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This paper describes the conceptual structure, properties, and solution ap-
proach of a computerized model of the international energy market. The
model treats energy producers as players in a multistage, noncooperative
game. The goal of each player (or cartel of players) is assumed to be
maximization of discounted profit subject to technical, political, and resource
constraints. The model calculates that collection of intertemporal extraction
and price paths from which a player can unilaterally deviate only at a loss—
the open-loop, Nash equilibrium. The model integrates the theory of exhaus-
tible resources due to Hotelling and the theory of oligopoly due to Nash and
Cournot. Although useful as a teaching device to illustrate theoretical results,
its main function is to facilitate analysis of real-world resource problems. The
model is flexible, allowing the user to specify not only cost, demand, and
reserve information but also assumptions about who belongs to what coalition.
Two shortcomings deserve note. The strategies of players are restricted to
time-dated (open-loop) paths. Also, lags cannot be accommodated in the
current version. The restriction of the strategy space significantly increases
tractability and will permit the incorporation of lags and other complications
in the future. The model was built under government contract and is in the
public domain.

HIS PAPER describes the conceptual structure, properties and

solution approach of a computerized model of the international
energy market. The model was built in 1979 at the request of the
Department of Energy. Since views about parameters of the world oil
market differ among potential users, the model was designed to be as
flexible as possible. Simulations under markedly different input assump-
tions have so far been conducted at the initiative of the Department of
Energy, the U.S.-Saudi Joint Commission on Economic Cooperation,
Stanford University’s Energy Modeling Forum, and the Shell Oil Com-
pany. Details on these simulations are reported elsewhere.’
Subject classification: 131 dynamic, imperfect competition, Hotelling, exhaustible resource; 366 open-
loop, multi-stage, simulation; 473 optimization, foresight, energy prices.

! See Blankenship and Gaskins [1981], Salant et al. [1979, 1981], Stitt et al. [1980], and
EMF VI Report [1981].
252
Operations Research 0030-364X/82/3002-0252 $01.25
Vol. 30, No. 2, March-April 1982 © 1982 Operations Research Society of America



International Energy Market 253

The model described below is the natural outgrowth of the econom-
ics literature on exhaustible resources, which dates back to Hotelling
[1931]. Prior to 1975, contributions to that voluminous literature assumed
either perfect competition or a single monopoly, despite historical ex-
amples of intermediate market structures.” In 1975, the first attempt to
integrate the theory of imperfect competition and exhaustible resources
was completed. Salant [1975, 1976] showed how the polar cases of perfect
competition and pure monopoly—as well as a continuum of intermediate
market structures—could be studied within a common framework by
using a dynamic analogue of the Cournot [1838] equilibrium concept
(formally an open-loop, Nash noncooperative, nonzero-sum differential
game).® The same solution concept has been applied in other dynamic
settings by Prescott [1973], Flaherty [1980], and Spence [1981]. In the
resource context, the Nash-Cournot solution was subsequently explored
by Khalatbari [1976], Lewis and Schmalensee [1978, 1979, 1980], Loury
[1980], Pakravan [1976, 1980], and Ulph and Folie [1978, 1980]. Mean-
while, a conceptually distinct approach utilizing a dynamic (open-loop)
analogue of the Stackelberg [1934] solution concept was initiated by
Cremer and Weitzman [1976], with subsequent contributions by Gilbert
[1976], Gilbert and Goldman [1978], Hoel [1978], Marshalla [1978], and
Salant [1979]. The two solution concepts can result in the same equilib-
rium price path—as was noted by Gilbert [1978] and explored by Ulph
and Folie [1979]. However, the Stackelberg solution often displays an
undesirable characteristic known as “dynamic inconsistency.” This prop-

2 For an interesting discussion of the life and death of the British coal cartel, see Levy
[1909].

3 For preliminary treatments, see Intrilligator [1971] (p. 387) or Starr and Ho [1969]. For
any game in extensive form, three Nash solutions may be distinguished: the closed-loop,
the open-loop, and the feedback (or subgame perfect) solutions. The latter two solutions
are contained within the set of closed-loop solutions. In the closed-loop solution, each
player’s time-dated sequence of decision rules (functions of the vector of state variables
known by him at each date) is optimal given the sequences of decision rules of the other
players. That is, the closed-loop solution is simply the noncooperative solution defined by
John Nash 30 years ago. Since such solutions tend to be plentiful, attention has recently
focussed on how to restrict them usefully. In some cases, there is one (or more) solution
where each player’s decision at any stage is independent of previous moves. In this case, the
decision rules taken as given are simple—constant functions. In this so-called open-loop
solution (which is contained in the set of closed-loop solutions) each player takes as given
the time-dated sequence of decisions as distinct from decision rules. The open-loop solution
is used here. However, each of the foregoing solutions may admit cases where the behavior
taken as given is not credible. A player may find that although a particular sequence of
decision rules is optimal given the sequence of rules of the other players, the given sequence
is implausible; for the player can see that if one departed from a particular sequence, the
other players would be put in situations where their given rules would not be optimal.
Closed-loop solutions where the behavior taken as given is always credible are called
feedback in the optimal-control literature and subgame perfect in the game theory literature.
For an illustration of the feedback solution, see Levhari and Mirman [1980].
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erty—which has been investigated by Kydland [1975], Kydland and
Prescott [1977], Simaan and Cruz [1973], and Ulph [1980]—is undesirable
in part because it causes the forecasts for a given year to depend on the
arbitrary choice of the initial date.* The Nash-Cournot solution does not
suffer from this weakness but, of course, is vulnerable to other criticisms.’
Alternative solutions do exist and have been explored in other contexts.®
Promising research by Maskin, Newberry, Reinganum and Stokey
[1981], and Ulph and Folie [1980] among others may lead in the future to
the application of the perfect equilibrium concept to models of the
international energy market.

The model described below utilizes the open-loop Nash-Cournot ap-
proach. The model is flexible enough to handle various market structures,
extraction technologies, and demand functions. It can therefore be used
in the classroom to illustrate most results in the theoretical literature on
exhaustible resources which have been developed over the last half
century.” Furthermore, since the computer can calculate equilibria even
when inputs reflect real world complexities (for example, simultaneous
consideration of technological uncertainty about the backstop, depletion
effects, capacity constraints, and a market structure where competitive
extractors, the OPEC cartel, and large extractors like Mexico coexist),

4If the Stackelberg model is solved from time zero onward and then re-solved from ¢
onward (using the reserves remaining at ¢ in the former run as the initial conditions of the
latter run), the two price paths after ¢ might differ. The reason is that the Stackelberg
decisions announced in the first run as planned from ¢ onward are in part chosen to influence
fringe behavior prior to ¢ since the second game begins at date ¢, this consideration is no
longer relevant and the optimal choice at ¢ may differ. If the Stackelberg leader’s plan is
time-inconsistent and the leader cannot precommit to the announced strategy, the fringe
would be foolish to take it as given. In this case, the open-loop Stackelberg solution is not
an equilibrium in a meaningful sense. Even if the time-inconsistent plan is believed by the
fringe, the predicted price at time ¢ depends on the arbitrary starting date of the model. In
the case above, it would depend on whether the initial date was zero or ¢ To illustrate, the
forecast for 1980 of the Cremer-Weitzman [1976] oil model may depend on the particular
year these authors chose to begin the Stackelberg player’s problem.

® However, its weaknesses pale compared with those of the Stackelberg “open-loop”
solution. Besides time-inconsistency discussed in the previous footnote, there are issues
raised by the unexplained asymmetry of the Stackelberg setup. Although bothersome in
any situation unless induced by an explicit informational structure, the problem is worse
when the model is used for government policy evaluation. For then one must not only
assume that the leader is smarter than the followers, but that the U.S. policy-maker is
smarter than the leader. Finally, the Stackelberg leader’s profit-maximization problem is
fraught with technical difficulties. According to Cremer, the objective function of the leader
may not be concave in his extraction vector even if all cost functions are convex. Further-
more, as shown in Salant [1979], the switching of followers from zero to positive extraction
leads to nondifferentiable points on the leader’s objective function.

6 See, for example, Levhari and Mirman [1980].

7 Solow [1974], Weinstein and Zeckhauser [1975], and Stiglitz [1979] provide excellent
expository surveys of the results of this literature. For a more exhaustive survey, see
Peterson and Fisher [1977].
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the model has a useful role to play in policy analysis.
Questions like the following can at last be addressed quantitatively
within a single model:

—If OPEC split apart in a specified way or, alternatively, gained
control of other sources of supply, what effect would such changes in
market structure have on the present and future price of 0il?

—If the United States succeeded in cutting its demand for oil by a
specified amount, how large would the benefits be and how would
they be distributed?

—If additional research and development (R&D) could provide earlier
resolution of the existing uncertainty about the costs of future
technologies, how much would the additional R&D be worth and
who would benefit from it?

In addition, the model can be used to examine the response of domestic
extractors (and stockpilers) to phased decontrol of oil prices, the impo-
sition of import fees, and other policies of current relevance.

The paper is organized as follows. In Section 1, the Nash-Cournot
solution is defined by specifying the intertemporal maximization prob-
lems which are simultaneously solved in the equilibrium. Section 2
outlines how the solution is computed. Section 3 describes existing
features of the model which have proved useful in applications. Section
4 illustrates the performance of the model by reporting one set of
simulations. One weakness of the model in its current form is the omission
of lags on either side of the market. Section 5 indicates how lags can be
incorporated without altering the structure of the model substantially
and concludes the paper. Discussion of existence and uniqueness of
equilibrium and the convergence of algorithms to the equilibrium is
relegated to the appendices. A more extensive description of both theo-
retical and computational aspects of the model (and computer listings
and documentation) can be found in Salant et al. [1981].

1. THE NASH-COURNOT SOLUTION

Most world oil models are based on input assumptions about demand,
costs, and market structure, and generate as output a set of extraction
paths and a price path expected to prevail over time. The ultimate test
of such models is the accuracy of their predictions. But even before the
future unfolds, a model should be scrutinized to make sure that its
assumptions are realistic and that its forecasts pass the following elemen-
tary tests.

Feasibility:
1. The forecast of the amount produced by any given extractor in any
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given period must not exceed the assumed capacity limits of that
producer at that date.

2. The forecast of the cumulative amount produced over time by a
particular extractor must not exceed the assumed reserve limits of
that producer.

Consistency:

3. The total forecasted supply of the various extractors at each date
must equal the demand which the forecasted price would induce.

Profit Maximization:

4. No decision-maker should conjecture that discounted profits can be
increased by behaving differently than the way forecasted.

A model whose forecasts fail any of these tests is open to serious
criticism. The first three of these tests are unambiguous. The fourth,
however, is more difficult to apply because there is an inherent ambiguity
about the set of profit opportunities which firms believe they face.

The evaluation of profit opportunities by a firm ceases to be straight-
forward the moment the firm recognizes that its opportunities are affected
by the decisions of other firms as well as by market conditions in the
future. The debate about how a noncompetitive firm forecasts the con-
current responses of rivals—who in turn are making similar forecasts
about it—is responsible for the multiplicity of “plausible solutions”
(among them various Nash and Stackelberg solutions) known as non-
cooperative game theory. There is also debate about how firms forecast
the future. Such forecasts affect behavior since firms must decide when
to extract their limited reserves. Pindyck [1978], Hnyilicza and Pindyck
[1976], Gately et al. [1976] and others assume that competitive extractors
have no foresight whatsoever. Accordingly, they would produce the same
amount today regardless of whether what awaited them tomorrow was
either expropriation or a doubling of price. In contrast, the agents in this
model are assumed to have some foresight. Special cases of this assump-
tion include rational expectations and perfect foresight; but subjective
expectations which differ across maximizing agents are also permitted to
a limited extent.?

The forecasts of the Nash-Cournot model of the world oil market pass
each of the tests discussed above—the fourth in a manner which will now
be made precise. The output of the model consists of a set of paths over
time—one price path (P°) and as many production paths (®/) as there
are oil-producing units or “plants.” Each plant is either competitive or
under the control of a particular “monopolistic” Nash player. As an

8 See pp. 266-268.
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illustration, the table below represents the output from a case where
there are nine plants.

Production at Plants of Each Player

Year Competitive Nash Nash Nash
Fringe Player Player Player
1 2 3

1 Q' @' Q' Q) Q' Q' Q' Qs Q'

T N S B VS S S S I 5

U] U 2 U 3 U 4 U 5 UG U7 U8 U9
Cumulative
Production

(column sums)

The braces group together the extraction paths of (i) the competitive
plants® (1-3) in the table, (ii) the multiple plants (4 and 5) of the first
large player, (iii) the multiple plants (6-8) of the second large player, and
(iv) the single plant (9) of the third large player. Below the column of
annual extraction levels for each plant is the cumulative extraction (U;)
for that plant over the entire horizon.

Such grouping defines the industrial organization of the world oil
market and must be specified by the user. The user must also specify the
discount factor (8), any resource constraints on the cumulative produc-
tion of the ith plant caused by the finiteness of its resource base (R)),
and—for each period—the extraction cost function (C/(Q;)) of each plant
and any flow constraint (@ max) which is imposed by technical or
political considerations.

The paths computed as output pass the fourth test in the following
manner. Competitive plant { makes larger discounted profits—evaluated
along the forecasted path of prices—by extracting in the way forecasted,

? Consider an equilibrium with competitive and Nash plants. Suppose each competitive
plant were deleted from the model and were replaced by n independent Nash players, each
owning 1/nth of its oil and having a scaled cost of extraction function. The modified model
would no longer have a mixture of competitive and Nash plants; everyone would be a Nash
player and would be treated symmetrically. For large n (infinitesimal reserve sizes for each
of the n players), this model’s equilibrium would converge to the original equilibrium with
the competitive plants. Price paths would converge, and the aggregate produced by the n
infinitesimal Nash players would approach the production at each competitive plant which
they replaced. For a discussion of this limit theorem, see Salant [1976]. It is important to
note that the Nash-Cournot solution concept is completely symmetric despite the apparent
differentiation between competitive and Nash plants, and to think of competitive plants

simply as artifacts which have been introduced to summarize the aggregate behavior of
many infinitesimal Nash players.
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rather than in any other (feasible) fashion. That is,

P1 {@/ymaximizes Y., B {P‘Q} — CHQ"}
subject to
feasibility conditions: 0 < @/ < @'max, t=1,T
Y. Qf=U;<R,

where a bar over a forecasted variable indicates that it is taken as given
by the particular agent.

Furthermore, large Nash player j, owner of the set of plants £, makes
larger joint discounted profits—evaluated assuming plants not under the
player’s control produce as forecasted (at least in aggregate)—by extract-
ing at the ith plant in the way forecasted, rather than in any other
(feasible) fashion.!® That is,

(PY{Q!} maximize Y1 Yico, B7H{PQ/ — CHQN}

P2 subject to
feasibility conditions:

0=Q/=Qmax, i€, t=1T
Y.Qi=U=<R, i€

and the market-clearing
equations determining
price

Sico, @ = D'(PY) — Tigo, @, =1, T.

Hence, neither a competitive plant nor a large player seeking profits
would have any incentive to disturb the forecasted solution by altering
any of the variables under its control. For this reason, the Nash-Cournot
solution is regarded as an equilibrium.

2. DETERMINATION OF EQUILIBRIUM

Having described the nature of the Nash-Cournot solution, we now
explain how it is determined by the model. Briefly, the model locates the
equilibrium by arbitrarily picking an initial set of multipliers, working
forward through the Kuhn-Tucker conditions associated with each inter-
temporal maximization problem until the end of the horizon (while
computing market-clearing prices) and then checking the transversality
conditions for each plant. If any transversality condition is violated, the

' For an early discussion of cartels as multi-plant monopolists producing nonstorables,
see Patinkin [1947].
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initial set of multipliers is judiciously revised and the procedure repeated
until convergence is achieved. Restrictions on the shapes of curves suffice
to ensure that what this procedure locates are global maxima.'' In the
remainder of the section, this solution approach is described in greater
detail.

We begin by describing the entire set of equations which must be
simultaneously solved in equilibrium. These consist of the Kuhn-Tucker
conditions associated with each agent’s dynamic maximization problem
as well as equations indicating that what is taken as given by each player
is in fact optimal for the others. For purposes of exposition, we begin by
considering a case where each of two players (n = 2) owns a single plant.
Player 1 is assumed to be competitive, while player 2 is large. Generali-
zations will be discussed later.

The following notation will be used:

D(P% = demand curve in year ¢
R; = total reserves of plant (i = 1, .- - n);
C! = CH(Q/, t) = cost function for plant ¢ in year ¢;

Q/max = capacity constraint for plant i in year ¢

T = length of finite horizon;

r = the real rate of interest;

B = the real discount factor (1/(1 + r));

Ai = the multiplier assigned to the resource constraint of the ith
plant (R; — ¥~1 @/ = 0);

af = the multiplier assigned to the capacity constraint of the ith
plant in period #(@/max — @ = 0);

v = the multiplier assigned to the market-clearing constraint
viewed by the ith player in period #{(D(P!) — ¥u: @;' —
Q' =0):

U; = cumulative extraction at plant i(Y/; @) over entire hori-
zon

A = the number of possible states of nature under uncertainty

0 = the date after which uncertainty is resolved

Tis = the subjective evaluation by player i that state s will occur.
To solve the competitor’s problem outlined above (P1), we form the
Lagrangean:

L@ - T ar, oo adTs A1) = YL BTHPQY — CHQYY)
+ ai'{@'max — @1} + M{R: — Y1 @'}

' In the absence of such restrictions, the forecasted strategies would still simultaneously
satisfy the first-order conditions of each player but might nonetheless be suboptimal.
Indeed, as Roberts and Sonnenschein [1977] have indicated, there are cases where no pure
strategies exist which are simultaneously globally optimal for the respective players. In such
cases, no pure-strategy Nash equilibrium exists. Such cases never arise if the demand curve
is linear or concave.
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Then, the Kuhn-Tucker theorem indicates that the competitor’s optimal
program must satisfy each of the following conditions:

1. (a) Qlt =0
(b) LQ’IS 0, where Lg:= Bt~1{pt - C1t(Q1t)} —al =N\
(C) Qll'LQlt =0 for t= 1, ... T.
2. (a) a1’ =0
(b) L= 0, where L, = @max— @,
(¢) i’ Loyt=0 for t=1,... T

3. (a) A=0
(b) Ly, = 0, where L, =R, — Y% Q.
(C) A]*LM = (.

It is assumed that each plant’s cost function is strictly convex. Then since
the competitor’s objective function in P1 is strictly concave and the
constraint set is convex, only one solution (@', ---, @) to these
conditions will exist for a given price sequence {P‘}.

To solve the problems of a large, single-plant Nash player—a special
case of P2—we form the Lagrangean':

L@, --- Q. )t - - a; Ag; PY, «+. PT; Yo', o ee sz)
= Y01 (BH{PQY — C(@)} + ar'{Q:'max — @)
+ 'Y2t{Dt(Pt) - Q_lt - QZI}) + >\2{R2 - Zzll ta}.

Then, the Kuhn-Tucker theorem indicates that the optimal program for
a Nash player must satisfy the following conditions:

1. (a) @'=0
(b) Lo, =0, where Lo, =pB"{P'— Cy2(@:)} — vo' — ho — 2,
() @' Loy=0 for t=1,...T.

2. (a) O(zl =0
(b) L= 0, where L= @'max — @'
(¢) e’ Loyt =0 for t=1,...T
3. (@A) A=0
(b) L,,= 0, where Ly, =R.— Y7 Q'
(c) A2-Ly, =0
4. (@) P'=0
(b) Lpi< 0, where Lp:= v/'D/(P" + 8@y
(¢) P.Lp:=0 for t=1,.-..T
2 Bach Nash player believes that the player controls the price. Hence, we would be more
precise in stating the ith Nash player’s problem if we denoted the player’s instruments as
(P, .. Pi"} subject to the constraint that D.(P/) = ¥ .: @} + @:'. However, in equilibrium
the right-hand side of this constraint is identical for each player. Hence each Nash player
will select the same price in equilibrium and no confusion will arise if we drop the subscript

on {Pi{} .
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5. L, =0, where® L, =D(P)—@'—@®' for t=1,...T.

These conditions will have a single solution {Q5’, - - - , @"; P3!, - -+, P;"}
for a given sequence {@,’} if the demand curve is suitably curved.*
Finally, we must adjoin to these two sets of first-order conditions the
requirement that what is taken as given by one player must be optimal
for the others: P = P‘and @,'= @\ for t = 1, ... T. We can use this pair
of equations to eliminate barred variables where they appear in (1)-(3)
and (1)-(5), replacing them with unbarred variables. An equilibrium is
any simultaneous solution to the foregoing conditions. These conditions
define A, and Aq, as well as @', @, P, ai’, a5, and yx' for t =1, .-+ T.
Conditions (1)-(3) and (1)-(5) can be solved in the following manner.

Step 0: Provisionally drop the transversality condition (3) at each plant
and assign to each an arbitrary (positive) multiplier, A..

Step 1: t = 1.

(a) Provisionally drop the requirement that the market clears (5)
and pick a (positive) trial price, P°.

(b) Use conditions (1) and (2) for each plant to compute produc-
tion at each plant contingent on trial price P

(c) Now consider (5). If the demand forthcoming at P’ exceeds
the aggregate production of all the plants calculated in Step
1b, use the sign of the excess demand to adjust P’ (as discussed
below) and return to Step 1b. Otherwise t =t + 1. If t > T, go
to Step 2; if not, go to Step 1a.

Step 2: For each plant, calculate whether the cumulative sales along the
production path (Y2, @) exceed the reserves (R;) available to
that plant. If the transversality condition for any plant is violated,
use the resulting deviation to revise the multipliers and return to
Step 1. Otherwise, stop and report the equilibrium values for
prices, production, and {A;}.

We now discuss Steps 1 and 2 in greater detail.
We first consider precisely how in Step 1b the competitor’s conditions

'3 Condition (5) differs from the others because v, is the multiplier for an equality
constraint (market-clearing) rather than an inequality constraint. To derive (5) from the
conditions for inequality constraints, replace the original equality of market-clearing by the
two inequalities—that excess demand be nonnegative and nonpositive. For these two
constraints to be simultaneously satisfied, excess demand must be zero (market-clearing).
Further, the two multipliers associated with the two constraints always appear together
with one subtracted from the other. Defining their difference as v2, we obtain (5).

¥ Substituting the “inverse demand curve” for price in the large player’s objec-
tive function, we see that the Kuhn-Tucker conditions have a unique solution if D;'(@, +
Q.'). @' — C(Q') is strictly concave in @.". If this sufficient condition is violated anywhere
care must be exercised to determine if each plant is globally maximizing in the solution
selected by the computer.
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are manipulated in any period to determine @/ (and o), given A1, A2 and
P’. Set ;' = 0, satisfying (2a) and (2c). Set Lq, = 0, satisfying (1b) and
(1c). Solve this equation for @:‘. Three situations may arise:

a. 0= Q1t = Qltmax
b. Qlt <0
c. Q. > @/max.

In the first case, (1a) and (2b) hold so that each part of conditions (1)
and (2) is satisfied.

In the second case, (1a) would be violated. To satisfy (1a) and (1c), set
@:' = 0. Since L, is decreasing in @', (1b) will hold with strict inequality;
furthermore, (2b) will also hold. Hence, (1) and (2) will be completely
satisfied.

Finally, in the third case (2b) would be violated. To satisfy (2b) as well
as (2c) and (la) set @' = @:'max. (1c) implies Lo = 0. Thus (1b) is
satisfied. Solve Lg, = 0 for a,". Since L, is increasing in @, and ay’, the
a," determined will be strictly positive, satisfying (2a). Hence (1) and (2)
will be completely satisfied for the competitor.

The conditions of the Nash player are manipulated in parallel fashion
to determine in Step 1b @’ (and a', y2) given Ay, A2 and P’ > 0. From
(4c), Lp = 0 which implies that v, = g7'@."/—D/(P’). Rewrite Lo, =
BTHP' + @'/D/(P) — C¥(Q2)} — as' — A2. We can now solve for @', as’
using (1) and (2) exactly as we solved for @', a;’ for the competitor. We
can then use (4) to determine v,'.

We now consider how the trial price is revised in Step 1c. If the demand
forthcoming at P* does not match the sum of the supplies calculated in
Step 1b for each plant, (5) will be violated. In that case, P’ must be
altered and the calculation of production in period ¢ repeated.

The following algorithm is used to locate the market-clearing price in
each period. We begin with an arbitrarily specified price and a wide initial
interval around it. Given this price, excess demand is calculated. The
calculation determines how the interval and trial price are revised. In
particular, if the excess demand is positive (negative), the price is in-
creased (decreased) so that it lies midway between the previous trial
price and the previous upper (lower) limit. The previous trial price then
becomes the new lower (upper) limit while the upper (lower) limit
remains unchanged. The procedure is then repeated using the new trial
price and the new interval until convergence occurs. Once the market-
clearing price is determined, the time period is advanced and a trial price
for the new period is picked as a basis for the new supply calculations of
Step 1b.

After the calculations for period T are completed, the transition to
Step 2 occurs. At this point, the cumulative sales along the production
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path of each plant are calculated and compared to the reserves owned by
that plant. If the reserves utilized by any plant with a positive multiplier
exceed (fall short of) the reserves available, the transversality condition
(3) is violated and the set of multipliers assigned to the various plants
must be revised. The entire process is then repeated beginning at ¢ = 1.

Appendix 1 ensures under weak conditions that a set of multipliers
does exist which satisfies (3) for each plant. Indeed, several such fixed
points might exist. Appendix 2 establishes, for the case of linear demand,
that a unique set of multipliers exists and that a simple gradient algorithm
can locate it. It should be noted, however, that the algorithm currently
used in the computer code to locate the equilibrium {A;} is heuristic.
There is no guarantee that this algorithm will converge. Although con-
vergent algorithms are available, the team responsible for implementing
the model on the computer judged the heuristic to be faster and, for the
intended applications, preferable. In all simulations thus far, it has
converged. A description of it is contained in Salant et al. [1981].

The procedure outlined above can be applied without alteration if
there are m competitive plants and n Nash plants, each owned by a
separate player. Given P’, the determination of production at each of the
m + n plants still requires only the analysis of a single Kuhn-Tucker
condition. If each marginal cost curve is nonlinear, @/ must be determined
by some form of iterative procedure (e.g. Newton’s method). If the
marginal cost functions are linear, however, each condition can be solved
explicitly for ¢, even when the demand function is nonlinear. In the
current version of the model the assumption of linear marginal cost
curves has been adopted to speed computation.

A minor complication arises when some Nash players own more than
one plant. In Step 1b—given P‘—production is calculated in the usual
way for competitive plants and plants owned by single-plant Nash players.
But if a player owns several plants, the solution to P2 indicates that the
player should produce at each plant such that the marginal cost plus the
user cost (8'‘A) at each plant is equated to the common marginal
revenue the player would obtain from selling another unit. This common
marginal revenue equals the price per unit minus the losses on the sum
of the inframarginal units produced by all the plants under the player’s
control. The losses occur because selling an additional unit from one of
the player’s plants depresses the price slightly.

To calculate production at each plant owned by a particular multiplant
Nash player—given P‘—the following approach could be adopted.’® First,
a trial value for the common marginal revenue is selected. Production at

*In fact, the computer program uses a variation of this approach which will always
converge. For details, see Chapter 4 of Salant et al. [1981].
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each plant is then calculated and aggregated. If the Nash player sold this
aggregate production at price P‘, the extra revenue from additional
production could easily be computed. Should this value differ from the
trial marginal revenue assumed initially, the trial value must be revised
and the step repeated until convergence occurs. Once convergence is
achieved and production at each plant is computed, the remaining steps
of the solution procedure can be executed without modification.

3. FEATURES OF THE MODEL

Within this simple structure of plants and players, various features
have been introduced to facilitate application of the model.

Depletion Effects

In reality, the oil controlled by a given player is not of uniform quality
and accessibility, therefore, all oil cannot be extracted at the same average
cost. Depletion effects can be incorporated in the model by treating oil
that can be extracted at a particular marginal cost as the reserves of a
separate plant (whose marginal cost curve perhaps has a negligible
upward slope); this plant is then assigned either to the competitive sector
or to one of the large players.

In this approach, a player is not assumed to be constrained to extract
from the pools assigned to the player in a particular sequence. Nonethe-
less, it is optimal, in the absence of flow constraints or increasing marginal
costs, to extract from the cheapest pool first.'"® Hence, if the player were
constrained to extract from the cheapest source first, the imposition of
the constraint would not affect the player’s optimal strategy. Nature itself
sometimes imposes this constraint by making the oil which is deepest in
the ground the most difficult to extract.

Perfect Substitutes in Use

Oil produced from liquefied coal can be made virtually indistinguish-
able from ordinary petroleum. Consequently, consumers would attempt
to choose one to the exclusion of the other if their prices differed; but the
resulting excess supply of the more expensive fuel would depress its price
until the two fuels were equally expensive. In such a case, a barrel of
liquefied coal and a barrel of petroleum would sell at the same price, and
a liquefied coal plant could be treated as if it were an oil plant.

' Intuitively, it is sensible to extract from the more expensive pool first only if its “user
cost” is cheap enough to more than compensate for the higher extraction cost of the pool.
But in that case it is always optimal to extract from the more expensive pool instead of the
cheaper pool and the cheaper pool must be assigned a zero user cost. But then it would be
impossible to assign a strictly smaller (nonnegative) “user cost” to the more costly pool.
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The only difficulty with this approach is the specification of the
marginal cost curve of such a plant. In reality, it depends not only on the
technology of liquefaction but also on the price of hard coal (an imperfect
substitute for oil). The path of coal prices must therefore either be
specified exogenously or determined within the model. Each of these
approaches has been pursued separately. In the model described in the
text,'” an exogenous path of coal prices is used outside the model to
construct the marginal-cost curve for the backstop technology.

Like liquefied coal, natural gas is treated as a perfect substitute for oil.
Heat can be produced for industrial use from natural gas or oil. It is
assumed that M units of oil can replace 1 unit of gas in the production of
any given amount of heat, and that this constant marginal rate of
technical substitution drives the relative factor costs into the same ratio.
Hence, oil and gas prices are linearly related:

M = (Pgos + C$%)/(Pou + C2).

It should be noted that factor costs to industrial users include not only
the price paid to extractors (P) but the additional costs (refining, trans-
port, etc.) of getting the input to the factory where the production of

0il

heat occurs. These latter costs are denoted as C¥° and C%'.

Imperfect Substitutes in Use

The prices of energy sources which are imperfect substitutes for oil
(coal, nuclear power, etc.) are not rigidly linked to the oil price and must
be forecasted simultaneously. To analyze such cases, the model of the
text has been generalized. The generalization utilizes the same equilib-
rium concept, the same plant-player distinction, and the same solution
approach. Its output, however, consists of a price path for each imperfect
substitute. The imperfect-substitutes model is described in more detail in
Appendix 3.

“Backstop’’ Marginal Costs

In the single-product model and most other oil models, the marginal
cost of producing liquefied coal must be specified exogenously. This is
methodologically sound only if liquefaction costs do not depend on oil
prices. In reality, however, the cost of liquefying coal depends on the
price of coal. And the price of coal is affected by the price of oil, an
imperfect substitute. It is commonplace but erroneous to ignore the fact
that backstop marginal costs depend indirectly on oil prices. When the
oil market tightens and oil prices rise, the prices of substitutes like coal
also rise, and coal liquefaction becomes more costly than it was formerly.

'7 See Appendix 3.
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This methodological error can be avoided in the multiproduct model
since the price of coal is determined endogenously. The multiproduct
model requires as input a specification of the liquefaction technology for
transforming coal into a perfect substitute for oil. Since the model
determines the price path for coal endogenously it also determines the
path of the backstop marginal cost curve.

Uncertainty

The model can forecast the consequence of two types of uncertainty:
(1) uncertainty that, with constant probability per period, an oil plant
will be nationalized without compensation or an asset alternative to oil
will be confiscated; and (2) uncertainty, to be resolved at a known date,
about which of several outcomes will subsequently occur.

The first type is equivalent to a change in the interest rate under
certainty. The extractor whose plant is in danger of expropriation acts
exactly as one would in the absence of uncertainty if the interest rate
were higher, while an extractor whose alternative assets may be confis-
cated acts as one would under certainty if the interest rate were lower.'

The second type of uncertainty applies to any situation where the date
of resolution of the uncertainty is known but the outcome is not. Suppose
there is uncertainty about which of 7 paths of a particular exogenous
parameter will obtain after some date (y), and that the uncertainty will
be resolved on a known prior date (£ =< y). The model would then forecast
a price path and extraction paths for each plant through date £ and A
sets of such paths from date t+ 1 onward—a contingent forecast for each
of the 7 events which might be realized. Consider the forecast over the
entire horizon given a particular state s is realized at the end of period
£. Then the forecast (for any s) will pass the two feasibility and the
consistency tests outlined on pp. 255-256. Moreover, no decision-maker
will conjecture that expected discounted profits can be increased by
behaving differently than in the contingent ways foreczisted. For example,
competitive plant i faced with price path {P*} through? and a distribution
of 7 possible price paths {P,'} thereafter will plan to extract {@;} through

'8 If the time until expropriation is exponentially distributed, it has been shown by Long
[1975] that the additional risk is equivalent to an interest rate increase. For example, if the
risk of field expropriation is 10% per year and the real return on safe financial assets is 4%,
oil extractors will act exactly as they would in the absence of field-expropriation risk if the
real rate of interest were 16% (1.04/0.9 — 1). Indeed, Mead [1979] has argued that the
historic 4-fold increase in oil prices is entirely attributable to the removal of nationalization
risk from a competitive world oil industry rather than from exertion of market power by
OPEC. Alternatively, if there is no risk of field expropriation, but instead there is a risk that
the extractor’s financial assets may be confiscated, the additional risk is equivalent to an
interest rate decrease. For example, if OPEC can earn r% abroad on an asset if it is not
confiscated, and nothing otherwise; its expected return is only [(1 — a)(1 + r) — 1], where
a is the probability per year that the asset will be confiscated.
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¢ and {Q.) thereafter, depending on which of the 7 states is realized,
where

{Q4), {@-)}maximize Y, B H{P'Q! — CHQH)}
+ Y 7 Yo BHPIQls — Cl(QS)

pPY’ subject to
feasibility conditions

0<Q!<Q'max, t=1,¢
0<Q@Q.=<Qmax, t=t+1,7T, s=1LA
2{=1 Q'+t Qs=Us<R, s=1n

where 7;, is the evaluation of competitive player i that state s will occur.
A similar modification can be made to P2, the maximization problem for
a typical Nash player. The model solves these uncertainty problems
within the structure outlined above."®

One application of this uncertainty feature has been the evaluation of
R&D programs. The cost of a future substitute is uncertain. At the
existing intensity of R&D, it is assumed this uncertainty will be resolved
at a known future date. A more intense R&D effort is assumed to shorten
the period of uncertainty by a determinate amount without affecting the
various possible outcomes or their odds of occurring. Under these as-
sumptions, the model has been used to quantify the expected benefits
from intensified R&D programs and to analyze the distribution of these
expected benefits among market participants.”

It is important to note that players may disagree about their subjective

19 Solutions to such maximization problems involve a single extraction path for each
plant through date £ and then 71 extraction paths thereafter, i.e., one for each state which
might occur at date f. Cumulative extraction along the two phases must equal R. Associated
with the extraction path from date zero to fis a multiplier (A); associated with each
extraction path from date £ + 1 onward is a state-dependent multiplier (A,). If the program
is optimal, the multiplier associated with the first phase capitalized to { must equal the
weighted average of the 7i state-dependent multipliers of the second phase. The weights are
subjective probabilities and may differ among players. The optimality condition ensures
that no possibilities exist for a player to arbitrage between the phase of the program prior
to the realization and the phase subsequent to the realization. The equilibrium is located in
the following way. As usual, each plant is assigned an initial multiplier. The implied
extraction paths are calculated through date £ Using the remaining stocks at each plant
and following the approach on p. 261, the model calculates from date £+ 1 the equilibrium
multipliers for each plant in each of the 7 possible states. Finally, a test is conducted at
each plant to see if the initial multiplier capitalized to N equals the expected multiplier in
the second phase. If not, the assignment of initial multipliers is judiciously revised and the
entire procedure is repeated until convergence occurs. For further details, see Salant et al.
[1981].

% See the Appendix to Chapter 2 of Salant et al. [1981].
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evaluations about which state will occur. This accounts for subscript i in
mis: it is the evaluation by the ith player that state s will occur. It need
not accord with either the judgments of other players or the objective
probability (if such an entity exists). In the R&D application, for example,
one player may feel the low cost technology is likely to be implemented
while another assigns little weight to this event.

The point is important because models of this type are often mistakenly
criticized as assuming “perfect” foresight. Confusion has arisen because
it is often assumed for convenience that all agents assign the same weight
to a given outcome (7;s is independent of i). If the common subjective
distribution matches the objective distribution, expectations are said to
be “rational.” If the common subjective distribution assigns probability
one to a particular state and it occurs, the event is said to be “fully
anticipated”—otherwise it is said to be “unanticipated.” But these are
special cases of a more general formulation. The model can also forecast
the equilibrium when people evaluate future events differently. It is a
weakness of the model, however, that these possibly different expecta-
tions are not revised as market experience accumulates.

Unanticipated Changes

Suppose, instead, that agents were “confident” of the paths of the
exogenous variables over time, but at time x it became clear that some
future segment of one of the exogenous paths would be different than
originally anticipated. Such situations of surprise can be analyzed within
the uncertainty provision of the model. Every player is assumed to attach
100% of the probability weight to the path originally anticipated and 0%
to the path which ultimately results.

4. EXAMPLE

The purpose of this section is to indicate by example how the model
may be applied to the international energy market. Extensive discussion
of other experiments is reported elsewhere.”

The experiments summarized here were conducted several years ago
(prior to the upheaval in Iran) to evaluate the potential impact on price
of U.S. energy policies aimed at reducing domestic demand by 1 million
barrels per day (roughly 1% of world consumption). The assumption of
unconstrained backstop supply at prices in excess of $30, then regarded
as the conventional wisdom of oil market “experts,” severely depressed
the forecasted prices. For each case run, a comparable experiment was
conducted with the demand curve in each period shifted to the left by
the amount of 0.365 billion barrels per day. The experiments were run

! See footnote 1.
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TABLE 1
RESOURCE CosTS
Stock Marginal Cost® Resources® Plant
8.0 30.0 US 0il
10.0 35.0 Us 0il
15.0 95.0 Us Oil
20.0 95.0 Us 0il
25.0 90.0 UsS 0il
1.5 179.0 uUs Gas
2.0 302.0 Us Gas
3.0 249.0 uUs Gas
4.0 235.0 Us Gas
5.0 61.0 uUs Gas
4.0 93.0 ROW 0il
5.0 93.0 ROW 0il
10.0 218.0 ROW 0il
15.0 209.0 ROW Oil
20.0 332.0 ROW Oil
25.0 326.0 ROW Oil
0.8 214.0 ROW  Gas
1.0 281.0 ROW  Gas
2.0 342.0 ROW Gas
3.0 354.0 ROW  Gas
4.0 265.0 ROW  Gas
5.0 61.0 ROW  Gas
1.0 600.0 OPEC Oil
5.0 178.0 OPEC Oil
10.0 119.0 OPEC 0il
15.0 62.0 OPEC Oil
0.1 1736.0 OPEC Gas
1.0 515.0 OPEC Gas
2.0 345.0 OPEC Gas
3.0 179.0 OPEC Gas
4.0 60.0 MEX Oil
5.0 40.0 MEX Oil
10.0 35.0 MEX Oil
15.0 30.0 MEX Oil
20.0 35.0 MEX Oil
0.5 96.0 MEX Gas
1.0 65.0 MEX Gas
2.0 56.0 MEX Gas
3.0 48.0 MEX Gas
4.0 39.0 MEX Gas

“ For oil, in 1975 dollars per barrel; for gas, in 1975 dollars per thousand cubic

feet.

® For oil, in billions of barrels; for gas, in trillions of cubic feet.
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using both linear and nonlinear (constant elasticity) demand curves. All
prices and costs are in 1975 dollars. To convert to 1980 dollars, multiply

by 1.45.

The input data are summarized below:
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1. Market Structure: Mexico and OPEC are large, multiplant Nash
players; the United States and the rest-of-world (ROW) are com-
petitive

. Real Interest Rate: 5%

. Backstop Cost and Availability: Always available at $30

. Flow Constraints: None

. Demand Curve: Linear: pivots out around the fixed vertical inter-
cept of 13(1 + 1/7) over time, where 7 is the point elasticity at the
$13 price. The demand curve for ¢t = 0 passes through the point
P = 13 (1975 dollars per barrel), @ = 32.8 (billion barrels per year)

Q = (1.0274)/{32.8 + 13Mo — MoPy}, t=1,2, -.- 8,
(1.0411)""® {40.717 + 16.138M, — 1.2414M,P;}, t=19,10 ...

where M, = 2.523n and n = 0.3.
6. Resource Costs: See Table 1

The real price of oil in 1978 forecasted under these assumptions
was $12.09 (in 1975 dollars). This translates to approximately $17.50
in 1980 dollars. Conservation was expected to affect the world oil
price little because (1) marginal cost curves were assumed to be
elastic, (2) no flow constraints were imposed, and (3) the amount
conserved was minor relative to the size of world consumption. On
the other hand, a leftward shift in demand for an exhaustible
resource does have one depressing effect on price which is not
present if the good is inexhaustible. A cut in demand lowers the
value of oil in the ground (A;) and hence induces more rapid pumping
at any price. In the simulations conducted, conservation of 1 million
barrels per day lowered the predicted price in that year insignifi-
cantly—to $12.04. The effect of conservation under alternative mar-
ket structures is summarized below:

(20~ VLI V)

Predicted Real Price of Oil in 1978
(in 1975 dollars)

Demand shifted
Unshifted leftward 0.365
demand billion barrels
per year

Perfect competition 7.82 7.78
Reference case 12.09 12.04
OPEC controls all but backstop 30.00 29.87
OPEC controls even the backstop? 30.49 30.24

*2 When OPEC is assigned all plants except the backstop, the price begins at $30 and
remains there. When OPEC owns even the backstop, the price begins slightly higher but
then rises over time.
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It is evident that the predicted 1978 price was extremely sensitive to
market structure, but regardless of structure it was relatively insen-
sitive to the conservation effort.

The demand curve used in the preceding experiments was linear.
To evaluate the importance of this assumption, the experiment was
repeated using the following constant-elasticity specification:

5. Demand Curve: Constant elasticity: The demand curve for ¢t = 0
passes through the point P = 13, @ = 32.8 and shifts out over time
at the same rate as the linear curve. Hence, if 7 is set the same, the
linear and constant elasticity curves will be tangent at P = 13 on
each period.

Q = (1.0274){32.8} {13"P™"}, t=1,2,..--8

(1.0411)""%{(40.717} {13"P™"}, ¢ =09, 10.

Using this specification (n = 0.3) the real price of oil forecasted
for 1978 was $12.80 under the market structure described in as-
sumption 1. (The change in functional form turns out to matter
little when an unlimited backstop is available at a relatively low
price.) A leftward shift in demand of 1 million barrels a day at all
prices cut the predicted 1978 price to $12.78. Hence, the forecasted
price remained insensitive to the conservation effort when the
functional form of the demand curve was changed to constant
elasticity.

5. EXTENSIONS

Since conceptions of the world oil market differ, construction of a
model useful to everyone is impossible. Inevitably, features of the market
that someone feels “essential” will be neglected. The model here is no
exception. In particular, it does not yet take proper account of:

—Lags in supply
—Lags in demand
—Transportation and distribution costs.

However, each of these features can be handled within the existing
framework without a major alteration in the computer program. Lags in
supply can be handled by making investment in capacity expansion
endogenous. This involves little more than the introduction of one more
multiplier to represent the discounted future value of having a larger
capacity from some point onward, as discussed in Switzer and Salant
[1979].% If appropriate separability is assumed, lags in demand can be
handled by running the model in reverse—beginning at a terminal date

2 Indeed, this extension may be implemented in the near future.
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with an arbitrary assignment of multipliers on resource constraints and
moving backward to 1978. Inclusion of transportation costs involves the
introduction of a wedge to raise above the export price the price of a
good which, in equilibrium, is imported. Such modifications present no
conceptual problems but limited resources and a desire to keep the
computer program manageable dictated that work on them be deferred.

As a final note, it should be remembered that although the model was
constructed to examine cartel behavior in the international energy mar-
ket, this is only one application. Whenever one is thinking within the
Hotelling framework about an exhaustible resource problem, considera-
tion should be given to applying the model described in this paper to the
problem at hand.

APPENDIX 1: EXISTENCE OF EQUILIBRIUM

It can be shown (under weak assumptions) that each assignment of multipliers
to the n plants determines (through first-order conditions like those on pp. 260~
261) a market price and extraction rate’ at each plant in each time period.
Consequently, each assignment of multipliers determines cumulative extraction
(U;) at each plant over the specified time horizon (T').

However, if a player’s extraction policy is optimal, it must also satisfy trans-
versality conditions for each plant:

A,’ZO, Ri—Ui(Al, -"An)ZO, and Ai{R,"-U}}=0, i=1,n.

That is, either a plant uses all of its reserves or its resource constraint has a zero
shadow price. We now prove that a set of multipliers satisfying these transversality
conditions exists.®®

Consider n-tuples (A, -+ A,) such that P = A; = 0, where P° is the largest
vertical intercept of the 7' demand curves (that is, the lowest price which induces
zero demand in every period).” Clearly, the set of all such n-tuples is closed,
bounded, and convex.

Next consider a transformation which takes a trial assignment (A, --- A,) and
revises it to (A1, - -+ A,’) based on the excess of U, over R;:

A/ = min{P°, max(0, A; + B{U;(\y, --- \») — R:])}, t=1,n forany B8>0.
In words,

1. If the old A; resulted in overexhaustion, set the new A/ = A; + B(U; — R;) or
P°¢, whichever is smaller.

2. If the old A; resulted in underexhaustion, set the new A/ = \; + B(U, — R,) or
0, whichever is larger.

2 The proof does not apply to cases where competitive plants have constant marginal
extraction costs because this creates an indeterminacy in supply at such plants. Some
existence results for these cases can be found in Salant ([1976], p. 1090) and Lewis and
Schmalensee ([1979], Section 2.3). The proof here does apply, however, when the marginal
cost curves of competitive plants have slopes which are arbitrarily close to zero.

% See Appendix 2 for a discussion of uniqueness.

% Such an intercept is assumed to exist.
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Denote the transformation by which each new A/ is computed as T;(A;, - -+ Ay).
That is, A/’ = Ty(Ay, - -+ An).

It can be verified that T; is a continuous function whose image lies in the
interval [0, P°]. Since T is a continuous transformation from a non-empty compact
convex set into itself, Brouwer’s fixed point theorem ensures that there exists a
point (A*, ..+ A,*) which remains unchanged under the transformation. That is

AF=Ti\* - A%, 1=1,n
or,
A* = min{PC, max(0, \* + B[U:(A\:*, -+ A*) — R}, i=1,n.
Analysis of this equation reveals three ways it might be satisfied:

a. A*=0 and Ui(A* A%, +++,0, -, A% — R; <0,
b. Ai* =PC and Ui(Al*’ A2*) b vPC’ e ’An*) _Rizo’ or
c. 0<A*<P® and UN* A% -+ Ny -oo,M*) —Ri=0 for i=1n

In words, each component of the fixed point must have one of the following
characteristics:

a. A;* = 0 and yet underexhaustion still occurs.
b. A* = P€ and yet overexhaustion still occurs.
c. Ai* € (0, P°) and cumulative extraction matches the initial stock.

Although each component of the fixed point must satisfy one of these three
conditions, other considerations imply that it will never satisfy the second
condition. For, if A,;* = P€ the user cost for the ith plant would be so high that no
extraction would occur in any period (condition (1) on p. 260 would imply @, =
0). Hence cumulative extraction would be zero and could not exceed the plant’s
reserves (assumed without loss of generality to be strictly positive).

Therefore, there exists an n-tuple of Lagrange multipliers which is unchanged
under the transformation, 7. For this to be the case, a zero multiplier must be
assigned to plants with reserves to spare (R; = U,) and a strictly positive multiplier
to plants which exhaust their reserves (R; = U,). Such a fixed point, therefore,
would satisfy the transversality conditions for each plant.

Since all other first-order conditions for optimality hold by construction,
satisfaction of the transversality conditions is sufficient to establish the existence
of equilibrium provided all agents have strictly concave objective functions.”” In
that case the foregoing proof establishes the existence of a Nash-Cournot equilib-
rium (and, a fortiori, of monopolistic and competitive equilibrium). The method
of proof used here seems more satisfactory than the equation counts of Goldsmith
[1974] and more general than the proofs of Salant [1976] and Lewis and
Schmalensee [1979].%

*"If they do not, the computer may forecast strategies which satisfy all the necessary
conditions for optimality but which are suboptimal (see footnote 11).

% The proof in this appendix was originally stated in Salant [1977]. It turns out that
Lewis and Schmalensee independently approached the existence question in the same way
but omitted the proof from their 1979 paper because they were unable to prove to their
satisfaction that Ui\, - - -, A,) is continuous.
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APPENDIX 2: UNIQUENESS OF EQUILIBRIUM AND
CONVERGENCE OF ALGORITHMS

The fixed-point theorem of Appendix 1 neither establishes the uniqueness of
the Nash equilibrium nor demonstrates that algorithms exist which will converge
to it. Preliminary research suggests the merits of an indirect approach to these
questions.

Given the exogenous data of the problem, suppose that a function can be
constructed which attains a constrained local maximum at each Nash equilibrium.
Then, a demonstration that this function is strictly concave and the constraint
set is convex would imply that only one local maximum existed, and hence only
one Nash equilibrium. Furthermore, it is well known that under these concavity
assumptions algorithms exist which will converge to the constrained global
optimum and hence to the unique Nash equilibrium.*

We illustrate this approach for the case of linear demand. Readers interested
in extending the results to other cases will find helpful the related work of Spence
[1976]. Suppose there are m large players and » plants, indexed by integers 1, 2,
-+« n. Let ©; be the set of integers of plants controlled by large player j. Let £, be
the set of integers of plants assigned to the competitive fringe. Suppose the
inverse demand curve at ¢ is P = F* — A‘Q’, where A, F* > 0. Then ignoring
corners for ease of exposition, the first-order conditions which define the Nash
equilibrium are:

1. For competitive plants:

BTHF — A" Vi Q' — CH(QS)} — A =0, iEQ,t=1,..--T
2. For plants owned by Nash players:
Bt—l{Ft — At 22=1 th - At Zkeﬂj th —- Cét(Qlt)} — >\i — 0’
iegj’j= ,---mt=1-.-T,i=1---n

and R; — Y~ @' = 0. The price in each period is simply P' = F' — A’ ¥2_; Q"
Sale of an additional unit depresses the price by A*. As the first-order conditions
indicate, the competitor evaluates the additional revenue and costs from selling
an additional unit without regard to the losses on the inframarginal units which

the reduction of the price by A‘ will induce. The large Nash players take this
additional factor into account through the additional term

—A* Yieq, @4
Now consider the following artificial problem:
maximize(g,n Y1 B MUQY, -+ Q')
subject to @ = 0
Qimax -~ Q/=0, i=1---n,t=1,--.T,

# See Arrow et al. [1958] and Zangwill [1969]. It should be noted that the algorithm
currently used in the model is heuristic and has not been proved to converge even for linear
demand. This algorithm was selected because it was felt to be more satisfactory over a wide
class of demand specifications.
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and R-YL.Q@'=0, i=1-.-n
where we define M* as follows:
M =F $h @ — (AY2) [(Tho1 @) + Tt (Theny @] — Ti1 CHQL).

The objective function is strictly concave since M’ is the sum of a finite number
of concave and strictly concave functions (assuming strict convexity of the cost
functions).*® The constraint set is linear and hence convex. Finally, it should be
noted that the sensitivity of M’ to an increase in @, depends on the industrial
position of the ith plant. In particular:

1. For competitive plants:

M /IQI=F —A' Y @ — CH(@QH. i€EQ,t=1,-.-T.
2. For plants owned by Nash players:
M'/3Qf = F* — A' Yie1 @' — A Yen; @F — CH(QY).
i€Q,j=1.---mt=1,...T.

It should be evident that the necessary conditions for a maximum to this
constrained optimization problem are identical to the conditions defining the
Nash equilibrium. Because the artificial function is strictly concave over a convex
set, the Nash equilibrium is unique and convergent algorithms can be devised to
locate it.

For nonlinear demand curves, it might turn out that there are multiple Nash
equilibria. If so, it will be impossible to construct a strictly concave function which
attains a local maximum at each Nash equilibrium.

APPENDIX 3: THE IMPERFECT-SUBSTITUTES MODEL

Nuclear energy and (unliquefied) coal are imperfect substitutes for oil. Hence,
the prices of these alternative fuels are not rigidly linked to the price of oil
although the magnitudes of their supplies certainly affect the oil price. To analyze
such cases, the “single-product” model has been generalized. A “multiproduct”
model has been built which utilizes the same equilibrium concept, the same plant-
player distinction, and the same solution approach. The output of the multiprod-
uct Nash-Cournot model includes, in addition to the output previously described,
a price path for each substitute for oil which is considered. A system of demand
curves, each a function of all the energy prices, replaces the single demand curve
of the smaller model. The forecasts of the multiproduct model pass each of the
elementary tests of pp. 255-256 in the following sense.

A competitive plant extracting fuel type K makes larger discounted profits
(evaluated along the forecasted path of prices for fuel type K) by extracting in
the way forecasted rather than in any other feasible fashion. A competitor’s
optimization problem is similar to P1 (with P’ replaced by Px’) and need not be
repeated.

3 The square of a sum is convex, and its negative is concave since it is a convex function
(the square function) of an increasing convex function (the sum function).
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Nash play j may own sets of plants producing different fuel types. Let &«
denote the set of plants controlled by player ; which produce fuel type K,
for K = 1, 3. Each Nash player makes larger joint discounted profits (evaluated
assuming plants not under the player’s control produce as forecasted) by extract-
ing at plant i in the way forecasted rather than in any other (feasible) fashion.
That is, price and extraction paths are chosen to

maximize(p,g;,(Q,l) Zl;{=1 ZLJ Zieﬂ,,x BJEI{PKtQil - Cit(Qit)}

P3 subject to
feasibility conditions

0=Q/!<=Q'max fori€EQx t=1,T and K=1,3
ZLIQ,‘=U,-SR,~ fori€ QJ‘,K and K=1,3

and the market-clearing
equations implicitly determining
the three prices:

Zien,;x Qf = D (P, P, Py') — ZiE@,K Q—il fort=1,T and K=1,3

where Q;x is the set of plants producing fuel type K which are not controlled by
player J.

In a multiproduct world, the Nash player must take careful account of interfuel
substitution by users. Since the Nash player accepts as given production by rivals,
the player believes an increase in its own production at a plant producing one fuel
type will disturb the prices of all three fuel types. This belief influences profit-
maximizing strategy.

The “multiproduct” model has not yet been fully implemented on the com-
puter. In particular, multiplant players can only own combinations of gas and oil
plants. They cannot also own coal plants. Furthermore, since depletion effects
are handled in the manner previously described, there is no place in the model for
a large Nash player (as distinguished from a set of competitors) which owns
different grades of coal. This shortcoming will soon be eliminated.

On the positive side, however, the larger model does calculate endogenous price
paths for oil, coal and nuclear energy.®" And it does have a competitive liquefaction
process which operates when oil becomes sufficiently expensive relative to coal.
Only if this “backstop” process is operating (and is unconstramed) do the prices
of coal and oil become rigidly linked.

The technology for converting coal to oil is assumed to be linear (up to the
constraint) and can change from period to period. Thus, while in the smaller
model a marginal cost curve for the “backstop” must be specified exogenously, in
the larger model what is specified exogenously is the amount of coal required to
produce (through liquefaction) another barrel of oil in each period.* The larger
model will then calculate among other things the coal price path (and, by
implication, the path of the marginal cost curve for producing liquefied coal).

Since the larger and smaller models use the same approach, they will generate

# For details on the imperfect-substitutes model see Salant et al. [1981].
32 See pp. 265-266.
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identical equilibria under identical conditions. To verify this, specify a set of
inputs and calculate the equilibrium in the larger model. Fit the smaller model
with the same set of oil and gas plants, the same market structure, interest rate,
etc. Use the path of coal prices determined in the larger model to calculate the
path of the marginal cost curve of the backstop, which is required as an exogenous
input in the smaller model. Substitute the price paths for coal and nuclear energy
determined in the larger model into the demand curve for oil in the larger model
to obtain the (nonstationary) demand curve for oil in each period as a function
only of its price. The smaller model requires such a sequence of demand curves
as an exogenous input. Now run the smaller model using these exogenous inputs
to obtain the oil-price path and the extraction paths for each oil and gas plant.
These paths will be identical to the corresponding paths previously calculated on
the larger model. In short, the two models are compatible.
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