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Abstract

Recently we have come across some confused references to ‘dummy variable trap’ (DVT)

during an Econometrics workshop organized at a University in Kerala, India. A google search

has generated a large number of so-called ‘machine learning’-based tutorials of the very same

content. In addition to these internet sources of such insufficient/incorrect information, a

number of (new generation) econometrics text books also have unfortunately been found to

cater to such confusions. The confusion arises from the inadequate care in discussion by some

textbook authors that spreads through the mass of new generation half-wit tutorial bloggers and

other media, who further venture to simplify it, and finally grips the careless novices, who get

lured by the ‘simple logic’ of it. Unfortunately, they choose to ignore the authoritative text

books as well as the need for an approach of mathematical logic. Note that these text books are

also often insufficient to bring to light the concepts clearly. Hence this paper seeks to explain

this issue in the framework of its mathematical logic.
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1. Introduction

Recently we have come across some confused references to ‘dummy variable trap’ (DVT)

during an Econometrics workshop organized at a University in Kerala, India; some self-styled

pundits of little wit tried to explain DVT with reference to the dummy variables only,

disregarding the intercept. According to them, for example in the case of a categorical variable

like ‘gender’, “Including both the dummy variable[s] can cause redundancy because if a person

is not male in such case that person is a female, hence, we don’t need to use both the variables

in regression models.”1 “In this case [‘male’ and ‘female’] are perfectly correlated and have a

correlation coefficient of -1.”2 “These two dummy variables are multi-collinear”.3 A google

search has generated a large number of so-called ‘machine learning’-based tutorials of the very

same content. In addition to these internet sources of such insufficient/incorrect information, a

number of new generation econometrics text books also have unfortunately been found to cater

to such confusions, for example, Panchanan Das (2019); A. H. Studenmund (2017):

“If we incorporate three dummies for three categories, we cannot estimate the model

uniquely because the set of three dummy variables is perfectly collinear [in the presence

of the intercept; the author should have explicitly included this also]. This is known as

dummy variable trap.” (Das 2019: 159). Again, “If we incorporate p number of

dummies for p categories, we cannot estimate the model uniquely because the set of

three [not three, but p] dummy variables is perfectly collinear [in the presence of the

intercept; the author should have explicitly included this also]. This is known as dummy

variable trap.” (Das 2019: 166).

“Note that in this example only one dummy variable is used even though there were

two conditions. This is because one fewer dummy variable is constructed than

conditions. The event not explicitly represented by a dummy variable, the omitted

condition, forms the basis against which the included conditions are compared [the

1 https://www.geeksforgeeks.org/ml-dummy-variable-trap-in-regression-models/.
2 https://www.statology.org/dummy-variable-trap/.
3 https://www.learndatasci.com/glossary/dummy-variable-trap/.
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omitted condition in turn being represented by the intercept; the author should have

explicitly included this also]. Thus, for dual situations only one dummy variable is

entered as an independent variable; the coefficient is interpreted as the [marginal] effect

of the included condition relative to the omitted condition. Be careful never to use two

dummy variables to describe the two conditions. If you were to make this mistake,

sometimes called a dummy variable trap, you’d have perfect multicollinearity.”

(Studenmund 2017: 80-81).

Strangely, insufficient/incorrect information marks the initial discussion by even such an

econometrician as Wooldridge in his famous textbook: “Using two dummy variables would

introduce perfect collinearity because female + male = 1, which means that male is a perfect

linear function of female. Including dummy variables for both genders is the simplest example

of the so-called dummy variable trap, which arises when too many dummy variables describe

a given number of groups” [in the presence of the intercept; the author should have explicitly

included this also]. (Jeffrey M. Wooldridge 2020: 222-223; emphasis as in the original);

however, later on, he points out the significance of the presence of intercept (on the same page

223): “Some researchers prefer to drop the overall intercept in the model and to include dummy

variables for each group. …. There is no dummy variable trap in this case because we do not

have an overall intercept.”

The confusion arises from the inadequate care in discussion by some textbook authors that

spreads through the mass of new generation half-wit tutorial bloggers and other media, who

further venture to simplify it, and finally grips the careless novices, who get lured by the ‘simple

logic’ of it. Unfortunately, they choose to ignore the authoritative text books as well as the need

for an approach of mathematical logic. Note that most of the text books are also often

insufficient to bring to light the concepts clearly. Hence this paper seeks to explain this issue

in the framework of its mathematical logic. In the next section we explain dummy variable trap

in terms of its mathematical logic, both empirical and theoretical and Section 3 concludes the

study.

2. Dummy Variable Trap Explained: Theoretical and Practical Substantiation

In regression analysis, a dummy variable or an indicator variable (or simply a dummy) is one

with a binary value (one or zero) to indicate the presence or absence of a category that we may

expect to have some effect on the dependent variable. For example, in gender discrimination

models with, say, agricultural wages as dependent variable, we use a dummy variable to

represent the categorical (nominal) variable of gender, with the dummy variable taking a value

of one (1) for female workers and zero (0) for male workers (or vice versa). Note that since the

nominal variable gender has two categories here (female and male), we can also have two

dummy variables, one for each category, where one dummy takes a value of one (1) for female

workers and zero (0) other wise and the other dummy takes a value of one (1) for male workers

and zero (0) otherwise. Thus we have two cases: for a single categorical variable with two

categories, we can have a model with (i) one dummy variable or (ii) two dummy variables.
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Dummy variable trap is basically a case of perfect multicollinearity. So, what is perfect (exact)

multicollinearity, and what is its consequence for estimation?

2.1 Perfect Multicollinearity

One of the basic assumptions of the ordinary least squares (general linear) model is that the

data matrix X, which is of order n × k, has full column rank k, where k denotes the number of

parameters to be estimated (number of columns in the data matrix), and n is the number of

observations (number of rows of the data matrix), that is, that there is no linear dependence

among the explanatory variables. In this case, XX, the matrix of cross-products of the data

matrix X, is of dimension k × k, and is square, symmetric, and of full rank k. The reason for

this assumption is that the least-squares estimator β� = (X � X) � � X′Y requires the inversion of

(X � X), which is impossible if the rank of X and hence the rank of X′X, is less than � . In a more

general context, if any two columns of X are linearly dependent, then rank (X′X) < � , and β� =

(X � X) � � X � Y becomes incalculable. This is because (X � X) � � involves division by the

determinant of X′X, that is, (X � X) � � =
� � � � � � � (� ¢ � )

| � ¢ � |
, where |X � X| refers to the determinant. If

the determinant of X′X happens to be zero, that is, if the matrix X′X is singular, then inversion

of (X � X) becomes impossible; and this can happen when any two or more columns of X are

linearly dependent, that is, rank (X′X) < � . This situation is called perfect multicollinearity,

which occurs when some or all of the explanatory variables are perfectly collinear. Thus,

essentially, perfect multicollinearity may be evidenced from a singular X′X matrix, or a singular

data matrix, X, itself, if it is a square matrix.

Perfect multicollinearity in the data matrix X appears in the form of linear dependency among

the variables (columns), which in turn occurs in linear combination of the variables. Linear

combination can appear in different ways.

Example 1: For a simple empirical example, let us consider a 2x2 data matrix � = �
1 2
3 4

� ; the

number of columns in the data matrix (the number of parameters to be estimated) k = 2, and let
the first column (C1) represent variable X1 and the second column (C2), variable X2. The

determinant |X| = (14 – 23) = –2; the data matrix is non-singular, it has a rank of 2 = k; and
there is no perfect multicollinearity. Alternatively, here,

X′X = �
1 3
2 4

� �
1 2
3 4

� = �
10 14
14 20

� ,

with a determinant of 4 (= 1020 – 1414); the X′X matrix is non-singular, it has a rank of 2 =
k; there is no linear dependence, no perfect multicollinearity, and the parameters are estimable.

Example 2: Now consider another 2x2 data matrix � = �
1 2
2 4

� ; the determinant |X| = (14 –

22) = 0; the data matrix is singular, it has a rank of 1 < k; the problem here is that the second
column (row) is two-times the first column (row): C2 = 2C1 or R2 = 2R1 (that is, X2 = 2X1), and
this is perfect multicollinearity. Alternatively, here,
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X′X = �
1 2
2 4

� �
1 2
2 4

� = �
5 10

10 20
� ,

with a zero determinant; the X′X matrix is singular, it has a rank of 1 < k; and there is perfect
multicollinearity and the estimation breaks down.

In the above example (2), also note that there is perfect positive correlation between the two

columns (variables): r(X1, X2) = 1; but, so is the case with the first example also! With � =

�
1 2
3 4

� , we have C2 = 1 + C1 or R2 = 2 + R1; (that is, X2 = 1 + X1), and there is perfect positive

correlation between the two columns (variables): r(X1, X2) = 1! Yet, there is no perfect

multicollinearity in this case! That is, X′X is invertible and the estimates are obtainable here! It
simply means that perfect correlation between two variables need not result in perfect
multicollinearity between them.

Mathematically, the first case (C2 = 2C1) relates to a linear function, such as cX2 = bX1, where
b, c ≠ 0, (in our example, b = 2, and c = 1), and the second case (C2 = 1 + C1) to an affine
function, a linear-plus-constant function, such as cX2 = a + bX1, where a, b, c ≠ 0, (in our 
example, a = b = c = 1). Now the question arises: Why in the second (affine function) case,
there is no perfect multicollinearity here?

Note that usually a regression equation represents an affine function, that is with a slope and a
constant (intercept). In this specification, the X data matrix now includes a column of ones
(units) to account for the intercept. That is, in our first example, the data matrix now appears

as � = �
1 1 2
1 3 4

� , where the first column represents the intercept. Now,

X′X = �
1 1
1 3
2 4

� �
1 1 2
1 3 4

� = �
2 4 6
4 10 14
6 14 20

� ,

and the determinant [(21020) + (4146) + (4146) – (6106) – (4420) – (14142)] of this
matrix is zero, because there is perfect multicollinearity (linear dependency among the three

columns) in the data matrix X (as well as in XX): Intercept = X2 – X1, or X2 = Intercept + X1.

Since XX is singular, least squares estimation fails. But note that in the absence of the intercept
in the data matrix, there was no problem at all, despite perfect positive correlation between the
two variables! However, it does not suggest that the presence of the intercept always presents
this problem. For example, consider the data matrix

X = �
1 1 1
1 3 4
1 5 6

� ,

a non-singular matrix with a determinant [(136) + (141) + (151) – (131) – (116) – (451)]
of –2. The corresponding cross-product matrix is

X′X = �
1 1 1
1 3 5
1 4 6

� �
1 1 1
1 3 4
1 5 6

� = �
3 9 11
9 35 43

11 43 53
� ,

and the determinant of this matrix is 4; the matrix is non-singular, and the parameters are
estimable, despite close to unit correlation between the second and third columns of X (that is,
between X1 and X2 variables: r12 = 0.9934).
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Thus, the upshot of this empirical exercise is very simple: when X1 and X2 variables are in
linear function (such as cX2 = bX1, c, b ≠ 0), perfect multicollinearity appears, irrespective of 
the presence/absence of an intercept. On the other hand, when X1 and X2 variables are in affine
function (such as cX2 = a + bX1, where a, b, c ≠ 0), perfect multicollinearity appears only in 
the presence of an intercept, with a = cX2 – bX1 accounting for the intercept column, in the
data matrix.

That is the significance of the intercept column in the data matrix X. This is because the affine
function denotes a non-zero (non-homogeneous) linear combination of the two variables; that
is X2 = a + bX1 implies cX2 + bX1 = a. And if in the data matrix there is a column of values
equivalent to this constant a, then linear dependency occurs. However, a linear function (such
as cX2 = bX1, c, b ≠ 0) is a homogeneous linear combination: here cX2 – bX1 = 0, and the above
condition is irrelevant here.

Note that a (as well as b) in the affine function can take any value (other than zero), even though
the intercept column in the data matrix is in ones, as the following illustrates:

Example 3: Consider X2 = 3 + 2X1 in the X-data matrix

X = �
1 1 5
1 2 7
1 3 9

� ,

where the first column represents intercept and the second and third columns are X1 and X2

(where X2 = 3 + 2X1) respectively. This is a linear combination: X2 – 2X1 = 3, a column of
constant; and the intercept also is a column of constant; hence X is a singular matrix (with zero
determinant). The corresponding

X′X = �
1 1 1
1 2 3
5 7 9

� �
1 1 5
1 2 7
1 3 9

� = �
3 6 21
6 14 46

21 46 155
� ,

also is a singular matrix, and the parameters are inestimable. However, if we consider the data
matrix without the unit (intercept) column, that is,

� = �
1 5
2 7
3 9

� , the corresponding

X′X = �
1 2 3
5 7 9

� �
1 5
2 7
3 9

� = �
14 46
46 155

�

is non-singular, with a determinant of 54, even though X1 and X2 are perfectly positively
correlated (as X2 = 3 + 2X1)! Thus, perfect multicollinearity appears only in the presence of an
intercept column in the data matrix when X1 and X2 variables are in affine function (such as
cX2 = a + bX1, where a, b, c ≠ 0), involving a non-homogeneous linear combination.  

But note that linear combination need not involve only the intercept term. It can also appear
among the explanatory variables:

Example 4: Consider three explanatory variables in the data matrix X: X1, X2, and X3, where
X1 + X2 = X3, a linear combination, where a = b = c = 1:
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X = �
1 4 5
2 1 3
3 3 6

� .

The determinant here is zero. The corresponding

X′X = �
1 2 3
4 1 3
5 3 6

� �
1 4 5
2 1 3
3 3 6

� = �
14 15 29
15 26 41
29 41 70

� ,

also is a singular matrix, and the parameters are inestimable. In the presence of an intercept
also, we will have the same result:

Given X = �
1 1 4 5
1 2 1 3
1 3 3 6

� , where the first column represents intercept,

X′X = �

1 1 1
1 2 3
4 1 3
5 3 6

� �
1 1 4 5
1 2 1 3
1 3 3 6

� = �

3 6 8 14
6 14 15 29
8 15 26 41

14 29 41 70

� ,

with a determinant of zero. Note that in the XX also we have the same linear dependnecy in
both the cases.

Example 5: Linear combination among the explanatory variables in the data matrix X can also
appear as: X1 + X2 = X3 + X4:

In X = �
1 4 3 2
2 1 2 1
3 3 4 2

� , we have a linear dependency, sum of the first two columns (variables)

= sum of the last two columns.

X′X = �

1 2 3
4 1 3
3 2 4
2 1 2

� �
1 4 3 2
2 1 2 1
3 3 4 2

� = �

14 15 19 10
15 26 26 15
19 26 29 16
10 15 16 9

� .

The determinant here also is zero. The same linear dependency is there in the XX.

Generalization

We can generalise the above using a data matrix with a unit column for intercept and two
variables, X1 and X2 over n observations:

� = �
1 � � � � � �
. . . . . .
1 � � � � � �

� such that

X′X = �
1 . . 1
� � � . . � � �
� � � . . � � �

� �
1 � � � � � �
. . . . . .
1 � � � � � �

� = �

� ∑ � � � ∑ � � �
∑ � � � ∑ � � �

� ∑ � � � � � �
∑ � � � ∑ � � � � � � ∑ � � �

�

� .
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As long as there is no perfect multicollinearity in the data matrix, XX is non-singular, hence
invertible and the three estimates are determinate. Now consider three cases: (i) a linear
function: X2 = bX1, b ≠ 0; (ii) an affine function: X2 = a + bX1, a, b ≠ 0 in the presence of the 
intercept column and (iii) an affine function: X2 = a + bX1, a, b ≠ 0 without the intercept column. 

(i) A linear function: X2 = bX1, b ≠ 0. The cross-product matrix now becomes: 

X′X = �

� ∑ � � � � ∑ � � �
∑ � � � ∑ � � �

� � ∑ � � �
�

� ∑ � � � � ∑ � � �
� � � ∑ � � �

�

� .

The determinant of this matrix is:

|X � X| = n ∑ � � �
� ( � � ∑ � � �

� )

+ ∑ � � � ( � ∑ � � �
� )( � ∑ � � � )

+ ∑ � � � ( � ∑ � � �
� )( � ∑ � � � )

– ( � ∑ � � � )( � ∑ � � � ) ∑ � � �
�

– ∑ � � � ( � � ∑ � � �
� ) ∑ � � �

– � ( � ∑ � � �
� )( � ∑ � � �

� ) = 0.

(ii) An affine function: X2 = a + bX1, a, b ≠ 0 in the presence of the intercept column. The 
cross-product matrix now becomes:

X′X = �

� ∑ � � � ( � � + � ∑ � � � )

∑ � � � ∑ � � �
� ( � ∑ � � � + � ∑ � � �

� )

( � � + � ∑ � � � ) ( � ∑ � � � + � ∑ � � �
� ) ( � � � + � � ∑ � � �

� + 2� � ∑ � � � )

� .

The determinant of this matrix is:

|X � X| = n ∑ � � �
� ( � � � + � � ∑ � � �

� + 2� � ∑ � � � )

+ ∑ � � � ( � ∑ � � � + � ∑ � � �
� )( � � + � ∑ � � � )

+ ∑ � � � ( � ∑ � � � + � ∑ � � �
� )( � � + � ∑ � � � )

– ( � � + � ∑ � � � )(� � + � ∑ � � � ) ∑ � � �
�

– ∑ � � � ( � � � + � � ∑ � � �
� + 2� � ∑ � � � ) ∑ � � �

– � ( � ∑ � � � + � ∑ � � �
� )( � ∑ � � � + � ∑ � � �

� ) = 0.
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(iii) An affine function: X2 = a + bX1, a, b ≠ 0 without the intercept column. The data matrix 
has now only two columns for the two variables X1 and X2 over n observations, without the

unit column for intercept: X = �
X � � � � �
. . . .

X � � X � �

� such that the cross-product matrix is:

X′X = �
X � � . . X � �
� � � . . X � �

� �
X � � � � �
. . . .

X � � X � �

� = �
S � � �

� S� � � � � �
S� � � � � � S� � �

� � .

With X2 = a + bX1, a, b ≠ 0, this matrix becomes 

X′X = �
S � � �

� ( � S� � � + � S� � �
� )

( � S� � � + � S� � �
� ) ( � � � + � � S� � �

� + 2� � S� � � )
� .

And the determinant of this matrix is:

|X � X| = ∑ X � �
� (na � + b � ∑ X � �

� + 2ab ∑ X � � )

– ( � ∑ X � � + � ∑ X � �
� )(a ∑ X � � + b ∑ X � �

� ) = � � [� ∑ X � �
�  − (∑ X � � )

� ] ≠ 0.

Note that when a = 0 here, the affine function reduces to linear function, and the determinant
will be zero, rendering OLS estimators indeterminate.

Thus, when X1 and X2 variables are in linear function (such as X2 = bX1, b ≠ 0), perfect 
multicollinearity appears, irrespective of the presence/absence of an intercept column in the
data matrix. On the other hand, when X1 and X2 variables are in affine function (such as X2 =
a + bX1, where a, b ≠ 0), perfect multicollinearity appears only in the presence of an intercept 
column in the data matrix.

Now let us also consider the correlation coefficient between the two variables X1 and X2,

denoted as r12.

� � � =
� � � (� � , � � )

� � � � (� � )∙ � � � (� � )
=

∑( � � � – � � � )( � � � – � � � )/ �

� � � � (� � )∙ � � � (� � )
.

Given the general affine function between the two variables (X2i = a + bX1i, where a, b ≠ 0), 

� � � = � + � � � � , and ( � � � – � � � ) = � ( � � � – � � � ).

Similarly, variance of X2 = Var(a + bX1) = b2Var(X1). Substituting these in the expression for

the correlation coefficient and noting that � � � ( � � ) = ∑( � � � – � � � ) � /� ,

� � � =
∑(� � � – � � � )(� � � – � � � )/ �

� � � � ( � � )∙ � � � ( � � )
=

∑(� � � – � � � )� ( � � � – � � � )/ �

� � � � (� � )∙ � � � � � (� � )
=

� � � � (� � )

� � � � (� � )
= 1.

Now consider the third case above of the affine function: X2 = a + bX1, a, b ≠ 0 without the 

intercept column. In this case, there is perfect correlation between the two variables, but that

does not necessitate perfect multicollinearity, as we have seen.

However, surprisingly, many Econometrics textbooks spread insufficient information in this

important issue. For example, Jan Kmenta (1986: 433) writes: “For the multiple regression
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model with two explanatory variables, perfect multicollinearity means that we can write ….

Xi2 = a + bXi3, where a and b are some fixed numbers and b  0. In this case there is perfect

correlation between the two explanatory variables in the sample.” And “the first [least squares]

normal equation [for the model with two explanatory variables] is exactly equal to the second

normal equation multiplied by b. Therefore, the two equations are not independent, and the

solution for [the parameters] 2 and 3 is indeterminate.”

Anna Koutsoyiannis (1977: 233) says: “If the explanatory variables are perfectly linearly

correlated, that is, if the correlation coefficient for these variables is equal to unity, the

parameters become indeterminate: it is impossible to obtain numerical values for each

parameter separately and the method of least squares breaks down.”

Yongmiao Hong (2020: 72) just writes: “… we have exact or perfect multicollinearity if the

correlation between two explanatory variables is equal to 1 or −1.”

A. H. Studenmund (2017: 222) states: “Perfect multicollinearity violates Classical Assumption

VI, which specifies that no explanatory variable is a perfect linear function of any other

explanatory variable. The word perfect in this context implies that the variation in one

explanatory variable can be completely explained by movements in another explanatory

variable. Such a perfect linear function between two independent variables would be: X1i = 0

+ 1X2i.”

2.2 Dummy Variable Trap

Let us recap our findings on perfect multicollinearity:

The problem occurs with affine functions such as

1. aX1 = bX2,  a, b ≠ 0, 

2. aX1 = bX2 + cX3,  a, b, c ≠ 0, 

3. aX1 + bX2 = cX3 +dX4,  a, b, c, d ≠ 0. 

Perfect multicollinearity appears also with linear functions; for example, in the second of the

above functions, (aX1 = bX2 + cX3,  a, b, c ≠ 0), if the first variable (X1) is a column of constant

(say, X1 = 1), we have a linear function: a = bX2 + cX3 or bX2 = a – cX3. As the intercept

represents a column of units in the regression data matrix X, we have bX2 = 1 – cX3. If X2 and

X3 are two dummy variables for a two-category qualitative variable (say, gender) and b = c =

1, the data matrix X suffers from dummy variable trap, as there is perfect multicollinearity

among the three columns (including the intercept), as we have seen above. But if there is no

intercept column, there would not be any linear dependency, despite a linear relationship

between the two dummy variables: X2 = 1 – X3, again demonstrated above. This we further

explain below.

First, we consider the case of a single qualitative (categorical) variable and then extend it to

cases of two and more qualitative variables.
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2.2.1 Case of One Qualitative (Categorical) Variable

Case 1: Let us consider a very simple model (as in Adrian C. Darnell (1994, A Dictionary of

Econometrics, cited above) of gender discrimination in wage rate, with wage rate (Yi) as the

dependent variable and gender of the individual worker as the independent variable. We know

gender is a qualitative (categorical, nominal) variable and a dummy variable (Gi) is used to

represent it, where Gi = 1 if worker i is male and Gi = 0 if female. The equation of relationship

is then Yi =  + Gi + i, which implies that the expected wage rate of a male [E(Yi| Gi = 1)] is

given by  + , and that for a female [E(Yi| Gi = 0)] is given by . The parameter  thus

represents the difference between the expected wage rates of male and female workers.

Example 1: Suppose the data matrix in this case has six workers, the first three being male and

the last three, female. The matrix with an intercept column of ones for  and the gender dummy

variable is given below. The second column shows that the first three workers are male and the

remining are female.

� =

⎣
⎢
⎢
⎢
⎢
⎡
1 1
1 1
1 1
1 0
1 0
1 0⎦

⎥
⎥
⎥
⎥
⎤

and the X′X = �
1 1 1 1 1 1
1 1 1 0 0 0

�

⎣
⎢
⎢
⎢
⎢
⎡
1 1
1 1
1 1
1 0
1 0
1 0⎦

⎥
⎥
⎥
⎥
⎤

= �
6 3
3 3

� .

The XX is non-singular with a determinant value of nine, and the parameters are estimable.

Note that in this example there are two distinct categories, namely, male and female, but only

one dummy variable is used.

Case 2: Suppose we use two dummy variables: Mi takes the value one if the worker is male

and zero otherwise, while Fi takes the value one if the worker is female and zero otherwise;

then the equation becomes Yi =  + Mi + Fi + i.

Example 2: Let us continue with the above data matrix of six workers, the first three being

male and the last three, female. The matrix with an intercept column of ones for  and the two

(male and female) dummy variables is given below. The second and third columns are

according to the definitions of Mi and Fi as already given above.

� =

⎣
⎢
⎢
⎢
⎢
⎡
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1⎦

⎥
⎥
⎥
⎥
⎤

; X′X = �
1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1

�

⎣
⎢
⎢
⎢
⎢
⎡
1 1 0
1 1 0
1 1 0
1 0 1
1 0 1
1 0 1⎦

⎥
⎥
⎥
⎥
⎤

= �
6 3 3
3 3 0
3 0 3

�

The XX in this case is singular with a determinant value of zero, and the parameters are

inestimable, because the model suffers perfect multicollinearity; with the two dummy variables

for male and female and the intercept column of ones, there is an exact linear relationship
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among the three columns: if  is taken to represent the intercept column of the data matrix, 

= Mi + Fi, that is, the first column equals the sum of second and third columns. This case of

perfect multicollinearity is the dummy variable trap and occurs when, with q dichotomous

qualitative categories, the regression equation is specified to include q dummy variables (for

the q categories) and also a constant term. Note that there is an affine function between the two

dummy variables, Mi and Fi, such that Mi = a + bFi, where a = 1 (= ) and b = –1, and thus

perfect negative correlation also. This we show below:

� � � =
� � � (� , � )

� � � � ( � )∙ � � � ( � )
=

∑( � � – � � )(� � – � � )/ �

� � � � ( � )∙ � � � ( � )
.

and the general affine function between the two variables (Mi = 1 – Fi),

� � = (1 – � � ), and ( � � – � � ) = – ( � � – � � ).

Similarly, variance of M = Var(1 – F) = Var(F). Substituting these in the expression for the

correlation coefficient and noting that Var( � ) = ∑( � � – � � ) � /� ,

� � � =
� � � (� , � )

� � � � ( � )∙ � � � ( � )
=

∑( � � – � � )(� � – � � )/ �

� � � � ( � )∙ � � � ( � )
=

∑(–(� � – � � )(� � – � � )/ �

� � � � ( � )∙ � � � (� )
=

(–)� � � ( � )

� � � (� )
=– 1.

Now, given the definitions of the two dummy variables, that is, Mi takes the value one if the

worker is male and zero otherwise, while Fi takes the value one if the worker is female and

zero otherwise, and the equation of relationship Yi =  + Mi + Fi + i, let us find out the

expected wage rates of the two categories:

The expected wage rate of a male [E(Yi| Mi = 1)] is given by  + , and that for a female [E(Yi|

Fi = 1)] is given by  +  (note that when Mi = 1, Fi = 0 by definition, and vice versa). The

parameter ( – ) thus represents the difference between the expected wage rates of male and

female workers, rendering the parameter  an irrelevant one, (its presence signifying perfect

multicollinearity), as we will see below.

Case 3: Now let us dispense with the intercept column in the above model and in the data

matrix. The model is now Yi = Mi + Fi + i, with the usual definitions of the two dummy

variables.

Example 3: The data matrices are now:

� =

⎣
⎢
⎢
⎢
⎢
⎡
1 0
1 0
1 0
0 1
0 1
0 1⎦

⎥
⎥
⎥
⎥
⎤

; X′X = �
1 1 1 0 0 0
0 0 0 1 1 1

�

⎣
⎢
⎢
⎢
⎢
⎡
1 0
1 0
1 0
0 1
0 1
0 1⎦

⎥
⎥
⎥
⎥
⎤

= �
3 0
0 3

�
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The XX in this case is non-singular with a determinant value of nine, and the parameters are

estimable, because there is no perfect multicollinearity here, despite a perfect negative

correlation between the two columns of the data matrix.

The expected wage rate of a male in this case [E(Yi| Mi = 1)] is given by , and that for a female

[E(Yi| Fi = 1)] is given by . The parameter ( – ) thus represents the difference between the

expected wage rates of male and female workers. And this is the same as the above case

including the intercept : the expected wage rate of a male [E(Yi| Mi = 1)] =  + , and that of

a female [E(Yi| Fi = 1)] =  + . The difference between the two is ( – ). This shows that 

in Example 2 above is irrelevant in the equation used there and that it is its presence that has

activated perfect multicollinearity.

Case 4: Now, let us keep the intercept in the equation and remove one of the dummy variables,

say Fi. The equation of relationship is now: Yi =  + Mi + i, which is the same as the one that

we used earlier (Case 1): Yi =  + Gi + i. This is because, from the first one, the expected

wage rate of a male [E(Yi| Mi = 1)] is given by  + , and that for a female [E(Yi| Mi = 0)] is

given by . The parameter  thus represents the difference between the expected wage rates of

male and female workers. From the second equation, at the same time, we have the expected

wage rate of a male [E(Yi| Gi = 1)] given by  + , and that for a female [E(Yi| Gi = 0)] given

by . The parameter  thus represents the difference between the expected wage rates of male

and female workers. This means  = , and the two equations are the same.

These examples illustrate the remedies for the dummy variable trap. Case one is to use q – 1

dummy variables for q categories along with an intercept term in the model; the omitted

category is set as the ‘base’ here, such that the associated parameters of the q – 1 dummy

variables are then interpreted as differences with respect to the base. In our first example, Yi =

 + Gi + i. female (Gi = 0) is taken as the base such that the expected female wage rate is

represented by the intercept term (), and  represents the difference between expected wages

of male and female workers.

Case two is to use q dummy variables for q categories without an intercept term in the model.

This is illustrated in our later example, Yi = Mi + Fi + i, where we get the expected wage

rate of male and that of female directly from the parameters associated with the corresponding

dummy variables.

However, if our aim is to test for differences (say gender discrimination in wage rates), then

case one (q – 1 dummy variables for q categories along with an intercept) allows a direct

examination of hypotheses of differences, by way of simple t-tests of the coefficients on the

dummy variables.

Generalization

As earlier, we can now generalise the above
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(i) using a data matrix with a unit column for intercept and two dummy variables, D1 and D2

for two categories (say, male and female workers) over n observations:

� = �
1 � � � � � �
. . . . . .
1 � � � � � �

� such that

X′X = �
1 . . 1
� � � . . � � �
� � � . . � � �

� �
1 � � � � � �
. . . . . .
1 � � � � � �

� = �

� ∑ � � � ∑ � � �
∑ � � � ∑ � � �

� ∑ � � � � � �
∑ � � � ∑ � � � � � � ∑ � � �

�

� .

Suppose D1 takes value one if the worker is male and zero otherwise, while D2 takes value one
if the worker is female and zero otherwise, such that D1i + D2i = 1, or D2i = 1 – D1i (an affine
function, such as X2 = a + bX1, with a = 1 and b = –1). We prove that this data matrix involves
dummy variable trap. Substituting for D2i = 1 – D1i in the above cross-product matrix,

X′X = �

� ∑ � � � ∑(1 − � � � )

∑ � � � ∑ � � �
� ∑ � � � (1 − � � � )

∑(1 − � � � ) ∑ � � � (1 − � � � ) ∑(1 − � � �
�

� . Or

X′X = �

� ∑ � � � � − ∑ � � �
∑ � � � ∑ � � �

� ∑ � � � − ∑ � � �
�

� − ∑ � � � ∑ � � � − ∑ � � �
� � + ∑ � � �

� − 2 ∑ � � �

� .

The determinant of this matrix is:

|X � X| = n ∑ � � �
� ( � + ∑ � � �

� − 2 ∑ � � � )

+ ∑ � � � (∑ � � � − ∑ � � �
� )( � − ∑ � � � )

+ ∑ � � � (∑ � � � − ∑ � � �
� )( � − ∑ � � � )

– ( � − ∑ � � � )( � − ∑ � � � ) ∑ � � �
�

– ∑ � � � ( � + ∑ � � �
� − 2 ∑ � � � ) ∑ � � �

– � (∑ � � � − ∑ � � �
� )(∑ � � � − ∑ � � �

� ) = 0.

Thus, this XX is singular with a zero determinant value, and the parameters are inestimable,
because there is perfect multicollinearity here: the third column is the difference between the
first two columns, that is, C3 = C1 – C2, or C1 = C2 + C3, the affine function involving the
intercept column of ones and the two gender dummy variables of the X-data matrix.

(ii) Now if we omit the second dummy variable, the X-data matrix has then only two columns,
one for the intercept (the column of ones) and the other for the dummy variable D1 (say for
male) over n observations:
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X = �
1 � � �
. . . .
1 D� �

� such that the cross-product matrix is:

X′X = �
1 . . 1
� � � . . D� �

� �
1 � � �
. . . .
1 D� �

� = �
n S� � �

S� � � S� � �
� � .

The determinant [� S � � �
� − (S� � � )

� ] is not zero, and the solution is determinate.

(iii) Finally, if we omit the intercept, the X-data matrix is left with only two columns for the
two dummy variables D1 and D2 over n observations:

X = �
D� � � � �

. . . .
D� � D� �

� such that the cross-product matrix is:

X′X = �
D� � . . D� �

� � � . . D� �
� �

D� � � � �
. . . .

D� � D� �

� = �
S� � �

� S� � � � � �
S� � � � � � S � � �

� � .

With D2i = 1 – D1i, this matrix becomes

X′X = �
∑ � � �

� ∑ � � � − ∑ � � �
�

∑ � � � − ∑ � � �
� � + ∑ � � �

� − 2 ∑ � � �
� .

And the determinant of this matrix is:

|X � X| = ∑ D� �
� (n + ∑ D� �

� − 2 ∑ D� � )

– (∑ D� � − ∑ D� �
� )(∑ D� � − ∑ D� �

� ) = [� ∑ D� �
�  −  (∑ D� � )

� ] ≠ 0.

Thus, the cross-product matrix is non-singular and the parameters are estimable.

The last two cases are the possible solutions for dummy variable trap that occurs in the first
case, as perfect multicollinearity appears there in the presence of an intercept column in the X-
data matrix.

Thus, when X1 and X2 variables are in linear function (such as X2 = bX1, b ≠ 0), perfect 
multicollinearity appears, irrespective of the presence/absence of an intercept column in the
data matrix. On the other hand, when X1 and X2 variables are in affine function (such as X2 =
a + bX1, where a, b ≠ 0),  

Now let us also consider the correlation coefficient between the two dummy variables D1 and

D2, denoted as r12.

� � � =
� � � (� � , � � )

� � � � (� � )∙ � � � (� � )
=

∑(� � � – � � � )( � � � – � � � )/ �

� � � � ( � � )∙ � � � (� � )
.

Given the relationship between the two dummy variables (D2i = 1 – D1i),

� � � = 1 − � � � , and ( � � � – � � � ) = −( � � � – � � � ).

Similarly, variance of D2 = Var(1 – D1) = Var(D1). Substituting these in the expression for the

correlation coefficient and noting that � � � ( � � ) = ∑( � � � – � � � ) � /� ,
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� � � =
∑(� � � – � � � )( � � � – � � � )/ �

� � � � ( � � )∙ � � � (� � )
=

∑( � � � – � � � )[ � ( � � � – � � � )]/�

� � � � ( � � )∙ � � � ( � � )
=

� � � � (� � )

� � � ( � � )
= −1.

Now consider the third case above with the two dummy variables only. In this case, there is

perfect (negative) correlation between the two variables, but that does not necessitate perfect

multicollinearity, as there is no intercept column to materialize the perfect multicollinearity in

the affine function (D2i = 1 – D1i).

2.2.2 Case of Two Categorical Variables

See Jack Johnston and John DiNardo (1997: 137); Badi H. Baltagi (2021: 98); and William

Greene (2018: 162) for brief discussion on this topic.

Let us now extend our earlier example of wage discrimination model to include one more

qualitative (categorical) variable, say, race, in addition to the nominal variable gender.

Case 1: Here also we use a dummy variable to represent the nominal variable of race that takes

a value of one (1) for ‘white’ workers and zero (0) for ‘black’ workers (or vice versa). Now,

given the definitions of the two dummy variables, that is, Mi takes the value one if the worker

is male and zero otherwise, while Wi takes the value one if the worker is ‘white’ and zero

otherwise, and the equation of relationship Yi =  + Mi + Wi + i, let us find out the expected

wage rates of the two categories.

The expected wage rate of a white male worker [E(Yi| Mi = 1, Wi = 1)] is given by  +  + ,

and that for a white female worker [E(Yi| Mi = 0, Wi = 1)] is given by  + . The parameter 

thus represents the difference between the expected wage rates of white male and white female

workers. Similarly, the expected wage rate of a black male worker [E(Yi| Mi = 1, Wi = 0)] is

given by  + , and that for a black female worker [E(Yi| Mi = 0, Wi = 0)] is given by . The

parameter  thus represents the difference between the expected wage rates of black male and

black female workers. Thus, we have the following events:

(i) difference between the expected wage rates of white male and white female workers

= ( +  + ) – ( + ) = : gender discrimination.

(ii) difference between the expected wage rates of black male and black female workers

= ( + ) – () = : gender discrimination.

(iii) difference between the expected wage rates of white male and black male workers

= ( +  + ) – ( + ) = : racial discrimination.

(iv) difference between the expected wage rates of white female and black female

workers = ( + ) – () = : racial discrimination.

(v) difference between the expected wage rates of white male and black female workers

= ( +  + ) – () = ( + ): compounded gender-race discrimination.

(vi) difference between the expected wage rates of white female and black male workers

= ( + ) – ( + ) = ( – ): compounded racial supremacy, if  > .
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If the parameter estimates are significant, the corresponding sample data exemplify a case of

both gender and racial discrimination in agricultural wage rates.

Example 1: Let us continue with the above data matrix of six workers, the first three being

male and the last three, female, now modified by including one more dummy for race, every

second worker being black. The matrix with an intercept column of ones for  (first column)

and the two dummy variables for gender (second column, Mi = 1 for male and zero for female)

and race (third column, Wi = 1 for white and zero for black) is given below.

� =

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1
1 1 0
1 1 1
1 0 0
1 0 1
1 0 0⎦

⎥
⎥
⎥
⎥
⎤

; X′X = �
1 1 1 1 1 1
1 1 1 0 0 0
1 0 1 0 1 0

�

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1
1 1 0
1 1 1
1 0 0
1 0 1
1 0 0⎦

⎥
⎥
⎥
⎥
⎤

= �
6 3 3
3 3 2
3 2 3

�

The XX in this case is non-singular with a determinant value of 12, and the parameters are

estimable, as the X-data matrix harbours no perfect multicollinearity.

Case 2: Now, what will happen if we include two more dummy variables to represent female

workers and black workers? In this case, the equation of relationship becomes Yi =  + Mi +

Fi + Wi + Bi + i, where Fi takes value one if the worker is female and zero otherwise, while

Bi takes value one if the worker is ‘black’ and zero otherwise. It is evident that in this case we

have perfect multicollinearity with Mi + Fi = Wi + Bi = , as the example below shows.

Example 2: In this case, we include two more dummy variables, one for female (third column,

Fi = 1 for female and zero otherwise) and the other for black (fifth column, Bi = 1 for black and

zero otherwise).

� =

⎣
⎢
⎢
⎢
⎢
⎡
1 1 0 1 0
1 1 0 0 1
1 1 0 1 0
1 0 1 0 1
1 0 1 1 0
1 0 1 0 1⎦

⎥
⎥
⎥
⎥
⎤

;

X′X =

⎣
⎢
⎢
⎢
⎡
1 1 1 1 1 1
1 1 1 0 0 0
0 0 0 1 1 1
1 0 1 0 1 0
0 1 0 1 0 1⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
1 1 0 1 0
1 1 0 0 1
1 1 0 1 0
1 0 1 0 1
1 0 1 1 0
1 0 1 0 1⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
6 3 3 3 3
3 3 0 2 1
3 0 3 1 2
3 2 1 3 0
3 1 2 0 3⎦

⎥
⎥
⎥
⎤

The XX in this case is singular with a determinant value of zero, leaving the parameters

inestimable, as in this case we have perfect multicollinearity with  = Mi + Fi = Wi + Bi, evident

from the columns of the X-data matrix and the XX matrix: C1= C2 + C3 = C4 + C5.
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Case 3: Now let us dispense with the intercept column in the above model and in the data

matrix, as we have done earlier in the case of a single categorical variable as regressor to avoid

perfect multicollinearity. The model is now Yi = Mi + Fi + Wi + Bi + i,, with the usual

definitions of the four dummy variables. With this, let us consider the following events:

(i) difference between the expected wage rates of white male and white female workers

= ( + ) – ( + ) = ( – ): gender discrimination.

(ii) difference between the expected wage rates of black male and black female workers

= ( + ) – ( + ) = ( – ): gender discrimination.

(iii) difference between the expected wage rates of white male and black male workers

= ( + ) – ( + ) = ( – ): racial discrimination.

(iv) difference between the expected wage rates of white female and black female

workers = ( + ) – ( + ) = ( – ): racial discrimination.

(v) difference between the expected wage rates of white male and black female workers

= ( + ) – ( + ): compounded gender-race discrimination.

(vi) difference between the expected wage rates of white female and black male workers

= ( + ) – ( + ): compounded racial supremacy if ( + ) > ( + ).

Note that the results from the events (i) and (ii) represent gender discrimination, as in Case 1

above, and from (iii) and (iv) represent racial discrimination. However, this model also suffers

from perfect multicollinearity: Mi + Fi = Wi + Bi. Thus, the parameters remain indeterminate,

as the following example shows.

Example 3: The data matrix is now:

� =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 1 0
1 0 0 1
1 0 1 0
0 1 0 1
0 1 1 0
0 1 0 1⎦

⎥
⎥
⎥
⎥
⎤

;

X′X = �

1 1 1 0 0 0
0 0 0 1 1 1
1 0 1 0 1 0
0 1 0 1 0 1

�

⎣
⎢
⎢
⎢
⎢
⎡
1 0 1 0
1 0 0 1
1 0 1 0
0 1 0 1
0 1 1 0
0 1 0 1⎦

⎥
⎥
⎥
⎥
⎤

= �

3 0 2 1
0 3 1 2
2 1 3 0
1 2 0 3

�

The XX here also is singular with a determinant value of zero, leaving the parameters

inestimable, with perfect multicollinearity given by Mi + Fi = Wi + Bi, evident from the columns

of the X-data matrix and the XX matrix: C1 + C2 = C3 + C4. This suggests that we need to omit

one dummy variable here.
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Case 4 (a): Let us now omit one dummy variable in the above model and in the data matrix,

say, Bi. The model is now Yi = Mi + Fi + Wi + i,, with the usual definitions of the three

dummy variables. With this, let us consider the following events:

(i) difference between the expected wage rates of white male and white female workers

= ( + ) – ( + ) = ( – ): gender discrimination.

(ii) difference between the expected wage rates of black male and black female workers

= ( – ): gender discrimination.

(iii) difference between the expected wage rates of white male and black male workers

= ( + ) – () = (): racial discrimination.

(iv) difference between the expected wage rates of white female and black female

workers = ( + ) – () = (): racial discrimination.

(v) difference between the expected wage rates of white male and black female workers

= ( + ) – (): compounded gender-race discrimination.

(vi) difference between the expected wage rates of white female and black male workers

= ( + ) – (): compounded racial supremacy, if ( + ) > ().

The results from the events (i) and (ii) represent gender discrimination, same as in Case 3

above, and from (iii) and (iv) represent racial discrimination, same as in Case 1. Note that this

model does not suffer from perfect multicollinearity.

Example 4(a): The data matrix is now:

� =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 1
1 0 0
1 0 1
0 1 0
0 1 1
0 1 0⎦

⎥
⎥
⎥
⎥
⎤

; X′X = �
1 1 1 0 0 0
0 0 0 1 1 1
1 0 1 0 1 0

�

⎣
⎢
⎢
⎢
⎢
⎡
1 0 1
1 0 0
1 0 1
0 1 0
0 1 1
0 1 0⎦

⎥
⎥
⎥
⎥
⎤

= �
3 0 2
0 3 1
2 1 3

�

The XX now is non-singular with a determinant value of 12, capable of estimating the

parameters, as there is no perfect multicollinearity now.

Case 4 (b): The same model we can re-specify by omitting one of the two dummy variables of

‘gender’, say, Fi, and including both the dummies of ‘race’. The model is now Yi = Mi + Wi

+ Bi + i,, with the usual definitions of the three dummy variables. Then we have the following

events:

(i) difference between the expected wage rates of white male and white female workers

= ( + ) – () = (): gender discrimination.

(ii) difference between the expected wage rates of black male and black female workers

= ( + ) – () = (): gender discrimination.

(iii) difference between the expected wage rates of white male and black male workers

= ( + ) – ( + ) = ( – ): racial discrimination.
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(iv) difference between the expected wage rates of white female and black female

workers = ( – ): racial discrimination.

(v) difference between the expected wage rates of white male and black female workers

= ( + ) – (): compounded gender-race discrimination.

(i) difference between the expected wage rates of white female and black male workers

= () – ( + ): compounded racial supremacy, if  > ( + ).

The results from the events (i) and (ii) here represent gender discrimination, same as in Case 1

above, and from (iii) and (iv) represent racial discrimination, same as in Case 3. This model

also does not have any perfect multicollinearity.

Example 4(b): The data matrix is now:

� =

⎣
⎢
⎢
⎢
⎢
⎡
1 1 0
1 0 1
1 1 0
0 0 1
0 1 0
0 0 1⎦

⎥
⎥
⎥
⎥
⎤

; X′X = �
1 1 1 0 0 0
1 0 1 0 1 0
0 1 0 1 0 1

�

⎣
⎢
⎢
⎢
⎢
⎡
1 1 0
1 0 1
1 1 0
0 0 1
0 1 0
0 0 1⎦

⎥
⎥
⎥
⎥
⎤

= �
3 2 1
2 3 0
1 0 3

�

The XX here also is non-singular with the same determinant value of 12; there is no perfect

multicollinearity, and the parameter estimates are possible.

2.2.3 Case of Three Categorical Variables

Unfortunately, no available textbooks deal with this case. So, let us now extend the above

discrimination model (with gender and race variables) to include one more qualitative

(categorical) variable, say, skill, with two categories, skilled and unskilled.

Case 1: When we use only one (q – 1) dummy variable for two (q) categories of every

qualitative variable along with an intercept, no dummy variable trap appears. Thus, the

equation of relationship Yi =  + Mi + Wi + Si + i, where Si = 1 if the worker is skilled

and zero otherwise, is valid. Some of the possible events are:

(ii) difference between the expected wage rates of white skilled male and white skilled

female workers = ( +  +  + ) – ( +  + ) = (): gender discrimination.

(iii) difference between the expected wage rates of black skilled male and black skilled

female workers = ( +  + ) – ( + ) = (): gender discrimination.

(iv) difference between the expected wage rates of white skilled male and black skilled

male workers = ( +  +  + ) – ( +  + ) = (): racial discrimination.

(v) difference between the expected wage rates of white skilled female and black

skilled female workers = ( +  + ) – ( + ) = (): racial discrimination.
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(vi) difference between the expected wage rates of white skilled male and black skilled

female workers = ( +  +  + ) – ( + ) = ( + ): compounded gender and racial

discrimination.

(vii) difference between the expected wage rates of white skilled female and black

skilled male workers = ( +  + ) – ( +  + ) = ( – ): compounded racial

supremacy, if  > .

Among the unskilled workers also, we have the same results, with  = 0. Considering both

the skilled and unskilled workers,

(viii) difference between the expected wage rates of white skilled male and white

unskilled skilled female workers = ( +  +  + ) – ( + ) = ( + ): compounded

gender-skill discrimination.

(ix) difference between the expected wage rates of black skilled male and black

unskilled female workers = ( +  + ) – () = ( + ): compounded gender-skill

discrimination.

(x) difference between the expected wage rates of white skilled male and black

unskilled male workers = ( +  +  + ) – ( + ) = ( + ): compounded race-

skill discrimination.

(xi) difference between the expected wage rates of white skilled female and black

unskilled female workers = ( +  + ) – () = ( + ): compounded race-skill

discrimination.

(xii) difference between the expected wage rates of white skilled male and black

unskilled female workers = ( +  +  + ) – () = ( +  + ): compounded gender-

race-skill discrimination.

(xiii) difference between the expected wage rates of white skilled female and black

unskilled male workers = ( +  + ) – ( + ) = ( +  – ): compounded race-

skill supremacy, if ( + ) > .

Example 1: Suppose in the X-data matrix with an intercept and two dummy variables for gender

(column 2) and race (column 3), we have one more column, representing skilled workers;

assume that the first two of the three male (and female) workers are skilled, such that the X-

data matrix is now

� =

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1 1
1 1 0 1
1 1 1 0
1 0 0 1
1 0 1 1
1 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

;
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X′X = �

1 1 1 1 1 1
1 1 1 0 0 0
1 0 1 0 1 0
1 1 0 1 1 0

�

⎣
⎢
⎢
⎢
⎢
⎡
1 1 1 1
1 1 0 1
1 1 1 0
1 0 0 1
1 0 1 1
1 0 0 0⎦

⎥
⎥
⎥
⎥
⎤

= �

6 3 3 4
3 3 2 2
3 2 3 2
4 2 2 4

�

The XX is non-singular with a determinant value of 16; there is no perfect multicollinearity,

and the parameter estimates are possible.

Case 2: However, let us see what happens if we extend the Case 4(a) or 4(b) above to include

the two categories of the new variable skill (without an intercept). In this case, the model

becomes, say, Yi = Mi + Wi + Bi + Si + Ui + i, where Ui = 1 if the worker is unskilled

and zero otherwise. That is, we use one dummy for gender and two dummies each for race and

skill variables. Evidently, we can find perfect multicollinearity here: Wi + Bi = Si + Ui.

Example 2: The X-data and the XX matrices in this case are:

� =

⎣
⎢
⎢
⎢
⎢
⎡
1 1 0 1 0
1 0 1 1 0
1 1 0 0 1
0 0 1 1 0
0 1 0 1 0
0 0 1 0 1⎦

⎥
⎥
⎥
⎥
⎤

;

X′X =

⎣
⎢
⎢
⎢
⎡
1 1 1 0 0 0
1 0 1 0 1 0
0 1 0 1 0 1
1 1 0 1 1 0
0 0 1 0 0 1⎦

⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎡
1 1 0 1 0
1 0 1 1 0
1 1 0 0 1
0 0 1 1 0
0 1 0 1 0
0 0 1 0 1⎦

⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
3 2 1 2 1
2 3 0 2 1
1 0 3 2 1
2 2 2 4 0
1 1 1 0 2⎦

⎥
⎥
⎥
⎤

Perfect multicollinearity in terms of Wi + Bi = Si + Ui appears here in the columns of both the

X-data and XX matrices (C2 + C3 = C4 + C5), rendering the latter a singular matrix with zero

determinant.

Case 3: The above means we have to omit any one dummy variable out of these four. This

yields the new model Yi = Mi + Wi + Bi + Si + i, or Yi = Mi + Wi + Si + Ui + i, or

Yi = Mi + Fi + Wi + Si + i, without any perfect multicollinearity.

Example 2: The X-data and the XX matrices for the last model (Yi = Mi + Fi + Wi + Si +

i,) are:
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� =

⎣
⎢
⎢
⎢
⎢
⎡
1 0 1 1
1 0 0 1
1 0 1 0
0 1 0 1
0 1 1 1
0 1 0 0⎦

⎥
⎥
⎥
⎥
⎤

; X′X = �

1 1 1 0 0 0
0 0 0 1 1 1
1 0 1 0 1 0
1 1 0 1 1 0

�

⎣
⎢
⎢
⎢
⎢
⎡
1 0 1 1
1 0 0 1
1 0 1 0
0 1 0 1
0 1 1 1
0 1 0 0⎦

⎥
⎥
⎥
⎥
⎤

= �

3 0 2 2
0 3 1 2
2 1 3 2
2 2 2 4

�

The XX is non-singular with a determinant value of 16; there is no perfect multicollinearity,

and the parameter estimates are determinate.

In short, we have the following points to avoid dummy variable trap in the context of two or

more qualitative (categorical) variables:

(i) If the intercept (constant) is retained, use q – 1 dummy variables for q categories of every

qualitative variable;

(ii) If the intercept is dropped, use q – 1 dummy variables for q categories of p – 1 of p

qualitative variables; that is, we can use q dummy variables for all q categories of only one

qualitative variable; with all other qualitative variables, use only q – 1 dummy variables for q

categories.

3. Conclusion

It is good to remember the summary assessment given by Adrian Pagan in 1989 of the work

on Granger causality:

“There was a lot of high-powered analysis of this topic, but I came away from a reading

of it with the feeling that it was one of the most unfortunate turnings for econometrics

in the last two decades, and it has probably generated more nonsense results than

anything else during that time.” (Pagan 1989: 325).

Strangely, it is the negatives of the information revolution that seem to have captured the fancy

of some of the new generation self-styled pundits of econometrics; the proliferation of (mostly

pirated) econometric software on the one hand and the ‘impressively simplifying’ online

tutorials on the other hand has “generated more nonsense results than anything else” from these

package-driven self-styled econometricians at the cost of theoretical understanding and

assessment. Unfortunately, most of the econometrics text books are also often insufficient to

bring to light the concepts clearly. Hence this paper has sought to explain the issue of perfect

multicollinearity and dummy variable trap in the framework of mathematical logic.
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Appendix

Dummy Variable Trap Explained: Some Authoritative Sources

(a) Case of One Categorical Variable

(b) We start with Adrian C. Darnell (1994, A Dictionary of Econometrics). He considers in

the section on ‘Dummy variables’, “a very simple model” with hours of labour supplied

(Yi) as the dependent variable (DV, regressand) and wage rate (Xi) and sex of the

individual worker (Gi) as the independent variables (IVs, regressors). A dummy (Di) is

used to represent the sex “where Di = 1 if individual i is male and Di = 0 if female”.

The equation of relationship is then “Yi =  + Xi + Di + i, which implies that the

expected hours of labour supplied by a male, facing a wage rate of X0, is given by  +

X0 + ; that for a female facing the same wage rate is given by  + X0. The parameter

 thus represents the difference between the expected labour supplies of men and

women who face the same wage rate. It is to be noted immediately that in this case

there are two categories to be distinguished, namely, male and female, but only one

dummy is used. Suppose two dummies were used: Dm
i takes the value one if the

individual is male and zero otherwise while Df
i takes the value one if the individual is

female and zero otherwise; then Yi =  + Xi + Dm
i + Df

i + i. This model cannot be

estimated, for it suffers perfect multicollinearity. This may be noted from the fact that

the parameter  may be seen as the coefficient on a dummy variable, , everyone of

whose elements is unity; hence, in the model with the two dummies there is an exact

linear relationship between the regressors , Dm and Df:  = Dm + Df. This situation is

referred to as the dummy variable trap and occurs when, with p dichotomous qualitative

categories, the regression equation is specified to include p linearly independent 0-1

dummies and also a constant term. With p categories, if a constant term is to be

included, one category should be set as the ‘base’ and only p – 1 dummies are included

so that their associated parameters are then interpreted as differences with respect to the

base. Hence in the model with only one dummy for the individual’s sex, female labour

supply is the base and  represents the difference between men and women. One could,

of course, use two dummies in such a situation but one would then omit the constant

term: Yi = Xi + mDm
i + fDf

i + i. This model, without a constant term, may be

estimated and here m + X0 is the expected labour supply of a male facing a wage rate

of X0, while a female is expected to supply f + X0. In the model with only one dummy,

the corresponding supplies are  + X0 +  and  + X0; hence  +  = m and  = f,

demonstrating that the use of the one dummy sets the female as the base. Including a

constant term, then, in a model which incorporates dichotomous dummy variables

demands that with p categories only p – 1 dummies are used, and their associated

parameters represent differences with respect to a chosen base; the choice of base is

without loss of generality. The alternative is to exclude the constant explicitly and use

all p dummies; however, one use of dummies is to test for differences, and in the former

approach allows a direct examination of hypotheses of differences, via simple t-tests of

the coefficients on the dummy variables.” P. 108-109.
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(c) Next comes J. Johnston’s Econometric Methods (1972, 2nd edition); he considers a

consumption function with two dummy variables, one for wartime and the other for

peacetime; that is, “X1 = 1 in each wartime year and zero in each peacetime year; X2 =

1 in each wartime year and zero in each peacetime year.… At this stage, we must warn

the readers of the dummy variable trap. If explanatory variables such as [these dummy

variables] are used in conjunction with a regression program that automatically

produces an intercept term, then the estimating procedure breaks down, for this is

equivalent to using an expanded data matrix … in which the first is a column of units

and the remaining” two columns are those of the two dummy variables. “A linear

dependence then exists between the columns, that is, col(1) – col(2) – col(3) … = 0

[that is, a null column vector] so that (X′X) is singular.” (p. 178-179).

(d) William H. Greene in his Econometric Analysis (2020, 8th edition) explains: “Note that

only three of the four quarterly dummy variables are included in the model. If the fourth

were included, then the four dummy variables would sum to one at every observation,

which would replicate the constant term—a case of perfect multicollinearity. This is

known as the dummy variable trap. To avoid the dummy variable trap, we drop the

dummy variable for the fourth quarter. (Depending on the application, it might be

preferable to have four separate dummy variables and drop the overall constant. See

Suits (1984) and Greene and Seaks (1991).” (p. 197; emphasis as in the original; also

see pp. 199, 202).

(e) According to James H. Stock and Mark W. Watson (2020. Introduction to

Econometrics, 4th ed.), “[One] possible source of perfect multicollinearity arises when

multiple binary, or dummy, variables are used as regressors. For example, suppose you

have partitioned the school districts into three categories: rural, suburban, and urban.

Each district falls into one (and only one) category. Let these binary variables be Rurali,

which equals 1 for a rural district and equals 0 otherwise; Suburbani; and Urbani. If you

include all three binary variables in the regression along with a constant, the regressors

will be perfectly multicollinear: Because each district belongs to one and only one

category, Rurali + Suburbani + Urbani = 1 = X0i, where X0i denotes the constant

regressor introduced in Equation (6.6). Thus, to estimate the regression, you must

exclude one of these four variables, either one of the binary indicators or the constant

term. By convention, the constant term is typically retained, in which case one of the

binary indicators is excluded. For example, if Rurali were excluded, then the coefficient

on Suburbani would be the average difference between test scores in suburban and rural

districts, holding constant the other variables in the regression.

“In general, if there are G binary variables, if each observation falls into one and only

one category, if there is an intercept in the regression, and if all G binary variables are

included as regressors, then the regression will fail because of perfect multicollinearity.

This situation is called the dummy variable trap. The usual way to avoid the dummy
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variable trap is to exclude one of the binary variables from the multiple regression, so

only G - 1 of the G binary variables are included as regressors. In this case, the

coefficients on the included binary variables represent the incremental effect of being

in that category, relative to the base case of the omitted category, holding constant the

other regressors. Alternatively, all G binary regressors can be included if the intercept

is omitted from the regression.” (pp. 229-230, emphasis as in the original; also see p.

777)

(f) Christopher Dougherty (2011, Introduction to Econometrics. 4th ed.) writes: “What

would happen if you included a dummy variable for the reference category [in addition

to the constant]? There would be two consequences.

“First, were it possible to compute regression coefficients, you would not be able to

give them an interpretation. The coefficient b1 is a basic estimate of the intercept, and

the coefficients of the dummies are the estimates of the increase in the intercept from

this basic level, but now there is no definition of what is basic, so the interpretation

collapses.

“The other consequence is that the numerical procedure for calculating the regression

coefficients will break down and the computer will simply send you an error message

(or possibly, in sophisticated applications, drop one of the dummies for you). Suppose

that there are m dummy categories and you define dummy variables D1,…., Dm. Then,

in observation i, Dji = 1 because one of the dummy variables will be equal to 1 and all

the others will be equal to 0. But the intercept 1 is really the product of the parameter

1 and a special variable whose value is 1 in all observations …. Hence, for all

observations, the sum of the dummy variables is equal to this special variable, and one

has an exact linear relationship among the variables in the regression model. This is

known as the dummy variable trap. As a consequence, the model is subject to a special

case of exact multicollinearity, making it impossible to compute regression coefficients.

“An alternative procedure for avoiding the dummy variable trap is to drop the intercept

from the model. The special unit variable is thereby dropped and there is no longer an

exact linear relationship among the variables.” (p. 235-237).

(g) Chris Brooks in his Introductory econometrics for finance (2019, 4th edition), says: “We

could either include all three dummy variables together (and not include an intercept in

the regression equation) or only include two of the dummy variables and retain the

intercept. If we include all three dummy variables and the intercept at the same time,

the regression model could not be estimated and this is known as the dummy variable

trap.” (p. 224; emphasis as in the original). In Chapter 10, he explains in detail: “The

sum of the four dummies would be 1 in every time period. Unfortunately, this sum is

of course identical to the variable that is implicitly attached to the intercept coefficient.

Thus, if the four dummy variables and the intercept were both included in the same
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regression, the problem would be one of perfect multicollinearity so that (X′X)−1 would 

not exist and none of the coefficients could be estimated. This problem is known as the

dummy variable trap. The solution would be either to just use three dummy variables

plus the intercept, or to use the four dummy variables with no intercept.” (P. 578;

emphasis as in the original).

(h) In Badi H. Baltagi’s Econometrics (2021, 6th Edition), we find “dummy variable trap”

as follows: “Briefly stated, there will be perfect multicollinearity between MALE,

FEMALE, and the constant. In fact, MALE + FEMALE = 1. Some researchers may

choose to include the intercept and exclude one of the gender dummy variables, say

MALE.” (P. 97; emphasis as in the original).

(i) Damodar N. Gujarati and Dawn C. Porter (2009. Basic econometrics. 5th ed.) give a

detailed discussion: “Although they are easy to incorporate in the regression models,

one must use the dummy variables carefully. In particular, consider the following

aspects:

“1. In Example 9.1, to distinguish the three regions, we used only two dummy variables,

D2 and D3. Why did we not use three dummies to distinguish the three regions? Suppose

we do that and write the model (9.2.1) as:

Yi = α + β1D1i + β2D2i + β3D3i + ui (9.2.6)

“where D1i takes a value of 1 for states in the West and 0 otherwise. Thus, we now have

a dummy variable for each of the three geographical regions. Using the data in Table

9.1, if you were to run the regression (9.2.6), the computer would “refuse” to run the

regression (try it).6 (6Actually you will get a message saying that the data matrix is

singular.) Why? The reason is that in the setup of Eq. (9.2.6) where you have a dummy

variable for each category or group and also an intercept, you have a case of perfect

collinearity, that is, exact linear relationships among the variables. Why? Refer to

Table 9.1. Imagine that now we add the D1 column, taking the value of 1 whenever a

state is in the West and 0 otherwise.

“Now if you add the three D columns horizontally, you will obtain a column that has

51 ones in it. But since the value of the intercept α is (implicitly) 1 for each observation,

you will have a column that also contains 51 ones. In other words, the sum of the three

D columns will simply reproduce the intercept column, thus leading to perfect

collinearity. In this case, estimation of the model (9.2.6) is impossible.

“The message here is: If a qualitative variable has m categories, introduce only (m

− 1) dummy variables. In our example, since the qualitative variable “region” has three

categories,
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we introduced only two dummies. If you do not follow this rule, you will fall into what

is called the dummy variable trap, that is, the situation of perfect collinearity or

perfect multicollinearity, if there is more than one exact relationship among the

variables. This rule also applies if we have more than one qualitative variable in the

model, an example of which is presented later. Thus we should restate the preceding

rule as: For each qualitative regressor, the number of dummy variables introduced

must be one less than the categories of that variable. Thus, if in Example 9.1 we had

information about the gender of the teacher, we would use an additional dummy

variable (but not two) taking a value of 1 for female and 0 for male or vice versa.

“2. The category for which no dummy variable is assigned is known as the base,

benchmark, control, comparison, reference, or omitted category. And all

comparisons are made in relation to the benchmark category…….

“6. We warned above about the dummy variable trap. There is a way to circumvent this

trap by introducing as many dummy variables as the number of categories of that

variable, provided we do not introduce the intercept in such a model. Thus, if we drop

the intercept term from Eq. (9.2.6), and consider the following model,

Yi = β1D1i + β2D2i + β3D3i + ui (9.2.7)

we do not fall into the dummy variable trap, as there is no longer perfect collinearity.

But make sure that when you run this regression, you use the no-intercept option in

your regression package………

“…. with the intercept suppressed, and allowing a dummy variable for each category,

we obtain directly the mean values of the various categories.” (pp. 281-282, emphasis

as in the original).

(j) According to Dimitrios Asteriou and Stephen G. Hall (2021, Applied Econometrics 4th

Ed.), “This concept [perfect multicollinearity] can be understood better by using the

dummy variable trap. Take, for example, X1 to be the intercept (so X1 = 1), and X2, X3,

X4 and X5 to be seasonal dummies for quarterly time series data (that is, X2 takes the

value of 1 for the first quarter, 0 otherwise; X3 takes the value of 1 for the second quarter,

0 otherwise and so on). Then in this case X2 + X3 + X4 + X5 = 1; and because X1 = 1 then

X1 = X2 + X3 + X4 + X5. So, …. this set of variables is linearly dependent.” They note

that “linear dependence means that one variable can be expressed as a linear

combination of one or more, or even all, of the other variables.” (Pp. 104-105; also see

p. 223, 226).

From Some Internet Sources:

(a) “In the above model, the sum of all category dummy variable for each row is equal to

the intercept value of that row - in other words there is perfect multi-collinearity (one
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value can be predicted from the other values). Intuitively, there is a duplicate category:

if we dropped the male category it is inherently defined in the female category (zero

female value indicate male, and vice-versa). The solution to the dummy variable trap is

to drop one of the categorical variables (or alternatively, drop the intercept constant) -

if there are m number of categories, use m – 1 in the model, the value left out can be

thought of as the reference value and the fit values of the remaining categories represent

the change from this reference.”4

(b) “If dummy variables for all categories were included, their sum would equal 1 for all

observations, which is identical to and hence perfectly correlated with the vector-of-

ones variable whose coefficient is the constant term; if the vector-of-ones variable were

also present, this would result in perfect multicollinearity, so that the matrix inversion

in the estimation algorithm would be impossible. This is referred to as the dummy

variable trap.”5

(c) “One common error is the dummy variable trap, in which a complete set of dummy

variables and an intercept, or more than one complete set of dummy variables, are

included in a regression. For example, including a variable for female gender (coded

1/0), a variable for male gender, and an intercept would cause the regression to fail.”6

(b) Case of More Than One Categorical Variable

(a) Jack Johnston and John DiNardo (1997, Econometric Methods 4th ed.) explains: “If

there are two sets of dummy variables in a relationship [two separate categorical

variables, say, gender and race] and the constant is suppressed, the estimation procedure

still breaks down, because the included dummy variables are linearly dependent (the

sum of the first set minus the sum of the second set gives the zero vector). If a constant

is retained, one dummy variable must be dropped from each set; and this rule obviously

extends to three or more sets.” (p 137).

(b) Badi H. Baltagi (2021 Econometrics 6th ed.) continues with his example of dummy

variable trap using the categorical variable gender. “What happens when another

qualitative variable is included, to depict another classification of the individuals in the

sample, say for example, race? If there are three race groups in the sample, WHITE,

BLACK, and HISPANIC, one could create a dummy variable for each of these

4 https://www.algosome.com/articles/dummy-variable-trap-regression.html.

5 https://en.wikipedia.org/wiki/Dummy_variable_(statistics)

6 https://www.encyclopedia.com/social-sciences-and-law/sociology-and-social-reform/sociology-
general-terms-and-concepts/multicollinearity.
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classifications. For example, WHITE will take the value 1 when the individual is White

and 0 when the individual is non-White. Note that the dummy variable trap does not

allow the inclusion of all three categories as they sum up to 1. Also, even if the intercept

is dropped, once MALE and FEMALE are included, perfect multicollinearity is still

present because MALE + FEMALE = WHITE + BLACK + HISPANIC. Therefore,

one category from race should be dropped. Suits (1984) argues that the researcher

should use the dummy variable category omission to his or her advantage, in

interpreting the results, keeping in mind the purpose of the study. For example, if one

is interested in comparing earnings across gender holding race constant, the omission

of MALE is natural, whereas if one is interested in the race differential in earnings

holding gender constant, one of the race variables should be omitted. Whichever

variable is omitted, this becomes the base category for which the other earnings are

compared. Most researchers prefer to keep an intercept, although regression packages

allow for a no intercept option. In this case one should omit one category from each of

the race and gender classifications.” (p. 98)

(c) William Greene (2018 Econometric Analysis, 8th ed) discusses the case of sets of

categories: “The case in which several sets of dummy variables are needed is much the

same as those we have already considered, with one important exception. Consider a

model of state-wide per capita expenditure on education, y, as a function of state-wide

per capita income, x. Suppose that we have observations on all n = 50 states for T = 10

years. A regression model that allows the expected expenditure to change over time as

well as across states would be

yit = a + bxit + di + ut + eit.

As before, it is necessary to drop one of the variables in each set of dummy variables

to avoid the dummy variable trap. For our example, if a total of 50 state dummies and

10 time dummies is retained, a problem of perfect multicollinearity remains; the sums

of the 50 state dummies and the 10 time dummies are the same, that is, 1. One of the

variables in each of the sets (or the overall constant term and one of the variables in one

of the sets) must be omitted.” (p.162)



32

REFERENCES

Asteriou, Dimitrios and Stephen G. Hall 2021, Applied Econometrics 4th Edition, Macmillan

Education Limited, London:

Baltagi, Badi H. 2021 Econometrics Sixth Edition. Springer.

Brooks, Chris 2019 Introductory econometrics for finance, Fourth edition, Cambridge

University Press

Darnell, Adrian C. 1994. A Dictionary of Econometrics. Edward Elgar, Cheltenham, UK.

Das, Panchanan 2019. Econometrics in Theory and Practice: Analysis of Cross Section, Time

Series and Panel Data with Stata 15.1. Springer.

Dougherty, Christopher 2011. Introduction to Econometrics. 4th ed. Oxford University Press

Inc., New York

Greene, W., and T. Seaks. “The Restricted Least Squares Estimator: A Pedagogical Note.”

Review of Economics and Statistics, 73, 1991, pp. 563–567.

Greene, William H. 2020. Econometric Analysis 8th ed., Pearson.

Gujarati, Damodar N. and Dawn C. Porter. 2009. Basic econometrics. 5th ed. McGraw-Hill

Hong, Yongmiao 2020. Foundations of Modern Econometrics: A Unified Approach.

Johnston, J 1972 Econometric methods 2nd ed. McGraw-Hill. p. 178.

Johnston, J. and John DiNardo 1997, Econometric methods 4th ed. McGraw-Hill.

Koutsoyiannis, A. 1977. Theory of Econometrics: An Introductory Exposition of Econometric Methods.

2nd ed. MacMillan Press Ltd., London.

Pagan, A.R. (1989), “20 Years after: Econometrics 1966-1986,” in B. Cornet and H. Tulkens

(eds.), Contributions to Operations Research and Econometrics, The MIT Press, Cambridge,

MA.

Stock, James H. and Mark W. Watson, 2020. Introduction to Econometrics, 4th ed. Pearson

Education Limited 2020.

Studenmund, A. H. 2017. Using econometrics: a practical guide. 7th Edition. Pearson

Education, Inc.

Suits, D. “Dummy Variables: Mechanics vs. Interpretation.” Review of Economics and

Statistics, 66, 1984, pp. 177–180.



33

Wooldridge, Jeffrey M. 2020 Introductory Econometrics: A Modern Approach, Seventh

Edition, Cengage Learning, Inc, World Scientific Publishing Co. Pte. Ltd.


