows if also

sup
x∈Rk×1

∣∣∣P∗(
√

N(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x)− Φ(x; 0k×1, Ων)

∣∣∣→p 0

which is in turn guaranteed by Polya’s Theorem because (3.103) holds in probability. Hence, uniform
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consistency follows:

sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x]− P[

√
NT(β̂CCEP,ẋ − β) ≤ x]

∣∣∣
= sup

x∈Rk×1

∣∣∣ (P∗[
√

NT(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x]− Φ(x; 0k×1, Ων

)
−
(

P[
√

NT(β̂CCEMG,ẋ − β) ≤ x]− Φ(x; 0k×1, Ων)
) ∣∣∣

≤ sup
x∈Rk×1

∣∣∣P∗[
√

NT(β̂
∗
CCEMG,ẋ − β̂CCEMG,ẋ) ≤ x]− Φ(x; 0k×1, Ων)

∣∣∣
+ sup

x∈Rk×1

∣∣∣P[
√

NT(β̂CCEMG,ẋ − β) ≤ x]− Φ(x; 0k×1, Ων)
∣∣∣

= op(1), (3.104)

which completes the proof.

The argument for mx = g is exact the same as in the discussion of Theorem 4.

4 Variance Estimators

Theorem 5. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞

(a) NΘ̂CCEP,ẋ →p Σ−1ΨνΣ−1

(b) NΘ̂CCEMG,ẋ →p Ων.

Proof. (a) The proofs for either mx < g or mx = g are identical as in the latter case the remainder will

be of even lower order. Let Q̂ẋ,i = T−1XiMF̂ẋ
Xi. We firstly find the workable expression of Q̂ẋ,i(β̂ẋ,i −

β̂CCEMG,ẋ). Notice how

β̂ẋ,i − β̂CCEMG,ẋ = Q̂−1
ẋ,i T−1X′

iMF̂ẋ
yi −

1
N

N

∑
i=1

Q̂−1
ẋ,i T−1X′

iMF̂ẋ
yi

= νi −
1
N

N

∑
i=1

νi + Q̂−1
ẋ,i

(
T−1X′

iMF̂ẋ
Fyγi + T−1X′

iMF̂ẋ
εi

)
− 1

N

N

∑
i=1

Q̂−1
ẋ,i

(
T−1X′

iMF̂ẋ
Fyγi + T−1X′

iMF̂ẋ
εi

)
= νi + op(1), (4.1)

because 1
N ∑N

i=1 νi = Op(N−1/2),
∥∥∥T−1X′

iMF̂ẋ
εi

∥∥∥ = op(1) and
∥∥∥T−1X′

iMF̂ẋ
Fyγi

∥∥∥ = op(1), which come
directly from (3.48) and (3.70), respectively. Also,∥∥∥∥∥ 1

N

N

∑
i=1

Q̂−1
ẋ,i

(
T−1X′

iMF̂ẋ
Fyγi + T−1X′

iMF̂ẋ
εi

)∥∥∥∥∥
≤ sup

i

∥∥∥Q̂−1
ẋ,i

∥∥∥ 1
N

N

∑
i=1

∥∥∥T−1X′
iMF̂ẋ

Fyγi

∥∥∥+ sup
i

∥∥∥Q̂−1
ẋ,i

∥∥∥ 1
N

N

∑
i=1

∥∥∥T−1X′
iMF̂ẋ

εi

∥∥∥
= op(1). (4.2)
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Therefore, because
∥∥∥Q̂ẋ,i

∥∥∥ = Op(1), we have that

Q̂ẋ,i(β̂ẋ,i − β̂CCEMG,ẋ) = Q̂ẋ,iνi + op(1). (4.3)

By using this, we obtain

NΘ̂CCEP,ẋ = N

( 1
N

N

∑
i=1

Q̂ẋ,i

)−1
1

N(N − 1)

N

∑
i=1

Q̂ẋ,i(β̂ẋ,i − β̂CCEMG,ẋ)(β̂ẋ,i − β̂CCEMG,ẋ)
′Q̂ẋ,i

(
1
N

N

∑
i=1

Q̂ẋ,i

)−1


=

(
1
N

N

∑
i=1

Q̂ẋ,i

)−1
1

N − 1

N

∑
i=1

Q̂ẋ,iνiν
′
iQ̂ẋ,i

(
1
N

N

∑
i=1

Q̂ẋ,i

)−1

+ op(1)

=

(
1
N

N

∑
i=1

T−1V′
iVi

)−1
1

N − 1

N

∑
i=1

(T−1V′
iVi)νiν

′
i(T

−1V′
iVi)

(
1
N

N

∑
i=1

T−1V′
iVi

)−1

+ op(1)

→p Σ−1ΨνΣ−1 (4.4)

as (N, T) → ∞.

(b) The result comes immediately from (4.1):

NΘ̂CCEMG,ẋ =
1

N − 1

N

∑
i=1

(β̂ẋ,i − β̂CCEMG,ẋ)(β̂ẋ,i − β̂CCEMG,ẋ)
′

=
1

N − 1

N

∑
i=1

νiν
′
i + op(1)

→p Ων (4.5)

as (N, T) → ∞.

Theorem 7. Under Assumptions 1 - 7, for either mx < g or mx = g as (N, T) → ∞

a) NΘ̂
∗
CCEP,ẋ →p∗ Σ−1ΨνΣ−1

b) NΘ̂
∗
CCEMG,ẋ →p∗ Ων.

Proof. a) The proofs for either mx < g or mx = g are again identical since in the latter case the remainder

will be of even lower order in bootstrap probability measure. Generally, the proof follows Theorem 5
closely. Let Q̂∗

ẋ,i = T−1XiMF̂∗
ẋ
Xi. The first part of the workable expression of Q̂∗

ẋ,i(β̂
∗
ẋ,i − β̂

∗
CCEMG,ẋ) is given

by

β̂
∗
ẋ,i − β̂

∗
CCEMG,ẋ = Q̂∗−1

ẋ,i T−1X′
iMF̂∗

ẋ
yi −

1
N

N

∑
i=1

siQ̂∗−1
ẋ,i T−1X′

iMF̂ẋ
yi

= νi −
1
N

N

∑
i=1

siνi + Q̂∗−1
ẋ,i

(
T−1X′

iMF̂∗
ẋ
Fyγi + T−1X′

iMF̂∗
ẋ
εi

)
− 1

N

N

∑
i=1

siQ̂∗−1
ẋ,i

(
T−1X′

iMF̂ẋ
Fyγi + T−1X′

iMF̂∗
ẋ
εi

)
= νi + op∗(1), (4.6)
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since 1
N ∑N

i=1 siνi = Op∗(N−1/2),
∥∥∥T−1X′

iMF̂∗
ẋ
εi

∥∥∥ = op∗(1) and
∥∥∥T−1X′

iMF̂∗
ẋ
Fyγi

∥∥∥ = op∗(1), which come
from the proof of Theorem 6. Also,∥∥∥∥∥ 1

N

N

∑
i=1

siQ̂∗−1
ẋ,i

(
T−1X′

iMF̂∗
ẋ
Fyγi + T−1X′

iMF̂∗
ẋ
εi

)∥∥∥∥∥
≤ sup

i

∥∥∥Q̂∗−1
ẋ,i

∥∥∥ 1
N

N

∑
i=1

|si|
∥∥∥T−1X′

iMF̂∗
ẋ
Fyγi

∥∥∥+ sup
i

∥∥∥Q̂∗−1
ẋ,i

∥∥∥ 1
N

N

∑
i=1

|si|
∥∥∥T−1X′

iMF̂∗
ẋ
εi

∥∥∥
= op∗(1). (4.7)

Therefore, because
∥∥∥Q̂∗

ẋ,i

∥∥∥ = Op∗(1), we have that

Q̂∗
ẋ,i(β̂

∗
ẋ,i − β̂

∗
CCEMG,ẋ) = Q̂∗

ẋ,iνi + op(1). (4.8)

Based on these arguments, we again obtain

NΘ̂
∗
CCEP,ẋ

= N

( 1
N

N

∑
i=1

siQ̂∗
ẋ,i

)−1
1

N(N − 1)

N

∑
i=1

siQ̂∗
ẋ,i(β̂

∗
ẋ,i − β̂

∗
CCEMG,ẋ)(β̂

∗
ẋ,i − β̂

∗
CCEMG,ẋ)

′Q̂∗
ẋ,i

(
1
N

N

∑
i=1

siQ̂∗
ẋ,i

)−1


=

(
1
N

N

∑
i=1

siQ̂∗
ẋ,i

)−1
1

N − 1

N

∑
i=1

siQ̂∗
ẋ,iνiν

′
iQ̂

∗
ẋ,i

(
1
N

N

∑
i=1

siQ̂∗
ẋ,i

)−1

+ op∗(1)

=

(
1
N

N

∑
i=1

T−1siV′
iVi

)−1
1

N − 1

N

∑
i=1

si(T−1V′
iVi)νiν

′
i(T

−1V′
iVi)

(
1
N

N

∑
i=1

siT−1V′
iVi

)−1

+ op∗(1)

→p∗ Σ−1ΨνΣ−1 (4.9)

as (N, T) → ∞.

b) Similarly to Theorem 5, the result comes immediately from (4.6):

NΘ̂
∗
CCEMG,ẋ =

1
N − 1

N

∑
i=1

si(β̂
∗
ẋ,i − β̂

∗
CCEMG,ẋ)(β̂

∗
ẋ,i − β̂

∗
CCEMG,ẋ)

′

=
1

N − 1

N

∑
i=1

siνiν
′
i + op∗(1)

→p∗ Ων (4.10)

as (N, T) → ∞.
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