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Abstract 

The purpose of this paper is to incorporate a price-dependent utility function into the theory of 

price indices. The results presented in the paper provide justification for incorporating relative 

prices into a consumption aggregate for solving the household’s optimization problem. Using a 

proposed CES aggregator, a simple model to approximate the conventional geometric price indices 

has been developed. The model provides the channels of convergence between the axiomatic, 

stochastic and economic approaches to index number theory.  

Numerical results based on data published by the Office for National Statistics are presented to 

confirm the validity of the model. 
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I. Introduction 

The model presented in this paper is inspired by the works of Feenstra (1994) and Redding and 

Weinstein (2020) in which they used the weighted generalized mean formula for constructing a 

consumption aggregate where weights play the role of structural residuals that ensure the model 

explains the observed data. These weights have been interpreted by Redding and Weinstein as 

preference (“demand”) parameters for individual goods. In this paper, I suggest a different 

interpretation of structural residuals, under which the weights for each of products (goods or 

services) used for constructing the consumption aggregate are assumed to be inversely related to 

the differences between the price of each individual product and the overall price level. Such an 

approach enables the construction of a consumer price index under the condition that the change 

over time in squared differences between the price of each individual good and the overall price 

level is minimized. In other words, the model allows researchers to estimate what will the value 

of a price index be if the changes in squared deviations of relative prices from the mean are 

minimal. Secondary analysis of publicly available data produced by the Office for National 

Statistics (ONS) reveals the fact that the “hypothetical” price indices based on the above 

assumption are numerically close to the Jevons price indices, as shown in Table 1. This finding 

provides a broader view of the Jevons price index and its substantiation on the grounds of the 

economic approach to index number theory. 

The inverse relationship between the above mentioned weights and the deviation of 

individual prices from the overall price level implies a price-dependent utility function. In simple 

words, it implies that there exist people, at least a small portion of the population, who feel 

uncomfortable with themselves while buying either very expensive or very cheap product. 
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Although price-dependent utility functions are not widely used in economic research, this 

type of utility function can be considered as a viable alternative for some economic models (see, 

e.g., Balasko, 2003; Pollak, 1977; Basmann, Molina, and Slottje, 1987; Barucci and Gazzola, 

2014). According to Balasko (2003, p. 333), there exist circumstances under which individual 

preferences are affected by prices as, for example, when economic agents take relative prices as 

an indication of quality. In order to represent preferences that depend not only on direct 

consumption but also on relative prices, Balasko (2003, pp. 334-335) considers utility functions 

of the form 𝑢!(𝑞, 𝑥!), where q denote a price vector normalized by the simplex convention, and 𝑥! 

denotes individual consumption. 

The inverse relationship between relative prices and weights used for constructing a 

consumption aggregate can be justified on behavioural economics grounds, within which regret 

theory seems to provide a theoretical framework for explaining such an inverse relationship. It is 

widely accepted and empirically proven that for most products price and objective quality are 

positively correlated (see, e.g., Steenkamp, 1988; Gagnon-Bartsch and Rosato, 2022). However, 

most correlations are weak (Steenkamp, 1988, pp. 504-505). As Guo and Jiang (2016) noted, a 

firm may reduce its quality to a greater extent than it reduces its price. Analogously, a firm may 

increase the price of an item to a greater extent than it increases its quality. So, because of the low 

correlation between price and quality, there always exists a chance that retailers, whether 

intentionally or not, overestimate their product quality. Intuitively, the higher the difference 

between the price of a product and the overall price level, the higher the chance of inconsistency 

between its price and quality.  

According to regret theory, one of the important factors affecting many people’s choices is 

an individual’s capacity to anticipate feelings of regret and rejoicing. If there exists a more 
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desirable consequence than an individual has chosen, the individual may experience regret 

(Loomes and Sugden, 1982, pp. 822, 808). Regret theory postulates that the individual chooses 

between actions so as to maximise the mathematical expectation of modified utility that is defined 

as the sum of two functions, one of which is “a choiceless utility function” and the other is a regret-

rejoice function, “which assigns a real-valued index to every possible increment or decrement of 

choiceless utility” (Loomes and Sugden, 1982, p. 808-809). 

Quiggin (1994) noted that the original version of regret theory might equally be called 

rejoicing theory; he suggested a model which is strictly a theory of regret. According to Quiggin 

(1994), a particularly tractable functional form arises when the function ϕ representing utility is 

multiplicatively separable, so that 

𝜙(𝑥,𝑀) = 𝑢(𝑥)𝜓(𝑀) ,     (1) 

where x is the chosen outcome and M the best outcome available (see also Goossens, 2022). Thus, 

“the effect of regret is simply to attach different weights to the states of the world” (Quiggin, 1994).  

In the model presented below, the functional form of the utility function is in accord with 

equation (1). 

II. Incorporating relative prices into the consumption aggregate for solving the household’s 

optimization problem 

In line with economic approach to index number theory, it is assumed that households regard the 

observed price data as given, while the quantity data are regarded as solutions to economic 

optimization problem (Diewert, 2004, p. 313; Feenstra and Reinsdorf, 2000). 

Assume there is a basket of products selected randomly or purposefully from the entire 

universe of products. Let there be n products in the basket with prices 𝑝!,#, where t denotes time. 
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Denote by 𝛹!,# the relative price of product i in period t, that is, 𝛹!,# =
$!,#
%#

 , where 𝑃# is the average 

of current prices across the entire spectrum of products produced in the economy. 

As assumed above, the chance of inconsistency between the price of i-th product and its 

quality increases when |𝛹! − 1| increases. So, it is reasonable to assume that higher value of 

|𝛹! − 1| leads to stronger regret associated with a higher risk of buying a product that is overpriced 

compared to its quality. For the sake of concreteness, suppose regret associated with buying a 

product whose relative price is 𝛹!,# equals &$%&'!,#$()
*

∑ &$%&'!,#$()
*

+
!,(

 , where b is some constant. 

Let the aggregate consumption in period t, 𝐶#, be defined using the following CES 

aggregator: 

𝐶# = 2∑ 𝑐!,#
()*+)/).

!/+ 𝑤0	!,#6
)/()*+)

 ,     (2) 

where 𝑐!,# denotes the consumption of product i in period t (i = 1, 2,..., n), 𝜂 is the elasticity of 

substitution between any two products, and the weight attached to product i is  

𝑤0	!,# =
&$%&'!,#$()

*

∑ &$%&'!,#$()
*

+
!,(

 .    (3) 

Here, 𝑤0	!,# represents the effect of regret which attaches different weights to 𝑐!,#s. So, 𝐶# 

is the weighted generalized mean of 𝑐!,#s. Intuitively, the effect of regret should be rather small, 

that is, the value of b should be small, and 𝑤0	!,# is close to 1/n. 

The function represented by equation (2) can be referred to as a CES consumption 

aggregator with price-dependent weights. 



 6 

The most widely accepted approach to solving the household’s optimization problem (Dixit 

and Stiglitz, 1977; Galí, 2008, pp.41-43; Woodford, 2003, pp.143-147), which is to maximize 𝐶# 

for the given expenditure level 𝑆# = ∑ 𝑝!,#𝑐!,#.
!/+ , yields the set of equations  

$!,#
$-,#

= &$%&'!,#$()
*

&$%&'-,#$()
* 9

2!,#
2-,#
:
*+/)

 .     (4) 

Let 𝑐3,# be chosen equal to the average consumption 𝐶̅# such that total consumption, 𝐶#, is 

equal to 𝑛𝐶#̅, where n is the number of products. Then the total monetary price of all products is 

𝑃#𝑛𝐶#̅, hence 𝑃# =
45467	859&46:;	<:=>&	5?	677	<:5@A>4B

.0#̅
 is an average price level.  

Under the above assumption, equation (4) can be rewritten as   

$!,#
%#
= e*DEF!,#*+G

*
>2!,#
0#̅
?
*+/)

      (5) 

or, equivalently, 

2!,#
0#̅
= e*)DEF!,#*+G

*
>$!,#
%#
?
*)

 .     (6) 

Multiplying both sides of equation (5) by >$!,#
%#

+
.
?
*+/)

 and solving for 𝑃# yield  

𝑃# = 𝑝!,# >
+
.
?
* (
.$( e

.
.$(DEF!,#*+G

*

𝑤!,#
(

.$( ,     (7) 

where 𝑤!,# =
$!,#2!,#
%#.0#̅

= $!,#2!,#
H#

 is the share of product i in the total household spending in periods t. 

Assume that 𝑛# = 𝑛#*+ = 𝑛, and 𝜂# = 𝜂#*+ = 𝜂 , then it follows from equation (7) that 

%#
%#$(

= $!,#
$!,#$(

@ &%&'!,#$()
*

&%&'!,#$($()
*A

.
.$(

9 I!,#
I!,#$(

:
(

.$(
 ,     (8) 
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where 𝑤!,# and 𝑤!,#*+ are the shares of product i in the total household spending in periods t and t-

1, respectively. 

If e*DEF!,#*+G
*
 is ignored then equations (6) come down to the set of demand equations in 

the Basic New Keynesian Model (Galí, 2008, p. 42; Woodford, 2003, p. 147): 

2!,#
0#̅
= >$!,#

%#
?
*)

 .     (9) 

Differentiating both sides of equations (9) and (6) with respect to 𝛹!,# gives the following 

equations, respectively: 

@
@F!,#

>2!,#
0#̅
? = −𝜂𝛹!,#*)*+ ,     (10) 

@
@F!,#

>2!,#
0#̅
? = −𝜂e*)DEF!,#*+G

*
𝛹!,#*)*+B2𝑏𝛹!,#E𝛹!,# − 1F + 1H .     (11) 

Figure 1 below provides the graphical comparison of equations (10) and (11). 
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FIGURE 1. Graphical Representation of Equations (10) and (11)   (η=3; b=1.8) 

Consider two scenarios: in the first, the relative price for a product increases from 1 −

∆𝛹!,# to 1; in second, the relative price for the same product increases from 1 to 1 + ∆𝛹!,# (where 

∆𝛹!,# is very small). Intuitively, the change in 2!,#
0#̅

 , ∆ 2!,#
0#̅

, should be the same for the two scenarios. 

Obviously, the equality between these two changes in 2!,#
0#̅

 is inconsistent with equation (9). 

However, in the case of equation (6) the difference in ∆ 2!,#
0#̅

 between the first and second scenarios 

is smaller as compared to that obtained from equation (9), as can be seen in Figure 1. This provides 

some justification for the correctness of equations (2) and (3). 
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III. Estimating the consumer price index under the assumption that the change over time in 

squared deviations of relative prices from 1 is minimized 

Taking the logs of both sides of equation (8) and rearranging yields 

𝑏E𝛹!,# − 1F
J − 𝑏E𝛹!,#*+ − 1F

J = ln %#
%#$(

− ln $!,#
$!,#$(

− +
)
9ln %#

%#$(
− ln $!,#

$!,#$(
+ ln I!,#

I!,#$(
: .     (12) 

The value of the expression shown below can serve as a summary measure of change from 

one time period to another in squared deviations of relative prices from 1: 

𝐷 = ∑ 2𝑏E𝛹!,# − 1F
J − 𝑏E𝛹!,#*+ − 1F

J6
J

.
!/+  .     (13) 

D is equal to the sum of the squares of the right side of equation (12), it is a function of η. 

The value of η that minimizes D is the hypothetical value of elasticity which, had it been the actual 

numerical value of elasticity, would have ensured minimal year-over-year changes in the distances 

between 𝛹!s and 1. Let 𝜂∗ denote this hypothetical value of elasticity. 

Taking the first order condition for minimizing D with respect to 1/η gives the following: 

+
)∗
= ∑

79 0#
0#$(

*79
1!,#

1!,#$(

79 0#
0#$(

*79
1!,#

1!,#$(
L79

2!,#
2!,#$(

𝑊)	!,#
.
!/+  ,     (14) 

where   𝑊)	!,# =
M79 0#

0#$(
*79

1!,#
1!,#$(

L79
2!,#

2!,#$(
N
*

∑ M79 0#
0#$(

*79
1!,#

1!,#$(
L79

2!,#
2!,#$(

N
*

+
!,(

     

It follows from equation (8) that if both eDEF!,#*+G
*
 and eDEF!,#$(*+G

*
 are ignored then 

+
)(456785769:	6<4=>79:4	=?@A6<>)

=
79 0#
0#$(

*79
1!,#

1!,#$(

79 0#
0#$(

*79
1!,#

1!,#$(
L79

2!,#
2!,#$(

 .     (15) 
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Thus, according to (14) the reciprocal of the hypothetical value of elasticity is the weighted 

average of the set of inverse elasticity values calculated using equation (15) with weights 𝑊)	!,#. 

Summing both sides of (12) over all products, dividing by n, and rearranging yields 

∑ ODEF!,#*+G
*
*DEF!,#$(*+G

*
P+

!,(

.
= )*+

)
ln %#

%#$(
− +

.)
∑ N(𝜂 − 1)ln $!,#

$!,#$(
+ ln I!,#

I!,#$(
O.

!/+ .   (16) 

or, equivalently, 

ln %#
%#$(

= 𝑏 )
)*+

P𝑉𝑎𝑟E𝛹!,#F − 𝑉𝑎𝑟E𝛹!,#*+FT +
+
.
∑ ln @ $!,#

$!,#$(
9 I!,#
I!,#$(

:
(

.$(
A.

!/+  .     (17) 

Firms keep their relative prices close to 1 unless their marginal cost is so high that it is not 

profitable to sell (Klenow and Willis, 2016, p. 463), so 𝛹! is usually small. The value of b is 

presumably small as well. Therefore, the left-hand side of equation (16) does not significantly 

differ from zero, and 

ln %#
%#$(

≈ +
.
∑ ln @ $!,#

$!,#$(
9 I!,#
I!,#$(

:
(

.$(
A.

!/+  ,    (18) 

or, equivalently, 

%#
%#$(

≈ $Q#
$Q#$(

> IR#
IR#$(

?
(

.$( ,      (19) 

where tilde above a variable is used to denote a geometric mean across products. 

Equation (19) is identical to equation (9) in Redding and Weinstein's 2020 article. Namely, 

equation (9) in Redding and Weinstein's 2020 article (p. 512) states that the exact price index is 

equal to $Q#
$Q#$(

> S̃#
S̃#$(

?
(

.$( where 𝑠 is the expenditure share of any individual product i.  

The price index defined by equation (18) is a function of price changes $!,#
$!,#$(

, but it is not 

their weighted (or unweighted) average of any kind. Because of this, price index (18) differs from 
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the most commonly used price indices as well as from the less frequently used the quadratic mean 

price index (Diewert, 1978, p. 888) and the Lloyd index (Lloyd, 1975, p. 305). 

If  

𝜂 = 1 +
∑ I!,#

∗ Mln 2!,#
2!,#$(

−79 𝑤C 𝑡
𝑤C 𝑡−1

N+
!,(

∑ I!,#
∗ Mln 𝑝C

𝑝C𝑡−1
*79

1!,#
1!,#$(

N+
!,(

 ,     (20) 

where 𝑤!,#∗  are the Sato-Vartia weights, then the price index calculated according to equation (19) 

is the Sato-Vartia price index (see online appendix to Redding and Weinstein's 2020 article). 

If 𝜂 = 𝜂∗ then (19) is the formula for the consumer price index that takes place if 

(1) the aggregate consumption is defined using CES aggregator (2), 

(2) the variance of Ψ remains the same for two consecutive time periods, 

(3) the dispersion of relative price changes between two time periods is minimized. 

The value of 𝜂∗ and the corresponding value of %#
%#$(

 can be found by solving the system of 

equations (18) and (14). The numerical solution to the above system can be obtained iteratively. 

Before the first iteration, 𝜂∗ should be set to some initial starting value, say 𝜂∗=2. At the first 

iteration, this value of 𝜂∗ should be substituted into equation (18) to find the first iteration value of 

ln %#
%#$(

, which in turn can be substituted into equation (14) to find the first iteration value of 𝜂∗. 

The difference between the first iteration value of 𝜂∗ and the initial value of 𝜂∗ should be 

calculated. If the difference is close to zero, then the iterative process can be stopped, otherwise 

the next iteration is performed. 

At the second iteration, the first iteration value of 𝜂∗ is substituted into equation (18), which 

is solved to find the second iteration value of ln %#
%#$(

, which in turn is substituted into equation (14) 

to find the second iteration value of 𝜂∗, and so on until the difference in 𝜂∗ between two consecutive 
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iterations is close to zero. At last, 𝜂∗ and %#
%#$(

 obtained at the final iteration are the hypothetical 

value of elasticity and the consumer price index that are the target of the computational procedure 

just presented in this paper.  

Solving the system of equations (18) and (14) yields the consumer price index that takes 

place if the change over time in squared deviations of relative prices from 1 is minimized. So, the 

consumer price index obtained as a result of the above iterative process can be referred to as a 

price index with price-dependent preferences and the minimal dispersion of relative price changes, 

let it be denoted by 𝐼!	!#$!$%&'	($'&)	. 

Once the numerical value of price index (18) is calculated, it can be compared to the most 

commonly used conventional price indices. The empirical results demonstrate that the consumer 

price indices calculated according to equations (18) and (14) are close enough to the Jevons price 

indices.  

Feenstra (1994, p. 175) and Redding and Weinstein (2020, pp. 533-534, 511-512) used a 

statistical technique for estimating the elasticity of substitution that permits correlation between 

the taste parameters, prices, and quantities. Then, the consumer price index is derived analytically 

from the equation containing observable variables and the estimated elasticity of substitution. 

In the model presented in this paper, both the hypothetical value of elasticity, 𝜂∗, and the 

corresponding price index are derived analytically. 
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IV. Empirical results 

The here presented results were produced in accordance with equations (18) and (14), and are 

based on data published by the Office for National Statistics (ONS)1.  

In the preprocessing stage, the consumer price indices for lower-level aggregates (with 

2015=100) published by the ONS have been unchained to get year-over-year CPIs with previous 

year=1.  

After completing the fourth iteration for solving the system of equations (18) and (14), the 

condition 𝜂2UVVW.#	!#WVX#!Y.∗ − 𝜂$VWZ!YUS	!#WVX#!Y.∗ ≈ 0 has been met. The Sato-Vartia price indices 

and the Jevons price indices have also been calculated in order to compare them with the indices 

obtained from equations (18) and (14). The results obtained have been tabulated as follows. 

TABLE 1 

The values of price indices obtained from the model, previous year = 100 

  2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Price index with price-dependent 
preferences and the minimal 
dispersion of relative price 
changes. (𝐼!	!#$!$%&'	($'&)	) 102.1 103.7 104.0 102.3 101.8 101.0 99.3 100.2 102.8 102.4 101.6 

Jevons price index (𝐼!	*) 102.1 103.3 104.1 102.1 101.9 101.0 99.3 100.2 102.8 102.3 101.6 

Price index with price-dependent 
preferences and the Sato-Vartia 
weights 
(𝐼!	!#$!$%&'	($'&)	+,-.	/0	+&,1.-%	)  101.5 103.6 104.2 102.9 102.5 101.4 100.2 100.6 102.4 102.3 101.8 

Sato-Vartia price index (𝐼!	/0) 101.5 103.2 104.2 102.7 102.5 101.4 100.2 100.6 102.3 102.2 101.8 

 
1 Office for National Statistics (22 June 2022) ‘Consumer price inflation, UK: June 2022’, Table 23. Available at: 
https://www.ons.gov.uk/economy/inflationandpriceindices/bulletins/consumerpriceinflation/june2022 (Accessed 25 
August 2022). 
Office for National Statistics (June 2023) ‘Consumer trends April to June 2023’, Data tables ‘Consumer trends: 
current price, not seasonally adjusted’. Available at: 
https://www.ons.gov.uk/economy/nationalaccounts/satelliteaccounts/datasets/consumertrendscurrentpricenotseasona
llyadjusted (Accessed 19 October 2023). 

https://www.ons.gov.uk/economy/inflationandpriceindices/bulletins/consumerpriceinflation/june2022
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Within the stochastic approach framework the Jevons price index is derived from the 

regression model of the form 

ln $!,#
$!,#$(

= ln %#
%#$(

+ ln𝜉! ,      (21)  

where 𝜉! = 1 + 𝜀! , and 𝜀! are random variables with mean 0.  

The best linear estimator for ln %#
%#$(

 is 

ln %#
%#$(

Z = ln@∏ 9 $!,#
$!,#$(

:
(
+.

!/+ A .     (22)  

It is obtained by solving the quadratic minimization problem  

min
79 0#
0#$(

∑ 9ln $!,#
$!,#$(

− ln %#
%#$(

:
J

.
!/+ = min

79 0#
0#$(

∑ >ln $!,#
%#
− ln $!,#$(

%#$(
?
J

.
!/+  .     (23)  

In this paper, as can be seen from equations (14) and (18), the consumer price index 

𝐼$	$VY$YSW[	\Y[W]	 is derived by minimizing (13) with respect to η. Minimization problems (23) and 

min𝐷
)

 may not be mathematically identical, however, they are closely related from an economic 

point of view. Therefore, the values of 𝐼$	$VY$YSW[	\Y[W]	 and 𝐼$	^ are close to each other, with the 

exception of those compiled for calendar year 2010 when 𝐼$	$VY$YSW[	\Y[W] = 103.7 and 𝐼$	^ =

103.3 . The most probable explanation for this difference is that equation (2) might not be fully 

compatible with the real-life consumer behavior in the year of 2010. However, for 10 years shown 

in Table 1 (2009 and 2011-2019) the difference between 𝐼$	$VY$YSW[	\Y[W] and 𝐼$	^ is small, thus 

providing justification for equation (2). 

Equation (18) is the formula for calculating an unweighted price index. After introducing 

weights, equation (18) becomes  
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ln %#
%#$(

≈ ∑ @𝑤!,#∗ ln
$!,#
$!,#$(

+ +
.
ln 9 I!,#

I!,#$(
:

(
.∗$(

A.
!/+  ,    (24) 

where 𝑤!,#∗  denotes the weight attached to $!,#
$!,#$(

, ∑ 𝑤!,#∗.
!/+ = 1. 

Equation (24) should be used only at the final iteration of the iterative procedure described 

in section III, after a prior iteration determines the final value of η*. 

After compiling price index (24) with 𝑤!,#∗ = Sato-Vartia weights, it becomes clear that the 

resulting index, 𝐼$	$VY$YSW[	\Y[W]	I!#_	H`	IW!a_#S	, well approximates the Sato-Vartia price index 

(with the exception of indices compiled for calendar year 2010). This also serves as a justification 

for equation (2). 

The empirical research results presented in Table 1 are based on partially aggregated data 

(low-level aggregates), not product-level data. However, for the purpose of this paper that is to 

incorporate a price-dependent utility function into the theory of price indices, the use of partially 

aggregate data seems to be sufficient. 

If the consumer price index calculated according to the model proposed in this paper 

accurately reflects the change in the overall price level, then it is easy to find out whether the price 

for any specific product i approaches the level of average prices or moves away from it. The 

expression $!,#
$!,#$(

%#
%#$(

− 1b  gives the relative change in the relative price for product i, 𝛹! =
$!
%

, from 

period t-1 to t. If the value of the expression &
$%&'!,#$()

*

&$%&'!,#$($()
* that can be obtained from equation (8) is 

greater than 1, then the relative price for product i, 𝛹!, moves towards 1 from the left or the right 

(under the plausible assumption that the distribution of products’ relative prices is normal with 
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mean 1). So, for instance, if $!,#
$!,#$(

%#
%#$(
b < 1 and &$%&'!,#$()

*

&$%&'!,#$($()
* > 1, then 𝛹! is moving towards 1 

from the right. 

V. Conclusion 

The results of the study presented here show that, in most of the years during the time period under 

consideration, the unweighted price index constructed under the assumptions of price dependent 

utility function well approximates the Jevons price index. Such a good approximation, in turn, 

serves as a justification for using the price-dependent utility function. 

The only exception is the year 2010 for which the model presented in this paper does not 

provide a good approximation of the conventional geometric price indices. This fact suggests that, 

in 2010, there was a temporary shift in the functional form of the utility function. At least, utility 

function (2) cannot serve as a starting point for finding a numerical approximation to the 

conventional geometric price indices for the year 2010. 

Thus, there are two main findings in this paper. First, this research shows how the price-

dependent utility function can be used, within the scope of the economic approach to index number 

theory, for the purpose to approximate the conventional geometric price indices. Second, the model 

allows researchers to identify the year in which a temporary shift in the functional form of the 

utility function was likely to occur. It is very likely to happen when the price index calculated 

according to the model does not provide a good approximation to the Jevons price index. However, 

the temporary shift in the functional form of the utility function may not be the only possible cause 

of an inaccurate approximation. So, in the case of an inconsistency between the two above-

mentioned price indices, additional research is required to clarify this issue.  
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