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Abstract

Are technology improvements contractionary? We re-examine this central question,
accounting for the presence of natural resources. A two-sector model of economic growth
indicates that capital-augmenting technological improvements can be contemporaneously
contractionary in resource-rich economies, and expansionary elsewhere, due to differences
in the size of the elasticity of substitution between labor and capital. In addition, such
improvements yield relatively steeper expansionary patterns in resource-rich economies
in the longer run. We test our analytical predictions using a panel of U.S. states and
counties. Our identification strategy rests on geographically-entrenched differences in re-
source endowments, and the adoption of plausibly exogenous technology shocks at the
national level. Our core estimates corroborate our predictions. First, we document per-
sistent differences in the elasticity of substitution between labor and capital across the
natural resources dimension. Second, we find that an increase in TFP is on impact con-
tractionary in resource-rich states, yet is non-contractionary (at worst) in resource-poor
ones. Third, we illustrate that in the longer term a positive technology shock expands
output and inputs in resource-rich economies relatively more strongly. Our results shed
light on hitherto overlooked potential adverse effects of natural resource abundance.
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1 Introduction

Are technology improvements contractionary? Studies on the contemporaneous impacts of tech-

nological shocks suggests that the jury is still out. While standard frictionless Real Business

Cycle models predict short-term expansionary effects, other canonical macro workhorse mod-

els predict the opposite.1 We re-examine this central question, theoretically and empirically,

accounting for the presence of natural resources. Understanding the nexus between natural re-

sources and economic growth has been of perennial interest to economists and policy makers.2

The literature has highlighted a host of potential transmission channels, including Total Factor

Productivity (TFP) and innovation.3 Little attention, however, has been given to the potential

role of resource abundance in transmitting the impacts of technological change on the economy.

We hypothesize, and demonstrate using U.S. data, that technology improvements induce

a contemporaneously divergent outcome on growth in output and labor, across the natural

resources dimension. We find that the contractionary impacts of TFP shocks are observed

primarily in resource-rich areas, in a robust and economically meaningful magnitude, and are

non-apparent or even expansionary, elsewhere. Our results offer one possible reconciliation for

the ongoing debate over the opposing contemporaneous effects of TFP shocks on the economy,

and shed light on previously overlooked potential adverse effects of natural resource abundance.

The notion that the oil and gas sectors tend to be relatively abundant in capital and low-

skilled labor has been documented in previous studies (e.g., Michaels et al., 2014). The well-

documented capital-skill complementarity hypothesis (Duffy et al., 2004; Krusell et al., 2000;

Raveh and Reshef, 2016) then suggests that the elasticity of substitution between capital and

labor should be relatively higher in resource-rich sectors. This prediction has been substanti-

ated in a number of cross-sectional studies.4 Raveh (2020) illustrates that these features may

translate to the macroeconomic level in economies with a dominant oil and gas sector and that

they may persist over time, noting that resource-abundant economies are consistently more

capital-intensive over a period of three decades. We hypothesize that this may similarly extend

to the size of elasticities between capital and labor; positing, and later documenting empirically,

1See, e.g., Chang and Hong (2006). The inconclusive, ongoing debate over this issue is further summarized
in the following section.

2See, e.g., Allcott and Keniston (2018); Arezki et al. (2017); Armand et al. (2020); Brollo et al. (2013); Tornell
and Lane (1999), and the references therein. Van der Ploeg (2011), and Venables (2016) provide syntheses of
the literature.

3The literature, reviewed in more detail in the next section, unveils the potential endogeneity of TFP shocks
and innovation to resource abundance and windfalls through various underlying mechanisms that range from de-
creased factor productivity (e.g., Kuralbayeva and Stefanski, 2013) to crowding out of entrepreneurial endeavors
(e.g., Torvik, 2002).

4See, e.g., Caballero et al. (1995) and Young (2013). We review the related literature in the next section.
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that they are persistently higher in extractive industries than in other sectors. Importantly,

the underlying production in resource-rich sectors is based on geological features, rendering the

consequent persistent elasticity and capital intensity differences plausibly exogenous.

Notably, the relative size of input substitution elasticities is, as we later illustrate theo-

retically, central to understanding the contemporaneous impact of technological changes on

growth.5 The intuition is simple: a positive technology shock may on the one hand increase

the productivity of capital, yet on the other hand may reduce the need for labor, via factor

substitution. The latter may be either an indirect result of labor-substituting capital forma-

tion, or a direct one of technological improvements that replace labor. In an environment with

highly elastic factor substitution, the increase in capital productivity may not compensate for

the decrease in labor output, and total production may fall. Yet, if substitution between fac-

tor inputs is weak, technological improvements may be expansionary also in the short-term.

Conversely, in the long-term, under full employment, technological improvements would be ex-

pansionary irrespective of the ease of factor substitution, and more so in cases with an initially

high capital-labor ratio which benefit most from increases in capital productivity.

We thus conjecture that due to differences in capital intensities and factor substitution elas-

ticities, TFP shocks may contract economies that are rich in natural resources in the short-term,

yet be non-contractionary or even expansionary in resource-poor ones. In the long-term, how-

ever, they may give rise to relatively stronger expansionary impacts in those, initially contracted,

resource-rich economies. To examine this analytically, we construct a two-sector (extractive and

non-extractive) model of economic growth with capital adjustment costs, and economy-wide

labor- and capital-augmenting technological change. This model serves two purposes. First,

we employ it to derive sector elasticities and capital- and labor-augmenting technology shocks

over time using U.S. industry-level data. Second, we consider sectoral differences in the extent

of capital intensity and factor substitution elasticities, and analyze the short- and long-term

equilibrium effects of technology shocks.

Our model-driven calculations are based on U.S. industry data for the period 1998-2015 and

are derived from the EUKLEMS dataset (O’Mahony and Timmer, 2009). This dataset provides

measures for the key model parameters, and hence enables us to compute time-series data for

the remaining parameters related to capital- and labor-augmenting technology shocks, and

factor substitution elasticities across sectors, focusing on the extractive (mining and quarrying)

industry versus a weighted average of the remaining ones. Computing these parameters directly

from a model has the merit compared to other methods (e.g., estimation of translog equations)

5The notion that the elasticity of substitution parameter is central for understanding the impacts of techno-
logical changes dates back to Hicks (1932), and Satō (1975).

1



as it enables us to disentangle the technological shocks, via existing time-series data, and study

their impact over time, as well as estimate time-varying elasticity parameters across the sample

period. The results indicate that the average elasticity in the extractive case is 0.79, i.e., below

1, but higher than the estimate of the average elasticity of 0.55 for the non-extractive case.

These are in line with those found before (e.g., Chirinko, 2008).

Translating the outlined cross-industry differences in capital abundance and elasticities to

the model, our analytical results indicate that while labor-augmenting technological improve-

ments are similarly expansionary in both sectors, over the short and long terms, the patterns

are different for capital-augmenting ones, as unlike the former, they affect the effective-input

ratio. Specifically, a capital-augmenting technology shock increases the productivity of capital

while substituting labor, thus giving rise to involuntary unemployment in the short-run. Capital

adjustment costs, in turn, induce a gradual convergence back to full employment. Our analysis

indicates that in the short-term the impact is contractionary if the elasticity of substitution

between labor and capital is sufficiently high. However, in the long-term the magnitude of the

expansion depends on the initial capital-intensity level, thus pointing at the potential divergent

outcome across resource-rich and -poor economies.

Our predictions are corroborated by our empirical results. We undertake an empirical

investigation of the effect of national TFP shocks on output and inputs across levels of re-

source intensities via a U.S. state-level analysis (complemented by a county-level analysis for

robustness). An intra-U.S. perspective is appealing for our purposes because it provides am-

ple cross-state variation in geologically-based natural endowments of crude oil and natural gas

that are locally impactful, as well as in additional economic indicators. In addition, it does so

under a relatively homogeneous environment in which economies are not large enough to alter

the course of national technological trends, including importantly through the extent of their

natural resource wealth.6

Our analysis is based on two main measures: national technology shocks, and state resource

wealth. For the former we employ the purified utility-adjusted U.S. TFP series of Basu et al.

(2006) (henceforth, BFK), aggregated to an annual level. Besides representing a standard

measure, it is also useful for comparing our analysis directly to BFK, which we conduct before

our core empirical analysis. As for natural resource wealth, we consider the cross-sectional

geologically-based measure of recoverable stocks of oil and gas, aggregated to the state-level

via data from the U.S. Geological Survey, developed by James (2015). We outline further

characteristics of these measures in the empirical section.

6We do, however, provide robustness tests for the exclusion of the largest states, as well as for the exclusion
of those with the largest resource endowments, and for those with none.
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To that end, we have assembled an annual-based panel of the 48 continental U.S. states

over the period 1963-2015.7 Our identification strategy rests on the plausibly exogenous cross-

sectional and temporal variations induced by the interaction of the two main measures, namely

TFP and natural resources, driven by the geological roots of natural endowments and the notion

that states take national technological trends as given. In particular, our setting considers

national technology changes, exogenous to state resource wealth and other indicators, and

interacts these with cross-sectional state resource endowments. This enables us to examine the

impacts of TFP shocks on growth, and how these are affected by differences in natural resource

intensities.8 Our starting point in the analysis is BFK. We examine our main hypothesis under

their framework and time period. Thereafter, turning to our core analysis with the complete

sample, we test the contemporaneous effect of the interaction of our two measures of interest

on state output, investment, and unemployment, using a panel fixed-effects framework. Last,

we examine the long-term impacts by estimating impulse responses, for each of the outcome

variables, following the method of local projections of Jorda (2005).

We find that if natural resources are abundant, technology improvements, most notably

capital-augmenting ones, have a contemporaneously contractionary effect, driven by labor mar-

ket impacts. Conversely, if natural resources are less abundant, the same improvements are

not contractionary at worst, and expansionary at best. Our baseline estimates indicate that

a one standard deviation increase in TFP contracts average output of resource-rich states by

0.1% relative to the output of resource-poor states. In addition, we find that two to five years

ahead, a positive technology shock expands output and inputs in resource-rich economies more

strongly than in their resource-poor counterparts.

These patterns are consistent with our analytical predictions. Moreover, they are observed

under the BFK framework and period, and are robust to various tests. First, we show that

they are specific to differences in natural resource endowments, rather than in various other

major sectors. Second, we illustrate that they are observable also at the county level, and are

robust to using different measures of the main variables. Last, we show that these patterns are

robust to considering different sample restrictions, specifications, and controls.

Section 2 reviews related literature and places our contributions within it. Section 3 explains

analytically how the impact of technology shocks depends on the degree of resource abundance.

Section 4 presents the data, empirical findings, and robustness tests. Section 5 concludes.

7The cross-sectional and time coverage are restricted by the availability of the various measures employed in
the analysis.

8This methodology is reminiscent of that adopted in other studies that have also examined the heterogeneous
local effects of aggregate shocks, by testing the impact of their interaction, including Perez-Sebastian et al.
(2019), Liu and Williams (2019), and Raveh (2020), among others.
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2 Related Literature

Our contributions are related to three strands of literature. First, economists have long noticed

that natural resource abundance can turn out to be a blessing as well as a curse.9 A central

aspect is the potential negative impact of resource abundance on productivity and innovation.

Among the various channels proposed, resource wealth may depress factor productivity (e.g.,

Gylfason et al., 1999; Krugman, 1987; Sachs and Warner, 2001; Torvik, 2001; Van Wijnbergen,

1984), lower human capital (e.g., Bhattacharyya and Hodler, 2010; Gylfason, 2001; Stijns, 2006),

and induce specialization that crowds out innovation and entrepreneurship (e.g., Michaels, 2011;

Kuralbayeva and Stefanski, 2013; Torvik, 2002). In contrast, our analytical and empirical setups

consider (national) technology shocks that are exogenous to resource abundance at the level

of individual states, and advance a novel hypothesis concerning the interaction of resource

abundance and technological shocks and its potential impact on short- and long-term growth.

We find that improvements in technology are contractionary on impact primarily in resource-

rich areas, and are more expansionary, relative to the remaining areas, in the longer term. Our

results shed light on hitherto overlooked negative impacts of natural resource abundance.

Second, dating back to the seminal contributions of Kydland and Prescott (1982), and Gali

(1999), the question of whether technology improvements are contractionary has taken a central

role in the macroeconomic literature. While standard frictionless Real Business Cycle models

predict that technology improvements are expansionary in the short-term, sticky-price models

predict the opposite. The related empirical literature is also inconclusive. For instance, in their

seminal work BFK have shown that technology improvements are contractionary on impact due

to decreases in input use, most notably labor. However, Christiano et al. (2004) have shown

that their correction of the BFK technology measure yields contemporaneously expansionary

effects, focusing on labor.

Our aim is to offer a potential reconciliation of the opposing views based on the role of

natural resources and the underlying persistent differences in elasticities of substitution between

labor and capital. We observe that the short-term impacts of technology improvements are

contractionary primarily in resource-rich areas, but are mostly expansionary elsewhere. We

show that these patterns arise using BFK’s measure, time frame, and methodology, and that

they are applicable also when implementing corrections like those undertaken in Christiano

et al. (2004). Last, consistent with previous studies, we show that in the long-term positive

technology shocks are expansionary across all areas, albeit more so in resource-rich regions.

9See the surveys in Van der Ploeg (2011) and Venables (2016) for effects at the national level, and Van der
Ploeg and Poelhekke (2016) for effects at the local level.
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Third, there is no shortage of studies that provide estimates for the aggregate elasticity of

substitution between capital and labor (e.g., Doraszelski and Jaumandreu, 2013; Klump et al.,

2007; Raval, 2019). The evidence summarized in Chirinko (2008) point at estimates well below

1. Industry-level estimates point at similar magnitudes, albeit with some heterogeneity across

sectors (Balistreri et al., 2003; Caballero et al., 1995; Young, 2013). Notably, these studies

estimate the substitution elasticity in the extractive industry to be amongst the highest, and

even the highest under various specifications, relative to the other industries.10 Nonetheless,

these are cross-sectional estimates that refer to a specific point in time, or an average over

various periods.

Conversely, we estimate time series for the elasticities of substitution between labor and

capital for the oil sector, and compare it to the time series for the average elasticities for

the remaining economy, over time. We do so by employing U.S. industry data to compute

the elasticity parameter directly from our analytical framework. This method enables us to

estimate the substitution elasticities over time. We do this for CES prduction functions and

non-neutral productivity shocks, which are essential for the estimation of elasticities (Antras,

2004). While the average estimates are below one, consistent with previous estimates, we

document persistent differences across sectors over time: the elasticities of substitution between

labor and capital estimated for the extractive industry is significantly and consistently higher

than the corresponding elasticities for an average of the remaining economy.

3 Effects of technology shocks in a two-sector economy

Here we analyze the implications of cross-sector differences in the elasticity of substitution be-

tween labor and capital for the short- and long-term impacts of productivity shocks. Following

Caballero (1994) and BFK, our framework features investment adjustment costs.

3.1 Short-run effects of technology shocks

Consider an economy with two production sectors: extractive (e) and the non-extractive (m).

The economy is inhabited by a constant population of N individuals that are endowed with

one unit of labor that is supplied inelastically. We suppose that capital and output markets are

open and that we have a small open economy. The prices of these goods are then determined

10For example, Young (2013) employs the equation system approach proposed by León-Ledesma et al. (2010)
and finds a larger average value of this elasticity across the mining and quarrying activities (0.72) than across
the rest of sectors (0.63). Furthermore, he estimates that the largest elasticity among the former activities is
for the oil and gas extraction industry (0.87).
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on world market. There is no immigration or emigration of labor, so that the labor market is

closed.

Markets are perfectly competitive and firms maximize profits. In the short-run, firms in

sector i, with i ∈ {e,m}, employ productive capital (kit) and labor (nit) at time t according to

the Leontief production function,

yit = Ωi min {zkkit, ωiznnit} , (1)

where yit represents output in sector i at period t, Ωi is a productivity parameter specific to

sector i, ωi controls the proportions in which capital and labor enter production, and zk and zn

provide productivity levels specific to capital and labor, respectively.

New technologies bring labor-augmenting gains when zn rises, and capital-augmenting tech-

nical progress when zk rises. The new vintages also come with particular values of ωi and Ωi.

These result from the long-run, sector-specific elasticity of substitution between capital and

labor (εi) not being equal zero. In the long-run, the production function takes the CES form,

yit =
[
(zkkit)

1−1/εi + (znnit)
1−1/εi

] εi
εi−1

. (2)

Denote by k∗
i and n∗

i the long-run levels of productive capital and labor for a given vintage.

Then, the values of ωi and Ωi are implied by the solution to

max
{k∗i ,n∗

i }

{
pi

[
(zkk

∗
i )

1−1/εi + (znn
∗
i )

1−1/εi
] εi

εi−1 −Rk∗
i − wn∗

i

}
, (3)

where pi is the price of output in sector i, R represents the gross return to capital (i.e., the

interest rate plus the depreciation rate), and w the wage rate. For simplicity, problem (3)

assumes zero investment adjustment costs to obtain the long-run values of the inputs. In

addition, since we consider the non-extractive industry as the numeraire and the prices of

output, pm = 1 while pe, and the gross return, R, are constant and given on world markets.

The first-order optimality conditions for capital and labor are

pizk

[
z
1−1/εi
k +

(
znn

∗
i

k∗
i

)1−1/εi
] εi

εi−1
−1

= R, (4)

pizn

[(
zkk

∗
i

n∗
i

)1−1/εi

+ z1−1/εi
n

] εi
εi−1

−1

= w. (5)

The last two equalities can be combined to obtain the optimal effective capital per unit of
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effective labor. In particular, defining ωi as this long-run ratio, we can write

ωi ≡
zkk

∗
i

znn∗
i

=

(
zk
zn

w

R

)εi

. (6)

Notice that the definition of ωi guarantees that nit = n∗
i in the long-run.

Equations (5) and (6) for the non-extractive industry give the factor price frontier,

w = zn
(
1− zεm−1

k R1−εm
)1/(1−εm)

. (7)

The wage rate, w, increases in the productivity of capital and of labor, zk and zn, and decreases

in the interest, R, provided that εm ̸= 1.

From (6) and (7), the optimal long-run effective capital per unit of effective labor is

ωi =

[(zk
R

)1−εm
− 1

]εi/(1−εm)

. (8)

Hence, ωi increases with capital productivity, zk; this effect is stronger if it is easier to substitute

labor for capital (higher εi). Labor producitivty, zn, on the other hand, does not affect relative

effective use of inputs, ωi, because the direct negative impact of zn on ωi and its indirect positive

one on the wage cancel out exactly.11

Finally, imposing the fixed input proportions dictated by Equation (8), we obtain the short-

run production function,

yit =
[
1 + ω

(1−εi)/εi
i

]εi/(εi−1)

zkkit. (9)

Comparing with (1), we deduce that the productivity parameter Ωi falls with ωi for all εi ̸= 1.

3.2 Short-run unemployment and long-run effects

We now use Equation (8) to obtain

Ωi =

{
1 +

[(zk
R

)1−εm
− 1

](1−εi)/(1−εm)
}εi/(εi−1)

. (10)

The ratio ωi then defines Ωi and the long-run outcome towards which the economy converges.

In this long-run scenario, given that the total amount of available labor equals N , equilibrium

on the labor market implies that

n∗ = n∗
e + n∗

m = N. (11)

11This is a consequence of the production function having constant returns to scale.
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However, when a technology shock hits the economy, it does not move to the new long-run

equilibrium immediately because of the presence of capital adjustment costs. Therefore, in the

short-run, since capital and labor enter the production function in fixed proportions, the level of

employment can be below N . For example, the economy will have involuntary unemployment

if k∗
i /n

∗
i rises but ket + kmt < k∗ = k∗

e + k∗
m, where k∗

i = znωin
∗
i /zk. Notice that the long-run

capital stocks are fully determined by the labor allocations under full employment.

More specifically, in the short run the firm decides how much to invest in gross capital

formation taking input prices, the fixed capital-labor ratio associated to the specific technology

in use, and the adjustment costs as given. From Equation (1), the firm solves the problem

max
xit

{
piΩi min {zkkit, ωiznnit} −R

t∑
j=1

(1− δ)t−jxij − wnit

}
(12)

subject to the capital accumulation equation,

kit = (1− δ)kit−1 + xϕ
it, (13)

where xit denotes investment capital, δ denotes the depreciation rate, kit−1 is the productive

capital inherited from the previous period, and ϕ ∈ (0, 1). The return R is defined as in the

long-run problem. Notice that, however, in the long-run problem we assumed no adjustment

costs, so that one unit of investment capital provides one unit of productive capital. In the

short run, this is not the case, and then, the sum operator next to R provides the borrowed

investment capital that still earns interest payments from the firm.12

The first-order optimality conditions to this problem (for an interior solution) are

zkkit = ωiznnit,

xit =

(
piΩizk

ϕ

R

) 1
1−ϕ

. (14)

Hence, a lower value of ϕ reduces the optimal amount of investment, and convergence toward

the new long-run stock of productive capital occurs at a lower speed. Note that kit can even

decrease if ϕ is too low, because xit vanishes as ϕ tends to zero. This is a consequence of

diminishing returns to investment generated by the adjustment costs.

In the long-run, productive capital reaches the stock allowed by the total amount of labor

available in the economy and the effect of an increase in zk or zn on total production, defined

12The terms affected by the sum operator in expression (12) provide the firm’s pending debt (dit), which is
obtained by iterating the equation dij = (1− δ)dij−1 + xij from j = 1 to t.
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as ymt + peyet, is positive. In the short-run, however, this is not necessarily the case.

To better understand this, consider an increase in zk. At the optimum, Equation (1) implies

that yit = Ωizkkit. Hence, a larger zk has a positive direct effect on the output-capital ratio,

Ωizk, but indirectly reduces Ωi through its effect on the optimal amount of effective labor

per unit of effective capital (i.e., ωi, see Equation (8)). This latter impact is stronger if the

elasticity between capital and labor εi is high, because then the increase in zk can generate

more involuntary unemployment.13 So, in the short-run, if capital accumulation is sufficiently

slow (i.e., ϕ sufficiently low) and the reduction of labor per unit of capital is sufficiently large

(i.e, εi sufficiently high), the fall in the labor demand due to the larger ωi can dominate the

positive effect of a higher zk, thus making output fall.14

Moving now to the effect of changes in zn. It affects neither ωi nor Ωi. So, a higher

zn only serves to increase the long-run stock of capital (see the definition of ωi in Equation

(6)). Therefore, Equation (1) implies that a labor-augmenting productivity improvement will

raise output both in the short-run and in the long-run as kit converges toward the higher k∗
i ,

regardless of the elasticity of substitution.

3.3 Testable hypotheses

The analysis indicates that a capital-augmenting increase in productivity boosts output in the

long-run, but may reduce output in the short-run if the elasticity of substitution between labor

and capital is sufficiently high. This finding is a consequence of the following two testable

predictions: a technology improvement in capital in a sector where it is easier to substitute

labor for capital will lead to (1) a larger increase of output in the long-run, and (2) a smaller

increase or even reduction of output in the short-run. A further testable prediction is that (3)

a labor-augmenting improvement in productivity boosts output both in the short- and in the

long-run.

13In Equation (6), zk can generate short-run involuntary unemployment (i.e., a larger k∗i /n
∗
i when the increase

of kit is sufficiently small) if εi is sufficiently high. This also includes values of εi less than 1 because the wage
w rises with zk.

14The economic intuition behind this result is quite clear. Mathematically, however, we need some additional
restrictions. More specifically, it is easy to show that dyit/dzk is negative if and only if[(zk

R

)1−εm
− 1

](εm−εi)/(1−εm) [
(εi − 1)

(zk
R

)1−εm
+ 1

]
> 1.

Hence, in the non-extractive sector, because εi = εm, the derivative dyit/dzk < 0 if and only if εi > 1
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Hypotheses testing Our strategy consists of two steps. First, we estimate the elasticities of

substitution between labor and capital, and find that this elasticity is higher for the resource-

rich than for the resource-poor sector. Second, given this insight, we use the above testable

hypotheses to check whether the output of resource-rich sectors is more likely to experience

larger increases in the long-run and declines in the short-run following a capital-augmenting

increase in productivity.

3.4 Sectoral elasticities of substitution between labor and capital

Our analysis thus points at a primary triggering primitive of the sign of technology-shock effects

on the economy, namely cross-sector differences in the elasticity of substitution between labor

and capital. As noted earlier, there is already some cross-sectional evidence that supports

this hypothesis (e.g., Young, 2013).15 We now explore the hypothesis that the elasticity of

substitution between labor and capital is persistently higher in extractive industries.

For this, we first derive expressions from the model that allow recovering zk, zn, εe and εm,

and then estimate them using cross-industry U.S. data (cf. Caselli and Coleman (2006)). We

start from Equation (2) and allow R, w and εi to vary across time and sectors, and zk and zn

to vary across time but not across sectors. Hence, Equations (2) and (6) become

yet =
[
(zktket)

1−1/εet + (zntnet)
1−1/εet

] εet
εet−1

, (15)

ket
net

=

(
zkt
znt

)εet−1(
wet

Ret

)εet

, (16)

ymt =
[
(zktkmt)

1−1/εmt + (zntnmt)
1−1/εmt

] εmt
εmt−1

, (17)

kmt

nmt

=

(
zkt
znt

)εmt−1(
wmt

Rmt

)εmt

. (18)

We can use these to obtain

znt =
yit
nit

(
witnit

pityit

) εit
εit−1

, for i = e,m, (19)

and

zkt =
yit
kit

(
Ritkit
pityit

) εit
εit−1

, for i = e,m. (20)

15Although we do not consider cross-sectoral differences in adjustment costs, empirical evidence indicates that
adjustment costs in extractive industries are significantly higher than in other industries (e.g., Groth and Khan,
2010), thus strengthening the suggested mechanism.
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Finally, equalizing Equations (19) and (20) across the two sectors delivers

εmt

εmt − 1
=

ln
(

ymt/kmt

yet/ket

)
−

ln
(

Retket
petyet

)
ln
(

wetnet
petyet

) ln(ymt/nmt

yet/net

)
ln
(

Retket
petyet

)
ln
(

wetnet
petyet

) ln(wmtnmt

ymt

)
− ln

(
Rmtkmt

pmtymt

) (21)

and

εet
εet − 1

=
ln
(

ymt/kmt

yet/ket

)
+ εmt

εmt−1
ln
(

Rmtkmt

pmtymt

)
ln
(

Retket
petyet

) . (22)

Using data for yet, ymt, ket, kmt, net, nmt, wet, wmt, Ret and Rmt, we can thus obtain an estimate

of εmt from Equation (21). Then, taking εmt into Equation (22) gives εet. Finally, substituting

εmt and εet into (19) and (20) gives znt and zkt. We can thus obtain the elasticities of substitution

between labor and capital for each of the two sectors and the common labor-augmenting and

capital-augmenting productivities, at any given point in time.

We employ U.S. industry-level data from the EUKLEMS dataset (O’Mahony and Timmer,

2009), which covers the major 2-digit SIC industries for the period 1998-2015.16 Sector e

corresponds to the SIC classification of Mining and Quarrying, whereas sector m corresponds

to a weighted, size-adjusted, average of the remaining industries. The EUKLEMS provides

data for the variables required to perform the estimation. Output variables yet and ymt, and

the stocks ket, kmt, net and nmt are directly available in the dataset. We compute the salaries

wet and wmt by dividing total labor compensations by total hours worked (nit). We compute

Ret and Rmt by dividing total capital compensations by the total capital stock (kit).
17

The estimated time series for εmt, εet, znt and zkt are depicted in Figures 1 and 2. Estimated

elasticities are within the range estimated in the literature (e.g., Chirinko, 2008). We note that

εmt is consistently below εet in Figure 1 throughout the examined period. This supports our

hypothesis that the elasticity of substitution between capital and labor is persistently higher in

the extractive activities.

3.5 Estimates of labor- and capital-augmenting productivity shocks

Figure 2 plots the estimated common labor-augmenting and capital-augmenting shocks to pro-

ductivity, znt and zkt. There is some co-movement in the initial and later years, and divergence

in other years. We will we employ these common productivity shocks in our core analysis in

16This sample period is limited by data availability, but contained within the time interval examined in the
posterior econometric analysis.

17This is consistent, for example, with the computations undertaken by Caselli and Coleman (2006).
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Figure 1: Estimated elasticities of substitution between labor and capital are higher in mining and
quarrying than in remaining sectors. The estimates were computed from U.S. industry data retrieved from
the EUKLEMS dataset (O’Mahony and Timmer, 2009) for the period 1998-2015. Industry e represents industry
B in SIC classification (mining and quarrying), whereas industry m represents a weighted, size-adjusted, average
of the remaining industries. The average epsilone (epsilonm) over the whole period is 0.79 (0.55).

an attempt to examine their separate impact on growth in output and inputs, along the lines

suggested by our analytical predictions.

3.6 Implications for resource-rich and resource-poor economies

To help understand the main implications of our analysis for resource-rich and resource-poor

economies, we note that εet > εmt as the empirical evidence presented in Figure 1 above suggests.

Moreover, we note that resource-rich economies have a relatively large weight of the extractive

sector e in gross domestic product, as illustrated empirically in the literature,18 whereas in

other economies the dominant industry are the remaining sectors m.

Our previous results thus imply that, in the case of resource-rich economies, aggregate

output in the economy can decline in the short-run and increase in the long-run as a response

to capital-augmenting technical progress. However, in resource-poor economies, the same type

18See, e.g., Van der Ploeg and Poelhekke (2016) for local and national case studies.
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Figure 2: Estimated common capital- and labor-augmenting productivity shocks. Computed from
U.S. industry data retrieved from the EUKLEMS dataset (O’Mahony and Timmer, 2009) for the period 1998-
2015.

of technology shock will increase total output, both in the short- and in the long-run. Labor-

augmenting technology shocks, on the other hand, will have a positive effect on aggregate

output regardless of the time horizon and the level of resource abundance. Furthermore, the

long-run effect on income will be larger in resource-rich economies because the long-run rise in

capital in these economies is larger than that in resource-poor ones.19

4 Empirical Analysis

Our analysis of Section 3 explains how the sign and extent of the contemporaneous and longer

term impacts of technology shocks may depend on the degree of natural resource abundance.

Here we test empirically the implied testable hypotheses. We do so by examining the hetero-

19This results from differences in capital intensities, which in our analysis are determined by the assumed
elasticity differences given their impact on the effective-input ratio ( zkki

znni
). Empirical evidence for capital

intensity differences across the natural resources dimension are discussed in Sections 1 and 2.
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geneous effects of U.S. national TFP shocks on the output and inputs of individual U.S. states

and examine how these depend on the degree of natural resource abundance.

We initially focus on the contemporaneous effects, because they represent the main features

of the divergent paths we aim to observe empirically. Later we also analyze the dynamic

patterns. We first outline the data, and methodology. Then, we report the estimation results.

Within the latter part, we begin by examining the role of the natural resources dimension within

the BFK framework. Thereafter, we present the main results followed by robustness tests.

4.1 Data

We examine an annual-based panel of the 48 continental U.S. states over the period 1963-

2015, limited by data coverage. We undertake an intra-U.S., cross-state perspective for several

reasons.20 First, while constituting a relatively homogeneous environment, U.S. states provide

significant cross-state variation in the degree of resource abundance and in macroeconomic

outcomes. Second, the fiscally autonomous environment implies that state governments benefit

from their natural resource endowments to a considerable, and economically meaningful extent,

so that they have impact at the local level.21 Third, data availability enables us to test the

hypothesis over a large period of time of over five decades. Last, such a setting enables us to

examine the impact of national TFP shocks, across cross-sectional differences in endowments

of natural resources that, on their own, are plausibly too small to impact national aggregate

shocks. These features allow us to identify the causal link running from TFP shocks to output

and inputs via the intensity of natural resources.

An examination of the heterogeneous contemporaneous effects of technology changes for

different levels of resource abundance across states is based on two key measures: TFP shocks

at the macroeconomic level and resource abundance at the state level. For the TFP shocks

we follow BFK, and employ the purified utility-adjusted technology shocks of Fernald (2014),

annualized via aggregations of the corresponding quarterly observations.22 As outlined above,

we assume that each state on its own is not sufficiently large to alter national technology

patterns, including importantly via its natural resource wealth, so that we can consider TFP

20However, we also undertake a county-level analysis, presented as robustness due to limitations of some of
the main measures employed. We describe the related data separately in the corresponding sub-section.

21These benefits accrue regardless of whether the natural resources are located on state-owned or federal-
owned lands. In the former case, state governments collect severance taxes and royalties. In the latter case,
they benefit from shared federal revenues that amount to approximately 50% (but 90% in the case of Alaska)
of the royalties paid to the federal government for oil production undertaken on these lands.

22We employ this measure within our baseline analysis, but also examine a number of additional TFP measures
to check for robustness in a later sub-section.
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shocks to be exogenous for each state.23 Table A1 of Appendix A notes that the mean TFP

shock is close to 1, but the standard deviation is around 1.3. Hence, the data series contains

periods of technology advancement as well as regress.

As for resource abundance, we use the measure of state resource endowments constructed

by James (2015). This measure is based on the cross-sectional difference in geologically-based

recoverable stocks of crude oil and natural gas. Originally, it was interacted with the interna-

tional oil price. However, we consider the cross-sectional dimension only in order to minimize

endogeneity concerns, and in an attempt to focus on the temporal dimension on the national

TFP shocks, and their manifestation via resource intensity.24 This data is derived from the U.S.

Geological Survey at the province level, which James (2015) aggregates to the state level.25 This

provides the average endowment of natural resources per state, which we then normalize by

state personal income, averaged over 1958-2008.

Figure 3: Average resource endowment across the 48 continental U.S. states. Source: James (2015).

23We do, however, examine later in the analysis sub-samples in which the largest states are excluded.
24We do show in a later sub-section that the main patterns observed are robust to further interactions with

the international oil price.
25This measure excludes Alaska (AK) and Hawaii (HI), thus restricting our sample to the 48 continental

states.

15



This measure is appealing for several reasons. First, due to its geologically-based perspective

it provides plausibly exogenous variation in resource abundance levels across states. Second,

it provides ample variation across states. Specifically, given the usage of recoverable stocks

of reserves, only seven states have near-zero natural resource endowments.26 The average

natural resource endowment ranges from none (e.g., Delaware) to slightly above 3% of state

income (Wyoming), with a mean of 0.2% and a standard deviation of 0.6%.27 Figure 3 plots

the average level of this measure across the 48 continental U.S. states. Importantly, despite

being geologically-based, this measure is highly correlated with changes in oil production and

revenues, as illustrated by James (2015). Last, it bears little correlation (approximately -0.01)

with average state income, i.e., at the cross-section level resource richness is not systematically

associated with output. Indeed, some of the resource-rich states have on average higher output

per capita (e.g., North Dakota), while others less so (e.g., Louisiana).

4.2 Identification and estimation methodology

Our identification strategy rests on two identifying assumptions. First, national TFP shocks are

exogenous to any specific state, so no state on its own is sufficiently large to affect such shocks

significantly. Second, the cross-sectional geologically-based recoverable stocks of oil and gas

represent pre-determined, geographically entrenched endowments. Under these circumstances,

both measures are not only plausibly exogenous to each other, but also when they are interacted

they produce variations across space and time that are plausibly exogenous to state indicators.

Hence, we employ a standard panel fixed-effects framework to estimate

∆(outcome)i,t = α + β(outcome)i,t−1 + γ(resource)i

+ δ(tfp)t + θ(resource ∗ tfp)i,t + ηi + νt + ϵi,t , (23)

where i indicates the state and t the year. Here outcome denotes one of the following variables:

real per capita output, real per capita capital stock, or the unemployment rate, each in natural

logarithm form.28 These outcome variables represent the key macroeconomic indicators exam-

26These states are Connecticut, Delaware, Massachusetts, Maine, New Hampshire, New Jersey, and Rhode
Island. Several more states have positive, but scarce levels of natural resource endowments (see Figure 3).

27Notably, the vast cross-state variation enables testing the impact of natural resource abundance, regardless
of their absolute levels. This approach follows the strand of literature that examines the effects of resource
intensity via the case of U.S. states (e.g., James, 2015; Raveh, 2013).

28This form enables us to minimize the potential biasing impact of outliers. Examining the non-transformed
form yields qualitatively similar results.
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ined by BFK, namely income and inputs.29 In addition, ηi and νt denote the state and year

fixed effects, respectively. These control for state and time-invariant unobservable effects. Last,

tfp and resource are the TFP shocks and resource abundance measures discussed in Section

3. Both are outlined in the model for completeness, yet they are absorbed by νt and ηi, given

that they change only across time or states, respectively. The dependent variable is in changes,

where ∆ denotes the change between periods t − 1 and t, with the level in t − 1 added as a

regressor to control for potential convergence. This is consistent with the dynamic perspective

of the proposed mechanism.30

All variables are derived from the U.S. Census Bureau and the Bureau of Economic Analysis

with the exception of state capital stocks. These stocks are derived from Garofalo and Yamarik

(2002), and the data series for tfp and resource (outlined above). Standard errors are clustered

by state in all cases. Appendix A outlines the variables and their source, where Table A1

presents descriptive statistics. Our focus throughout the analysis is on the sign, magnitude,

and preciseness of the parameter θ, which provides an estimate for the impact of technology

shocks across different levels of resource abundance levels. In addition, we also examine the

characteristics of the effect of TFP shocks on outcomes, measured by the parameter δ, in

various versions of our model that exclude νt and examine the impact of (tfp)t directly within

restricted, separate, samples of resource-rich and resource-poor states.

4.3 Preliminary: revisiting BFK with natural resources

The contemporaneously contractionary nature of technology improvements has been illustrated

previously in the seminal work of BFK. Examining the impact of national TFP shocks on various

U.S. macroeconomic indicators, BFK found that on impact technology improvements contract

input use, most notably labor. Re-examining the contemporaneous effects of TFP shocks we, as

a first step, incorporate our proposed dimension into BFK’s framework, focusing on the impact

on labor. We thus estimate a model reminiscent of the one estimated by BFK,

∆(unemp)i,t = α +

j=4∑
j=0

β(tfp)t−j + γ(Y ear)t + ηi + ϵi,t , (24)

where tfp, and η are described above, unemp denotes the unemployment rate, and Y ear is a

time trend, in lieu of the time fixed effects, which are excluded in this framework due to their

29BFK considered hours worked; we, however, examine in lieu the unemployment rate as it enables extending
the sample period covered significantly, by more than three decades.

30Examining the dependent variable in changes, we in effect consider investment rates in the case of the
capital stock as outcome.
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absorption of the state-invariant TFP shocks. Similar to BFK, contemporaneous TFP shocks

are added together with four lags of TFP shocks.31 Our focus in this specification is on β0,

which gives the contemporaneous effect of the TFP shock, (tfp)t.

Our analysis differs from BFK in three respects. First, BFK considered the sample period

of 1949-1996, which is not feasible for us due to lack of data at the state level. But, BFK

also showed that their main results hold under the shorter sample period of 1980-1996. To

undertake an effective comparison, we focus on this shorter sample period. Second, BFK exam-

ined national outcomes, constructing them via industry-level data. We, however, undertake an

analysis across states, each with its own industrial composition.32 Third, BFK examined the

impact of TFP shocks vis-à-vis the aggregate sample. Our hypothesis, however, focuses on the

abundance of natural resources, hence we split the sample into resource-rich and resource-poor

states so that we can examine the impact of TFP shocks on each, separately. The threshold

we adopt for this split is the 25th percentile of the baseline cross-sectional resource endowment

measure outlined previously, in which states below it are categorized as resource poor. Such a

division enables us to focus on the behavior of the cases of interest, namely those that represent

little to no natural resource endowments.33

The results are outlined in Table 1. Column (1) examines the complete sample, where the

resource-rich and -poor states are not split up. The results follow the patterns observed in BFK.

Specifically, contemporaneous technology improvements boost changes in the unemployment

rate and thus decreases the change in labor, yet in the periods thereafter they expand it.

Columns (2) and (3) report results when the sample is split into resource-rich and -poor states,

respectively. The outcome for the contemporaneous impact shows that for the resource-rich

sub-sample, technological improvements are contractionary, but for the resource-poor sample

such improvements are expansionary. Hence, the natural resources dimension is potentially an

important aspect in the interpretation of the key results of BFK.34 In addition, the results in

Columns (2) and (3) further indicate that in the longer term, labor expands more strongly in

the resource-rich sample, despite the initial drop.

However, Christiano et al. (2004) addressed concerns related to potential endogeneity of the

31We follow BFK’s specification to enable close comparison. We note that the estimation results are robust
to using any number of lags up to the four used.

32Later, we also account for industrial composition, showing that the key dimension in this composition is
the extractive industry.

33These represent the cases of interest, as according to our analysis, they raise the potential for contempora-
neously non-contractionary patterns.

34The potential relevance of the natural resources dimension to the interpretation of BFK’s findings has been
implied by Bils (1998), who pointed at the potential over-estimating effect of the oil price instrument used in
BFK’s analysis. Nonetheless, as will be noted in our main analysis, we illustrate that the observed patterns
extend to various measures, and are not specific to those used in BFK.
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BFK measure. In addition, they considered the level of (rather than changes in) the labor input

measure, and found a contemporaneous positive impact of TFP improvements on labor input.

Christiano et al. (2004) thus found that TFP shocks are contemporaneously expansionary.

In our state-level setting concerns related to the endogeneity of TFP shocks are mitigated

given their national perspective. Hence, to illustrate that correcting for the effect of the natural

resources dimension may represent a reconciliation between the findings of BFK and Christiano

et al. (2004), we re-estimate our results for Columns (2) and (3) when the dependent variable

(i.e., the unemployment rate) is in levels rather than in changes. The results appear in Columns

(4)-(5). They are similar to those reported in Columns (2)-(3): technology improvements are

contractionary in resource-rich and expansionary in resource-poor states.

Table 1: TFP shocks and the unemployment rate for resource-rich and resource-poor
states, 1980-1996 (Revisiting BFK)

(1) (2) (3) (4) (5)

complete 

sample
with resources

without 

resources
with resources

without 

resources

Dependent variable:

change in 

unemployment 

rate

change in 

unemployment 

rate

change in 

unemployment 

rate

unemployment 

rate

unemployment 

rate

TFP 0.12** 0.22*** -0.15*** 0.34*** -0.19*

(0.05) (0.06) (0.05) (0.05) (0.09)

TFP (t-1) -0.49*** -0.46*** -0.57*** 0.21*** -0.32***

(0.04) (0.06) (0.04) (0.05) (0.09)

TFP (t-2) -0.45*** -0.5*** -0.31*** -0.11** -0.58***

(0.03) (0.04) (0.03) (0.05) (0.08)

TFP (t-3) -0.07** -0.15*** 0.15** -0.29*** -0.43***

(0.03) (0.03) (0.07) (0.04) (0.04)

TFP (t-4) 0.21*** 0.17*** 0.33*** -0.21*** -0.4***

(0.03 (0.03) (0.07) (0.04) (0.04)

R-squared 0.24 0.29 0.32 0.77 0.84

Observations 912 669 243 669 243
Notes: Standard errors are robust, clustered by state, and appear in parentheses for independent variables. Superscripts *, **, *** correspond to a 10, 5 and 

1% level of significance. The dependent variable is the natural logarithm of the unemployment rate(Columns 4-5), or changes in thereof (Columns 1-3). All 

regressions include an intercept, a time trend, and state fixed effects. The sample includes the 48 continental U.S. states and covers the period of 1980-1996. 

‘TFP’ denotes the Fernald series of purified technology changes(Fernald(2014)). ‘With/without resources’ divides the sample based on the 25th percentile of 

the per capita resource endowment measure (described in the text). For further information on variables see data Appendix.

4.4 Core results on impact of TFP shocks

We now turn to our core results on the heterogeneous impacts of TFP shocks and how these

depend on resource wealth in a more complete and rigorous setting, and with an expanded
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sample. We estimate various versions of Equation (23), for each of the three outcome variables.

These core results are presented in Table 2.

Effects on output Starting with output, measured by the Gross State Product (GSP), Col-

umn (1) represents our core specification and provides support for our main hypotheses. The

estimated value of θ is negative and statistically significant, which indicates that contemporane-

ous technology improvements indeed induce a stronger negative impact in resource-rich states

than in resource-poor states. In terms of magnitude, under the mean endowment of natural

resources, a one standard deviation increase in TFP contracts average output of resource-rich

states by 0.1% relative to output of resource-poor states.35 The magnitude of this estimate of

θ suggests, however, that the outcome is not only in relative terms. Furthermore, it points at

a divergent outcome (cf. Table 1). This is also illustrated by Columns (2) and (3) of Table 2.

Table 2: Resource endowments and effect of technology improvements, 1963-2015

Dependent variable:

(1) (2) (3) (4) (5) (6) (7) (8) (9)

GSP Unemployment Investment

TFP
with 

resources
without 

resources
TFP

with 
resources

without 
resources

TFP with resources
without 

resources

TFP -0.003*** -0.0005 0.01*** -0.004 -0.005*** -0.004***

(0.001) (0.001) (0.003) (0.006) (0.001) (0.001)

Resources X TFP -0.48*** 0.87** -0.02

(0.08) (0.39) (0.06)

State fixed effects Yes Yes Yes Yes Yes Yes Yes Yes Yes

Time fixed effects Yes No No Yes No No Yes No No

R-squared 0.88 0.86 0.86 0.61 0.64 0.67 0.91 0.87 0.88

Observations 2480 1933 547 1912 1485 427 2480 1933 547
Notes: Standard errors are robust, clustered by state, and appear in parentheses for independent variables. Superscripts *, **, *** correspond to a 10, 5 and 1% level of significance. The 

dependent variable is real per capita Gross State Product (Columns 1-3), the unemployment rate (Columns 4-6), and real per capita investment (Columns 7-9), each in natural logarithm. All 

regressions include an intercept, and lagged dependent variable. The sample includes the 48 continental U.S. states and covers the period of 1963-2015 (1975-2015 in Columns 4-6). ‘Resources’ 

denotes the resource endowment measure described in the text. ‘TFP’ denotes the Fernald series of purified technology changes(Fernald(2014)). ‘With/without resources’ divides the sample 

basedon the 25th percentile of the per capita resource endowment measure (described in the text). For further information on variables see data Appendix.

In Columns (2) and (3) of Table 2 we estimate a version of Equation (23) which excludes ν

and θ and examines the direct impact of TFP shocks via δ under the two separate sub-samples.

This attempts to examine whether the main outcome is the result of a relative effect (resource-

rich relative to resource-poor states), or a direct one driven by resource intensity. We focus on

examining the sign, interpreting the magnitude with caution due to the exclusion of the time

fixed effects. Following the previously outlined division, the sub-sample in Column (2) includes

states with a per-capita resource endowment above the 25th percentile while the sub-sample in

Column (3) includes the remaining states with little or no resource endowments.

35This is computed by multiplying the estimated value of θ by the mean resource endowment and the standard
deviation of TFP, and examining the change that this induces in the mean output measure.
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We observe that contemporaneous TFP shocks have a negative and statistically significant

impact on output if there are some natural resource endowments. Conversely, if resource

endowments are scarce, the impact becomes statistically imprecise with a magnitude close

to zero. These outcomes clarify the source of the observed relative difference. They point at

a distinct diverging outcome, similar to the patterns noted previously in our BFK exercise

reported in Table 1, and consistent with our analytical predictions.

Effects on unemployment and capital Columns (4)-(6), and (7)-(9), present an analysis

similar to that presented in Columns (1)-(3) yet with the labor or capital input proxies (namely,

the unemployment rate or investment, respectively) as outcome. Columns (4) and (7) examine

the complete sample whereas Columns (5)-(6) and (8)-(9) consider the split samples based on

the same division used before.

For the case of labor, the estimated value of θ in Column (4) points at a similar outcome

as observed under output. Specifically, technology improvements contract the labor market

more strongly if natural resource endowments are high. Similar patterns are also observed in

Columns (5)-(6), since the estimated values of δ indicate that the contractionary effect occurs

only in the group of states that are endowed with significant natural resources.

The outcomes in Columns (8)-(9) show that investment contracts similarly in both types

of environments following a positive TFP shock. This is further confirmed by the outcome in

Column (7), which points at no statistically distinguishable impact of TFP shocks on investment

across resource intensity levels. These patterns, in conjunction with those observed for the

effects on labor, are consistent with our analytical predictions given the previously established

systematic differences in elasticities of substitution between labor and capital for resource-rich

and -poor states, to the extent that the TFP shocks are capital-augmenting. Next, we examine

this analytical prediction.

4.5 Effects of capital- and labor-augmenting TFP shocks

Our analysis in Section 3 indicates that capital-augmenting shocks trigger contemporaneous

substitution between capital and labor with a magnitude that depends on the size of the elastici-

ties of substitution between labor and capital, hence contracting the labor input in resource-rich

states. Here we examine the differential impact of capital- and labor-augmenting TFP shocks.

We do so by employing the zn and zk parameters computed and outlined previously in Sec-

tion 4.1, corresponding to labor- and capital-augmenting shocks, respectively. Given the scope

of the underlying U.S. industry data, the computed parameters are available annually for the

period 1998-2015.

21



We estimate our baseline specification, as per Column (1) of Table 2, where now the zk and

zn measures enter in lieu of tfp, separately. The results are presented in in Table 3. Columns

(1)-(3) and (4)-(6) examine the case of zk and zn, respectively. In each case, the first, second,

and third column examine the outcome related to the output, labor, and capital measure,

respectively.

These results are consistent with our analytical predictions. The estimated values of θ

indicate that the differential impact across resource intensity levels is observed only under

capital-augmenting shocks, and most notably with respect to output and labor input. This is

consistent with the view that capital-augmenting shocks induce substitution between capital

and labor more strongly in states where this substitution is stronger, i.e., resource-rich states.

Table 3: Effects of capital- and labor-augmenting TFP shocks, 1998-2015

Dependent 
variable:

(1) (2) (3) (4) (5) (6)

Capital augmenting Labor augmenting

GSP Unemployment Investment GSP Unemployment Investment

Resources X Zk -0.43*** 0.91*** 0.19
(0.06) (0.19) (0.21)

Resources X Zn -0.04 0.02 -0.04
(0.03) (0.01) (0.03)

State fixed 
effects

Yes Yes Yes Yes Yes Yes

Time fixed 
effects

Yes Yes Yes Yes Yes Yes

R-squared 0.85 0.61 0.82 0.84 0.12 0.82
Observations 857 857 857 857 857 857

Notes: Standard errors are robust, clustered by state, and appear in parentheses for independent variables. Superscripts *, **, *** 
correspond to a 10, 5 and 1% level of significance. The dependent variable is real per capita Gross State Product (Columns 1 and 4), the 
number of unemployed individuals per capita (Columns 2 and 5), and real per capita investment (Columns 3 and 6), each in natural 
logarithm. All regressions include an intercept, and lagged dependent variable. The sample includes the 48 continental U.S. states and covers 
the period of 1998-2015. ‘Resources’ denotes the resource endowment measure described in the text. ‘Zk’ (‘Zn’) denotes the capital (labor) 
augmented technology changes computed from the model vis-à-vis data from the EUKLEMS dataset (O’Mahony and Timmer (2009)). For 
further information on variables see data Appendix.

4.6 Robustness tests

We now conduct various robustness tests to see whether our core findings survive if we allow for

other sectors than natural resources or different TFP measures, and when the resource measure

is interacted with the world oil price. We also examine the level of U.S. counties, and test for

robustness using different sample restrictions, controls, and specifications.

Table 4 presents the robustness results when we allow for other sectors than natural re-

sources. The other robustness results are presented in Table 5. All specifications follow the

22



core specification, unless otherwise specified, and they cover different time periods (depending

on data availability), as stated in the table.

4.6.1 Results with other sectors than natural resources

Our core analysis has focused on one dimension of the industrial composition of states, i.e.,

resource abundance. To further motivate this focus, we also examine the role of other major

sectors. We thus consider the GSP share of four major aggregate sectors: manufacturing,

services, agriculture, and wholesale trade. To examine how they might affect the impact of

TFP shocks, we interact them each with tfp and add them separately, and then concurrently,

to the core specification. We will focus on output.

The results are presented in Table 4. In Columns (1)-(4) we add each of the additional

interaction terms separately, in conjunction with our interaction term of interest, resource∗tfp.
The outcome in each case indicates that our core results are robust to these inclusions, i.e., the

estimated value of θ maintains its sign and precision. The robustness of θ is further observed

in the demanding specification undertaken in Column (5), in which all interaction terms are

added concurrently. Interestingly, while natural resource intensity retains its role in the effects

of technology shocks, none of the other major sectors exhibit similar characteristics. In all cases

the estimated coefficients on the additional interaction terms have close to zero magnitudes and

no statistical significance,36 thus reaffirming the role of natural resources in understanding the

effects of TFP shocks on state-level outcomes.

4.6.2 Results at the U.S. county level

While the availability of some of our data is limited at the more granular county level, exam-

ining our hypotheses under the measures that are available at the county level enables us to

exploit a significantly larger sample of more than 3,000 counties. To measure cross-sectional

resource endowments at the county level, we employ the plausibly exogenous resource measure

constructed by James and Smith (2017). This provides a geologically-based indicator for coun-

ties with reserves of shale gas. We examine the impact of tfp, zk, and zn on county per-capita

output, by interacting each of these with the county resource measure. Results are presented

in Columns (1)-(3) of Table 5, respectively. They indicate that our core result is robust at the

county level, as we observe differential effects on output in the case of tfp and zk, but none for

zn.

36Services and agriculture yield marginally precise patterns, but appear in only one of the specifications.
Hence, these effects are not robust.
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Table 4: Results with other sectors than natural resources, 1963-2015

Dependent variable: real per capita Gross State Product
(1) (2) (3) (4) (5)

Manufacturing Services Agriculture Wholesale All

Resources X TFP -0.39*** -0.41*** -0.44*** -0.42*** -0.29***

(0.09) (0.08) (0.1) (0.06) (0.1)

Manufacturing X TFP 0.001 0.001

(0.001) (0.001)

Services X TFP 0.02* 0.06

(0.01) (0.06)

Agriculture X TFP -0.0004 0.03*

(0.001) (0.02)
Wholesale X TFP 0.002 -0.01

(0.005) (0.01)

State fixed effects Yes Yes Yes Yes Yes

Time fixed effects Yes Yes Yes Yes Yes

R-squared 0.88 0.88 0.88 0.88 0.88

Observations 2480 2480 2480 2480 2480
Notes: Standard errors are robust, clustered by state, and appear in parentheses for independent variables. Superscripts *, **, *** correspond to a 10, 5 and 1% level of significance. The 

dependent variable is real per capita Gross State Product in natural logarithm. All regressions include an intercept, and lagged dependent variable. The sample includes the 48 continental 

U.S. states and covers the period of 1963-2015. ‘Resources’ denotes the resource endowment measure described in the text. ‘TFP’ denotes the Fernald series of purified technology 

changes (Fernald(2014)). ‘Manufacturing’/’Services’/’Agriculture’/’Wholesale’ refer to the GSP share of the manufacturing/services/agriculture/wholesale sectors, respectively. For further 

information on variables see data Appendix.

4.6.3 Results for three different alternative TFP measures

Columns (4)-(6) of Table 5 present estimation results for three different types of TFP measures.

Our core estimates were done with the BFK measure, primarily in an attempt to create a more

direct comparison to the BFK results. The literature, however, offers various measures of

technology shocks, each with their own merits and limitations. To examine the validity of our

results, we consider three additional data sources of TFP shocks: the FORD series (Francis

et al. 2014), the BS series (Barsky and Sims 2011), and the JPT series (Justiniano et al. 2011).

Each of the TFP types is interacted with our resource measure and we use these instead of our

baseline measure tfp. For each of these three alternative TFP measures, the estimated value

of θ maintains its sign and precision. Our core results are thus robust to using these different

types of TFP shocks.

4.6.4 Results with different sample restrictions, controls, and specifications

Columns (7)-(14) of Table 5 present the results of some additional robustness tests that include

different sample restrictions, controls, and specifications. First, motivated by the BFK exercise,

we re-estimate our core specification prior to 1997 and after 1996, separately. This serves to test

the applicability of the BFK case under the complete specification (not directly examined in

the previous related sub-section), and examine whether our core results depend on that period.

The estimated values of θ in Columns (7)-(8) indicate that our core results are apparent in
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both periods, and that it intensifies in magnitude in the post-1996 period. This is consistent

with the notion that technology improvements become more capital-oriented over time.

Next, we add various additional basic controls that may affect the impact of technology

shocks indirectly, and test with a different clustering method. In Column (9), we include as

controls government tax revenues per capita, government expenditure per capita, and popula-

tion size. The latter provides a standard control for scale, and the former two account for the

efficiency and size of the public sector, an important macroeconomic component besides inputs.

In Column (10) we then re-estimate our core specification with a two-way clustering method,

where standard errors are clustered by state and year. The outcomes in both cases indicate

that our main result is robust to these additional controls.

In Columns (11)-(13) we re-estimate our model with three restricted samples. In Column

(11) we exclude Montana, North Dakota, and Wyoming. Figure 3 indicates that these states

are outliers in terms of their resource richness, hence this exclusion enables us to examine the

extent to which our core results are affected by them. In Column (12) we exclude states with

zero resource endowments (e.g., Delaware, Maine, New Hampshire, and Rhode Island). This

addresses the potential concern that our core results are driven by states with no resources. In

Column (13) we exclude California, New York, and Texas from the sample to test the robustness

of our results when the three largest states are excluded. This restriction addresses the concern

that our results may be driven by the dominant states. The estimated values of θ in all these

cases indicate that our core results are robust to these restrictions on the sample.

4.6.5 Results when resource measure is interacted with the oil price

As a final robustness test, we interact the cross-sectional measure of resource endowment (used

in our baseline) with the oil price which is plausibly exogenous (James 2015). This measure

then enters the estimated equation instead of our core resource measure. We examine the

effects of TFP shocks across states, but also within them across time. Column (14) presents

the results. The estimated value of θ maintains its sign and significance under this interacted

measure. This indicates that the impact of technology shocks does not only depend on the

existence of resource endowments, but also on their value.

4.7 Longer-term effects of TFP shocks

Our focus has been on the contemporaneous effects of TFP shocks. However, our analysis

in Section 3 also gives insights concerning the dynamic patterns over time. Specifically, we

find that resource-rich states should expand more strongly beyond the contemporaneous effect.
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Table 5: Further robustness tests
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Hence, we estimate and present the dynamic heterogeneous effects of TFP shocks across states

with different levels of natural resources over the course of five years.37 We employ the method

of local-projections of Jorda (2005).

Figure 4: Impulse response functions for the effect of TFP shocks. The figure presents the impact
of technology shocks interacted with resource endowments on the natural logarithms of real per capita GSP,
the unemployment rate, and real per-capita investment over a 5-year horizon, with 95% confidence intervals,
following the method of local projections of Jorda (2005). The sample includes the 48 continental U.S. states
and covers the period 1963-2015.

The method of local projections gives us estimates of impulse response functions separate

regressions for each lead over the forecast horizon. The effect of TFP shocks at t + h with

h = 0, 1, . . . , 4 is estimated by regressing dependent variables at t+ h on shocks and covariates

at time t. Responses thus do not rely on nonlinear transformations of reduced-form parameters

as in VARs.38 We define ∆t−1xi,t+h ≡ xi,t+h − xi,t−1 and estimate the sequential equations

∆t−1(outcome)i,t+h = αh + βh(outcome)i,t−1 + γh(resource)i

+ δh(tfp)t + θh(resource ∗ tfp)i,t + ηhi + νh
t + ϵi,t+h. (25)

37The length of the examined horizon is based on a 1-year extension of the BFK framework in which the
effects of TFP shocks are observed, and measurable over the medium-term horizon of approximately four years.

38In Appendix B we present VAR estimates, and illustrate that the observed patterns are robust to the
estimation method.
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The dependent variable is the cumulative growth of the outcome variable, ∆t−1(outcome)i,t+h,

for different values of h. Our main coefficients of interest are the ones on the resource∗tfp inter-
action variable, i.e., θh for the contemporaneous effect h = 0 and the different leads h = 1, . . . , 4.

These 5 parameters shape the impulse response function, and hence enable us to trace the time

profile of the effect of TFP shocks.

Figure 4 plots the impulse response functions for each of the outcome variables, together with

95% confidence intervals. For output, the gradual increase in the estimated value of θh, as the

lead h increases, indicates that after the contemporaneous negative effect of TFP shocks, tech-

nology improvements become more expansionary in resource-rich states, most notably starting

in the second year, relative to those in resource-poor states. The impulse response functions for

labor and capital inputs paint a similar picture. This is evident from the gradually decreasing

(increasing) patterns in the unemployment rate (investment), indicating again that positive

TFP shocks are more expansionary in resource-rich environments, starting in the second year.

These patterns lend support to our analytical predictions, and importantly, they are also

consistent with the outcomes noted in the initial BFK exercise in which the observed post-

contemporaneous expansionary impacts (noted as well, under the general sample) were stronger

for resource-rich states than for resource-poor states.

5 Conclusion

We have examined, both analytically and empirically, how technological shocks interact with

natural resource abundance to affect growth in output and inputs. We offered a two-sector

growth model with non-neutral technical progress and adjustment costs to show that cross-

sector differences in the degree of substitution between capital and labor can induce corre-

sponding differences in the contemporaneous and long-run reactions to technology improve-

ments, most notably capital-augmenting ones. Using our model and U.S. industry data, we

have computed elasticity parameters of different sectors, revealing that the elasticity between

labor and capital is persistently higher in extractive industries. We have also computed time

series for the capital- and labor-augmenting technology parameters and employed these in our

empirical analysis.

We have tested our analytical predictions empirically using a panel of U.S. states over a

period of five decades. We have examined in detail the impact of the interaction of national

TFP shocks and states’ resource abundance on growth in output and inputs of individual

states. The use of national aggregate shocks and cross-sectional differences in geologically-

based resource endowments has enabled us to examine the causal effects of technology changes
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on output and inputs, and how these effects are affected by the presence of natural resources.

Consistent with our predictions, the estimates point at divergent effects of technology im-

provements on growth in output and inputs across resource abundance levels, both in the short

and in the longer term. In the short-run, we have observed that technology improvements,

most notably capital-augmenting ones, are contractionary primarily in resource-rich states, and

are non-contractionary or expansionary in resource-poor states. In the longer term, we have

found that TFP shocks become more expansionary in resource-rich states relative to those in

resource-poor states. We have shown that these results are robust to including various controls,

measures, sample restrictions, and specifications. In addition, we have showed that they also

appear with the BFK methodology, data, and period, including when their setup is corrected

for earlier concerns.

Our results help to understand how technological change may manifest the adverse effects

of natural resource abundance on output. In turn, they also provide a potential reconcilia-

tion for the ongoing, inconclusive, debate on the short-run effects of technology improvements

by recognizing the role of natural resources and the differences in the degree of substitution

between labor and capital inputs. Our results also point to the need to account for the tech-

nological environment for purposes of resource management, as well as to take account of the

substitutability between factor inputs when considering the impact of technology shocks.
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Appendix

A Data

We use an annual state-level panel that, unless otherwise specified, covers the 48 continental

U.S. states for the period 1963-2015. Real variables are expressed in 2009 prices. Descriptive

statistics for all variables are presented in Table A1.

Variable definitions

Resource endowment : Recoverable state stocks of oil and natural gas (cross-sectional), nor-

malized by average state income (averaged over 1958-2008). Alaska and Hawaii are excluded.

Source: James (2015)

Real per-capita Gross State Product (GSP): Real Gross State Product divided by state popu-

lation. Source: U.S. Census Bureau.

Population: State population. Source: U.S. Census Bureau.

Real per-capita tax rates : State tax revenues divided by state population. Source: U.S. Census

Bureau.

Real per-capita government expenditures : Total expenditures of state government divided by

state population. Source: U.S. Census Bureau.

Unemployment rate: State unemployment rate. Source: U.S. Census Bureau.

Real per-capita capital stock : State capital stock divided by state population. Source: Garofalo

and Yamarik (2002), including an extension of it available at the second author’s homepage.

Fernald TFP shocks : Aggregate, national TFP shocks, aggregated to an annual level. Source:

Fernald (2014).

JPT TFP shocks : Series of TFP shocks derived from Justiniano et al. (2011).

BS TFP shocks : Series of TFP news shocks derived from Barsky and Sims (2011).

FORD TFP shocks : Series of TFP shocks derived from Francis et al. (2014).

Zk : Capital-augmenting technology shocks. Computed from the model, as described in the

text, vis-à-vis data from the EUKLEMS dataset. Source: O’Mahony and Timmer (2009).

Zn: Labor-augmented technology shocks. Computed from the model, as described in the text,

vis-à-vis data from the EUKLEMS dataset. Source: O’Mahony and Timmer (2009).

GSP share of manufacturing : Share of state manufacturing sector in Gross State Product.

Source: U.S. Census Bureau.

GSP share of services : Share of state services sector in Gross State Product. Source: U.S.

Census Bureau.
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GSP share of agriculture: Share of state agriculture sector in Gross State Product. Source:

U.S. Census Bureau.

GSP share of wholesale: Share of state wholesale trade sector in Gross State Product. Source:

U.S. Census Bureau.

Table A1: Descriptive statistics

Mean Std. Dev. Min. Max.

Gross State Product (per capita) 24132.97 17654.36 1971.93 83245.73

Unemployment rate 0.06 0.02 0.02 0.18

Capital stock (per capita) 39491.51 35297.49 9001.79 435258.61

Population (1000s) 4826.11 5278.32 256 36580

Tax revenues (per capita) 13959.86 12447.50 668.13 126924.21

Government expenditures (per capita) 12014.96 9747.07 592.12 58813.42

Resource endowment 0.002 0.006 0 0.081

Fernald TFP shocks (utility adjusted) 1.009 1.372 -2.560 3.491

Zk 0.097 0.087 0.013 0.315

Zn 0.388 0.075 0.253 0.534

JPT TFP shocks 0.017 0.412 -1.046 1.198

BS TFP shocks -0.003 0.530 -1.411 1.661

FORD TFP shocks 0.015 0.492 -1.039 1.173

GSP share of manufacturing 0.095 0.042 0.019 0.215

GSP share of services 0.149 0.011 0.121 0.341

GSP share of agriculture 0.003 0.003 0 0.014

GSP share of wholesale 0.053 0.004 0.046 0.069
Notes: See Appendix for detailed description of variables.

B VAR analysis

In Section 4.7 of the paper, we have examined the dynamic patterns following the method of

local projections (Jorda, 2005). To examine the robustness of the observed patterns to the

type of estimation method, we undertake an equivalent estimation under a VAR framework.

Specifically, we estimate

∆(outcome)i,∆(t−1,t) = α + β(outcome)i,t−1 + γ(resource)i

+ δ(tfp)t +

j=4∑
j=0

θj(resource ∗ tfp)i,t−j + ηi + νt + ϵi,t . (26)

Here outcome again denotes each of the three outcome variables. The results are presented in

Table A2. Columns (1)-(3) examine the cases of GSP, unemployment, and capital, respectively.
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The observed patterns are qualitatively similar to those under the Jorda (2005) method outlined

in Section 4.7. We note that upon impact, TFP shocks contract output and labor more strongly

in resource-rich than resource-poor states, but there are no such differential impacts on capital.

However, specifically from about the second or third years, output, labor, and capital expand

more strongly in those same, initially contracted, resource-rich states. These results indicate

that the main observed patterns are robust to the estimation method.

Table A2: Resource endowments and technology improvements (VAR analysis)

(1) (2) (3)

Dependent variable: GSP Unemployment Investment

ResourcesX TFP -0.96*** 0.65*** 0.08

(0.17) (0.22) (0.07)

ResourcesX TFP (t-1) -0.38*** 0.77*** 0.03

(0.11) (0.25) (0.06)

ResourcesX TFP (t-2) 0.12*** -1.79*** 0.12

(0.04) (0.64) (0.08)

ResourcesX TFP (t-3) 0.72*** -2.98*** 0.4**
(0.12) (0.93) (0.16)

ResourcesX TFP (t-4) 0.94*** -3.3*** 0.04**

(0.12) (1.11) (0.02)

ResourcesX TFP (t-5) 0.66*** -2.87** 0.07***

(0.21) (1.29) (0.01)

State fixed effects Yes Yes Yes

Time fixed effects Yes Yes Yes

R-squared 0.88 0.69 0.91

Observations 2260 1640 2260
Notes: Standard errors are robust, clustered by state, and appear in parentheses for independent variables. 

Superscripts *, **, *** correspond to a 10, 5 and 1% level of significance. The dependent variable is real per 

capita Gross State Product (Column 1), the unemployment rate (Column 2), and real per capita investment 

(Column3), each in natural logarithm. All regressions include an intercept, and lagged dependent variable. 

The sample includes the 48 continental U.S. states and covers the period of 1963-2015. ‘Resources’ denotes 

the resource endowment measure described in the text. ‘TFP’ denotes the Fernald series of purified 

technology changes (Fernald (2014)). For further information on variables see data Appendix.
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