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Abstract

This paper proposes a noisy GARCH model with two volatility sequences (an unobserved and

an observed one) and a stochastic time-varying conditional kurtosis. The unobserved volatility

equation, equipped with random coefficients, is a linear function of the past squared observations

and of the past observed volatility. The observed volatility is the conditional mean of the unob-

served volatility, thus following the standard GARCH specification, where its coefficients are equal

to the means of the random coefficients. The means and the variances of the random coefficients

as well as the unobserved volatilities are estimated using a three-stage procedure. First, we esti-

mate the means of the random coefficients, using the Gaussian quasi-maximum likelihood estimator

(QMLE), then, the variances of the random coefficients, using a weighted least squares estimator

(WLSE), and finally the latent volatilities through a filtering process, under the assumption that

the random parameters follow an Inverse Gaussian distribution, with the innovation being normally

distributed. Hence, the conditional distribution of the model is the Normal Inverse Gaussian (NIG),

which entails a closed form expression for the posterior mean of the unobserved volatility. Con-

sistency and asymptotic normality of the QMLE and WLSE are established under quite tractable

assumptions. The proposed methodology is illustrated with various simulated and real examples.

Keywords. Noised volatility GARCH, Randon coefficient GARCH, Markov switching GARCH,

QMLE, Weighted least squares, filtering volatility, time-varying conditional kurtosis.

1 Introduction

Conditional variance/volatility models can be divided into two main categories, depending on whether

the volatility is a function or not of the present shocks/noises. The first category, consists of observation-

driven models (Cox, 1981), such as the generalized autoregressive conditional heteroscedastic (GARCH)

model of Engle (1982) and Bollerslev (1986) and various extensions of it (Francq and Zakoian, 2019).

1Correspondence to: Stefanos Dimitrakopoulos, dimitrakopoulos.stefanos@outlook.com. We would like to pay tribute
to Prof. Mike Tsionas for his contribution to this paper, who would have been a co-author of it, but unfortunately he
passed away.
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The second category, consists of parameter-driven models (Cox, 1981), such as the stochastic volatility

(SV) models, introduced by Taylor (1982-1986). Markov Switching GARCH (MS-GARCH) models

(Hamilton and Susmell, 1994; Gray, 1996; Klaassen, 2002; Haas et al, 2004) are often classified as

parameter-driven models (Francq and Zakoian, 2008-2019). However, a distinct difference between

these models and the SV models is that the MS-GARCH volatility is typically allowed to depend on

past observations, whereas in SV models, the latent volatility process has an autoregressive structure

that depends on its past latent values.

Observation-driven GARCH models are relatively simple to analyze and forecast, in the context of

(Gaussian) quasi-maximum likelihood estimators (QMLEs). In particular, the volatility is determin-

istically obtained once the GARCH parameters have been estimated. However, the fact that GARCH

volatility is a deterministic function of past observations might be restrictive. Such a restriction may

create a sort of distortion towards large variabilities, which tends to ignore small volatilities; see Figure

1. Thus, the actual volatility path of a series may not be captured well by the GARCH model. In ad-

dition, the multiplicative form of the standard GARCH model generally implies a constant conditional

kurtosis which is a non-negligible limitation (e.g. White et al, 2010). On the contrary, SV-type models

have the advantage of integrating present shocks in the latent volatility equation but their estimation

is non-trivial. In addition, in most SV models, the volatility does not depend on past observations,

which can also be restrictive.

On the other hand, MS-GARCH models can overcome the limitations of the two aforementioned

classes of volatility models. Indeed: i) the past of the observed process is integrated into the volatility

specification and ii) the volatility depends on the present shocks, which are materialized by the regime

sequence. Nonetheless, MS-GARCH models still have some drawbacks. First, their estimation and

prediction is generally not straightforward, especially for MS-GARCH models that are characterized

by path dependence (Gray, 1996; Haas et al, 2004; Francq and Zakoian, 2008-2019; Aknouche and

Rabehi, 2010; Aknouche and Francq, 2022; Wee et al, 2022). Second, the regime sequence on which the

parameters depend is generally discrete-valued and even finite, which can also be limitative. Finally,

all volatility parameters depend on the same regime sequence, so a more flexible scenario, where each

parameter has its own regime variable is ruled out.

Our contribution circumvents the limitations of the MS-GARCH models. In particular, we propose

a multi-regime-variable random-coefficient GARCH (RC-GARCH) model that has a time-varying con-

ditional kurtosis and two volatility sequences. The first volatility is the observed/predictive conditional

variance sequence, which is nothing but the volatility equation of the standard GARCH model. So, the

observed volatility is a deterministic function of past observations and can be estimated from the data

using the standard Gaussian QMLE. The second one is the unobserved (latent/hidden) volatility which

depends both on present shocks and past observations, as is the case with the MS-GARCH models.

In contrast with the MS-GARCH models that are based on a single regime-specific, the parameters in
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our unobserved volatility equation are properly random (Nicholls and Quinn, 1982; Regis et al, 2022)

so that each coefficient has its own (continuous) regime switching mechanism. The observed volatility

can be seen as the conditional mean of the latent volatility, given the past observations. Hence, the

means of the random coefficients constitute the coefficients in the observed volatility equation.

Most importantly, in our proposed RC-GARCH representation, the latent volatility is more heavy-

tailed than the observed one, and, accordingly, the noise of the resulting RC-GARCH model is more

light-tailed than that of the standard GARCH model. The latent volatility, therefore, can be seen as

an elevated noisy version of the standard GARCH volatility.

For the estimation of the model parameters, we develop a three-stage frequentist method the

asymptotic properties of which are established. The first stage estimates the means of the random

coefficients using the standard Gaussian QMLE. In the second stage, the variances of the random

coefficients are estimated using a weighted least squares estimate (WLSE), which is consistent and

asymptotically normal (CAN) without any moment restrictions on the observed process (see also,

Aknouche, 2015; Aknouche and Francq, 2023). Assuming the random coefficients are Inverse Gaussian

distributed and the innovation is normally distributed, the unobserved volatility is estimated at the

final stage through the posterior mean of the IG distribution, whose expression has a closed form due

to the fact that the conditional distribution of the model is Normal Inverse Gaussian (NIG). Such a

distribution is very flexible and can account for many stylized facts such as, asymmetry and heavy

tailedness (e.g. Barndorff-Nielsen, 1997; Karlis, 2002; Rachev, 2003, 2008; Stentoft, 2008; Ayala, and

Blazsek, 2019; Mozumder et al, 2024)

The structure of the paper is as follows. Section 2 defines the model and concisely study its

stability properties. Section 3 presents the proposed estimation approach. Sections 4 and 5 illustrate

our methodology with simulated and two real datasets, respectively. Section 6 concludes. The main

proofs are displayed in the Appendix of this paper.

2 The proposed econometric specification

2.1 Noising the GARCH volatility: Some preliminaries

Let the standard Engle-Bollerslev GARCH model (Engle, 1982; Bollerslev, 1986)

Yt = δtηt and δ2t = ω0 +

q∑
i=1

α0iY
2
t−i +

p∑
j=1

β0jδ
2
t−j (2.1)

where {ηt, t ∈ Z} is an iid sequence of real-valued variables with mean 0 and variance 1, with the

volatility coefficients satisfying ω0 > 0, αi ≥ 0 and βj ≥ 0. Assume that (ηt) can be factorized as

3



follows

ηt = εtξt (2.2)

where (εt) and (ξt) are independent, iid, such that (εt) is real-valued with mean 0 and variance 1, and

(ξt) is positive-valued with E
(
ξ2t
)
= 1. Then, the standard GARCH model (2.1) could be written in

the following representation



Yt = δtηt = δt

ηt︷︸︸︷
ξtεt = δtξt︸︷︷︸

σt

εt = σtεt

σt = δtξt

δ2t = ω0 +
q∑
i=1

α0iY
2
t−i +

p∑
j=1

β0jδ
2
t−j

(2.3)

In (2.3), the volatility (δ2t ) is observed, given the true parameter θ0 = (ω0, α01, ...α0q, β01, ...β0p)
′

whereas the volatility (σ2t ) is unobserved (latent/hidden), even with perfect knowledge of θ0. In

addition, δ2t depends only on past observations F Y
t−1 := σ {Yt−u, u ≥ 1} and not on the present

(latent) shock ξt as σ
2
t does. Since E

(
σ2t |F Y

t−1

)
= δ2t , the sequence

(
δ2t
)
can also be called predictive

volatility.

Also, the new innovation (εt) of model (2.3) is less heavy-tailed than the innovation (ηt) of model

(2.1), whereas the latent volatility (σ2t ) is more heavy-tailed than
(
δ2t
)
. Consequently, the standard

GARCH volatility
(
δ2t
)
is less erratic than the latent

(
σ2t
)
and seems to describe the true variability less

well than
(
σ2t
)
. This can be seen from Figure 1, where we have generated a time series (Panel a) from

a specific RC-GARCH(1, 1) model (see (2.5) below) along with the path of observed (Panel b), latent

(Panel c) and filtered (Panel d) volatilities. In panel (b), we have annotated the observed volatility

plot with artificial red curves. These curves are essentially created by large volatilities (distorted in

the direction of the green lines), masking medium and small volatilities. Such a feature does not

appear in the plots for the true and also the estimated/filtered latent volatilities, where medium and

small volatilities are more visible. Finally, note that in (2.3), the unobserved volatility
(
σ2t
)
has a

multiplicative error model (MEM) representation (Engle and Russull, 1998; Engle, 2002; Aknouche

and Francq, 2021; Aknouche et al, 2022b).

As in the MS-GARCH models, our latent volatility σ2t also depends on past observations F Y
t−1 :=

σ {Yt−u, u ≥ 1}. In fact, the noised volatility of the GARCH model (2.3) can be seen as an MS-GARCH

model, yet, with a rather continuous regime sequence (ξt), since it can be rewritten as in the following

specification 
Yt = σtεt

σ2t = ωt +
q∑
i=1

αitY
2
t−i +

p∑
j=1

βjtδ
2
t−j

δ2t = ω +
q∑
i=1

αiY
2
t−i +

p∑
j=1

βjδ
2
t−j

(2.4)
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in which the random coefficients ωt = ξtω, αit = ξtαi, and βjt = ξtβj are ”stochastically” proportional

(i.e. fully positively correlated) to and are governed by the same regime variable ξt, the range of

which can be uncountable. Equation (2.4) is, therefore, an iid regime-switching model with a single

switching sequence (ξt). We call the procedure of passing from (2.1) to (2.3)/(2.4) as “noising the

GARCH volatility” and name (2.4) the random coefficient (RC-GARCH) model.

In lieu of fully correlated random coefficients, which seems restrictive, the random coefficients of

the RC-GARCH model we propose are mutually independent. The resulting specification is, thus, a

multi-switching sequence (vector regime switching), where each coefficient has its own distribution.

In conventional MS-GARCH models, all regimes are governed by the same Markov mechanism. The

range of regimes in our model, though, can be finite, countable, or uncountable. In addition, our

model has a stochastic time-varying kurtosis that can be estimated from data, unlike the standard

GARCH model, in which the conditional kurtosis is constant. Finally, the parameters of our model are

essentially the means and variances of the random coefficients, not necessarily having fully-specified

distributions. Once these parameters are estimated, the distributions of the random coefficients can

be recovered through some parametric assumptions.

(a) (b)

(c) (d)

Figure 1: Simulated RC-GARCH series with ω0 = 0.01, α0 = 0.1, and β0 = 0.85.

2.2 The RC-GARCH model

Let {εt, t ∈ Z} be an iid sequence of real-valued variables with mean 0, variance 1, and and E
(
ε4t
)
:=

κ > 0. Let also the nonnegative iid sequences {ωt, t ∈ Z}, {αit, t ∈ Z} (i = 1, ..., q), and {βit, t ∈ Z}

(j = 1, ..., p) with means ω0 > 0, α0i ≥ 0 and β0j ≥ 0, and variances σ20ω, σ
2
0αi
, and σ20βj , respectively.

Assume that {εt, t ∈ Z}, {ωt, t ∈ Z}, {αit, t ∈ Z}, and {βit, t ∈ Z} are mutually independent.
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The observable process {Yt, t ∈ Z} is said to be a random coefficient GARCH (RC-GARCH) if it

is given by

Yt = σtεt (2.5a)

σ2t = ωt +

q∑
i=1

αitY
2
t−i +

p∑
j=1

βjtδ
2
t−j (2.5b)

where

δ2t := V ar
(
Yt|F Y

t−1

)
= E

(
σ2t |F Y

t−1

)
(2.5c)

is the observed conditional variance which, by taking the conditional expectation with respect to F Y
t−1,

satisfies the following standard (Bollerslev’s) GARCH dynamics

δ2t = ω0 +

q∑
i=1

α0iY
2
t−i +

p∑
j=1

β0jδ
2
t−j . (2.5d)

Let F ε,ϕ
t = σ

{(
εt−u, ϕ

′
t−u+1

)′
, u ≥ 0

}
be the complete σ-algebra generated by the past and the

presence of the random inputs of (2.5) up to time t, where ϕt = (ωt, α1t, ..., αqt, β1t, ..., βpt)
′. Then

σ2t := V ar
(
Yt|F ε,ϕ

t−1

)
(2.6)

is referred to as the complete (or latent) volatility of the model (2.5). Comparing the complete and

observed volatilities in (2.5b) and (2.5d), respectively, we have

σ2t − δ2t = ωt − ω0 +

q∑
i=1

(αit − α0i)Y
2
t−i +

p∑
j=1

(βjt − β0j) δ
2
t−j .

Therefore, from the mutual independence of the random coefficients, the conditional variance of

the latent volatility σ2t has the following linear-in-parameter GARCH-type representation

V ar
(
σ2t |F Y

t−1

)
= E

((
σ2t − δ2t

)2 |F Y
t−1

)
= σ20ω +

q∑
i=1

σ20αi
Y 4
t−i +

p∑
j=1

σ20βjδ
4
t−j (2.7)

in terms of Y 4
t−i and δ

4
t−j . Thus, the conditional variance of the squared RC-GARCH process has the

form

V ar
(
Y 2
t |F Y

t−1

)
= κ

(
V ar

(
σ2t |F Y

t−1

)
+ δ4t

)
− δ4t . (2.8)
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In particular, the conditional kurtosis of the RC-GARCH model given by

κt :=
E(Y 4

t |FY
t−1)

(V ar(Yt|FY
t−1))

2 = κ

(
V ar(σ2

t |FY
t−1)

δ4t
+ 1

)
= κ(1 + σ20ω

1
δ4t

+

q∑
i=1

σ20αi

Y 4
t−i

δ4t
+

p∑
j=1

σ20βj
δ4t−j

δ4t
) (2.9)

is stochastically time-varying and has a linear representation (in terms of
Y 4
t−i

δ4t
and

δ4t−j

δ4t
), unlike the

standard Bollerslev’s GARCH model in which κt is restrictively constant.

Note that the RC-GARCH process given by (2.5) can be seen as an extended regime-switching

GARCH model in which the coefficients, components of ϕt, are not necessarily governed by the same

law, as is the case for standard Markov-Switching GARCH (MS-GARCH) models (Francq and Zakoian,

2005-2008; Aknouche and Francq, 2022). In fact, each random coefficient can have its own distribution,

the range of which can be finite, countably infinite, or even uncountable. In addition, a Markov

structure could be assumed for these random coefficients, which makes the RC-GARCH model (2.5)

potentially flexible. Note finally that the proposed RC-GARCH model (2.5) is non path-dependent

Markov switching and is similar to the representation of Gray (1996) in the sense that (2.5b) is used

instead of the following path-dependent recursion

σ2t = ωt +

q∑
i=1

αitY
2
t−i +

p∑
j=1

βjtσ
2
t−j

where the latent lagged value σ2t−j is replaced by its conditional mean δ2t−j .

We now study the existence of a causal stationary and ergodic solution to equation (2.5) fol-

lowing the conventional stochastic recurrence equation (SRE) approach (Francq and Zakoian, 2019).

Combining (2.5a), (2.5b), and (2.5d) we obtain the following stochastic recurrence equation

Zt = AtZt−1 +Bt, (2.10)

driven by the iid sequence {(At, Bt), t ∈ Z}, where Zt = (Y 2
t , ..., Y

2
t−q+1, δ

2
t , ..., δ

2
t−p+1)

′,
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Bt = (ωtε
2
t , 0(q−1)×1, ω0, 0(p−1)×1)

′, and

At =



α1tε
2
t · · · αq−1,tε

2
t αqtε

2
t β1tε

2
t · · · βp−1,tε

2
t βptε

2
t

1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...

0 · · · 1 0 0 · · · 0 0

α01 · · · α0,q−1 α0q β01 · · · β0,p−1 β0p

0 · · · 0 0 1 · · · 0 0
...

. . .
...

...
...

. . .
...

...

0 · · · 0 0 0 · · · 1 0



,

0m×n being the null matrix of dimension m× n. Let

γ (A) = inf
{
1
tE log ∥At...A2A1∥ , t ≥ 1

}
be the largest Lyapunov exponent associated with the iid-driven SRE (2.10) (Bougerol and Picard,

1992). Let also

β =


β01 · · · β0,p−1 β0p

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

 .

The following result gives conditions for equation (2.10) to have a unique strictly stationary and

ergodic solution.

Proposition 2.1 i) Assume E
(
log
(
ε2t
))
<∞, E (log (ωt)) <∞, E (log (αit)) <∞ and E (log (βjt)) <

∞ ( i = 1, ..., q, j = 1, ..., p). A necessary and sufficient condition for model (2.10) to have a unique

nonanticipative strictly stationary and ergodic solution is that

γ (A) < 0. (2.11)

Such a solution is given for all t ∈ Z by

Zt =

∞∑
j=0

j−1∏
i=0

At−iBt−j , (2.12)

where the series in the right hand side of (2.12) converges absolutely almost surely.
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ii) If (2.10) admits a strictly stationary solution then

ρ (β) < 1. (2.13)

In the special case where p = q = 1, another simple and equivalent stationarity condition for (2.10)

is as follows

E
(
log
∣∣α1tε

2
t−1 + β1t

∣∣) < 0,

while (2.13) reduces to 0 ≤ β01 < 1.

Conditions for the existence of second and fourth moments of the model (2.5) are given as follows.

Proposition 2.2 Assume E
(
ε2t
)
< ∞, E (ωt) < ∞, E (αit) < ∞ and E (βjt) < ∞ (i = 1, ..., q,

j = 1, ..., p). A sufficient condition for the process, given by (2.1), to be strictly stationary and ergodic

with E
(
Y 2
t

)
<∞ is that

ρ (E (At)) < 1 (2.14)

where

E (At) =



α01 · · · α0,q−1 α0q β01 · · · β0,p−1 β0p

1 · · · 0 0 0 · · · 0 0
...

. . .
...

...
...

. . .
...

...

0 · · · 1 0 0 · · · 0 0

α01 · · · α0,q−1 α0q β01 · · · β0,p−1 β0p

0 · · · 0 0 1 · · · 0 0
...

. . .
...

...
...

. . .
...

...

0 · · · 0 0 0 · · · 1 0



.

Using a similar device by Chen and An (1998) and Francq and Zakoian (2019), condition (2.14)

reduces to the following
q∑
i=1

α0i +

p∑
j=1

β0j < 1.

The unconditional mean of the process is given under (2.14) by

E
(
Y 2
t

)
= ω0

1−
q∑

i=1
α0i−

p∑
j=1

β0j

.

Proposition 2.3 Assume E
(
ε4t
)
<∞, E

(
ω2
t

)
<∞, E

(
α2
it

)
<∞, and E

(
β2jt

)
<∞ ( i = 1, ..., q,

j = 1, ..., p). A sufficient condition for the process, given by (2.1), to be strictly stationary and ergodic

with E
(
Y 4
t

)
<∞ is that

ρ (E (At ⊗At)) < 1. (2.15)
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When p = q = 1, the eigenvalues of E (At ⊗At) are

{
κα2

01 + 2α01β01 + β201 + κσ20α1
+ σ20β1 , 0

}
,

so condition (2.15) is

κα2
01 + 2α01β01 + β201 + κσ20α1

+ σ20β1 < 1.

In particular, when all slope parameters are not random, i.e. σ20α1
= σ20β1 = 0, we obtain the fourth

moment condition for the standard GARCH(1, 1) model (cf. Francq and Zakoian, 2019).

3 Parameter estimation

The parameters of the RC-GARCH model are now estimated given a realization Y1, ..., Yn gener-

ated from (2.5). These parameters are of three types, namely: i) the random coefficient means θ0 =

(ω0, α01, ...α0q, β01, ...β0p)
′, ii) the random coefficient variances Λ0 =

(
σ20ω, σ

2
0α1

, ..., σ20αq
, σ20β1 , ..., σ

2
0βp

)′
,

and iii) the unobserved conditional variances σ21, ..., σ
2
n which are augmented parameters. To estimate

the model parameters we use a three-stage procedure, where each stage deals with each block of

parameters in the mentioned order. In particular, the Gaussian QMLE is first used to estimate θ0.

In principle, no assumption on the distribution of the innovation εt is needed. Second, a weighted

least squares estimate is used for Λ0 and requires the specification of the fourth moment κ = E
(
ε4t
)
.

For the latent volatilities σ21, ..., σ
2
n, we use the posterior means E

(
σ2t |Y1, ..., Yt

)
(1 ≤ t ≤ n). To

get closed form results, the random coefficients are assumed to be Inverse Gaussian (IG) distributed,

while the innovation is assumed to be normally distributed N (0, 1). As such, the conditional dis-

tribution Yt|F Y
t−1 of the model is Normal Inverese Gaussian (NIG) distributed (Barndorff-Nielsen,

1997), where the conditional posterior mean σ2t |Y1, ..., Yt can be easily obtained in closed form (Karlis,

2022). The NIG distribution (see Appendix) has many advantages over the normal distribution, such

as allowing for asymmetry and heavy tailedness and is very flexible in modelling financial time series

(Bardorff-Nielsen, 1997; Karlis, 2002; Rachev, 2003; Blazsek et al, 2018).

3.1 Estimating the random coefficient means

First, the parameter vector θ0 = (ω0, α01, ...α0q, β01, ...β0p)
′ is estimated from the data using the

Gaussian QMLE. Then, the observable volatilities δ21 , ..., δ
2
n are estimated from (2.1d). For all generic

θ = (ω, α1, ...αq, β1, ...βp)
′ ∈ Θ ⊂ Rp+q+1 let

δ2t (θ) = ω +

q∑
i=1

αiY
2
t−i +

p∑
j=1

βjδ
2
t−j (θ) , t ∈ Z (3.1)
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be the generic observed volatility, which exists and is stationary and ergodic whenever (2.11) and the

following condition
p∑
j=1

βj < 1, ∀θ ∈ Θ, (3.2)

are satisfied. Given arbitrary initial values Y0, ...Y1−q,δ̃
2
0 , ..., δ̃

2
1−p, let δ̃

2
t (θ) be an observable approxi-

mation to (3.1) given by

δ̃2t (θ) = ω +

q∑
i=1

αiY
2
t−i +

p∑
j=1

βj δ̃
2
t−j (θ) , t ≥ 1. (3.3)

The Gaussian QMLE of θ0 is a solution to the following problem

θ̂n = argmin
θ
L̃n (θ) (3.4)

where

L̃n (θ) =
1
n

n∑
t=1

ℓ̃t (θ) and ℓ̃t (θ) = log δ̃2t (θ) +
Y 2
t

δ̃2t (θ)
. (3.5)

Based on the standard asymptotic GARCH theory (Francq and Zakoian, 2004-2019) we will show that

θ̂n is consistent and asymptotically Normal under the following standard assumptions.

A1 Θ is a compact.

A2 Conditions (2.11) and (3.2) are satisfied.

A3 The distribution of ε2t is non-degenerate and E
(
ε2t
)
= 1.

A4 The polynomials Aθ0 (z) =
q∑
i=1

α0iz
i and Bθ0 (z) = 1−

p∑
i=1

β0iz
i have no common roots, Aθ0 (z) ̸=

1, and α0q + β0p ̸= 0.

A5 θ0 is in the interior of Θ.

A6 E
(
ε4t
)
= κ <∞.

Set

I := E

(
(κ−1)δ4t (θ0)+κV ar(σ2

t |FY
t−1)

δ8t (θ0)

∂δ2t (θ0)
∂θ

∂δ2t (θ0)
∂θ′

)
and J := E

(
1

δ4t (θ0)

∂δ2t (θ0)
∂θ

∂δ2t (θ0)
∂θ′

)
. (3.6)

Theorem 3.1 Under A1 -A4,

θ̂n
a.s.→
n→∞

θ0. (3.7)

If, in addition, A5 -A6 are satisfied then

√
n
(
θ̂n − θ0

)
D→

n→∞
N
(
0, J−1IJ−1

)
, (3.8)

11



where J is invertible.

When all random parameters are degenerate, it follows that σ2t = δ2t and

V ar
(
σ2t |F Y

t−1

)
= V ar

(
δ2t |F Y

t−1

)
= 0

since δ2t is F Y
t−1-measurable. Thus, E

(
∂lt(θ0)
∂θ

∂lt(θ0)
∂θ′

)
reduces to (κ− 1)E

(
1

δ4t (θ0)

∂δ2t (θ0)
∂θ

∂δ2t (θ0)
∂θ′

)
, which

is the covariance matrice of the Gaussian QMLE of the standard GARCH model (Francq and Zakoian,

2004-2019). Consistent estimates of I and J are given, respectively, by

În = 1
n

n∑
t=1

(Y 2
t −δ̂2t )

2

δ̂8t

∂δ̂2t
∂θ

∂δ̂2t
∂θ′ , Ĵn = 1

n

n∑
t=1

1

δ̂4t

∂δ̂2t
∂θ

∂δ̂2t
∂θ′ , (3.9a)

where

δ̂2t = δ̃2t

(
θ̂n

)
, 1 ≤ t ≤ n. (3.9b)

3.2 Estimating the random coefficient variances

At this stage, the distribution of εt and hence of Yt|σ2t has to be specified. It is assumed that εt is

normally distributed with mean zero and unit variance (εt ∼ N (0, 1)) and hence κ = E
(
ε4t
)
= 3.

Then, Λ0 = (σ20ω, σ
2
0α1

, ..., σ20αq
, σ20β1 , ..., σ

2
0βp

)′ will be estimated from a regression built from equation

(2.8). Let et =
(
Y 2
t − δ2t

)2 − V ar
(
Y 2
t |F Y

t−1

)
so that (Nichols and Quinn, 1982)

(
Y 2
t − δ2t

)2
= V ar

(
Y 2
t |F Y

t−1

)
+ et. (3.10a)

Then, from (2.8) and (2.7), we have V ar
(
σ2t |F Y

t−1

)
=M ′

tΛ0 and V ar
(
Y 2
t |F Y

t−1

)
= (κ− 1) δ4t +M

′
tΛ0,

so (3.10a) becomes

(Y 2
t −δ2t )

2−(κ−1)δ4t
κδ4t

= 1
δ4t
M ′
tΛ0 +

et
δ4t
, (3.10b)

where E
(
et
δ4t
|F Y

t−1

)
= 1

δ4t
E
(
et|F Y

t−1

)
= 0 and

Mt = (1, Y 4
t−1, ..., Y

4
t−q, δ

4
t−1, ..., δ

4
t−p)

′. (3.11)

From the regression (3.10b), a WLS estimate of Λ0 is given by

Λ̂n =

(
n∑
t=1

1

δ̂8t
M̂tM̂

′
t

)−1 n∑
t=1

M̂t
(Y 2

t −δ̂2t )
2−(κ−1)δ̂4t

κδ̂8t
(3.12)

12



where δ̂2t = δ̃2t (θ̂n) is evaluated from (3.9b) and

M̂t = (1, Y 4
t−1, ..., Y

4
t−q, δ̂

4
t−1, ..., δ̂

4
t−p)

′.

To study the consistency and asymptotic normality of Λ̂n, define

A = E
(

1
δ8t (θ0)

MtM
′
t

)
(3.13a)

B = 1
κ2
E
(
e2t
δ16t
MtM

′
t

)
= 1

κ2
E

(
V ar

(
(Y 2

t −δ2t )
2|FY

t−1

)
δ16t

MtM
′
t

)
. (3.13b)

Clearly, these matrices are finite and A is invertible. Consider the following moment assumption.

A7: E
(
ε8t
)
<∞.

Theorem 3.2 Under A1 -A4 and A6,

Λ̂n
a.s.→
n→∞

Λ0. (3.14)

If, in addition, A7 holds then

√
n
(
Λ̂n − Λ0

)
D→

n→∞
N
(
0, A−1BA−1

)
. (3.15)

Assuming that εt ∼ N (0, 1), all moments of εt are finite, so the eigth moment assumption A7

does not really appear stringent. From (3.10a) and (2.8), a consistent estimates of A and B in (3.13)

are, respectively,

Ân = 1
n

n∑
t=1

1

δ̂8t
M̂tM̂

′
t and B̂n = 1

n

n∑
t=1

(
(Y 2

t −δ̂2t )
2−(κ−1)δ̂4t−κM ′

tΛ̂n

)2
κ2δ̂16t

M̂tM̂
′
t . (3.16)

3.3 Estimating/filtering the unobserved volatilities

Finally, the unobserved volatilities σ21, ..., σ
2
n are estimated using the smoothed volatility

σ̂2t = E
(
σ2t |Y1, ..., Yn

)
, t = 1, ..., n, (3.17)

that we obtain from the smoothed/filtered distribution f
(
σ2t |Y1, ..., Yt

)
. Consider the RC-GARCH

model (2.5). We first need to specify the distribution of the innovation εt and the random coefficients

θt := (ωt, α1t, ..., αqt, β1t, ..., βpt)
′. We, thus, assume that

εt ∼ N (0, 1) so that Yt|σ2t ∼ N
(
0, σ2t

)
. (3.18)

13



Then, the random coefficients are assumed to be IG distributed (see Appendix A, (A.1)), that is

ωt ∼ IG (ω0, λω) with mean ω0 and shape λω so V ar (ωt) =
ω3
0

λω
(3.19a)

αit ∼ IG (α0i, λαi) with mean α0i and shape λαi so V ar (αit) =
α3
0i

λαi
(3.19b)

βjt ∼ IG
(
β0j , λβj

)
with mean β0j and shape λβj so V ar (βjt) =

β3
0j

λβj
. (3.19c)

From the summability property of the IG distribution (see Appendix A) and the mutual inde-

pendence of {ωt, t ∈ Z}, {αit, t ∈ Z} (i = 1, ..., q), and {βit, t ∈ Z} (j = 1, ..., p), which entails the

conditional independence of ωt, αitY
2
t−i, and βjtδ

2
t−j (i = 1, ..., q, j = 1, ..., p) given F Y

t−1, the condi-

tional distribution of σ2t |F Y
t−1 is thus

σ2t |F Y
t−1 ∼ IG

(
δ2t ,∆

2
t

)
. (3.20a)

In view of (3.19), δ2t is given by (2.5d) and

∆2
t = λω +

q∑
i=1

λαiY
2
t−i +

p∑
j=1

λβjδ
2
t−j (3.20b)

where λω =
ω3
0

σ2
0ω
, λαi =

α3
0i

σ2
0αi

, and λβj =
β3
0j

σ2
0βj

.

Consequently, the conditional distribution of the model given by

f
(
Yt|F Y

t−1

)
=

∫
(0,∞)

f
(
Yt, σ

2
t |F Y

t−1

)
dσ2t =

∫
(0,∞)

f
(
σ2t |F Y

t−1

)
f
(
yt|σ2t

)
dσ2t , (3.21)

is a continuous mixture of normal distributions with Inverse Gaussian mixings. This distribution is

called Normal Inverse Gaussian (NIG, see Appendix A). It has a closed form density (see Appendix,

(A.2)) and is also given in the following hierarchical mixture (see Appendix, (A.3))

 σ2t |F Y
t−1 ∼ IG

(
δ2t ,∆

2
t

)
Yt|σ2t ∼ N

(
0, σ2t

) =⇒ Yt|F Y
t−1 ∼ NIG

(
∆2
t , 0, δ

2
t , 0
)
. (3.22)

Due to the the non-anticpativeness of the model, the posterior smoothed volatility σ2t |F Y
n is the

same as the posterior filtered volatility σ2t |F Y
t whose density is given by

f
(
σ2t |F Y

t

)
= f

(
σ2t |Yt,F Y

t−1

)
=

f(σ2
t |FY

t−1)f(Yt|σ2
t )

f(Yt|FY
t−1)

.

Thus, the unobserved volatility σ2t can be estimated by the smoothed volatility E
(
σ2t |F Y

t

)
given

14



by

E
(
σ2t |F Y

t

)
= 1

f(Yt|FY
t−1)

∫
(0,∞)

σ2t f
(
σ2t |F Y

t−1

)
f
(
Yt|σ2t

)
dσ2t . (3.23)

Using the result of Karlis (2002, formula (4)) for the NIG distribution, a closed form for the IG

posterior mean in (3.23) is given by (A.4) (see Appendix A). Thus, our estimate σ̂2t of σ2t is obtained

while replacing the true parameters in the expression (3.23) and (A.5) by their estimates obtained in

the first and second stages, giving

σ̂2t = Ê
(
σ2t |F Y

t

)
=

√
δ̂2t+Y

2
t

∆̂t

K0

(
∆̂t

√
δ̂2t+Y

2
t

)
K1

(
∆̂t

√
δ̂2t+Y

2
t

) (3.24)

where δ̂2t is given by (3.9b), Kr (y) denotes the modified Bessel function of the third kind of order r

evaluated at y, and

∆̂2
t = λ̂ω +

q∑
i=1

λ̂αiY
2
t−i +

p∑
j=1

λ̂βj δ̂
2
t−j . (3.25)

The estimates λ̂ω = ω̂3

σ̂2
ω
, λ̂αi =

α̂3
i

σ̂2
αi

, and λ̂βj =
β̂3
j

σ̂2
βj

(i = 1, ..., q, j = 1, ..., p) are obtained from

(3.4), (3.19), (3.9b), and (3.12). Note finally that ∆2
t can be interpreted as a “conditional” heavy-tail

parameter (see Appendix A; Barndorff-Nielsen and Prause, 2001).

3.4 Summary

The following algorithm summarizes the three-stage method to estimate the RC-GARCH parameters

(2.5).

Algorithm 3.1 (Three-stage method)

Given an observed series Y1, ..., Yn:

Stage I

1- Estimate θ0 = (ω0, α01, ..., β0p)
′ using the Gaussian QMLE θ̂n given by (3.4).

2- Estimate the observable volatilities δ̂21 , ..., δ̂
2
n from (3.3), where δ̂2t = δ̃2t (θ̂n) (1 ≤ t ≤ n).

3- Estimate the asymptotic variance of θ̂n and hence its asymptotic standard error (ASE) from

(3.9).

Stage II

4- Estimate the variances of the random coefficients Λ0 =
(
σ20ω, σ

2
0α1

, ..., σ20αq
, σ20β1 , ..., σ

2
0βp

)′
using

the WLSE Λ̂n from (3.12).

5- Estimate the asymptotic variance and then the ASE of Λ̂n from (3.16).

Stage III

6- Estimate the latent volatilities σ21, ..., σ
2
n from (3.24)-(3.25), using the posterior mean of the

Inverse Gaussian distribution. □
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4 Simulated data

The finite-sample performances of the QML and WLS estimators given by Algorithm 3.1 are assessed

for the RC-GARCH(1, 1) model via a Monte Carlo simulation study. To this end, three cases of the

RC-GARCH model are considered. In the first case, εt is Gaussian, whereas the random coefficients

ϕt = (ωt, αt, βt) are inverse Gaussian distributed ; see Table 1. In the second case, εt is Gaussian,

while the random coefficients are Poisson distributed; see Table 2. Finally, in the third case, εt is

Gaussian, where the random coefficients are exponentially distributed; see Table 3.

We run the QMLE and WLSE on 1000 sample-paths generated from the RC-GARCH(1, 1) model

with sample size n ∈ {1000, 3000, 5000}, and θ0 = (ω0, α0, β0)
′ = (0.01, 0.15, 0.80)′. This choice

is close to the estimated values obtained in the real applications. The variance parameters Λ0 =(
σ20ω, σ

2
0α, σ

2
0β

)
are deduced accordingly from the distribution of ϕt in each case (see Tables 1-3). For

the QMLE, we use the nonlinear optimization function “nlimb”, while for the WLSE, the constrained

nonnegative least squares function “nnls”. In fact, without any nonnegativity constraint, the WLS

estimates can give negative values.

QMLE WLSE

n (θ0,Λ0) ω0 α0 β0 σ20ω σ20α σ20β

0.0100 0.1500 0.8000 0.0100 0.3375 0.2560

1000

Mean

StD

ASE

0.0113

0.0058

0.0048

0.1527

0.0558

0.0475

0.7898

0.0627

0.0554

0.0097

0.0331

0.0144

0.2929

0.0822

0.0649

0.2772

0.0709

0.0635

3000

Mean

StD

ASE

0.0103

0.0031

0.0027

0.1507

0.0330

0.0294

0.7980

0.0366

0.0328

0.0082

0.0212

0.0115

0.3598

0.0776

0.0529

0.2699

0.0565

0.0501

5000

Mean

StD

ASE

0.0102

0.0021

0.0021

0.1509

0.0233

0.0229

0.7983

0.0254

0.0256

0.0086

0.0170

0.0104

0.3325

0.0358

0.0226

0.2522

0.0473

0.0388

Table 1. QMLE and WLSE results for 1000 RC-GARCH(1,1) series with

sample size n, ωt ∼ IG (ω0, 0.0001) , αt ∼ IG (α0, 0.01) , and βt ∼ IG (β0, 2) .
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QMLE WLSE

n (θ0,Λ0) ω0 α0 β0 σ20ω σ20α σ20β

0.0100 0.1500 0.8000 0.0100 0.1500 0.8000

1000

Mean

StD

ASE

0.0111

0.0052

0.0048

0.1513

0.0488

0.0459

0.7901

0.0592

0.0553

0.0109

0.0509

0.0430

0.1482

0.0549

0.0464

0.7770

0.0421

0.0388

3000

Mean

StD

ASE

0.0105

0.0026

0.0025

0.1523

0.0277

0.0276

0.7950

0.0311

0.0309

0.0100

0.0316

0.0295

0.1480

0.0327

0.0303

0.8099

0.0364

0.0252

5000

Mean

StD

ASE

0.0103

0.0020

0.0019

0.1504

0.0203

0.0215

0.7970

0.0235

0.0240

0.0099

0.0122

0.0086

0.14971

0.0284

0.0206

0.8065

0.0291

0.0257

Table 2. QMLE and WLSE results for 1000 RC-GARCH(1,1) series with sample size n,

ωt ∼ P (ω0) , αt ∼ P (α0) , and βt ∼ P (β0) .

QMLE WLSE

n (θ0,Λ0) ω0 α0 β0 σ20ω σ20α σ20β

0.0100 0.1500 0.8000 0.0001 0.0225 0.6400

1000

Mean

StD

ASE

0.0117

0.0051

0.0044

0.1535

0.0379

0.0372

0.7851

0.0534

0.0485

0.0029

0.0056

0.0051

0.0366

0.0364

0.0338

0.6350

0.0438

0.0445

3000

Mean

StD

ASE

0.0100

0.0024

0.0022

0.1481

0.0216

0.0207

0.8011

0.0283

0.0258

0.0013

0.0018

0.0031

0.0229

0.0311

0.0269

0.6421

0.0390

0.0369

5000

Mean

StD

ASE

0.0102

0.0018

0.0017

0.1515

0.0163

0.0167

0.7991

0.0198

0.0189

0.0013

0.0027

0.0019

0.0275

0.0275

0.0279

0.6408

0.0274

0.0226

Table 3. QMLE and WLSE results for 1000 RC-GARCH(1,1) series with sample size n,

ωt ∼ Γ
(
1, 1

ω0

)
, αt ∼ Γ

(
1, 1

α0

)
, and βt ∼ Γ(1, 1

β0
).
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For each instance, the mean, StDs (standard-deviations), and ASEs (asymptotic standard errors)

of estimates over the 1000 sample-paths are shown in Tables 1-3. A few conclusions can be drawn.

Firstly, the true values of the parameters are well estimated, given their smaller ASEs, which are

quite close to their StDs, especially for the QMLE part. Secondly, the results overall confirm the

asymptotic theory of Section 3 (Theorems 3.1-3.2). Indeed, the larger the sample size, the more

accurate the estimate is in terms of bias and standard errors. Thirdly, the QMLE gives slightly more

accurate results, especially in terms of bias, StDs, and ASEs.

5 Empirical data

5.1 Intel stock returns

In our first empirical application, we fit the RC-GARCH(1,1) model to the daily returns of the Intel

stock ranging from 12/15/72 to 12/31/08. In total, we have n = 9097 observations. The series,

taken from Tsay (2010), exhibits conventional stylized facts of stock return series, such as dependence

without correlation, high persistence, and volatility clustering (see Figure 2).
and volatility clustering (cf. Figure 4.1).

(a) (b)

(c) (d)

Figure 4.1 Intel stock return series: (a) The RINT series; (b) sample autocorrelation

(c) sample autocorrelation of squares, (d) histogram.

Applying the �rst two steps of the three-step method (see Algorithm 3.1, steps 1 to 5),

we obtain the estimated RC-GARCH(1,1) model given by Table 4.3, where are displayed

the estimated means and the estimated variances of the random coe¢ cients as well as their

22

Intel series Sample autocorrelations

Sample autocorrelations of squares Histogram

Figure 2: Intel stock return series: (a) The series, (b) sample autocorrelation, (c) sample autocorrela-
tion of squares, (d) histogram.

Applying the first two stages of Algorithm 3.1, we obtain the estimated RC-GARCH(1,1) model
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given by Table 4, that displays the estimated means and variances of the random coefficients as well

as their asymptotic standard errors (ASE) in parentheses.

ωt α1t β1t

QMLE ω̂n α̂1n β̂1n α̂1n + β̂1n

7.4e-06
(1.9e-06)

0.0520
(0.0069)

0.9397
(0.0071)

0.9918

WLSE σ̂2ωn σ̂2αn σ̂2βn FMC

5.7e-08
(1.1e-07)

0.0255
(0.0177)

0.6447
(0.4031)

1.710

Table 4. QML and WLS estimates for the RC-GARCH(1, 1);Intel series.

The parameter estimate α̂1n+ β̂1n ≃ 0.9918 indicates a strong persistence, while the estimated RC-

GARCH model remains strictly stationary with a finite second moment. In addition, the estimated

indicator of the fourth moment condition,

FMC := 3α̂2
1n + 2α̂1nβ̂1n + β̂21n + κσ̂20α1

+ σ20β1 ≃ 1.710,

is larger than one, so the estimated RC-GARCH model has an infinite fourth moment and hence an

infinite unconditional kurtosis. Nevertheless, the conditional (excess) kurtosis κ̂t − 3 (see (2.9)) is

finite and its estimated values are plotted in Figure 3 (Panel (d)). In the same figure, we plotted

the observed (predictive) conditional volatility δ̂2t (Figure 3 (a)), which is nothing but the volatility

of the standard GARCH model, and the filtered volatility σ̂2t (Figure 3 (b)) obtained from Stage 3

of the Algorithm 3.1. It can be seen that the filtered volatility σ̂2t is more erratic than the predictive

volatility δ̂2t and that the latter constitute an envelope of the former. In addition, as mentioned in the

introduction, the filtering volatility σ̂2t does not seem to contain curves, in the sense of large volatilities,

as does the predictive (or standard GARCH) volatility δ̂2t .

Thus, with the two estimated volatilities, we have a better and more insightful picture of the

evolution of the variability of the series. Note also that the normalized residuals ε̂ := Yt
σ̂t

(see Figure

3 (c)) look like an independent noise (see also the Figures in the supplementary material) as the

sample autocorrelations of residuals and their squares do not show any significant spikes. Finally,

the estimated conditional excess kurtosis κ̂t − 3 (Figure 3 (d)) seems to be in accordance with the

estimated predictive volatility of the model.

5.2 Cisco stock returns

The second application concerns the daily returns of Cisco stock (Tsay, 2010) for the period from

01/02/2001 to 12/31/2008 involving n = 2011 observations (see Figure 4). The parameter estimates
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estimated conditional excess kurtosis b�t � 3 (cf. Figure 4.2 (d)) seems in accordance with
the estimated predictive volatility of the model.

(a) (b)

(c) (d)

Figure 4.2. Estimated RC-GARCH for RINT series. (a) Predictive volatility,

(b) smoothed volatility, (c) ACF of residuals, (d) conditional excess kurtosis.

24

Figure 3: Estimated RC-GARCH for the Intel series. (a) Predictive volatility, (b) smoothed volatility,
(c) ACF of residuals, (d) conditional excess kurtosis.

are reported in Table 5. Similar conclusions as in the previous application can be drawn: the estimated

model is highly persistent, has a finite second moment and an infinite fourth moment.

ωt α1t β1t

QMLE ω̂n α̂1n β̂1n α̂1n + β̂1n

3.2e-06
(1.8e-06)

0.0341
(0.0077)

0.9609
(0.0082)

0.9950

WLSE σ̂2ωn σ̂2αn σ̂2βn FMC

5.6e-08
(1.1e-07)

0.1229
(0.0101)

1.3650
(0.9704)

2.7260

Table 5. QML and WLS estimates for the RC-GARCH(1, 1); Cisco series.

Finally, the predictive and smoothed volatilities are plotted in Figure 5 (panel (a) and panel (b),

respectively). The smoothed volatility is more erratic and captures small and large volatilities better

than does the predictive (observed) volatility. The conditional excess kurtosis (panel (d)) exceptionally

shows very large picks, which are probably due to the fourth-order instability of the model.

6 Conclusion

This paper proposed a random coefficient GARCH model with time-varying conditional kurtosis and

two conditional volatility sequences, one observed, which is driven by past observations and one la-

tent, which is driven by past and present random inputs. Our formulation, which is path-independent,

mimics the Markov switching specification of Gray (1996) and is different from earlier random coeffi-

cient GARCH models introduced by Kazakevicius et al (2004), Klivecka (2004) and Thavaneswaran
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4.3 Application to the CISCO stock returns

The second application concerns the daily returns of Cisco stock (cf. Tsay, 2010) for the

period from 01/02/2001 to 12/31/2008 involving n = 9097 observations (cf. Figure 4.3).

(a) (b)

(c) (d)

Figure 4.3 CISCO stock return series: (a) The RCISCO series; (b) sample

autocorrelation, (c) sample autocorrelation of squares, (d) histogram.

The parameter estimates are reported in Table 4.5. Similar conclusions as the previous

application can be drawn: The estimated model is highly persistent, has a �nite second
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Cisco series                                               Sample autocorrelations

Sample autocorrelations of squares                               Histogram

Figure 4: Cisco stock return series: (a) The series; (b) sample autocorrelation, (c) sample autocorre-
lation of squares, (d) histogram.

et al (2005). The observable/predictive volatility of our model is the same as that of the standard

GARCH model and represents the conditional mean of the latent volatility, which is the main interest

of this article. The proposed model equipped with two volatility equations can shed more light on the

evolution of the variability of the underlying series.

Regarding estimation, the QMLE for the means of the random coefficients is consistent and asymp-

totically normal (CAN) with a different covariance matrix than the QMLE of the standard GARCH.

In addition, the WLSE for the variances of the random coefficients is also CAN and is given in closed

form regardless of the distribution of the model. Finally, the latent volatility filtering/smoothing is

based on the assumption that the conditional model is NIG distributed with IG distributed random

coefficients and normal innovations. The NIG hypothesis allows for closed-form posteriors, is very

flexible, and can account for heavy tailedness and asymmetry.

Further extensions of this paper are possible. First of all, the asymmetry parameter was set to

zero although it could be considered as an unknown parameter to be estimated. Also, alternative

estimation methods could be used, such as the Bayesian approach or the EM algorithm (Karlis, 2002;

Aknouche et al, 2022a). Finally, other random-coefficient GARCH models could be considered, such

as the random coefficient EGARCH and the random coefficient score-driven model. These aspects of

analysis could be analyzed in a future research agenda.
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3 Comment 3

Please rather consider these �gures

(a) (b)

(c) (d)
Figure 4.4. Estimated RC-GARCH for RCISCO series. (a) Predictive volatility,
(b) smoothed volatility, (c) ACF of residuals, (d) conditional excess kurtosis.

Many thanks for your comments.

2

Figure 5: Estimated RC-GARCH for Cisco series. (a) Predictive volatility, (b) smoothed volatility,
(c) ACF of residuals, (d) conditional excess kurtosis.

22



Appendix

Appendix A: Inverse Gaussian and Normal Inverse Gaussian distributions

A continuous random variable Z is said to have an Inverse Gaussian (IG) distribution with mean

ρ > 0 and shape λ > 0 (Z ∼ IG (ρ, λ)) if its probability density function is given by

f (z; ρ, λ) =
√
λ√

2πz3
exp

(
−λ(z−ρ)2

2ρz

)
, z > 0. (A.1)

An equivalent form is given in terms of the mean ρ and the dispersion (1/shape) ϕ = 1
λ . Another

reparametrization is given in terms of ρ = ξ
ψ and λ = ξ2 so ξ =

√
λ and ψ =

√
λ
ρ (e.g. Barndorff-

Nielsen, 1978). The mean and variance of the IG distribution are E (X) = ρ and V ar (X) = ρ3

λ . The

IG distribution is linear in the sense that if Z1 ∼ IG (ρ1, λ1) and Z2 ∼ IG (ρ2, λ2) are independent

then aZ1 + bZ2 ∼ IG (aρ1 + bρ2, aλ1 + bλ2) (a, b > 0).

A continuous mixture of normal distributions with Inverse Gaussian mixings leads to the Normal

Inverse Gaussian (NIG) distribution that has a closed form. A continuous random variable Y is said

to have a NIG distribution with parameters α, ρ, µ, β (Y ∼ NIG (α, β, ρ, µ), α, ρ > 0, |β| ≤ α, µ ∈ R)

if its probability density function is given by (Barndorff-Nielsen, 1978)

f (y;α, β, ρ, µ) =
αρK1

(
α
√
ρ2+(y−µ)2

)
π
√
ρ2+(y−µ)2

exp(ρ
√
α2 − β2 + β (y − µ)) (A.2)

where K1 is the modified Bessel function of the third kind of order one. In terms of the hierarchi-

cal mixture form, the NIG distribution is defined as follows (Barndorff-Nielsen, 1997; Karlis, 2002;

Murphy, 2007)  Z|ρ, α, β ∼ IG
(
ρ,
√
α2 − β2

)
Y |Z, µ, β ∼ N (µ+ βZ,Z)

=⇒ Y ∼ NIG (α, β, ρ, µ) .

In particular, when β = 0 the hierarchical form of the NIG (α, 0, ρ, µ) distribution becomes

 Z|α, ρ ∼ IG (ρ, α)

Y |Z, µ ∼ N (µ,Z)
=⇒ Y ∼ NIG (α, 0, ρ, µ) . (A.3)

The mean and variance of the NIG variable are E (Y ) = µ+ ρβ√
α2−β2

and V ar (Y ) = ρα2√
(α2−β2)3

. The

NIG distribution is closed under affine transformations: If Y ∼ NIG (α, β, ρ, µ) then (Paolella, 2007)

aY + b ∼ NIG
(
α
|a| ,

β
a , |a| ρ, aµ+ b

)
. The main advantages of the NIG distribution over the normal

distribution is that it allows for asymmetry (with parameter β) and heavy tailedness (with parameter

α); see Barndorff-Nielsen, (1997). Note that µ is a location parameter while ρ is a scale parameter.

Another advantage of the NIG distribution is that the posterior mean of the IG distribution E (Z|Y )
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can be obtained through (A.3) in a closed form (cf. Karlis, 2002, formula (4)) as follows

E (Z|Y ) =
ρ

√
1+

(
Y−µ
ρ

)2

α

K0

αρ√1+

(
Y−µ
ρ

)2


K1

(
αρ

√
1+
(

Y −µ
ρ

)2) (A.4)

where Kr (y) denotes the modified Bessel function of the third kind of order r evaluated at y.

In R, we use the function dnig() of the package fBasics for the density of the NIG distribution.

Moreover, to evaluate (A.4), we use the function besselK of the package base.

Appendix B Proofs

Proof of Propositions 2.1-2.3 The proofs of Propositions 2.1-2.3 are standard and follow the

same lines of the stability proofs for GARCH models (see e.g. Francq and Zakoian, 2019). Hence,

they are omitted but they are available upon request.

Proof of Theorem 3.1 The proof is similar to that of QMLE’s consistency and asymptotic

normality for the GARCH model (Francq and Zakoian, 2004-2019). So, only the relevant steps of the

proof are provided. Define Ln (θ) and ℓt as L̃n (θ) and ℓ̃ in (3.5) while substituting δ̃2t (θ) in (3.3) by

δ2t (θ) given by (3.1). Concerning the consistency result (3.7), the following intermediary lemmas are

proved under A1-A4 in the same way as in Francq and Zakoian (2004).

a) limn→∞ supθ∈Θ

∣∣∣L̃n (θ)− Ln (θ)
∣∣∣ = 0 a.s.

b) E (ℓt (θ0)) <∞, E (ℓt (θ)) is minimized at θ = θ0, and E (ℓt (θ0)) = E (ℓt (θ)) ⇒ θ = θ0.

c) For any θ ̸= θ0, there is a neighborhood V (θ) so that

lim sup
n→∞

inf
θ∗∈V(θ)

L̃n (θ
∗) > lim inf

n→∞
L̃n (θ0) a.s.

The proof of the asymptotic normality result (3.8) can be split into the following lemmas.

d)
√
n supθ∈Θ

∥∥∥∂L̃n(θ)
∂θ − ∂Ln(θ)

∂θ

∥∥∥ a.s.→
n→∞

0.

e)
√
n∂Ln(θ0)

∂θ
D→

n→∞
N (0, I).

f) ∂2Ln(θ∗)
∂θ∂θ′

a.s.→
n→∞

J , where θ∗ is between θ̂n and θ0.

Result d) is proved in the same way as in Francq and Zakoian (2004). So only e) and f) are

established.

Regarding e), the sequence
{√

n∂Ln(θ0)
∂θ , t ∈ Z

}
is a square-integrable martingale with respect to

{F t, t ∈ Z} with

n1/2 ∂Ln(θ0)
∂θ = n−1/2

n∑
t=1

(
1− Y 2

t

δ2t (θ0)

)
1

δ2t (θ)

∂δ2t (θ0)
∂θ .
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Since the ergodic theorem under (2.11) entails

n∑
t=1

n−1
(
1− Y 2

t

δ2t (θ0)

)2
1

δ4t (θ)

∂δ2t (θ0)
∂θ

∂δ2t (θ0)
∂θ′

a.s.→
n→∞

E

(
1

δ4t (θ0)
E

((
1− Y 2

t

δ2t (θ0)

)2
|F Y

t−1

)
∂δ2t (θ0)
∂θ

∂δ2t (θ0)
∂θ′

)
(A.5)

where

E

((
1− Y 2

t

δ2t (θ0)

)2
|F Y

t−1

)
= 1

δ4t (θ0)
E
((
δ2t − σ2t ε

2
t

)2 |F Y
t−1

)
=

V ar(Y 2
t |FY

t−1)
δ4t (θ0)

= 1
δ4t (θ0)

(
(κ− 1) δ4t + κV ar

(
σ2t |F Y

t−1

))
(A.6)

the result e) thus follows from (A.5), (A.6), and the central limit theorem for square-integrable mar-

tingales (e.g. Billingsley, 2008; Francq and Zakoian, 2019).

To prove f), the Taylor expansion of the criterion (3.5) at θ0, the almost convergence of θ̂n to θ0,

and the ergodic theorem yield

n−1
n∑
t=1

∂2ℓt(θ∗ij)
∂θi∂θj

= n−1
n∑
t=1

∂2ℓt(θ0)
∂θi∂θj

+ oa.s. (1)
a.s.→
n→∞

E
(
∂2ℓt(θ0)
∂θi∂θj

)
= E

((
1− σ2

t ε
2
t

δ2t (θ0)

)
1

δ2t (θ0)

∂2δ2t (θ0)
∂θ∂θ′

)
+ E

((
2Y 2

t

δ2t (θ0)
− 1
)

1
δ2t (θ0)

∂δ2t (θ0)
∂θ

∂δ2t (θ0)
∂θ′

)
= J ,

which completes the proof. □

Proof of Theorem 3.2 i) We first prove (3.14). Under A1-A4, the strong consistency of θ̂n

entails δ2t − δ̂2t
a.s.→
t→∞

0 and hence
∥∥∥M̂t −Mt

∥∥∥ a.s.→
t→∞

0, where ∥.∥ denotes the Euclidian norm in Rp+q+1.

Therefore, a standard argument shows that (3.12) becomes

Λ̂n =

(
n∑
t=1

1
δ8t
MtM

′
t

)−1 n∑
t=1

Mt
(Y 2

t −δ2t )
2−(κ−1)δ4t
κδ8t

+ oa.s. (1) ,

which, in turns, using (3.10), gives

Λ̂n − Λ0 =

(
1
n

n∑
t=1

1
δ8t
MtM

′
t

)−1

1
n

n∑
t=1

Mt
et
κδ8t

+ oa.s. (1) . (A.7)
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Now under (2.11), the ergodic theorem yields

1
n

n∑
t=1

1
δ8t
MtM

′
t

a.s.→
n→∞

A (A.8)

and, further under A6,

1
n

n∑
t=1

Mt
et
κδ8t

a.s.→
n→∞

E
(
Mt

et
κδ8t

)
= E

(
Mt

1
κδ8t

E
(
et|F Y

t−1

))
= 0. (A.9)

Thus, (3.14) follows from (A.7)-(A.9).

ii) To show (3.15), we first rewrite (A.7) as follows

√
n
(
Λ̂n − Λ0

)
=

(
1
n

n∑
t=1

1
δ8t
MtM

′
t

)−1

1√
n

n∑
t=1

Mt
et
κδ8t

+ oa.s. (1) . (A.10)

The ergodic theorem shows under A7 that

n∑
t=1

(
1√
n
Mt

et
κδ8t

)(
1√
n
Mt

et
κδ8t

)′
= 1

nκ2

n∑
t=1

e2t
δ16t
MtM

′
t

a.s.→
n→∞

1
κ2
E

(
V ar

(
(Y 2

t −δ2t )
2|FY

t−1

)
δ16t

MtM
′
t

)
. (A.11)

From (A.11) and A5-A7, the central limit theorem for square-integrable martingales implies

1√
n

n∑
t=1

Mt
et
κδ8t

D→
n→∞

N (0, B) . (A.12)

The result (3.15) thus follows from (A.10), (A.8), and (A.12). □
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7 Supplementary material

(a) (b)

Figure S.1 Supplement. (c) Residuals, (d) ACF of squared residuals;

RINT series.
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Figure 6: (a) Residuals, (b) ACF of squared residuals; Intel series.

(a) (b)

Figure S.1 Supplement. (c) Residuals, (d) ACF of squared residuals;

RCISCO series.
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Figure 7: (a) Residuals, (b) ACF of squared residuals; Cisco series.
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