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Abstract

The neoclassical growth model is extended to include limitations in the fore-
casting capability of a rational individual, who can predict the future state
of the economy only for a short time horizon. Long-term predictions are
formulated according to uninformed expectations, relying solely on myopic
information about short-run dynamics, such as assuming a future persis-
tent growth rate. Steady-state results are obtained in the case of iso-elastic
utility and Cobb-Douglas technology. The model, characterized by fore-
casting errors and subsequent corrections, exhibits global stability and has
relevant implications for welfare and policy. It is analyzed in comparison to
the Solow–Swan model and the Ramsey model. Our approach, incorporat-
ing behavioral assumptions within a standard optimization rule, successfully
yields explicit analytical solutions for the policy function in the neoclassical
model. This strategy may also be extended to various modeling streams,
including DSGE and HANK models.
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Introduction
The perfect foresight assumption of the neoclassical growth model (Ramsey,

1928, Koopmans, 1960, Cass, 1966) serves as the natural benchmark for evaluat-
ing alternative hypotheses on the formation of expectations. We posit that the
household can accurately predict only the short-term impact of the saving rate on
capital,1 believing that this prediction will hold for a longer horizon. This myopic
behavior reflects the individual’s inability to see the future despite its rational
intention to optimize inter-temporal utility over an infinite horizon. Among the
many hypotheses on the way myopic households form expectations on the future
state of the economy, it is reasonable to assume that they attempt to leverage the
sole information at their disposal, namely, the short-term prediction on capital (or
income) growth.2 For instance, households may assume a constant growth rate
in the future, extending their perceived short-run growth rate of capital to the
long run. This assumption aligns with the primary objective of the paper, which
is to explore a scenario in which households lack the ability to make reliable pre-
dictions about the future trajectory of the economy, being uninformed and thus
forced to behave according to accessible strategies. We call “rule-based expec-
tations” a predetermined notion of how the economy will evolve in the future,
based on individuals’ perception. The idea that short-term growth predictions
will accurately hold for the long-term is, therefore, an example of myopic rule-
based expectations. In this framework, the “perfect foresight” hypothesis can be
considered a rule-based expectation, reflecting an individual’s capacity to form
consistent expectations with the underlying model, which implies knowledge of
future interest rates. In all other cases of rule-based expectations, apart from per-
fect foresight, individuals will formulate incorrect predictions, but they will have
the chance to adjust them at any point, taking into account updated information
about the changed state of the world.

This process of expectation formation, where individuals rely on their current
state (and different starting points lead to different expectations), has been coined
“anchoring”3 by Tversky and Kahneman, 1974, and typically results in forecast
errors, as shown by Campbell and Sharpe, 2009 among others. The introduction
of deviations from expected utility theory and/or perfect foresight behavior in the
neoclassical growth model has been widely employed in the literature to provide
a more comprehensive explanation of the empirical consumption smoothing styl-
ized fact. For instance, Foellmi et al., 2011 employs prospect theory to introduce
reference-based behavior (expectations) in the Ramsey model. This involves eval-
uating choices in relation to a certain reference point – the status quo – rather
than in absolute terms.

The combination of myopia with rule-based expectations configures a dynamic
sequence of static optimization problems that leads to the complete dynamic so-
lution. Because the agent assumes that its current decision will last indefinitely,
there is no need to estimate the feedback from the expected interest rate (which
is dependent on future capital intensity) to consumption. Therefore, the myopic

1At date τ, the household can only predict the short-run evolution of capital stock as a
function of saving rate kτ+1(sτ ) (discrete time) or k̇(s(τ)) (continuous time), but not the values
of the following periods.

2Regardless of whether income or capital is selected as the variable to predict, the primary
outcomes of the study remain unchanged. We will henceforth assume that households form
expectations on future capital (see also footnote 6).

3For a complete survey on anchoring, see Furnham and Boo, 2011. The behavior of the
individual in the current work is consistent with other observed cognitive anomalies, such as
the “Reference point” effect and the “Status Quo/Endowment” effect. Further details on these
anomalies can be found in McFadden, 1999.
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problem-solving approach disregards the standard nexus that operates in the pure
neoclassical growth model, leading to a breakdown of the inter-temporal relation-
ship between consumption and capital intensity.

This paper is connected to several strands of literature, which will be discussed
further, including Day’s work on adaptive economizing agents (Day, 2000, Day,
1992), Barro’s work on dynamic discount factor and time inconsistencies (Barro,
1999), and Evans and Honkapoya’s work on learning and expectations (Evans and
Honkapohja, 2001).

An important attempt to constrain the neoclassical growth model on a con-
tingent plan (status quo) is the stream of literature dealing with the adaptive
economizing agent (Day, 2000, Dawid, 2005). Agents use (linear) approximated
representation of the production function and an adaptive expected interest rate.
They are willing to leave to future generations (terminal condition) a constant
level of capital.4 All this provides a simplified future stream of expected utility
value which leads to a static policy function for consumption, depending only
on the current level of capital. Day’s work demonstrates global stability and for
some low impatience rates, limit cycles and chaos. In a similar way to the Day’s
economizing agents, the optimal solution for our myopic agent depends on a static
policy function that is derived by assuming rule-based expectations. Therefore,
the agents use a subjective solution of the model that is inconsistent with the
rational expectation behavior that enables to solve the expected growth consis-
tently with the structure of the economy. On this ground, we explore more general
expectation rules, like exponential expectation or constant future capital levels,
which represent opposite limiting cases of basic behavioral rules. We remark that
the class of rule-based expectations that can be used within the model is flexible
enough to incorporate realistic features that might descend from experiments or
other empirical evidence. Our goal is to stress the properties in terms of welfare,
dynamics and expenditure allocation of factor income, compared to the perfect
foresight Ramsey model.

It’s worth noting that, in our model, the evolving bias in expectations modifies
the relative time preferences of the household, giving rise to a dynamic form of
“effective impatience”, resulting from the interplay of expectation errors and a
fixed discount factor. This connects our work with the existing literature that ad-
dresses the issue of time inconsistency in optimal planning. Strotz, 1955 showed
that, except in the case of exponential functions, varying time preferences lead
to inconsistent plans that should be addressed with specific strategies. When
agents apply time-varying discount factors, they can delay saving and increase
current consumption, which may lead to sub-optimal outcomes without institu-
tional settings that force agents to correct such behavior (via pre-commitment,
for example). Pollak, 1968 and Goldman, 1980 demonstrated the condition for
the existence of a consistent plan (equilibrium) under time-varying discount fac-
tors. Barro, 1999 extended the Ramsey model along these lines and found that
the interplay between interest rates and variable rates of time preference gener-
ates dynamic effects similar to those resulting from differences in the rate of time
preference in the standard model. However, in this literature, myopia stems from
changes in individual preferences over time rather than from limited capabilities in
the expectation formation process. In our work, instead, the sequential optimiz-
ing process creates time inconsistency, due to the interaction between rule-based
expectations and impatience. Biased forecasts lead to time-varying utility plans,
even when assuming constant time preferences, as they alter the perception of

4Another example of bounded rationality is found in Bellino, 2013, where it is assumed that
agents project a constant income in the long-run horizon. Consumers set their consumption level
sequentially, starting from the first period. This kind of adjustment process ensures stability.
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discounted future income.
Barro’s no-commitment setup leads to sub-optimal postponed saving, higher

interest rate, lower capital accumulation and lower consumption and welfare lev-
els, for every impatience level compared to the pure Ramsey case. In our work,
expected constant growth leads to higher savings compared to Ramsey, due to a
systematic overestimation of the effects of savings on future income, which trans-
lates into greater “effective” patience. The excess of savings becomes critical for
very low values of impatience, leading rational and uninformed households to a
dynamically inefficient region, resulting in a reduction in consumption and welfare.
We identify an impatience threshold corresponding to higher capital accumulation
compared to the Solow golden rule. This threshold generally falls within a range
of realistic values for the interest rate, meaning that, in a world where agents are
not able to perform accurate forecasting, sub-optimal long-run capital accumula-
tion is a likely outcome and even a small time preference shock could lead to a
significant reduction in welfare.

Our approach is also related to the extensive research on learning and expec-
tations, expertly reviewed by Evans and Honkapohja, 2001. In the case of the
Ramsey model, they demonstrate that the perfect-foresight saddle path is locally
learnable, and agents can converge to the rational expectations equilibrium by em-
ploying adaptive rules. A mis-specified rational expectation equilibrium can arise
from an incomplete representation of the saddle path. In such scenario, agents
can only partially learn the intertemporal equilibrium. For example, Eusepi and
Preston, 2011 enhanced the Real Business Cycle (RBC) model by introducing
a learning process into the expectation formation mechanism. In this approach,
beliefs function as a substitute for the precise relationship between exogenous vari-
ables, the aggregate economy, and market-clearing prices, leading to systematic
forecast errors, even if the model’s empirical fit is better than that of the original
Kydland and Prescott, 1982.

Our contribution is similar in spirit, as the employment of myopic expectations
results in a distortion of the relationship between expected interest (future capital
productivity) and the saving decision, even though the agents exhibit forward-
looking behavior. However, our approach is more parsimonious because it does
not need to assume either the learning process of an equilibrium relation, or its mis-
specification, as the analytical treatment allows for a direct comparison with the
basic neoclassical model. Therefore, myopic agents with rule-based expectations
tend to converge to an equilibrium different from the REE, even when making
decisions based on an optimization process. Our behavioural assumption, along
with the rolling optimization procedure and the particular rule-based expectation,
even in a forward-looking behaviour, leads to a sub-optimal condition (Euler-
equation) that lacks the forward-looking element (expected marginal productivity
of capital). Expectation exuberance or under-exuberance is explicitly assumed,
avoiding the need to impose super-rational behaviour to get a unique solution and
stability.

The main contribution of this work is to introduce myopia alongside rule-
based expectations into the neoclassical analytical model and to study analytically
its properties and implications in terms of dynamic stability, welfare, and factor
allocation. The model is compared with the classical Ramsey model and the
Solow model in the case of golden rule savings, to highlight its characteristics more
clearly. Compared to the Ramsey model, the main difference lies in the inability for
agents to perform accurate long-horizon optimization and, therefore, to internalize
the expected interest rates. This generally leads to a globally stable equilibrium
rather than to saddle path (in)stability. Expectations of constant growth also lead
to richer dynamics, including the possibility of accumulating too much capital, i.e.,
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remaining in the region of dynamical inefficiency that is excluded in the Ramsey
model. The excess savings, generated by the individual’s bias on expectations,
can lead to a reduction in the economy’s welfare level. Therefore, compared to
Ramsey, where agents’ impatience always leads to a reduction in the saving rate,
in the myopic case, there is also the reciprocal case where an excess of patience
can lead the economy to excessive investment levels and a deterioration in welfare,
compared to the optimum represented by Solow’s golden rule. This can be also
analyzed under a perspective of the interplay between the allocation of income to
factors and factors’ spending. In the Ramsey model, the high returns of capital
always generate a capital income surplus that finances consumption spending,
after the replacement of depreciated capital. On the other hand, the myopic
model shows a more comprehensive behavior, as it can represent the case when
part of the labor income must be used in steady state to finance the depreciation
of the large accumulated capital. The Myopic household fears the effects of capital
depreciation and is willing to contribute a share of labor income to maintain it,
even at the cost of negative interest rates.

The paper is organized as follows: section 1 presents the model in the case of
exponential growth expectations, section 2 discusses its properties with respect
to the Ramsey–Cass–Koopmans (RKC) and Solow models, section 3 extends the
model to include a different rule-based expectation mechanism and discusses the
dynamic properties of the model. The last section concludes.

1 The model
We assume a representative household as in the standard neoclassical model.

To simplify the analysis, we do not consider technological progress or population
growth. The expected utility at date τ can be defined as,

U(τ) =
∫

∞

τ

e−ρ(t−τ)u
[
Eτ{c(t)}

]
dt (1)

where u[·] is utility with the usual properties, ρ > 0 is the constant rate of time
preference, and Eτ{c(t)} indicates the forecast5 at date τ for the future value of
the variable c at time t. Assuming perfect foresight, Eτ{c(t)} becomes simply c(t),
leading to the conventional Ramsey model.

We call a household “myopic”, if it makes decisions at time τ, according to
its current information set and forecasting capability, which is perfect only for a
short time ahead. The household is still rational and willing to optimize its inter-
temporal utility on an infinite horizon, however, it needs to use some rule-based
criteria to predict the future state of the economy. In particular, the household
will make use of its “short time ahead” information in order to predict the values
of future variables.

If we consider the saving rate as the decision variable, and income as the
variable to predict, expected utility in τ should be maximized according to:

max
s(τ)

∫
∞

τ
e−ρ(t−τ)u[

(
1− s(τ)

)
Eτ{y(t)}]dt (2)

The problem for the household is to decide s(τ) in order to optimize U(τ),
given current expectations on future income Eτ{y(t)}, which depend on the in-
stantaneous capital growth rate k̇(τ)

k(τ) . Then, at each following date (> τ), the

5Eτ{x(t)} represents the predicted value of the deterministic variable x(t) that an individual
does not know, due to either insufficient information or the inability to utilize the available
information. This should not be confused with the role of expectations in stochastic models.
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household makes a new decision. In other words, the household is not capable
to choose dynamically an infinite stream of future saving rates but it myopically
chooses a static one (s(t) = s(τ) ∀ t > τ), which optimizes inter-temporal utility,
given its forecast about the evolution of future income. Then it repeats the process
on each subsequent date.

One simple assumption on the myopic expectation formation process at date τ

is that the household believes that capital6 will grow in the future at the observed
short-run rate k̇(τ)/k(τ), thus anchoring long-term growth expectations to short-
term ones.

If we consider a Cobb Douglas production function y(t) = k(t)α , where y(t)
is output per worker and k(t) is capital per worker, the expected future income
becomes,7

Eτ{y(t)}= Eτ{k(t)α}=

[
k(τ)

(
1+

k̇(τ)
k(τ)

)t−τ
]α

. (3)

If utility takes the iso-elastic form,

u(c) =
c1−θ −1

1−θ
, (4)

and we substitute 3 into 2, the consumer problem takes the form,

max
s(τ)

U(τ) =
∫

∞

τ
e−ρ(t−τ)

[(
1−s(τ)

)
k(τ)α

(
1+ k̇(τ)

k(τ)

)α(t−τ)
]1−θ

−1

1−θ
dt (5)

subject to k̇(τ) = s(τ)k(τ)α −δk(τ).
We report here some key steps of the solution, provided in appendix A, focusing

for the moment on the special case of logarithmic utility u(c) = log(c). The first
step is finding the optimal saving rate as a function of current capital, s(τ) =
s(k(τ)),

s(τ) =
α −ρ(1−δ )k(τ)1−α

α +ρ
, (6)

which allows us to derive the dynamics of capital in the myopic model,

k̇
k
=

α

ρ +α
kα−1 − ρ +αδ

ρ +α
. (7)

Equations 6 and 7 are obtained by equations 21 and 22 in appendix A in the
special case of logarithmic utility (θ = 1). The dynamic optimization problem
becomes a static problem, where the household finds the best s(τ), which in turn
determines the new capital endowment. Then, the household will make a new
decision on savings, based on the new level of capital and new expectations of
capital growth, which takes into account information acquired in the last step.
The process continues until the steady state is reached:

6If the household expects a constant growth of income, rather than capital, i.e., Eτ{y(t)} =

y(τ)
(

1+ ẏ(τ)
y(τ)

)t−τ

= k(τ)α

(
1+α

k̇(τ)
k(τ)

)t−τ

, it can be shown that the steady state of the economy is
not affected. Equations 8 and 9 still hold.

7Eq. 3 is a first-order Taylor expansion of exponential expectations, which may be more
intuitive to compute by the myopic households. In any case, even for exponential expectations,

i.e., Eτ{k(t)}= k(τ)e
k̇(τ)
k(τ) (t−τ), the same steady state of eqs. 8 and 9 still holds.
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Figure 1: Myopic model solution (black solid) for capital vs 10 periods ahead
rolling expectation (dotted). Negative shock from equilibrium capital stock (red,
left). Positive shock (grey, center). Percentage error (right) (eq. (10)).

k∗ =
(

α

ρ +αδ

) 1
1−α

(8)

s∗ =
αδ

ρ +αδ
(9)

The household makes a prediction error Ω when forecasting future capital,
which depends on the current date τ and the prediction horizon h.

Ω(τ,h,k) = Eτ,h{k(t)}− k(τ +h) = k(τ)
(

1+
k̇(τ)
k(τ)

)h

− k(τ +h), (10)

This prediction error, at any given date τ, is positively related to the prediction
horizon h, but decreases as the economy approaches its steady state. Equation
10 demonstrates that, for a finite horizon, the prediction error is zero as τ tends
to infinity, because k̇(τ) approaches zero and k(τ) tends to k∗ (see figure 1 as
an example). Additionally, as τ approaches infinity, the prediction error also
converges to zero for an infinite horizon (see appendix B.1 for the proof). This
indicates that the household does not make any systematic error and correctly
forecasts the future state of the economy as it approaches equilibrium.

The dynamic properties of the error are simulated and shown in figure 1 for the
logarithmic utility case. Capital per worker converges to the steady state, after
a shock of ±40% from the equilibrium capital stock. The figure includes dotted
lines representing different forecast vintages, each starting on a different date and
considering a forecast horizon of h = 10 periods. As previously mentioned, the
perceived law of motion (based on exponential rules of expectation) and the actual
law of motion interact. Even if agents anticipate a positive or negative exponential
law of motion, the periodic revision of expectations leads to a stabilizing process.

Overall, the tension between rule-based expectations and bounded rational-
ity, brought about by periodic re-optimization, constrains the parametric space
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available to achieve equilibrium determinacy. We can demonstrate (as shown in
appendix A.1) that such a dynamic process has a parametric restriction for the
stability condition that needs to be satisfied in the case of a CRRA utility function:

ρ > α(1−θ)ln(1+ γk), (11)

where γk = sk(τ)α−1 −δ represent the constant capital growth rate estimated in-
stantaneously. Similarly to the Ramsey model,8 there are different forces at play:
the constant rate of time preference ρ, the household’s willingness to shift con-
sumption between periods θ , and the myopic expectation bias αln(1+ γk). The
myopic bias leads to an overestimation of the future consequences of today’s sav-
ings on income growth, resulting in an excessive shift of consumption towards the
future. This delay in consumption can cause the optimization problem to diverge,
which can be prevented by a sufficiently high impatience (sufficiently large ρ) or
a strong willingness to smooth consumption (θ close to 1). In the case of loga-
rithmic utility (θ = 1), convergence can be achieved with a positive discount rate
(ρ > 0), as in the Ramsey model with no trend in technology or population.

The equilibrium in equations 8-9 is a globally stable fixed point with speed of
convergence λ , derived in appendix B.3,

λ =
(ρ +αδ )(1−α)

α +ρ
> 0. (12)

The analogous problem in discrete time yields the same steady state values
of equations 8 and 9, provided that the standard discount rate transformation
β = 1/(1+ρ) is applied, as demonstrated in appendix C.

2 Comparison with Ramsey and Solow models
In this section, we compare the properties of the myopic model to those of

the neoclassical models with non-optimizing and optimizing agents, namely the
Solow-Swan at the golden rule (GR henceforth) saving rate and the Ramsey (R)
models, respectively. As shown in the previous section, the myopic model differs
from the Ramsey model because the household is unable to predict correctly the
future evolution of the economy. As a result, it makes an error that gradually
decreases when approaching the equilibrium. However, the accumulation of errors
committed by the household affects the dynamics of the model and generates a
steady-state that is different from the one of the Ramsey model. Table 1 displays
the values of several key variables at steady-state for the different models under
consideration.

2.1 Steady state
It may be useful to remember that sharing the same level of consumption

across different generations, as happens in the Solow model with the golden rule,
implies a null relative price between future and current consumption, that is, a

8In the Ramsey model the transversality condition imposes a similar parameter restriction:

ρ > (1−θ)g,

where g is the growth rate for technology. The condition imposes that discounting is a stronger
force than the growth rate of capital to have finite intertemporal utility objective function, and
collapses to ρ > 0 for stable population and productivity. The condition resembles equation (11),
with the exception that the exogenous growth g is replaced by the household’s expectation of
growth, which determines their choices.
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Variable Golden rule Ramsey Myopic
Interest rate r∗ 0 ρ ρ −δ (1−α)

Capital stock k∗
(

α

δ

) 1
1−α

(
α

ρ+δ

) 1
1−α

(
α

ρ+αδ

) 1
1−α

Saving rate s∗ α
αδ

ρ+δ

αδ

ρ+αδ

Consumption rate 1− s∗ 1−α
ρ−δ (1−α)

ρ+δ

ρ

ρ+αδ

Table 1: Steady state values for Solow, Ramsey and Myopic models

null interest rate. In general, at equilibrium, the capital steady state is the ratio
between the investment share s and the dismissed capital rate δ , which at the GR
level corresponds to α/δ , modified by the elasticity of substitution between labor
and capital 1/(1−α).9

Introducing consumer optimization as in the Ramsey model means assuming
inter-temporal selfishness. In this case utility is not discounted uniformly over time
and generations, due to a positive impatience rate ρ. Such impatience implies to
anticipate consumption and to introduce a positive interest rate at the equilib-
rium, r∗ = f ′(k∗)−δ = ρ. This anticipation erodes optimal savings and therefore
reduces the capital steady state level, as analytically ρ enters in the numerator
and introduces a perpetual higher discounting α/(ρ +δ ). In the case of the my-
opic behavior, the steady state level has the same form of the Ramsey model,
except for a lower impact of capital depreciation α/(ρ +αδ ), originating from
the overestimation of the capital accumulation process, which translates in a di-
minished perception of capital depreciation. The internalization of the technology
in the myopic expectation process alters the neoclassical equilibrium. Different
technology assumptions would lead to different deviations from the Ramsey model
steady state.

> k∗gr k∗r k∗m
k∗gr - ρ ≥ 0 ρ > δ (1−α)
k∗r ρ < 0 - α ≥ 1
k∗m ρ < δ (1−α) α < 1 -

Table 2: Ranking of capital steady state values as a function of parameters

Table 2 displays the relationship between the steady-state capital levels of
the three models. For standard parametrization (ρ ≥ 0, α < 1), the Ramsey
model always has a lower steady-state capital level compared to both the Solow
model, i.e., k∗r < k∗gr, and the Myopic model, i.e., k∗r < k∗m. The first inequality
depends on the household’s impatience. The second, instead, depends on the
bias in the expectations of the myopic agent, who tends to overestimate future
income changes. When starting from a low capitalization, the household tends
to overestimate the effect of savings on future capital growth, investing more

9If we consider the equation ẋ = φxz −ψxy, where φ and ψ are the birth and death rates, and
z and y are returns to scale parameters, the implied steady state is

x =
(

φ

ψ

) 1
y−z

.

This shows the Solow model as a special case of a birth and death process.
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Figure 2: Myopic model solution (black solid) for interest rate vs 10 periods ahead
rolling expectation (dotted). Negative shock from equilibrium interest rate (red,
left). Positive shock (grey, center). Percentage error (right).

than in the Ramsey case and accumulating more capital. In the case of excess
capitalization, the myopic household still tends to overestimate the negative effect
of a reduction in savings on future income and therefore chooses to maintain a
higher saving rate (s∗r < s∗m), resulting again in a steady-state capital higher than
in Ramsey. We will discuss on the consumption level ranking in section 2.2.

Symmetrically, the equilibrium interest rate in the myopic case is lower than
Ramsey (r∗r > r∗m), which is always positive in the presence of impatience.

The inability to accurately predict the future leads households to make an
error in calculating the expected interest rate. The process is similar to what has
already been observed in the case of capital, and a graphical representation of the
error, for horizon h = 10, is given in figure 2. Specifically, we define the expected
future interest rate at time t, as perceived at time τ, as:

Eτ{r(t)}= Eτ{ f ′(k(t))−δ} (13)

In the case of Cobb-Douglas technology, given the expectations about the future
value of capital Eτ{k(τ)} from equation 3, we obtain:

Eτ{αk(t)α−1}−δ = αk(τ)α−1
(

1+
k̇(τ)
k(τ)

)(t−τ)(α−1)

−δ (14)

We can therefore define the error made in predicting the interest rate with
horizon h similarly to equation 10, as Ω(τ,h,r) = Eτ,h{r(t)}− r(τ +h). Appendix
B.3 demonstrates that the interest rate at the steady state is r∗ = ρ − δ (1−α)
and that limτ→∞ Ω(τ,h,r) = 0. As observed for capital, the error Ω(τ,h,r) tends
to zero for sufficiently large times, indicating that the agent in the steady state is
able to accurately predict future interest rates.

Replacing the perfect foresight assumption with exponential rule-based expec-
tations generates a deviation of δ (1−α) from the Ramsey model in the equilibrium
interest rate. This deviation, which we label as “myopic bias”, is due to the fact
that the household is unable to properly internalize the net benefit of holding a
higher marginal unit of capital. We can define,
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δk

k

f (k)

sgr f (kgr)

sm f (km)

sr f (kr)

f ′(k) = δ =⇒ r = 0

f ′(k)> δ =⇒ r > 0

f ′(k)< δ =⇒ r < 0

kgrkr km

ρ → 0

ρ → δ (1−α)

Figure 3: Ramsey (grey), Solow (black) and Myopic (green) steady state capital.
If ρ → δ (1−α) the myopic investment sm f (km)→ sgr f (kgr) and km → f (kgr). ρ → 0
then sr f (kr)→ sgr f (kgr) and kr → f (kgr).

ρm = ρ −δ (1−α) = r∗m < r∗r = ρ, (15)

where ρm represents a sort of “equivalent impatience”, partly generated by the
individual’s time preference and partly by their imperfect expectations. When the
value of impatience equals the myopic bias, i.e., ρ = δ (1−α), two conditions are
met: the steady-state capital of the myopic model equals the golden rule capital
(k∗m = k∗gr, see table 2), and the equilibrium interest rate r∗m is zero. Otherwise10,
if ρ > δ (1−α), then k∗m < k∗gr and r∗m > 0; and if ρ < δ (1−α), then k∗m > k∗gr
and r∗m < 0. The last condition states that when the household has a high level
of patience, the steady-state capital accumulation is larger than the Golden rule
level and, therefore, interest rate is negative. This specific scenario is depicted in
Figure 3, which shows the standard textbook representation of the steady state
for the three economic models under consideration.

It is well-known that in the Ramsey model, capital cannot be to the right of
the golden rule capital because the solution would be dynamically inefficient. In
other words, the individual could lower their savings rate to improve their utility
in both the short and long run. However, the steady-state of the myopic model can
remain in this situation of excess savings, as a decrease in the saving rate would
lead to a significant decrease in future expected income, according to the myopic
household’s perspective. This would discourage such a reduction in savings.

2.2 Welfare and policy
The focus of this section is to examine the discrepancy between the maximum

steady-state consumption, which represents a benchmark achievable under the
Solow golden rule saving level (s = α), and consumption levels attained in the
Ramsey (r), Barro (b) and Myopic (m) models. To quantify this difference, we
calculate the percentage deviation of ci from cgr, where i = {m,r,b}. Figure 4
presents this deviation for various values of α = [0.2,0.3,0.4] and δ = 0.03.

The use of rule-based expectations introduces time-inconsistent plans that re-
sult from the biased expected growth, which alters the perceived discounted stream

10In the limiting case of full patience (ρ = 0), it is optimal for the agent to save the entire
output (sm = 1). This leads the agent to reduce consumption to zero.
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Figure 4: Percentage Deviation of Steady State Optimal Consumption for differ-
ent values of 0 < ρ < 1. Golden Rule vs Myopic, Ramsey, and Barro (1999) no
commitment Model. ∆c(ρ)i =

c(ρ)∗i
c(ρ)∗gr

100−100.

of utility. At each time step, a new plan arises, leading to modifications in con-
sumption allocation. This heterogeneity ultimately leads to higher consumption
given a higher capital accumulation. Specifically, when the time preference pa-
rameter falls within the range of δ (1−α)< ρ < 1, the Myopic model yields greater
welfare than the Ramsey model.

We emphasize that comparing welfare should be perceived merely as an ex-post
evaluation of consumption levels between two distinct economies. It is evident that
any path derived from myopic behavior and assessed within the discounted utility
function of a standard Ramsey-type optimization plan would yield lower expected
utility than the optimal solution advocated by pure neoclassical behavior.

In contrast to the Ramsey model, the impact of time preference ρ on welfare
in the Myopic model is non-monotonic. This is due to the fact that expectation-
biased growth drives capital allocation towards the Golden Rule level within the
range of admissible values of impatience, i.e, ρ = δ (1−α). The maximum welfare
attained by the Myopic model is, however, fragile, as it is vulnerable to potential
positive shifts in patience that can lead to a substantial drop in consumption.

Indeed, for ρ → 0, the myopic patient household tends to save their entire
income (sm → 1) in anticipation of a very strong future growth that makes saving
today convenient. More generally, for values of ρ lower than δ (1−α), myopia leads
to excess capital accumulation, rewarding the choice of over-saving at the expense
of economic welfare. As seen in the previous section, the dynamically inefficient
zone for the Ramsey agent is instead a zone where the myopic agent can remain,
by virtue of their optimization process which involves an overestimation of the
future income response to variations in the saving rate.

This property of the myopic model has interesting implications for economic
policy, as it predicts the possibility that households without perfect foresight may
rationally choose to save too much, with negative consequences for economic wel-
fare. This occurs particularly when households are inclined to overestimate future
economic growth, or rather the effect of savings on future growth of income. For
instance, if there is a prevalent tendency in economic and financial expectations to
overestimate financial investments returns, with a consequent incentive for house-
holds to save excessively, then there is room for policy to disincentive excess of
savings.
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If this were the case, it would suggest the need for policy intervention aimed at
mitigating the potentially negative effects of the mechanism previously described,
namely the risk of reduced welfare due to excessive savings. Policy interventions
such as stimulating consumption or increasing public spending, among other pos-
sibilities, could be considered. For example, a policymaker, internalizing the inef-
ficiency measured as biased welfare with respect to the full-commitment rational
case, could incentivize consumption plan adjustments by using fiscal policy. It
is worth noting that myopic optimization, tied to the anchored expectation hy-
pothesis, leads to a different form of time inconsistency in our model compared to
Barro’s. In Barro’s scenario without commitment, the time-inconsistent household
can not fully commit over the infinite optimization horizon, resulting in higher ef-
fective time preference, higher interest rate, reduced capital, lower consumption,
and welfare. In our case, the incentive to deviate from the fully time-consistent
committed plan (Ramsey solution) arises due to sequential time windows splitting
the optimization plan. Myopic agents don’t vary in time preference but in expec-
tations due to updated information altering the expected capital growth rate. In
contrast, for high impatient rate, the interest rate is lower leading to higher sav-
ings and capital accumulation. Consequently, the final optimization yields a much
higher welfare levels in equilibrium compared to both the full-commitment case
and Barro’s no-commitment case except for very patient individuals. The myopic
bias also affects the expenditure allocation of factor income. Two metrics, the rel-
ative excess of wage over consumption (1−c/w) and the relative excess of capital
income (π) over investments (1− i/π), allow us to make some considerations about
expenditure allocation of income factors, despite the simplified structure of the
representative agent economy. They measure the percentage of wages that is not
spent on consumption and the percentage of capital income that is not allocated
to investment. {

1− c
w = s−α

1−α

1− i
π
= α−s

α

(16)

It is known that at the maximum level of consumption, reached in the case of
the golden rule, the flow of income that remunerates capital is equal to investments
(πgr = igr), and the flow that remunerates labor is equal to consumption (wgr = cgr).
In the Ramsey model, it holds that πr > ir and wr < cr, meaning that part of the
capital income is always used to purchase consumption. The equilibrium interest
rate is sufficiently high to ensure a surplus to finance consumption, after the
replacement of depreciated capital. On the other hand, wage is obviously not
enough to buy consumption.

In Figure 5, we display the metrics defined in Equation 16 as a function of
natural logarithm of the impatience rate ρ, for both the Myopic and the Ramsey
model. As impatience increases, the proportion of consumption purchased by
capital income also increases. In this pursuit of immediate consumption, the
capitalist sacrifices future growth by using capital income to buy more goods
today. The Myopic household behaves like the Ramsey household under normal
conditions, i.e., as long as ρ > δ (1−α). However, once this threshold is crossed,
part of the labor income must be used in steady state to finance the depreciation
of the large accumulated capital. The Myopic household fears the effects of capital
depreciation and is willing to contribute a share of labor income to maintain it,
even at the cost of negative interest rates. However, the slope of the curve shown
in Figure 4 in this region is very steep, and the risk of welfare loss due to potential
fluctuations in time preferences, expectations, or other shocks can be significant.
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Figure 5: Excess wage over consumption and excess capital income over invest-
ments

2.3 The dynamics
The myopic nature of expectations, independently from their specific form

assumed like the exponential proposed until now (see section 3 for a generaliza-
tion), would lead to an essential difference in the nature of the solution obtained
in the neoclassical model. Indeed, the standard Euler equation relates not the
level but the consumption growth rate to the interest rate deviation from the
time preference. The primary difference is due to the inability for the myopic
agent to foresee the exact evolution of the economy and to incorporate it in the
expectations. Agents use a certain belief of the future, given the local and partial
knowledge of the economy. This process translates into solving a static intertem-
poral optimization problem. In this way, the agent gets the optimal (biased) policy
function explicitly. In the Ramsey model, instead, the dynamic optimal condition
implies solving for the control variable’s initial condition (consumption) to start
on the top of the saddle path and converge to the long-run equilibrium, i.e. to
impose optimality via the transversality condition. Moreover, the general policy
function is unknown, and in general, a numerical solution has to be adopted to
obtain an equivalent form as in our optimal analytical condition (6). Such condi-
tion dictates myopic households to set the level of the saving rate s(τ) anchoring it
at the observed current level of capital. Such property would have two significant
consequences: the global stability and the empirical relevance of the model.

We can appreciate the stability properties by re-examining the saving rate
equation (6). If we rearrange that equation, we will have the following:

i = sy =
αy

α +ρ
− ρ(1−δ )k

α +ρ
.

The agent will set investment (sy) as the difference between the capital share
of income (αy) and the discounted value of capital (ρ(1−δ )k). Both elements are
discounted by the factor (1/(α +ρ)), which is the result of constant discounting
(1/ρ) and the exponential over discounting (1/α).

The resulting dynamics is represented in figure 6 where we can identify the
optimal path converging to the myopic equilibrium given an initial condition on
capital, i.e., simulating the system of equations (6) and the capital law of motion
k̇(τ) = s(τ)k(τ)α − δk(τ), with parameters ρ = 0.05,α = 0.3,δ = 0.1. As shown,
in contrast with the neoclassical model, the dynamics is not saddle-path unstable
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Figure 6: Myopic and Ramsey model phase spaces and gridded initial conditions.
Dashed blue and dashed red lines are respectively the unstable Ramsey and the sta-
ble Myopic model trajectories. Myopic equilibrium (M) is globally stable, while Ramsey
equilibrium (R) is saddle path un-stable.

but globally stable as, given any combination of (s(τ),k(τ)), the model reaches the
myopic stable arm approaching the steady state.

Linearizing the myopic model around the steady state and calculating the
speed of convergence as in equation (12) determines the model’s global stability in
the neighborhood of the steady state, that is granted for any admissible parameter
values (0 ≤ δ ≤ 1, 0 ≤ α ≤ 1, 0 ≤ ρ ≤ 1). Moreover, the myopic behavior implies
a lower speed of convergence compared to Ramsey.11 Indeed, in figure 7, we
compare the non-linear speed-of-convergence, showing that the myopic model has
a slower convergence for any initial conditions.

In general, a slower speed of convergence grounded on limited information and
behavioural bases implies empirically more relevant properties as it better explains
the convergence process between advanced and emerging countries. The literature
often argues that the time required for emerging countries to catch up to advanced
ones is longer, highlighting a limitation of the Ramsey model. King and Rebelo,
1993 initially raised this concern, later discussed in Barro and Sala-i-Martin, 2003.
They proposed augmenting the capital share by encompassing human capital in
an expanded definition, suggesting a parameter α = 0.75, significantly higher than
empirical observations. In our model, the myopic bias helps to fix the empirical
relevance of the transitional dynamics. For example, for α = 0.3 as shown in figure
8, the Ramsey model has the counterfactual implication that the initial value of
the speed of convergence γy is implausibly large (17%), while in the myopic model,

11The neoclassical model convergence is given by:

λ =
1
2

([
ρ

2 +4(1−α)(ρ +δ )

(
ρ +δ

α
−δ

)] 1
2
−ρ

)
with constant population and technology, as provided in Barro and Sala-i-Martin, 2003.
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Figure 7: Non-linear speed of convergence versus initial condition level. Ceteris
paribus, the myopic model has a lower speed of convergence.

the initial value is lower. Another important stylized fact in transitional dynamic
is the lower interest rate r(0) implied by the myopic behavior is 20% against the
40% implied by the neoclassical model.

In essence, the myopic model conciliates more with the Euler-puzzle (Kremer et
al., 2019), which posits the empirical observation that high interest rates and high
consumption growth rates are inconceivable together as implied by the neoclassical
model. All else being equal, not only are interest rates lower in the early stages
of growth convergence but also consumption growth rates are lower in the myopic
model.

Once again we stress the fact that the limited-information and computational
ability of the agent - embedded in the expectation formation process leading to
extrapolate long term properties of the economy using the observed relationship
between the control variable (saving rate) and the rate of growth of the capital
and income - would lead to a more plausible dynamic behavior of the economy.
This notion is supported by analyses advocating for the integration of behavioral
elements in contemporary versions of macroeconomic models that retain the un-
derlying neoclassical structure. For instance, Jang and Sacht, 2022 substitute
the rational expectation assumption with forecast heuristics in a New-Keynesian
DSGE model, thereby enhancing the model’s capacity to explicate the persistence
of consumption fluctuations.

3 Generalizing rule-based expectations
The entire approach described in the preceding sections depends on the as-

sumption that has been made about how economic agents with limited rationality
form their expectations about the future. As soon as one deviates from the idea
that individuals have perfect foresight, one falls into an inevitable variety of alter-
native assumptions: there is one way to be rational and thousands of ways not to
be. Even if we stick to the idea that individuals anchor their expectations to some
value, the selected variable that serves as an anchor may change, thus affecting
the structure of the expectations.

The hypothesis of the paper was that the myopic individual were able to calcu-
late the short-term capital level for each possible saving rate choice and therefore
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Figure 8: Ramsey vs Myopic transition from an initial condition on capital of
20% its steady state value. On the left-hand panels are displayed the capital,
consumption, production and investment ratio to their steady state values. On
the right-hand side panels: income percentage speed of convergence, saving rate,
interest rate, and capital-to-output ratio.

to derive a short-term growth rate. The anchoring assumption was that the in-
dividual expected a constant growth rate for the future, equal to the short-term
rate, as in equation 3. This assumption is essential to the narrative because it
determines the constant overvaluation of future output variations, which is the
primary reason for all the results obtained so far.

However, it is possible to assume that the myopic individual believes the future
level of capital to be constant rather than growing, as assumed in Dawid, 2005
and Day, 2000. This leads generally to an underestimation of future changes in
capital and income, resulting in different outcomes compared to the previous case
of expected constant growth rate.

In the following, we assume that the household forms expectations at time
τ, assuming future capital to be constant at a given level, which depends on the
effects of the low of motion for the next step (τ +1), plus an inertial component
ω(kτ+1 − kτ) that adjusts the capital in the same direction of the first τ → τ + 1
movement. This inertial component encompasses all expected variations in capital
beyond the initial period, in which the household is capable of making an accurate
prediction. If ω = 0, the household expects capital to be constant at kτ+1.

Hence, the equation for expected future capital is:

Eτ{kτ+h}= kτ+1 +ω(kτ+1 − kτ) ∀h ≥ 1 (17)

Discrete time is employed as it offers a more intuitive interpretation of the
equation. The forecast for future capital occurs at time τ. The anticipated value
of capital in τ +h equals the short-term predicted value of capital kτ+1, adjusted
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Figure 9: Solow model and different calibrations for the ω- model. The ω- model
exactly replicates the Solow model steady state for ωgr.

by the adjustment factor ω, which denotes the degree to which the individual
expects short-term growth to impact the constant long-term capital level.

In this case, writing U(τ) and solving the optimization problem leads to:

k∗ =
[

αβ (1+ω)

1+αβδ (1+ω)

] 1
1−α

(18)

The details of this derivation can be found in appendix D.
The parameter ω, which represents the degree of persistence of growth in

an individual’s conception, enhances the versatility of the results obtained using
exponential expectations. Depending on the value of ω, the model can stabilize
at different levels of capital. It is always possible to identify a value of ω = ωgr at
which the steady-state capital is equal to that of the Solow Golden Rule (k∗ = k∗gr),
or another value, ωr, at which it is equal to that of Ramsey12 (k∗ = k∗r ), assuming
the same values of parameters α, β , and δ .

In particular, if ω < ωr, capital per worker accumulated in the economy is
lower than Ramsey’s; if ω ∈ (ωr,ωgr) it is between Ramsey and Solow; and if
ω > ωgr it will be higher than Solow. In figures 9 and 10 we show a comparison of
different calibration for the parameter ω = [100,10,ωr,ωgr]. As shown, calibrat-
ing opportunely the parameter the same steady state is approached, compared to
the Golden Rule or the Ramsey model. However the dynamics is different given
the behavioral nature of the expectations. In particular the transition is approxi-
mated by the myopic model. However, the ω expectation model displays a slower
transition speed compared to the full neoclassical model for consumption, savings,
capital and output, similarly to the case of exponential expectation presented in
the previous sections.

12With logarithmic utility: ωgr =
β (δ (1−α)−1)

(β−1)−δβ (1−α) and ωr =
1

βδ (1−α) −1
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Figure 10: Ramsey model and different calibrations for the ω- model. The ω-
model exactly replicates the Ramsey model steady state for ωr.

Conclusions
The neoclassical growth model is extended to incorporate limitations in the

forecasting capability of rational individuals. Specifically, the introduction of my-
opic behavior with rule-based expectations results in a framework where individ-
uals can only predict short-term impacts on the economy, lacking accurate long-
term predictions. This approach, distinct from perfect foresight assumptions,
acknowledges the influence of cognitive anomalies, such as anchoring, reference
point effects, and status quo biases.

The interaction between myopia and rule-based expectations shapes a dynamic
sequence of static optimization problems, fundamentally altering the intertem-
poral relationship between consumption and capital intensity. Unlike the pure
neoclassical growth model, this myopic approach disregards the traditional nexus
between these variables, generating forecasting errors and subsequent adjustments.

This paper connects to various strands of literature exploring adaptive econ-
omizing agents, dynamic discount factors, learning, and expectations. Unlike
previous works emphasizing time inconsistency arising from changes in individual
preferences, our approach highlights time inconsistency emerging from the inter-
action between myopic rule-based expectations and impatience. Biased forecasts
underpin time-varying utility plans, impacting perception of discounted future
income, despite assuming constant time preferences.

We demonstrate how myopic agents, relying on rule-based expectations, devi-
ate from rational expectation behavior. While rational agents in perfect foresight
models converge to the long-run equilibrium à la Ramsey, our myopic model leads
to a distinct equilibrium with higher saving rate and capital accumulation. This
discrepancy emerges even though the myopic model is based on forward-looking
behavior and optimization process.

Moreover, our study delves into the effects of myopic behavior on welfare, dy-
namics, and expenditure allocation of factor income. Notably, the myopic assump-
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tion results in a modified dynamic form of “effective impatience”, influencing time
preferences of households, leading to sub-optimal long-run capital accumulation.
This outcome persists even with small deviations in time preferences, potentially
reducing welfare significantly compared to the prediction of neoclassical models.

Our study highlights the need for policymakers to consider the intrinsic human
behavioral nature of expectation formation mechanisms. It underscores potential
risks associated with the belief that agents are entirely rational in the RKC sense,
as this can lead to adverse long-run consequences. In particular, under standard
model parametrization and given an impatience level that matches observed in-
terest rates, our findings suggest that policy intervention may be needed to reduce
excessive savings.

Our model might help reconcile with some recent developments on a global
scale. The world economy has witnessed a simultaneous increase in global saving
and investment rates, along with a prolonged period of declining interest rates.
Various explanatory factors have been proposed, including demographic and tech-
nological evolution in both advanced and emerging countries. In our analysis,
we incorporate the myopic rule-based expectation growth model as one such con-
tributing factor. The ascent of developing countries in terms of population and
GDP share could potentially contribute to an increase in over-saving behavior.
Emerging and advanced countries exhibit distinct characteristics in growth ex-
pectations and commitment technologies within financial markets. Saving rates,
especially in emerging countries, operate within a framework of myopic expecta-
tions, introducing a macro myopic bias at the global level. This bias may lead to
an excess in capital accumulation, compression of consumption, and diminished
welfare. These trends have manifested in a global reduction of interest rates, even
reaching negative territory. The myopic bias may offer an explanation for such
phenomena.

Our behavioral assumption, integrated into a standard optimization rule, has
demonstrated the potential to derive analytical and explicit solutions for the pol-
icy function, describing the optimal behavior of the economic agent within the
standard neoclassical model. As it lies at the core of neoclassical development in
macroeconomic modeling, we believe our strategy could help in designing explicit
analytical models that incorporate behavioral rules. This extends to descendant
streams of modeling, including dynamic stochastic general equilibrium models
(DSGEs), heterogeneous agents models (HANKs), and dynamic games models.
Our upcoming research will focus on further exploration of this avenue.
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Appendices
A First order conditions in continuous time

Under the assumption of iso-elastic utility, equation 5 becomes:

U(τ) =
∫

∞

τ

e−ρ(t−τ)

{(1− s(τ))
[

k(τ)
(

1+
˙k(τ)

k(τ)

)t−τ
]α

}1−θ

1−θ
dt − 1

(1−θ)ρ
(19)

By substituting the capital law of motion, k̇(τ) = s(τ)k(τ)α − δk(τ), into 19
and imposing ∂U(τ)

∂ s(τ) = 0, one obtains, after some algebraic manipulation:

k(τ)α(1−θ)(1− s(τ))−θ

∫
∞

τ

e−ρ(t−τ)(1+ γk)
a(t−τ)dt+

+
k(τ)aαk(τ)α−1(1− s(τ))1−θ

1+ γk

∫
∞

τ

e−ρ(t−τ)(1+ γk)
a(t−τ)(t − τ)dt = 0,

where 1+ γk =
k(τ)(1−δ )+s(τ)kα (τ)

k(τ) and a = α(1−θ). (1+ γk) can be interpreted as
the growth factor of capital k(τ). Computing the definite integrals we get:

−k(τ)a(1− s(τ))−θ

ρ −a ln(1+ γk)
·
∣∣∣− (1+ γk)

a(t−τ)e−ρ(t−τ)
∣∣∣∞
τ

+

+
k(τ)a+α+1α(1− s(τ))1−θ

(1+ γk)(ρ −a ln(1+ γk))2 ·
∣∣∣−(1+γk)

a(t−τ)e−ρ(t−τ) (ρ −a ln(1+ γk)(t − τ)+1)
∣∣∣∞
τ

= 0.

The convergence of the integral is subordinated to the following transversality
condition, that will be discussed below in appendix A.1:

lim
t→+∞

−(1+ γk)
a(t−τ)e−ρ(t−τ) = 0. (20)

Given equation 20, we can derive the optimal saving rate s(τ) as:

s(τ) = 1− (1+ γk)(ρ −a ln(1+ γk))

α
k(τ)1−α , (21)

which simplifies to eq. (6) in the case of log-utility.

By substituting s(τ) from 21 into the capital law of motion we get:

1− k̇(τ)+δk(τ)
k(τ)α

=
(1+ γk)(ρ −a ln(1+ γk))

αk(τ)α−1 , (22)

which allows us to derive the steady state capital and saving rate reported in eqs.
8 and 9:

k∗ =
(

α

ρ +δα

) 1
1−α

,

s∗ =δk∗1−α =
δα

ρ +αδ
.

It should be noticed that neither the steady state capital k∗ nor the saving rate
s∗ depend on θ .
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A.1 Integral convergence condition
The convergence condition for integral 19 is contingent upon satisfying equa-

tion 20, which can be expressed as:

lim
t→+∞

−(1+ γk)
α(1−θ)(t−τ)e−ρ(t−τ) = 0.

By performing a change of base, this equation transforms into:

lim
t→+∞

−e(t−τ)[α(1−θ) ln(1+γk)−ρ] = 0.

Since t − τ > 0 for all t, the convergence condition of the integral depends on the
following constraint:

ρ > α(1−θ)ln(1+ γk), .

B Stability and errors
In this section we collect some results concerning convergence, stability and

errors in the expectation formation process.

B.1 Convergence to the equilibrium
Under the convergence condition presented in appendix A.1, limτ→∞ k(τ) = k∗.

The first order Taylor approximation of k̇(τ) is:

k̇(τ) =
∂ k̇(τ)
∂k(τ)

∣∣∣∣∣
k∗

[
k(τ)− k∗

]
.

Differentiating equation (7) for k(τ) and using the expression of the steady state
of capital in eq. 8, leads to:

∂ k̇(τ)
∂k(τ)

∣∣∣∣∣
k∗
=

(ρ +αδ )(α −1)
α +ρ

< 0.

Therefore, the first-order Taylor expansion around the steady state equals:

k(t) = k∗+ e−λ t
[
k(0)− k∗

]
(23)

with
λ =

(ρ +αδ )(1−α)

α +ρ
> 0.

B.2 Error in future capital expectations
To compute the asymptotic behaviour of Ω(τ,h,k) for both τ → ∞ and h → ∞,

without much loss of generality we assume that the prediction horizon h is a
multiple of τ: h = mτ. This implies that h → ∞ when τ → ∞, and we can write eq.
10 as:

lim
τ→∞

Ω(τ,h,k) = lim
τ→∞

k(τ)
(

1+
k̇(τ)
k(τ)

)mτ

− k(τ(1+m)) = k∗
[

lim
τ→∞

(
1+

k̇(τ)
k(τ)

)mτ

−1

]
.

Let’s define the percentage deviation of capital from the steady state, as:

k̃(τ) =
k(τ)− k∗

k∗
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Deriving k(τ) in eq. 23, we get:

k̇(τ) =−λe−λτ

[
k(0)− k∗

]
Given the two relationships above, finally:

1+
k̇(τ)
k(τ)

=
k∗+ e−λτ

[
k(0)− k∗

]
(1+λ )

k∗+
[
k(0)− k∗

]
e−λτ

=
1+ e−λτ k̃(τ)(1+λ )

1+ e−λτ k̃(τ)
.

Then we can write:

lim
τ→∞

(
1+

k̇(τ)
k(τ)

)mτ

= lim
τ→∞

[
1+ e−λτ k̃(τ)(1+λ )

1+ e−λτ k̃(τ)

]mτ

=
limτ→∞

(
1+ae−λτ

)mτ

limτ→∞

(
1+be−λτ

)mτ

where a = (1+λ )k̃(τ) and b = k̃(τ) are finite values ∀τ. It can be demonstrated
that the limit above converges to 1:

lim
τ→∞

(
1+ae−λ t

)mτ

= lim
τ→∞

[(
1+

a
eλτ

)eλτ
] mτ

eλτ

= lim
x→∞

[(
1+

a
x

)x]m ln(x)
λx

where: x = eλτ ,τ = ln(x)
λ

. This results in:

lim
x→∞

(ea)
m ln(x)

λx = 1.

Therefore:

lim
τ→∞

(
1+

k̇(τ)
k(τ)

)τ

= 1 (24)

and finally the asymptotic behaviour of the prediction error Ω made by the rep-
resentative agent becomes:

lim
τ→∞

Ω(τ,h,k) = 0

B.3 Interest rate bias
Considering a generic capital law of motion k̇

k = akα−1 − b, and differentiating
saving rate as in equation 6 with respect to time, we get:

ṡ = ηk1−α
(
akα−1 −b

)
.

where η = ρ(1−δ )(1−α)
α+ρ

. From equation 7, then we have:

ṡ =− η

ρ +α

[
(ρ +αδ )k1−α −α

]
,

leading to
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ṡ =−ηk1−α

ρ +α

[
αkα−1 −δ +δ (1−α)−ρ

]
,

and
ṡ =−ηk1−α

ρ +α
[r+δ (1−α)−ρ] ,

where r = αkα−1 − δ . The equation shows that the interest rate at the steady
state is

r∗ = ρ −δ (1−α). (25)
The excess of capital productivity r =αkα−1−δ with respect to the ‘equivalent

impatience’ ρm = ρ −δ (1−α) leads to a decrease in saving rate (see section 2.1),
diminishing capital accumulation. The saving rate stabilizes when the interest
rate is equal to ρm.

This considerations allow us to compute the error committed by predicting the
future interest rate with horizon h = t − τ, given by eq. 14. The error Ω(τ,h,r) =
Eτ,h{r(t)}− r(τ +h) becomes:

Ω(τ,h,r) = αk(τ)α−1
(

1+
k̇(τ)
k(τ)

)h(α−1)

−δ − r(τ +h). (26)

By replicating the considerations outlined in appendix B.2, we can demonstrate
that limτ→∞ Ω(τ,h,r) = 0. This result can be obtained by taking the limit of eq.
26 and substituting eqs. 24, 8 and 25 into it.

C Discrete time myopic model
Utility maximization in discrete time can be written as:

max
sτ ,kτ+1

= Eτ

∞

∑
t=τ

β
t−τ ln

{
(1− sτ)

[
kτ

(
kτ+1

kτ

)t−τ]α
}

s.t.

kτ+1 = sτ kα
τ +(1−δ )kτ ,

where kτ+1/kτ denotes the capital growth rate contingent upon the capital stock
one period ahead, a variable influenced by the corresponding saving decision.

C.1 First order conditions
We write the Lagrangian formulation:

L =Eτ

∞

∑
t=τ

β
t−τ ln

{
(1−sτ)

[
kτ

(
kτ+1

kτ

)t−τ]α
}
+Eτ

∞

∑
t=τ

β
t−τ

λτ(sτ kα
τ +(1−δ )kτ −kτ+1)

Before deriving the first order conditions, we solve the setup for the infinite periods
such as:13

L =
1

1−β
ln[(1− sτ)kα

τ ]+α ln
[

kτ+1

kτ

]
β

(1−β )2 +
1

1−β
λτ(sτ kα

τ +(1−δ )kτ − kτ+1)

13The following properties of infinite series has been used:
∑

∞
t=0 α t x = 1

1−α
x,

∑
∞
t=0 α t tx = 1

(1−α)2 x.
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The household takes their decisions at period τ, considering the whole time horizon
and taking a new decision at time τ +1.

The first order conditions are:

∂L

∂ sτ

= 0 ⇔ 1
kα

τ (1− sτ)(1−β )
= λτ

∂L

∂kτ+1
= 0 ⇔ αβ

kτ+1(1−β )2 = λτ

∂L

∂λτ

= 0 ⇔ kτ = sτ kα
τ +(1−δ )kτ

It is worth noting that, in the second equation, the myopic behavior implies that
the households do not internalize the expected effect of a marginal unit of capital
in the next period αsτ+1kα−1

τ+1 − (1−δ ). Combining the F.o.c.s for optimal saving
and capital we get the condition:

kτ+1 = (1− sτ)
αβ

1−β
kα

τ .

Substituting the law of motion of capital kτ+1 = sτ kα
τ +(1− δ )kτ , after some

manipulations, we obtain the optimal saving rate in period τ:

sτ =
αβ − (1−δ )(1−β )k1−α

τ

αβ +1−β

Finally, substituting sτ in kτ+1, we define the optimal law of motion of capital:

kτ+1 =
αβ

αβ +1−β

(
kα

τ +(1−δ )kτ

)
.

From this last equation it is possible to derive the steady state level of capital
and saving rate, which correspond to eqs. 8 and 9.

D Constant capital expectations
The representative agent in time τ assumes that future capital will be constant

at level kτ+h, which derives from applying the low of motion for one step, plus an
inertial component ω(kτ+1 − kτ) that adjusts the capital in the same direction of
the first step. This inertial component represents all expected variations in capital
beyond the initial period in which it is capable of making an accurate prediction.
Therefore the agent’s perceived law of motion can be describes as follows:

Eτ{kτ+h}= kτ+1 +ω(kτ+1 − kτ) ∀h ≥ 1

If ω = 0, the household expects capital to be constant at kτ+1. Given such
relationship, the agent’s discounted utility at time t = τ is:

Uτ = ln
[
(1−sτ)kα

τ

]
+

∞

∑
t=τ+1

β
t−τ ln

{
(1− sτ) [kτ+1 +ω(kτ+1 − kτ)]

α
}
+λ

[
kτ+1−(1−δ )kτ −sτ kα

τ

]
In order to find the optimal saving rate sτ it is necessary to optimize the above
function Uτ ,

max Uτ(sτ ,kτ+1)
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subject to the constrain
g(kτ ,sτ) = kτ+1 − (1−δ )kτ − sτ kα

τ

Then:
L =Uτ −λg(kτ ,sτ)

w.r.t. sτ :
∂Uτ

∂ sτ

=− 1
1− sτ

+
β

1−β

(
− 1

1− sτ

)
−λkα

τ = 0

w.r.t. kτ+1 :
∂Uτ

∂kτ+1

= α
β

1−β

1+ω

kτ+1 +ω (kτ+1 − kτ)
−λ = 0

By equating the λ s of the two F.O.Cs:

k−α
τ

(1− sτ)(1−β )
=

αβ (1+ω)

(1−β )
[
kτ+1 +ω(kτ+1 − kτ)

]
k−α

τ

[
kτ+1 +ω(kτ+1 − kτ)

]
= αβ (1+ω)(1− sτ)

By substituting kτ+1 inside the equation with its law of motion:

k−α
τ

{[
kτ(1−δ )+ sτ kα

τ

]
(1+ω)−ωkτ

}
= αβ (1+ω)(1− sτ)

k1−α
τ (1−δ )(1+ω)+ sτ(1+ω)−ωk1−α

τ = αβ (1+ω)(1− sτ)

Finally the optimal saving rate sτ equals to:

sτ =
αβ (1+ω)− k1−α

τ

[
(1−δ )(1+ω)−ω

]
(1+ω)(1+αβ )

and by plugging sτ into the law of motion of capital, one gets the result:

kτ+1 =
αβ

1+αβ

[
kτ(1−δ )+ kα

τ

]
− ω

(1+ω)(1+αβ )
kτ

The steady state is be reached when kτ = kτ+1:

kτ =
αβ

1+αβ

[
kτ(1−δ )+ kα

τ

]
− ω

(1+ω)(1+αβ )
kτ ;

kτ

[
ω +(1+ω)(1+αβ )

]
= αβ (1+ω)(1−δ )kτ +αβ (1+ω)kα

τ ;

αβ (1+ω)kα−1
τ = 1+2ω +αβδ (1+ω).

From one finally gets:

k∗ =
[

αβ (1+ω)

1+2ω +αβδ (1+ω)

] 1
1−α

If one were willing to make a comparison with the Ramsey model steady state,
the equality between the two would be reached for the following value of ω:

αβ

1−β (1−δ )
=

αβ (1+ω)

1+2ω +αβδ (1+ω)

1+2ω +αβδ (1+ω) = 1+ω −β (1+ω)(1−δ )

ω +αβδ (1+ω)+β (1+ω)(1−δ ) = 0
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Equality to Ramsey–Cass–Koopmans would hold for:

ωr =
β (δ −αδ −1)

1+αβδ +β −δβ

Finally, the same comparison with Solow-Swan’s model would yield the ω value
of:

ωgr =
βδ (1−α)−1
2+βδ (1−α)

< 0
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