
MPRA
Munich Personal RePEc Archive

Sraffa: some alternative proofs

Saccal, Alessandro

Thapar School of Liberal Arts and Sciences, TIET

4 March 2024

Online at https://mpra.ub.uni-muenchen.de/120418/
MPRA Paper No. 120418, posted 13 Apr 2024 18:03 UTC

http://mpra.ub.uni-muenchen.de/
https://mpra.ub.uni-muenchen.de/120418/


Sraffa: some alternative proofs
Alessandro Saccal∗

Thapar School of Liberal Arts and Sciences, TIET

March 4, 2024

Abstract
Relative to the germane academic literature in this work I offer alternative and more direct proofs

for (i) the existence and unicity of Sraffa’s ‘Standard System’, (ii) the (existence and) unicity of R = ri

(for w = 0) across the ‘Real System’ and the ‘Standard System’ and (iii) the existence (and unicity) of
Sraffa’s Fundamental Equation r = R(1 − w) across both kinds of system. While the proof for (iii) be
outrightly unprecedented and that for (ii) certainly shorter, the proof for (i) is not necessarily superior
to those of the germane academic literature, which judgement is left open for debate.
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MSC codes: 91B55; 91B80.
Keywords: Abel Ruffini Theorem; mathematical induction; multiple and single production; Perron Frobenius
Theorem; Real and Standard System; Schur decomposition; Sraffa’s Fundamental Equation.

1. Introduction

Consider Sraffa’s [15] ‘Real System’ AP ·(1 + r) = QP and ‘Standard System’ K ·AP ·(1 + r) = K ·QP,
in which industry input matrix A ∈ Rn×n

+ , industry output matrix Q ∈ Rn×n
+ , vectors of input prices,

augmented average rate of profits and rescaling factor {P, 1 + r, K} ⊂ Rn
++ and average rate of profits

ri ∈ R+ such that (i)
∑n

i=1 aij ≤
∑n

i=1 qij (i.e. self-reproducibility) and (ii) K for ãj ≡
∑n

i=1 κiaij =∑n
i=1 κiqij ≡ q̃j and q̃j

q̃¬j
= ãj

ã¬j
in1 K ·A(1 + r) = K ·Q (i.e. proportionality).

In equation form respectively consider
∑n

i=1
∑n

j=1 aijpj(1 + R) =
∑n

i=1
∑n

j=1 aijpj(1 + ri) =∑n
i=1

∑n
j=1 qijpj and

∑n
i=1 κi

∑n
j=1 aijpj(1 + R) =

∑n
i=1 κi

∑n
j=1 aijpj(1 + ri) =

∑n
i=1 κi

∑n
j=1 qijpj as

well, in which maximum rate of profits R ∈ R+.
Notice that Q ∈ Rn×n

+ models multiple production and industry output vector Q ∈ Rn
++ models single

production, for which ‘Real System’ AP · (1 + r) = Q ·P and ‘Standard System’ K ·AP · (1 + r) = K ·Q ·P.
Relative to the germane academic literature in this work I offer alternative and more direct proofs

for (i) the existence and unicity of the ‘Standard System’, (ii) the (existence and) unicity of R = ri (for
w = 0) across both kinds of system and (iii) the existence (and unicity) of Sraffa’s Fundamental Equation
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1A(1 + r) = Q expresses the relation between industry inputs A and output Q in real terms, whereby industry input aij

is naturally priced in terms of ri for the production of output
∑n

j=1 qij . AP · (1 + r) = QP expresses the same relation
in nominal terms, whereby industry input aij is priced both in terms of ri and pj in view of the inter-connexion between
industries for the production of

∑n

j=1 qij , aij not however necessarily entering the production of all output; in other words,
although the economy be not fully interconnected, inputs are outputs or finished commodities themselves, production is
not static, but dynamic, and output is irreducible to capital (i.e. land) and labour alone, but is reduced to a commodity
residue. The ‘Standard System’ is therefore paramount because it gives rise to the ‘Standard Commodity’ (see Proposition
3), being the said commodity residue acting as a numeraire for both kinds of system, whose intended role was to flesh out
the independence of R (i) relative to the distribution of (K·)Q between r and wage share w ∈ [0, 1] ⊂ R+ of R and (ii)
chronologically relative to P (i.e. without knowledge thereof), as per Ricardian and Marxian endeavours; it in fact turns out
that Sraffa’s Fundamental Equation r = R(1− w) through which such an independence is fleshed out is not proper to the
‘Standard System’ alone but to the ‘Real System’ as well (see Saccal [7] and Proposition 3).



r = R(1− w) across both kinds of system. While the proof for (iii) be outrightly unprecedented and that
for (ii) certainly shorter, the proof for (i) is not necessarily superior to those of the germane academic
literature, which judgement is left open for debate.

2. Propositions

Proposition 1 (‘Standard System’ existence and unicity) All else equal, under single and multiple
production the ‘Standard System’ exists and is unique. Formally: ceteris paribus,

∃!K ·AP · (1 + r) = K ·Q · P and K ·AP · (1 + r) = K ·QP.

Proof. Lemma 1.1.1 (Single production, proportionality) Existence of the ‘Standard System’ under
single production is ensured by proportionality2, which is achieved by rewriting K ·A(1 + r) = K ·Q as
(1 + r) ·A⊤K = K ·Q and solving for a non-trivial K ∈ Rn

++.
Notice that rewriting K · A(1 + r) = K · Q as (1 + r) · A⊤K = K · Q is possible if and only if

(1 + r) = (1 + r), consequently, (1 + r) · A⊤K = K · Q ←→ (1 + r)A⊤K = Q · K = D(Q)K, in which
D(Q) ∈ Rn×n

+ is the diagonal matrix of Q. Strictly speaking, by adding normalisation equation
∑n

i=1 li = 1
to (1 + r)A⊤ = Q such that

(1 + r)


a11 · · · an1 0
...

. . .
...

...
a1n · · · ann 0
l1 · · · ln 0


︸ ︷︷ ︸

Â⊤


κ1
...

κn

1 + r


︸ ︷︷ ︸

K̂

=


q1
...

qn

1


︸ ︷︷ ︸

Q̂

·


κ1
...

κn

1 + r



one can determine both {κi}n
i=1 ⊂ R++ and r, whereby (1 + r) = [D(Q̂)− Â⊤]K̂ −→ [D(Q̂)− Â⊤]−1 =

(1+r)−1K̂, in which D(·) is a diagonal matrix and 1+r is the square root of the last element of (1+r)−1K̂.
Premultiplication of both sides by matrix D(Q−1) ∈ Rn×n

+ is nonetheless such that Bv ≡ D(Q−1)A⊤K =
(1 + r)−1D(Q−1)D(Q)K = (1 + r)−1InK ≡ λInv = λv −→ (B − λIn)v = 0, being the characteristic
polynomial of matrix B ∈ Rn×n

+ and an eigenvalue problem thereby; in full:

(1 + r)

 a11 · · · an1
...

. . .
...

a1n · · · ann


︸ ︷︷ ︸

A⊤

 κ1
...

κn


︸ ︷︷ ︸

v≡K

=

 q1 · · · 0
...

. . .
...

0 · · · qn


︸ ︷︷ ︸

D(Q)

 κ1
...

κn



−→


a11
q1

· · · an1
q1

...
. . .

...
a1n

qn
· · · ann

qn


︸ ︷︷ ︸

B

 κ1
...

κn

 = 1
1 + r︸ ︷︷ ︸

λ

 1 · · · 0
...

. . .
...

0 · · · 1


︸ ︷︷ ︸

In

 κ1
...

κn

 ,

in which
2On page 21 Sraffa [15] writes: “The possibility of speaking of a ratio between two collections of miscellaneous commodities

without need of reducing them to the common measure of price arises of course from the circumstance that both collections
are made up in the same proportions – from their being in fact quantities of the same composite commodity. The result would
therefore not be affected by multiplying the individual component commodities by their prices. The ratio of the values of
the two aggregates would inevitably be always equal to the ratio of the quantities of their several components. Nor, once
the commodities had been multiplied by their prices, would the ratio be disturbed if those individual prices were to vary
in all sorts of divergent ways. Thus in the Standard system the ratio of the net product to the means of production would
remain the same whatever variations occurred in the division of the net product between wages and profits and whatever the
consequent price changes.”.
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D(Q−1) =

 q−1
1 · · · 0
...

. . .
...

0 · · · q−1
n

 ,

for q−1
i ∈ (0, 1) ⊂ R++, and bii ≡ q−1

i aii, bij ≡ q−1
j aij ∈ (0, 1] ⊂ R++, owing to

∑n
i=1 aij ≤ qi. Indeed,

by Cramer’s Rule3, ∃v ̸= 0 for B(λ)v ≡ (B − λIn)v = 0 if and only if det[B(λ)] = 0, for which B(λ) is
non-invertible.

Lemma 1.1.2 (Single production, Perron Frobenius Theorem) The Perron Frobenius Theorem4 dictates
that:

(i) ∀B = (bij) > 0, whereby B is positive irreducible, ∃λ̄ ≡ λi ∈ {λi}n
i=1 ⊂ C such that λ̄ ∈ (0, ∞) =

R++ and λ̄ > |λ¬i| with algebraic multiplicity µB(λ̄) = 1, in other words, eigenvalue λ̄ is positive real,
dominant and simple; for λ̄, ∃!v̄ ≡ vi ∈ Rn

++ such that Bv̄ = λ̄Inv̄ = λ̄v̄, in other words, λ̄’s eigenvector v̄

is positive and simple, whereby λ̄’s geometric multiplicity γB(λ̄) = 1;
(ii) ∀B = (bij) ≥ 0, whereby B is primitive and thus non-negative irreducible5, ∃λ̄ ≡ λi ∈ {λi}n

i=1 ⊂ C
such that λ̄ ∈ (0, ∞) = R++ and λ̄ > |λ¬i| with algebraic multiplicity µB(λ̄) = 1, in other words, eigenvalue
λ̄ is positive real, dominant and simple; for λ̄, ∃!v̄ ≡ vi ∈ Rn

++ such that Bv̄ = λ̄Inv̄ = λ̄v̄, in other words,
λ̄’s eigenvector v̄ is positive and simple, whereby λ̄’s geometric multiplicity γB(λ̄) = 1;

(iii) ∀B = (bij) ≥ 0, whereby B is non-negative irreducible and imprimitive, ∃λ̄ ≡ λi ∈ {λi}n
i=1 ⊂ C such

that λ̄ ∈ (0, ∞) = R++ and λ̄ ≥ |λ¬i| with algebraic multiplicity µB(λ̄) = 1, in other words, eigenvalue λ̄
is positive real, dominant and simple; for λ̄, ∃!v̄ ≡ vi ∈ Rn

++ such that Bv̄ = λ̄Inv̄ = λ̄v̄, in other words,
λ̄’s eigenvector v̄ is positive and simple, whereby λ̄’s geometric multiplicity γB(λ̄) = 1;

(iv) ∀B = (bij) ≥ 0, imprimitive and (thus non-negative) reducible, ∃λ̄ ≡ λi ∈ {λi}n
i=1 ⊂ C such that

λ̄ ∈ [0, ∞) = R+ and λ̄ ≥ |λ¬i| with algebraic multiplicity µB(λ̄) ≥ 1, in other words, eigenvalue λ̄ is
non-negative real, dominant and non-simple; for λ̄, ∃v̄ ≡ vi ∈ Rn

+ for vii
∈ R++ such that Bv̄ = λ̄Inv̄ = λ̄v̄,

in other words, λ̄’s eigenvector v̄ is non-negative and non-simple, whereby λ̄’s geometric multiplicity
γB(λ̄) ≥ 1.

Since reducible matrices are excluded on account of model parsimony, case (iv) is not contemplated. The
application of the Perron Frobenius Theorem to a non-negative irreducible B is nonetheless insufficient6

for the existence and unicity of the ‘Standard System’ under single production. This is because λ̄ =
(1 + r)−1 ∈ (0, ∞) = R++ while by definition7 r = λ̄−1 − 1 ∈ [0, ∞) = R+ −→ λ̄ ∈ (0, 1] ⊂ R++; in other
words, the Perron Frobenius Theorem only ensures that λ̄ ∈ (0, ∞) = R++, rather than the demanded
λ̄ ∈ (0, 1] ⊂ R++, thereby failing to exclude λ̄ ∈ (1, ∞) ⊂ R++.

It additionally emerges that as limλ̄→1 rλ̄ = 0; in other words, the higher may the dominant eigenvalue
be the lower is the average rate of profits to result, being relatively minimal, although neither confirming
the optimality minimality of R = ri for w = 0 (see Proposition 2) nor suggesting that of r = R(1− w) as
well, shown by Sraffa [15].

Indeed, non-negative profits violate the necessary, but insufficient, requirement of r ∈ R++ in order
for Sraffa’s Fundamental Equation r = R(1 − w) to be the optimal path for the distribution of income

3https://en.wikipedia.org
4https://en.wikipedia.org
5Notice that primitive matrices are non-negative irreducible, but irreducibile matrices need not be primitive, but can

be either negative or imprimitive, which are always non-negative in turn. A primitive matrix M ∈ Rn×n
+ is such that

f : M ∈ Rn×n
+ → Mm ∈ Rn×n

++ , in which m ∈ [1, ∞) = N+; an imprimitive matrix is a negation thereof. An irreducible

matrix M ∈ Rn×n is such that P MP −1 ≠
[

E F
0 G

]⊤
, in which E, F are positive square matrices, G is a square matrix

and P is a permutation matrix (https://en.wikipedia.org).
6As a matter of fact it is neither necessary, for the positive real and simple eigenvalue could fail to be dominant, thereby

rendering the application of the Perron Frobenius Theorem to a non-negative irreducible B unnecessary. In fact, the
consideration of the application of the Perron Frobenius Theorem to a non-negative irreducible B as a sufficient condition for
the existence and unicity of the ‘Standard System’ under single production could be argued by claiming that r ∈ [0, ∞) = R+
already excludes all cases whereby λ̄ ∈ (1, ∞) ⊂ R++ in the presence of A ∈ Rn×n

+ and Q ∈ Rn
++, all of which Sraffa [15]

no less than admits; such an interpretation would however admit the utilisation of such algorithms as Sraffa’s [15] own in
Chapter 5, formalised by Lippi [3], Salvadori [10] and Miyamoto [6], and require them to be always corrective.

7In the fractional case of r = λ̄−1 − 1 ∈ (0, 1) = R++, for instance, one observes that λ̄ ∈
(

1
2 , 1

)
⊂ R++.
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between profits and wages incarnated by the Sraffian brachistochrone (see Saccal [7, 8, 9]); consequently, it
is demanded that λ̄ ∈ (0, 1) ⊂ R++ instead (i.e. positive profits).

Lemma 1.2.1 (Joint production, proportionality) Existence of the ‘Standard System’ under joint
production is ensured by proportionality, which is achieved by rewriting K ·A(1 + r) = QK as (1 + r) ·
A⊤K = QK and solving for a non-trivial K ∈ Rn

++.
Notice that rewriting K ·A(1 + r) = QK as (1 + r)·A⊤K = QK is possible if and only if (1 + r) = (1+r),

consequently, (1 + r) ·A⊤K = QK ←→ (1+r)A⊤K = QK −→ QK−(1+r)A⊤K = [Q−(1+r)A⊤]K = 0.
Solving [Q−(1+r)A⊤]K = 0 for a non-trivial K ∈ Rn

++ is necessary and sufficient for det[Q−(1+r)A⊤] = 0
(i.e. non-invertible); in fact, Qv ≡ QK = (1 + r)A⊤K ≡ λA⊤v is a generalised eigenvalue problem: q11 · · · q1n

...
. . .

...
qn1 · · · qnn


︸ ︷︷ ︸

Q

 κ1
...

κn


︸ ︷︷ ︸

v≡K

= (1 + r)︸ ︷︷ ︸
λ

 a11 · · · an1
...

. . .
...

a1n · · · ann


︸ ︷︷ ︸

A⊤

 κ1
...

κn

 .

The application of a generalised Schur decomposition8 to Qv = λA⊤v for Q, A ∈ Cn×n\{0} is such
that SJQT Hv = λSJA⊤T Hv, in which SSH = SS−1 = TT H = TT −1 = In (i.e. unitary9) and JQ and JA⊤

are complex upper triangular10, whereby λi = J−1
A⊤

ii

JQii ∈ C such that JA⊤
ii
̸= 0; for Q, A ∈ Rn×n\{0} and

λi = J−1
A⊤

ii

JQii
∈ R such that JA⊤

ii
̸= 0, rather than λi ∈ C, it such that SJQT ⊤v = λSJA⊤T ⊤v, in which

SS⊤ = SS−1 = TT ⊤ = TT −1 = In (i.e. orthogonal11) and JQ and JA⊤ are real upper triangular;
Lemma 1.2.2.1 (Joint production, Perron Frobenius Theorem) Although Mangasarian [5] may extend

the Perron Frobenius Theorem to Qv = λA⊤v, in order to obtain λ̄ = (1+r) ∈ (1, ∞) ⊂ R++ and v̄ ∈ Rn
++

I propose the following algorithm exploiting the LAPACK routine12: ∀Q, A ∈ Rn×n\{0}, whereby neither
need be irreducible,

(i-a) generally Schur decompose Q = C(SJQT H) = SJQT H and A⊤ = C(SJA⊤T H) = SJA⊤T H for
Qv = λA⊤v −→ JQv = λJA⊤v, in which S, T are unitary and JQ, JA⊤ are complex upper triangular,
whereby λi = J−1

A⊤
ii

JQii ∈ C and JA⊤
ii
̸= 0;

(i-b) if λi ∈ R then Q = C(SJQT ⊤) = SJQT ⊤ and A⊤ = C(SJA⊤T ⊤) = SJA⊤T ⊤ for Qv = λA⊤v −→
JQv = λJA⊤v −→ Uv ≡ J−1

A⊤JQv = λv −→ U(λ) = (U − λIn)v = 0, in which S, T are orthogonal,
JQ, JA⊤ are real upper triangular and J−1

A⊤ if and only if JA⊤
ii
̸= 0, whereby Uii = λU(λ)i

= λi = J−1
A⊤

ii

JQii
∈

R, JA⊤
ii
̸= 0 and v ∈ Rn\{0}; go to step (iv-a);

(i-c) if λi ∈ C then generally Schur decompose Q = R(SJQT ⊤) = ŜĴQT̂ ⊤ and A⊤ = R(SJA⊤T ⊤) =
ŜĴA⊤ T̂ ⊤ for Qv = λA⊤v −→ JQv = λJA⊤v, in which Ŝ, T̂ are orthogonal, ĴQ is complex upper quasi-
triangular and ĴA⊤ is complex upper triangular, whereby, ̸ ∀i ∈ N+, λi = Ĵ−1

A⊤
ii

ĴQii
∈ R and ĴA⊤

ii
̸= 0;

(ii-a) construct Q̃ = ℜ(SĴQT H) ∈ Rn×n\{0} and Ã⊤ = ℜ(SĴA⊤T H) ∈ Rn×n\{0};
(ii-b) generally Schur decompose Q̃ = C(S̃JQ̃T̃ H) = S̃JQ̃T̃ H and Ã⊤ = C(S̃JÃ⊤ T̃ H) = S̃JÃ⊤ T̃ H for

Q̃v = λÃ⊤v −→ JQ̃v = λJÃ⊤v, in which S̃, T̃ are unitary and JQ̃, JÃ⊤ are complex upper triangular,
whereby λi = J−1

Ã⊤
ii

JQ̃ii
∈ C and JÃ⊤

ii
̸= 0;

(iii-a) if λi ∈ C then by imposing Q ≡ Q̃ and A⊤ ≡ Ã⊤ repeat steps (i-c)-(ii-b) until Q̃ = S̃JQ̃T̃ ⊤ and
Ã⊤ = S̃JÃ⊤ T̃ ⊤ for Q̃v = λÃ⊤v −→ JQ̃v = λJÃ⊤v −→ Uv ≡ J−1

Ã⊤JQ̃v = λv −→ U(λ) = (U − λIn)v = 0,

in which S̃, T̃ are orthogonal, JQ̃, JÃ⊤ are real upper triangular and J−1
Ã⊤ if and only if JÃ⊤

ii
̸= 0, whereby

Uii = λU(λ)i
= λi = J−1

Ã⊤
ii

JQ̃ii
∈ R, JA⊤

ii
̸= 0 and v ∈ Rn\{0}; go to step (iv-a);

(iii-b) if λi ∈ R then Q̃ = C(S̃JQ̃T̃ ⊤) = S̃JQ̃T̃ ⊤ and Ã⊤ = C(S̃JÃ⊤ T̃ ⊤) = S̃JÃ⊤ T̃ ⊤ for Q̃v = λÃ⊤v −→
JQ̃v = λJÃ⊤v −→ Uv ≡ J−1

Ã⊤JQ̃v = λv −→ U(λ) = (U − λIn)v = 0, in which S̃, T̃ are orthogonal,

8https://en.wikipedia.org
9https://en.wikipedia.org

10https://en.wikipedia.org
11https://en.wikipedia.org
12https://netlib.org
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JQ̃, JÃ⊤ are real upper triangular and J−1
Ã⊤ if and only if JÃ⊤

ii
̸= 0, whereby Uii = λU(λ)i

= λi = J−1
Ã⊤

ii

JQ̃ii
∈

R, JA⊤
ii
̸= 0 and v ∈ Rn\{0}; go to step (iv-a);

(iv-a) [Auxiliary ‘Real System’] since for positive profits r = λ̄− 1 ∈ (0, ∞) = R++ −→ λ̄U(λ) = λ̄ =
(1 + r) ∈ (1, ∞) ⊂ R++, whereby limλ̄→∞ rλ̄ =∞ (i.e. r is relatively maximal), if λU(λ)i

∈ (−∞, 1) ⊂ R
then select ϵUii

∈ (1− λU(λ)i
, ∞) ⊂ R++ and construct λ̄Ũ(λ) = λU(λ)i

+ ϵUii
∈ (1, ∞) ⊂ R++, ensuring

that Ũ¬i¬i = U¬i¬i + ϵU¬i¬i
≥ 0 for ϵU¬i¬i

∈ [−U¬i¬i, ∞) ⊂ R, whereby v̄ ∈ Rn
+ and µŨ (λ̄) = γŨ (λ̄) = 1 by

the application of the Perron Frobenius Theorem to Ũv = λv, in which Ũ ∈ Rn×n
+ need not be irreducible,

nor (Ũ , In) self-reproducible, for a more efficient r : for example,

U11 + ϵU11︸ ︷︷ ︸
Ũ11

· · · U1n + ϵU1n︸ ︷︷ ︸
Ũ1n

...
. . .

...
Un1 + ϵUn1︸ ︷︷ ︸

Ũn1

· · · Unn + ϵUnn︸ ︷︷ ︸
Ũnn


︸ ︷︷ ︸

Ũ

.

(iv-b) if λ̄Ũ(λ) ≡ λŨ(λ)i
≡ λU(λ)i

∈ (1, ∞) ⊂ R++ and Ũ¬i¬i ≡ U¬i¬i ≥ 0 then by the application of
the Perron Frobenius Theorem to Ũv ≡ Uv = λv, in which v̄ ∈ Rn

+ and µŨ (λ̄), γŨ (λ̄) ≥ 1.
Lemma 1.2.2.2 (Joint production, Perron Frobenius Theorem) Convergence to λi ∈ R in step (iii-a)

and the direct obtainment of λi ∈ R in step (iii-b), which are the linchpin of the algorithm and the proof,
are ensured through mathematical induction in R, which dictates that, ∀x0, x ∈ R, {P(x0) ∧ [P(x) ⊢
P(x′), ∀x′ ∈ B[x] := {x, y ∈ R : ||y − x|| ≤ ε > 0}]} ⊢ P(R), in which (i) P(x0) ensures P(·) for some
real number x0 and (ii) [P(x) ⊢ P(x′), ∀x′ ∈ B[x] := {x, y ∈ R : ||y − x|| ≤ ε > 0}] ensures P(·) for all
other real numbers x and x′, mimicking P(n) ⊢ P(n + 1) for natural number line N in the absence of a
good order and thereby spanning the entire real number line R by means of closed balls B[x].

In detail, P(Ũ0) := {∀Q0, A0 ∈ Rn×n\{0}, ∃!Ũ0 = A(Q0, A0) : Q0v = λA⊤
0 v ⊢ Ũ0v = λv : λ̄ ∈

(1, ∞) ⊂ R++, v ∈ Rn
+, µŨ0

(λ̄), γŨ0
(λ̄) ≥ 1} is observed for the example of Manara [4] or Schefold [12]

hereunder; notice that A0 is bijective because by definition all (Q0, A0) always (i.e. non-injectively) admit
some Ũ0 and no other thereby13.

Analogously, ∀Ũ ′ ∈ B[Ũ ] := {Ũ , Ṽ ∈ Rn×n\{0} : ||Ũ − Ṽ || ≤ ε > 0}, P(Ũ) ⊢ P(Ũ ′) is due to
Ũ = A(Q, A) for λ̄ ⊢ Ũ ′ = A(Q′, A′) = A(Q + δQ′, A + δA′) for λ̄, Q′ ≫ δQ′ and A′ ≫ δA′ such that
||Ũ − Ũ ′|| ≤ ||Ũ − Ṽ || ≤ ε > 0, whereby P(Rn×n\{0}).

The reason for which tweaks in Q and A are algorithmically preserved is as follows: composite continuous
functions preserve continuity; A(Q, A) is a composition of generalised Schur decompositions conditionally
linked by a multiplication at step (ii-a), but while multiplication preserve continuity generalised Schur
decompositions are not continuous because S and T are not unique, therefore, ||(Q, A)− (Q′, A′)|| ≤ δ >
0 ̸⊢ ||A(Q, A)−A(Q′, A′)|| = ||Ũ−Ũ ′|| ≤ ||Ũ− Ṽ || ≤ ε > 0; however, for (Q′

ij ≫ δQ′
ij)⊻(A′

ij ≫ δA′
ij) −→

1 ≫ δ one can enforce S′ ≈ S and T ′ ≈ T out of those available such that relative condition number14

Cond(Ũ) = limδ→0+ sup
||(Q′, A′)||≤δ

||Ũ ′||/||Ũ ||
||(Q′, A′)||/||(Q, A)|| = limδ→0+ sup

||(Q′, A′)||≤δ

max
i, j
|Ũ ′

ij |

max
i, j
|Ũij |︸ ︷︷ ︸

≈1

max
i, j
|(Q′ ⊻ A′)ij |

max
i, j
|(Q ⊻ A)ij |︸ ︷︷ ︸

=1

≈ 1

for norm || · ||ℓ∞ .
In brief, the algorithm features a unique solution and, although it may not be continuous, it is well

conditioned, which is the best a pseudo-composition of generalised Schur decompositions can achieve in
terms of algorithmic preservation, consequently, it is quasi-well posed, thereby ensuring P(Ũ) ⊢ P(Ũ ′).

13∀Q0, A0 ∈ Rn×n\{0}, Ũ0 = A(Q0, A0) such that ∃Ũ0 ∈ Rn×n\{0} ⊢ ∃!Ũ0 ∈ Rn×n\{0}, lest some A(Q0, A0) = Ũ0 ≠
¬Ũ0 = A(Q0, A0), which is a contradiction. The converse holds too: ∀Q0, A0 ∈ Rn×n\{0}, Ũ0 = A(Q0, A0) such that
∃!Ũ0 ∈ Rn×n\{0} ⊢ ∃Ũ0 ∈ Rn×n\{0}, lest some Ũ0 ̸= A(Q0, A0) in potency, which is a contradiction.

14https://en.wikipedia.org
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Lemma 1.2.2.3 (Joint production, Perron Frobenius Theorem) Notice that the implosive application
of the Perron Frobenius Theorem to Qv = λA⊤v by Bapat et alii [1] such that λ̄ ∈ (0, 1) ⊂ R++ and
v ∈ Rn

++ with µQ, A⊤(λ) = γQ, A⊤(λ) = 1 does not impinge on the explosive formulation of my algorithm
whereby λ̄ ∈ (1, ∞) ⊂ R++ and v ∈ Rn

+ with µŨ (λ̄), γŨ (λ̄) ≥ 1 for Ũv = λv.
In order to allow for the application of the Perron Frobenius Theorem to all ‘Real Systems’ featuring

single production the same can be expressed as Qv = λA⊤v for Q = D(Q), A⊤ ∈ Rn×n\{0}, in which
neither need be irreducible, in which λ ≡ 1 + r and in which the addition of ϵUii

∈ (1− λU(λ)i
, ∞) ⊂ R++

to Uii = λU(λ)i
in the auxiliary ‘Real System’ is not to signify the impossibility of altering the production

of output without borrowing from abroad, but a more efficient r afresh. In brief, under single and multiple
production there exists a unique ‘Standard System’ whereby r is more efficient. QED

Schefold [11] applies the Perron Frobenius Theorem for the construction of a unique ‘Standard System’
under single production, which Manara [4] had suggested as being universally applicable; not only have
I shown that for λ̄ ∈ (1, ∞) ⊂ R++ in Bv = λv is the application of the Perron Frobenius Theorem
unnecessary but that without correcting for λ̄ ∈ (0, 1) ⊂ R++ (i.e. implosive dominant eigenvalues) it is
insufficient as well.

Such aligns with the criticisms of Lippi [3], Salvadori [10] and Miyamoto [6] relative to the ‘imaginary
experiment’ for the construction of a unique ‘Standard System’ under single production in Sraffa’s [15]
Chapter 5, which apart from being incomplete, unlike my algorithm, is insufficient even upon completion
(i.e. see Miyamoto [6]).

Schefold’s [11] sufficient condition for the existence and unicity of the ‘Standard System’ under multiple
production in which n > 2 is (1 + r) ∈

(
qij

aij
, qii

aii

)
⊆ [0, ∞] = R̄++ and, according to both Verger [16] and

Schefold [11] himself, is rather stringent15.
By defining commodities “from the perspective of the system and not of the observer” (Abstract)

Dupertuis and Sinha [2] prove the existence and unicity of the ‘Standard System’ under multiple production
in which n ≥ 2, thereby fully resolving the ‘Manara Problem’ no less than mathematically; in detail,
although they and Verger [16] contend its economic resolution as well Schefold [12] dissents.

The prime merit of my algorithm for λ̄ ∈ (1, ∞) ⊂ R++ in Ũv = λv, being a sufficient condition for
the construction of a unique ‘Standard System’, is that of refraining from differentiating between basic,
non-basic and atomic commodities under multiple production (see Dupertuis and Sinha [2]), but of merely
requiring, by means of a more efficient r in a naively broader fashion, an ex post construction at worst;
in detail, my algorithm is such that any ‘Real System’, in which (Q, A) need be neither irreducible nor
self-reproducible, can be univocally transformed into an auxiliary ‘Real System’ so as to obtain a ‘Standard
System’, the economics of which algorithm are advantageously ingenuous.

The secondary merit of my algorithm for λ̄ ∈ (1, ∞) ⊂ R++ in Ũv = λv, is to highlight that under
multiple production for n ≥ 5, as per Abel Ruffini Theorem16, r cannot be analytically elaborated in
general, notwithstanding the sufficient condition for the construction of a unique ‘Standard System’ under
multiple production and the possibility of calculating it for some n ≥ 5 cases in either fashion (i.e. mine or
Dupertuis and Sinha’s [2]); in fact, the generalised Schur decomposition occurs through the QZ algorithm17,
which is numerical even for n < 5.

Manara’s [4] 2× 2 example is such that r = 0.034± 0.109i (3 d.p.) because Q is reducible (i.e. weakly
connected18), thereby failing the requirements for Bapat et alii’s [1] implosive application of the Perron
Frobenius Theorem to Qv = λA⊤v and confirming Dupertuis and Sinha’s [2] intuition of reducing ‘Real
Systems’ to atomic ones first, whereby the blocks of Q and A are not distinct subsystems, to Schefold’s [12]
detriment:

15In Verger’s [16] words, “an industry which does not use one of its outputs as input should be ruled out, and so independently
of the input-output coefficients of the other industries. Hence, this condition seems to convey no real economic significance, as
it eliminates a large number of normal economic systems. ... it is more a mathematical requirement than an economic one; ...
the requirement for a real solution is so restrictive that the construction of a Standard product is inapplicable for a large
number of normal economic systems” (Section 4.2).

16https://en.wikipedia.org
17https://de.wikipedia.org
18https://en.wikipedia.org
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[
1.09 1.144
1.144 0.99

]
︸ ︷︷ ︸

Q

[
κ1
κ2

]
︸ ︷︷ ︸

v≡K

= (1 + r)︸ ︷︷ ︸
λ

[
1 1.1

1.1 1

]
︸ ︷︷ ︸

A⊤

[
κ1
κ2

]
.

In detail, each Q element is a directed edge from row index i to column index j, whereby non-zero
element qij is a directed edge with weight qij from node i to node j; Q is thus weakly connected because
while node 2 may be reached by node 1 the converse does not hold: node 1 connects to itself with weight
1.09 and to node 2 with weight 1.144; node 2 connects to itself with weight 0.99 and to node 1 with no
outgoing edge. The application of my algorithm to Manara’s [4] 2× 2 example requires no correction of
λU(λ)i

, but ends at step (ii-b) after one iteration:
(i-a)[
−0.689 + 0.158i −0.692 + 0.144i
−0.692− 0.144i 0.689 + 0.158i

]
︸ ︷︷ ︸

S

[
0.477 + 0.05i 0.0432− 2.0796i

0 0.477− 0.05i

]
︸ ︷︷ ︸

JQ

[
−0.158− 0.689i −0.144 + 0.692i
0.144 + 0.692i −0.158 + 0.689i

]
︸ ︷︷ ︸

T H

v =

= λ

[
−0.689 + 0.158i −0.692 + 0.144i
−0.692− 0.144i 0.689 + 0.158i

]
︸ ︷︷ ︸

S

[
0.458 0.0416− 1.9996i

0 0.458

]
︸ ︷︷ ︸

J
A⊤

[
−0.158− 0.689i −0.144 + 0.692i
0.144 + 0.692i −0.158 + 0.689i

]
︸ ︷︷ ︸

T H

v,

whereby λ1, 2 = J−1
A⊤

11, 22
JQ11, 22 = 0.477±0.05

0.458 = 1.034± 0.109i;
(i-c) [

−0.707 −0.707
−0.707 0.707

]
︸ ︷︷ ︸

Ŝ

[
2.184 −0.05
0.05 0.104

]
︸ ︷︷ ︸

ĴQ

[
−0.707 −0.707
0.707 −0.707

]
︸ ︷︷ ︸

T̂ ⊤

v =

= λ

[
−0.707 −0.707
−0.707 0.707

]
︸ ︷︷ ︸

Ŝ

[
2.1 0
0 0.1

]
︸ ︷︷ ︸

Ĵ
A⊤

[
−0.707 −0.707
0.707 −0.707

]
︸ ︷︷ ︸

T̂ ⊤

v,

whereby ĴQ11 = |ℜ(λQ(λ)1)| = 2.184, ĴQ22 = |ℜ(λQ(λ)2)| = 0.104, ĴA⊤
11

= |ℜ(λA⊤(λ)1)| = 2.1, ĴA⊤
22

=
|ℜ(λA⊤(λ)2)| = 0.1 and |Ŝii| = |Ŝij | = |T̂ii| = |T̂ij | = |ℜ(vA⊤(λ)ii

)| = 0.707;
(ii-a) [

0 0.477
0.477 0

]
︸ ︷︷ ︸

Q̃=ℜ(SĴQT H)

,

[
0 0.458

0.458 0

]
︸ ︷︷ ︸

Ã⊤=ℜ(SĴ
A⊤ T H)

,

whereby Q̃ = diag−1[ℜ(JQii
)] = 0.477 and Ã⊤ = diag−1[ℜ(JA⊤

ii
)] = 0.458 (i.e. anti-diagonal19);

(ii-b) [
0 1
1 0

]
︸ ︷︷ ︸

S̃

[
0.477 0

0 0.477

]
︸ ︷︷ ︸

JQ̃

[
1 0
0 1

]
︸ ︷︷ ︸

T̃ ⊤

v = λ

[
0 1
1 0

]
︸ ︷︷ ︸

S̃

[
0.458 0

0 0.458

]
︸ ︷︷ ︸

J
Ã⊤

[
1 0
0 1

]
︸ ︷︷ ︸

T̃ ⊤

v,

[
2.1 0
0 2.1

]
︸ ︷︷ ︸

J−1
Q̃

,

[
2.184 0

0 2.184

]
︸ ︷︷ ︸

J−1
Ã⊤

,

19https://en.wikipedia.org
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whereby λŨ(λ)1, 2
= λ1, 2 = J−1

Ã⊤
11, 22

JQ̃11, 22
= ℜ(JA⊤

11, 22
)−1ℜ(JQ11, 22) = 0.477

0.458 = 1.034 ∈ (1, ∞) ⊂

R++, J−1
Q̃

= diag(|ℜ(λA⊤(λ)1)|), J−1
Ã⊤ = diag(|ℜ(λQ(λ)1)|), S̃ = S̃⊤ = Jn (i.e. exchange20) and T̃ = T̃ ⊤ =

In for [
1.034 0

0 1.034

]
︸ ︷︷ ︸

Ũ≡U

in Ũv = λv and v2 =
[

0.488 0.873
]⊤

. Notice that Ũv = λI2v = λv self-reproduces:[
1.034 0

0 1.034

]
︸ ︷︷ ︸

Ũ

[
κ1
κ2

]
︸ ︷︷ ︸

v≡K

= (1 + r)︸ ︷︷ ︸
λ

[
1 0
0 1

]
︸ ︷︷ ︸

I2

[
κ1
κ2

]
.

Even if Manara’s [4] 2 × 2 example had featured an irreducible Q Bapat et alii’s [1] application of
the Perron Frobenius Theorem to Qv = λA⊤v would have merely delivered λ̄ ∈ (0, 1) ⊂ R++ −→ r ∈
(−1, 0) ⊂ R−− (i.e. implosive r); my algorithm by contrast extracts ℜ(r) = 0.034 ∈ (0, ∞) = R++ through
the creation of an auxiliary ‘Real System’, which self-reproduces.

In brief, my algorithm for the construction of a unique ‘Standard System’ under multiple production,
which (correctively) delivers of r ∈ (0, ∞) = R++ through the creation of an auxiliary ‘Real System’,
can be understood as a complete and sufficient counterpart of Sraffa’s [15] incomplete and insufficient
algorithm for the construction of a unique ‘Standard System’ under single production. The application of
my algorithm to Schefold’s [12] 2× 2 example, as presented by Sinha and Verger [14], ends at step (ii-b)
after two iterations: [

1 0
0 1

]
︸ ︷︷ ︸

Q

[
κ1
κ2

]
︸ ︷︷ ︸

v≡K

= (1 + r)︸ ︷︷ ︸
λ

[ 2
5

−1
5

1 3
5

]
︸ ︷︷ ︸

A⊤

[
κ1
κ2

]

whereby r = 0.136± 0.991i (3 d.p.) and Q reducible (i.e. weakly connected);
First iteration (i-a)[
0.019 + 0.408i −0.898 + 0.163i
−0.898− 0.163i −0.019 + 0.408i

]
︸ ︷︷ ︸

S

[
0.754 + 0.657i 0

0 0.754− 0.657i

]
︸ ︷︷ ︸

JQ

[
−0.254− 0.3197i −0.5698 + 0.713i
−0.5698− 0.713i 0.254− 0.3197i

]
︸ ︷︷ ︸

T H

v =

= λ

[
0.019 + 0.408i −0.898 + 0.163i
−0.898− 0.163i −0.019 + 0.408i

]
︸ ︷︷ ︸

S

[
0.663 0.312− 0.763i

0 0.663

]
︸ ︷︷ ︸

J
A⊤

[
−0.254− 0.3197i −0.5698 + 0.713i
−0.5698− 0.713i 0.254− 0.3197i

]
︸ ︷︷ ︸

T H

v,

whereby λ1, 2 = J−1
A⊤

11, 22
JQ11, 22 = 0.754±0.657i

0.663 = 1.136± 0.991i ∈ C;
(i-c) [

−0.223 −0.975
−0.975 0.223

]
︸ ︷︷ ︸

Ŝ

[
0.6402 −0.768
0.768 0.6402

]
︸ ︷︷ ︸

ĴQ

[
−0.892 −0.453
0.453 −0.892

]
︸ ︷︷ ︸

T̂ ⊤

v =

= λ

[
−0.223 −0.975
−0.975 0.223

]
︸ ︷︷ ︸

Ŝ

[
1.193 0

0 0.369

]
︸ ︷︷ ︸

Ĵ
A⊤

[
−0.892 −0.453
0.453 −0.892

]
︸ ︷︷ ︸

T̂ ⊤

v;

20https://en.wikipedia.org
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(ii-a) [
0.483 −0.106
0.106 0.483

]
︸ ︷︷ ︸

Q̃=ℜ(SĴQT H)

,

[
0.382 −0.425
0.321 0.796

]
︸ ︷︷ ︸

Ã⊤=ℜ(SĴ
A⊤ T H)

;

(ii-b)[
−0.743 + 0.384i 0.304 + 0.456i
0.304− 0.456i 0.743 + 0.384i

]
︸ ︷︷ ︸

S̃

[
0.488 + 0.079i 0

0 0.488− 0.079i

]
︸ ︷︷ ︸

JQ̃

[
−0.696− 0.169i 0.535 + 0.448i
0.535− 0.448i 0.696− 0.169i

]
︸ ︷︷ ︸

T̃ H

v =

= λ

[
−0.743 + 0.384i 0.304 + 0.456i
0.304− 0.456i 0.743 + 0.384i

]
︸ ︷︷ ︸

S̃

[
0.663 0.2003 + 0.377i

0 0.663

]
︸ ︷︷ ︸

J
Ã⊤

[
−0.696− 0.169i 0.535 + 0.448i
0.535− 0.448i 0.696− 0.169i

]
︸ ︷︷ ︸

T̃ H

v,

whereby λ1, 2 = J−1
Ã⊤

11, 22
JQ̃11, 22

= 0.488±0.079i
0.663 = 0.735± 0.119i ∈ C, thus, Q ≡ Q̃ and A⊤ ≡ Ã⊤;

Second iteration (i-c)[
−0.394 0.919
0.919 0.394

]
︸ ︷︷ ︸

Ŝ

[
0.464 −0.169
0.169 0.464

]
︸ ︷︷ ︸

ĴQ

[
0.159 0.987
0.987 −0.159

]
︸ ︷︷ ︸

T̂ ⊤

v =

= λ

[
−0.394 0.919
0.919 0.394

]
︸ ︷︷ ︸

Ŝ

[
0.9104 0

0 0.483

]
︸ ︷︷ ︸

Ĵ
A⊤

[
0.159 0.987
0.987 −0.159

]
︸ ︷︷ ︸

T̂ ⊤

v;

(ii-a) [
0.456 −0.061
0.061 0.456

]
︸ ︷︷ ︸

Q̃=ℜ(SĴQT H)

,

[
0.707 −0.379

0.01204 0.616

]
︸ ︷︷ ︸

Ã⊤=ℜ(SĴ
A⊤ T H)

;

(ii-b) [
−0.956 0.294
0.294 0.956

]
︸ ︷︷ ︸

S̃

[
0.4598 0

0 0.4598

]
︸ ︷︷ ︸

JQ̃

[
−0.909 0.417
0.417 0.909

]
︸ ︷︷ ︸

T̃ ⊤

v =

= λ

[
−0.956 0.294
0.294 0.956

]
︸ ︷︷ ︸

S̃

[
0.838 0.212

0 0.525

]
︸ ︷︷ ︸

J
Ã⊤

[
−0.909 0.417
0.417 0.909

]
︸ ︷︷ ︸

T̃ ⊤

v,

whereby λ1, 2 = J−1
Ã⊤

11, 22
JQ̃11, 22

= 0.4598
0.838, 0.525 = 0.5489, 0.875 ∈ R for[

0.5489 −0.222
0 0.875

]
︸ ︷︷ ︸

U

in Uv = λv;
(iv) [

1.001 0.001
0 0.875

]
︸ ︷︷ ︸

Ũ

9



for λŨ(λ)1
= λU(λ)1 + ϵU11 = 0.5489 + (1.001 − 0.5489) = 1.001 ∈ (1, ∞) ⊂ R++ −→ r = 0.001 ∈

(0, ∞) ⊂ R+ and Ũ12 = U12 + ϵU12 = −0.222 + (0.001 + 0.222) = 0.001 > 0, whereby v1 =
[

1 0
]⊤

,

since Ũ is reducible.
In fact, the reducibility of Ũ , whereby vi ∈ Rn

+ for at least some vii = 0, does not invalidate the existence
of Sraffa’s Fundamental Equation r = R(1−w) because the derivation of the same is not affected by vii

= 0
(see Proposition 3). Notice that Ũv = λI2v = λv does not self-reproduce:[

1.001 0.001
0 0.875

]
︸ ︷︷ ︸

Ũ

[
κ1
κ2

]
︸ ︷︷ ︸

v≡K

= (1 + r)︸ ︷︷ ︸
λ

[
1 0
0 1

]
︸ ︷︷ ︸

I2

[
κ1
κ2

]
.

Proposition 2 [R = ri (for w = 0) existence and unicity] All else equal, under single and multiple
production there respectively exists a unique R = ri ∈ R+ (for w = 0) for both the ‘Real System’ and the
‘Standard System’. Formally, ceteris paribus,

∃!R = ri ∈ R+ respectively for:
(i) AP · (1 + r) = Q · P and K ·AP · (1 + r) = K ·Q · P ;
(ii) AP · (1 + r) = QP and K ·AP · (1 + r) = K ·QP.

Proof. Lemma 2.1 (Single production) Rewrite AP · (1 + r) = Q · P as P ⊤A⊤ · (1 + r) = P ⊤Q.
Rearrange it such that P ⊤[A⊤ · (1 + r)−Q] = 0, which holds for P ⊤ ̸= 0 if and only if A⊤ · (1 + r)−Q = 0,
whence21 A⊤ · (1 + r) = Q, which by A · (1 + r) = Q is necessary and sufficient for

∑n
j=1 aij(1 + ri) =∑n

i=1 aji(1 + ri) = qi and r = ri = r¬i, so that (1 + r) =
[

(1 + r) · · · (1 + r)
]⊤

.
As a consequence, (1 + R) = (1 + r) = (1 + ri) −→ R = r = ri ∈ R+ for

∑n
i=1

∑n
j=1 aijpj(1 + R) =∑n

i=1
∑n

j=1 aijpj(1 + r) =
∑n

i=1
∑n

j=1 aijpj(1 + ri) =
∑n

i=1 qipj .

The same R = r = ri ∈ R+ also applies to K ·AP · (1 + r) = K ·Q ·P and
∑n

i=1 κi

∑n
j=1 aijpj(1 + R) =∑n

i=1 κi

∑n
j=1 aijpj(1 + r) =

∑n
i=1 κi

∑n
j=1 aijpj(1 + ri) =

∑n
i=1 κiqipj , since K is a dot factor; it is also

because the existence and unicity of K · AP · (1 + r) = K · Q · P presupposes r = ri in order to solve
for a unique K, as seen. There thus exists a unique R = ri ∈ R+ for both AP · (1 + r) = Q · P and
K ·AP · (1 + r) = K ·Q · P.

Lemma 2.2 (Multiple production) Rewrite AP · (1 + r) = QP as P ⊤A⊤ · (1 + r) = P ⊤Q⊤. Rearrange it
such that P ⊤[A⊤ · (1 + r)−Q⊤] = 0, which holds for P ⊤ ̸= 0 if and only if A⊤ · (1 + r)−Q⊤ = 0, whence22

A⊤ · (1 + r) = Q⊤, which by definition is necessary and sufficient for I = [A⊤ · (1 + r)]−1Q⊤. Indeed, since
A−1 and thereby A⊤−1 exist it follows that [A⊤ · (1 + r)]−1 exists if and only if (1 + r) = (1 + r) ∈ R++.

As a consequence, (1 + R) = (1 + r) = (1 + ri) −→ R = r = ri ∈ R+ for
∑n

i=1
∑n

j=1 aijpj(1 + R) =∑n
i=1

∑n
j=1 aijpj(1 + r) =

∑n
i=1

∑n
j=1 aijpj(1 + ri) =

∑n
i=1

∑n
j=1 qijpj .

The same R = r = ri ∈ R+ also applies to K ·AP · (1 + r) = K ·QP and
∑n

i=1 κi

∑n
j=1 aijpj(1 + R) =∑n

i=1 κi

∑n
j=1 aijpj(1 + r) =

∑n
i=1 κi

∑n
j=1 aijpj(1 + ri) =

∑n
i=1 κi

∑n
j=1 qijpj , since K is a dot factor; it

is also because the existence and unicity of K · AP · (1 + r) = K · QP presupposes r = ri in order to
solve for a unique K, as seen. There thus exists a unique R = ri ∈ R+ for both AP · (1 + r) = QP and
K ·AP · (1 + r) = K ·QP. QED

Relative to Sinha [13] Proposition 2 offers an alternative and more direct derivation of the existence
and unicity of R = ri (for w = 0) under single (and multiple) production.

Proposition 3 (Sraffa’s Fundamental Equation existence and unicity) Let expanded ‘Real System’
ÂP̂ · ˆ(1 + r) + L̂w = Q̂P̂ and expanded ‘Standard System’ K̂ · ÂP̂ · ˆ(1 + r) + L̂w = K̂ · Q̂P̂ , in which the

21Notice that if P ⊤[A⊤ · (1 + r)−Q] = 0 and P ⊤ ̸= 0 hold then so does A⊤ · (1 + r) = Q (and vice versa); thus, because
P ⊤[A⊤ · (1 + r)−Q] = 0 and P ⊤ ̸= 0 (satisfied by P ∈ Rn

++) hold by definition A⊤ · (1 + r) = Q must hold. Conversely,
A⊤ · (1 + r) = Q is not required to hold in the first place, but holds as an implication of P ⊤[A⊤ · (1 + r) − Q] = 0 and
P ⊤ ̸= 0, semantically (i.e. soundly, apodictically) implying them in turn.

22Afresh, because P ⊤[A⊤ · (1 + r)−Q⊤] = 0 and P ⊤ ̸= 0 hold by definition A⊤ · (1 + r) = Q⊤ must hold.
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ulterior equation added23 to both AP (1 + r) + Lw = QP and K ·AP (1 + r) + Lw = K ·QP, respectively,
for labour vector L ∈ Rn

++ and wage share w ∈ [0, 1] ⊂ R+ of R such that
∑n

i=1 li = 1 (i.e. normalisation)
is

∑n
j=1

∑n
i=1 κi(qij − aij) = 1 (i.e. ‘Standard Commodity’), all else equal:

(i) ceteris paribus, AP (1 + r) + Lw = QP and
∑n

j=1 xj =
∑n

j=1
∑n

i=1 κi(qij − aij) = 1 give rise to

ÂP̂ · ˆ(1 + r) + L̂w = Q̂P̂

←→


a11 · · · a1n 0
...

. . .
...

...
an1 · · · ann 0
x1 · · · xn 0




p1
...

pn

1

 ·


1 + r
...

1 + r
1

 +


l1
...

ln
0

 w =


q11 · · · q1n 0
...

. . .
...

...
qn1 · · · qnn 0
0 · · · 0 1




p1
...

pn

1

 ,

in which the last row of Â is
∑n

j=1 xj and the last column is 0, the last element of P̂ is 1, all but the
last element of ˆ1 + r are 1 + r and the last element thereof is 1, the last element of L̂ is 0, the last row of
Q̂ is

∑n
j=1 0 and the last column is

[
0 1

]⊤ ;
(ii) ceteris paribus, K · AP (1 + r) + Lw = K ·QP and

∑n
j=1 xj =

∑n
j=1

∑n
i=1 κi(qij − aij) = 1 give

rise to

K̂ · ÂP̂ · ˆ(1 + r) + L̂w = K̂ · Q̂P̂

←→


κ1
...

κn

1

 ·


a11 · · · a1n 0
...

. . .
...

...
an1 · · · ann 0
x1 · · · xn 0




p1
...

pn

1

 ·


1 + r
...

1 + r
1

 +


l1
...

ln
0

 w =


κ1
...

κn

1

 ·


q11 · · · q1n 0
...

. . .
...

...
qn1 · · · qnn 0
0 · · · 0 1




p1
...

pn

1

 ,

in which the last element of K̂ is 1, the last row of Â is
∑n

j=1 xj and the last column is 0, the last
element of P̂ is 1, all but the last element of ˆ1 + r are 1 + r and the last element thereof is 1, the last
element of L̂ is 0, the last row of Q̂ is

∑n
j=1 0 and the last column is

[
0 1

]⊤
.

All else equal, for any r ∈ R+, the determination of P ∈ Rn
++ and w ∈ [0, 1] ⊂ R+ is such that

R̄ = r
1−w ∈ R+ for w ∈ [0, 1) ⊂ R+ for both ÂP̂ · ˆ(1 + r) + L̂w = Q̂P̂ and K̂ · ÂP̂ · ˆ(1 + r) + L̂w = K̂ · Q̂P̂ .

Formally: ceteris paribus, ∀r ∈ R+, P ∈ Rn
++ and w ∈ [0, 1] ⊂ R+ are determined such that

R̄ = r

1− w
∈ R+ for w ∈ [0, 1) ⊂ R+ for

ÂP̂ · ˆ(1 + r) + L̂w = Q̂P̂ and K̂ · ÂP̂ · ˆ(1 + r) + L̂w = K̂ · Q̂P̂ .

Proof. Mathematical induction in R afresh dictates that, ∀x0, x ∈ X ⊆ R, {P(x0) ∧ [P(x) ⊢
P(x′), ∀x′ ∈ B[x] := {x, y ∈ X : ||y − x|| ≤ ε > 0}]} ⊢ P(X), in which (i) P(x0) ensures P(·) for some
real number x0 and (ii) [P(x) ⊢ P(x′), ∀x′ ∈ B[x] := {x, y ∈ X : ||y − x|| ≤ ε > 0}] ensures P(·) for all
other real numbers x and x′, mimicking P(n) ⊢ P(n + 1) for N in the absence of a good order and thereby
spanning the entire real set X or the entire real number line R by means of closed balls B[x].

Since K is a dot factor, for both the expanded ‘Real System’ and expanded ‘Standard System’ consider
x = w and P(w) :=

{
w : ∀r ∈ R+, R̄ ∈ R++, w = 1− r

R̄
∈ [0, 1] ⊂ R+

}
, which is observed for some

w ∈ (0, 1) ⊂ R++ as a rearrangement of R̄ = r
1−w ∈ R+, whereby and R is unique and in which r ∈ R+ is

23The reason for which normalisation equation
∑n

i=1 li = 1 is not added to both kinds of system en lieu of ‘Standard
Commodity’ equation

∑n

j=1

∑n

i=1 κi(qij − aij) = 1 is that L is already present in the two kinds of system, whereby
(K·)AP (1 + r) + Lw = (K·)QP and w is determined through the addition of

∑n

j=1

∑n

i=1 κi(qij − aij) = 1 to both kinds of
system, that is, w is measured in terms of the ‘Standard Commodity’ (i.e. numeraire).
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chosen24 and w ∈ (0, 1) ⊂ R++ is determined25 together with P ∈ Rn
++ in ÂP̂ · ˆ(1 + r) + L̂w = Q̂P̂ and

K̂ · ÂP̂ · ˆ(1 + r) + L̂w = K̂ · Q̂P̂ ; for example, see26 page 114 in Sinha [13].
Let x0 = w0 = 0 and x = w, y = v ∈ (0, 1] ⊂ R++. It follows that x = w = 0 ⊢ R̄ = r, whose truth

satisfies P(x0), and that x = w = 1− r
R̄
⊢ ∀δr ∈ R\{0}, x′ = x+δ = w′ = w+δ = 1− r

R̄
+δ = 1−

(
r+δr

R̄

)
=

1− r′

R̄
for δ = −r

R̄
, which satisfies27 P(x) ⊢ P(x′) for x′ ∈ B[x] := {x, y ∈ R : ||y − x|| ≤ ε > 0}.

Thus, P(X) = P([0, 1]), whereby R̄ = r
1−w ∈ R+ for r ∈ R+ and w ∈ [0, 1) ⊂ R+; accordingly,

r = R̄(1− w) ∈ R+ for R̄ ∈ R+ and w ∈ [0, 1] ⊂ R+. QED
Not only does Proposition 3 derive Sraffa’s Fundamental Equation by means of mathematical induction

on the real number line but relative to Saccal [7] it more directly shows that it is the same across both
kinds of system, under single and multiple production. The derivation of Sraffa’s Fundamental Equation by
means of mathematical induction on the real number line is also a deductive derivation of the same, as
perhaps as yet unaccomplished (see footnote 1 on page 114 in Sinha [13]).

The first fruit of the derivation Sraffa’s Fundamental Equation by means of mathematical induction
is its derivation without resorting to the analytical elaboration of r, which for n ≥ 5 and undetermined
coefficients is notoriously impossible (i.e. Abel Ruffini Theorem); in other words, ex ante, although the
coefficients (i.e. rescaling factors) may be suitably determined for the existence and unicity of the ‘Standard
System’ (see Dupertuis and Sinha [2]) and although r may be analytically elaborated for some n ≥ 5 cases
it is not in general and, ex post, although the coefficients may be suitably determined for the existence and
unicity of the ‘Standard System’ by having first determined r (see Proposition 1) for cases n ≥ 5 they are
not in general, being two problems which the derivation of Sraffa’s Fundamental Equation by means of
mathematical induction circumvents, to the end of its very derivation.

The derivation of Sraffa’s Fundamental Equation is additionally the same for single production, whereby
expanded ‘Real System’ ÂP̂ · ˆ(1 + r)+ L̂w = Q̂ · P̂ and expanded ‘Standard System’ K · ÂP̂ · ˆ(1 + r)+ L̂w =
K · Q̂ · P̂ . Notice however that the linchpin of the equivalence of Sraffa’s Fundamental Equation across
both kinds of system is the derivation of the ‘Standard Commodity’, which hinges itself on the existence of
the ‘Standard System’.

3. Conclusion

Relative to the germane academic literature in this work I offered alternative and more direct proofs
for (i) the existence and unicity of the ‘Standard System’, (ii) the (existence and) unicity of R = ri (for
w = 0) across both kinds of system and (iii) the existence (and unicity) of r = R(1− w) across both kinds
of system. While the proof for (iii) be outrightly unprecedented and that for (ii) certainly shorter, the
proof for (i) is not necessarily superior to those of the germane academic literature, which judgement is left
open for debate.

24r ∈ R+ is varied independently of its unique determination for the existence and unicity of the ‘Standard System’ (i.e.
r ∈ (0, ∞) = R++ for the elaboration of a unique K ∈ Rn

++), as in both kinds of system it is varied for their expanded
counterparts.

25P ∈ Rn
++ is indivisibly determined as a vector and not in terms of its individual elements pj , for prices are determined

simultaneously, whereby the loss of one commodity incapacitates all production. P and w are determined thus: ÂP̂ · ˆ(1 + r) +
L̂w = Q̂P̂ ←→ ÂD( ˆ1 + r)P̂ + L̂w = Q̂P̂ −→ [Q̂− ÂD( ˆ1 + r)]P̂ = L̂w −→ w−1P̂ = [Q̂− ÂD( ˆ1 + r)]−1L̂, in which D(·) is a
diagonal matrix and w is the inverse of the last element of w−1P̂ ; a necessary and sufficient condition for a solution, indeed
unique, is det[Q̂− ÂD( ˆ1 + r)] ̸= 0, which is notably different from det[Q− (1 + r)A⊤] = 0 as necessary, but insufficient, for
the existence of the ‘Standard System’.

26While the observation of R̄ = r
1−w

∈ R+ may occur for both kinds of system it is typically observed for the expanded
‘Standard System’, being that which Sraffa [15] intended, owing to the fact that “the distribution of the surplus must be
determined through the same mechanism and at the same time as are the prices of commodities” (ibidem, page 6). Since one
is nonetheless a mere rescaling of the other, Sinha [13] on page 114 observes it for the expanded ‘Real System’.

27It is even clearer in contrapositive terms: ∀δr ∈ R\{0}, x′ = x + δ = w′ = w + δ ̸= 1− r
R̄

+ δ = 1−
(

r+δr

R̄

)
= 1− r′

R̄

for δ = −r
R̄
⊢ x = w ̸= 1 − r

R̄
, which satisfies ¬P(x′) ⊢ ¬P(x) for x′ ∈ B[x] := {x, y ∈ R : ||y − x|| ≤ ε > 0}. Notice that

ℓp norm ||z||p∈[1, ∞)∪{∞}=N̄+
= (⟨z, z⟩)

1
p ⊻ max{|z|} = |z| =

{
z = y − x, z = y − x ∈ R++
−z = x− y, z = y − x ∈ R−−

; for ||z||p∈[1, ∞]=N̄+
one

therefore observes r−r′

R̄
=

(
1− r′

R̄

)
−

(
1− r

R̄

)
= w′ − w = x′ − x ≤ y − x = v − w = v −

(
1− r

R̄

)
= R̄(v−1)+r

R̄
≤ ε or

r′−r
R̄

=
(

1− r
R̄

)
−

(
1− r′

R̄

)
= w − w′ = x− x′ ≤ x− y = w − v =

(
1− r

R̄

)
− v = R̄(1−v)−r

R̄
≤ ε.
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Appendix

Julia commands for Proposition 1’s algorithm (wherein # must replace %)

using LinearAlgebra

% A and Q are the respective input and output matrices of any Real System; they are ...
non−zero and possibly reducible.

% They can be instantiated for the "counterexamples" of Manara (1968) and Schefold (2021).
% The upshot is that both are no longer counterexamples for the existence and unicity of ...

the Standard System.

% 1) Manara (1968)
A=[1 1.1; 1.1 1];
Q=[1.09 1.144; 1.144 0.99];

% 2) Schefold (2021)
%A=[2/5 1; −1/5 3/5];
%Q=[1 0; 0 1];

% 3) Particular random case
%A=[0.307858 0.84353; 0.720777 0.838968];
%Q=[0.611711 0.561314; 0.849475 0.0438535];
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% 4) Universal random case
%A=rand(2, 2)+rand(2, 2)*im;
%Q=rand(2, 2)+rand(2, 2)*im;

At=A'; % Compute transpose of A

F=schur(complex(Q), complex(At)); % Perform complex Schur decomposition
U=inv(F.T)*F.S; % Initialise U
counter=1; % Initialise counter at 1

if isreal(diag(U)) % Check if diagonal elements of U are real
println("Values of diag(U):", diag(U)); % Print diagonal elements of U

else
G=schur(Q, At); % If not real then perform real Schur decomposition
Qtl=real(F.Q*G.S*F.Z'); % Project Q's complex results to real numbers
Attl=real(F.Q*G.T*F.Z'); % Project At's complex results to real numbers
H=schur(complex(Qtl), complex(Attl)); % Perform new complex Schur decomposition on real ...

matrices
U=inv(H.T)*H.S; % Update U with the new complex Schur decomposition

while !isreal(diag(U)) % Iterate until diagonal elements of U be real
counter+=1; % Increment counter in each iteration by 1
println("Iteration:", counter); % Print iteration number
println("Values of diag(U):", diag(U)); % Print diagonal elements of U
G=schur(Qtl, Attl); % If not real then perform real Schur decomposition
Qtl=real(H.Q*G.S*H.Z'); % Project Qtl's complex results to real numbers
Attl=real(H.Q*G.T*H.Z'); % Project Attl's complex results to real numbers
H=schur(complex(Qtl), complex(Attl)); % Perform new complex Schur decomposition on real ...

matrices
U=inv(H.T)*H.S; % Update U with the new complex Schur decomposition

end
end

return U % Display U

%Utl=[U[1]+(1.001−U[1]) U[3]+(0.001−U[3]); U[2]+(0.009−U[2]) U[4]+(0.005−U[4])]; % ...
Construct Utl for Standard System

%E=eigen(Utl) % Display eigenvalues and eigevectors of Utl for Standard System
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