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Abstract

A monopolistic seller jointly designs allocation rules and (new) information about a pay-

off relevant state to a buyer with private types. When the new information flips the ranking

of willingness to pay across types, a screening menu of prices and threshold disclosures

is optimal. Conversely, when its impact is marginal, bunching via a single posted price

and threshold disclosure is (approximately) optimal. While information design expands the

scope for random mechanisms to outperform their deterministic counterparts, its presence

leads to an equivalence result regarding sequential versus. static screening.

1 Introduction

The evolution of informational technology has significantly broadened sellers’ ways of selling

their products. They can design not only allocation rules which specify how to allocate products

and charge payments to buyers, but also information policies which control how much buyers

learn about the products, thereby refining their willingness to pay. For instance, they may offer

a posted price, associated with full information, to everyone. Alternatively, they could propose

a rich menu of allocation rules and information policies.

As an example, many software such as McAfee and various (mobile) apps like Spotify provide

users with a single free trial version, followed by a single subscription fee schedule. The trial

version is, therefore, merely a learning opportunity for potential buyers to make well-informed

purchasing decisions. An opposite example is travel agency platforms such as Priceline and

Hotwire practice so-called "opaque pricing" by which, buyers either book hotels with detailed
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information at standard prices or opt for limited details at discounted prices. Thus, these travel

agencies screen their buyers via a menu of prices and information policies.

Price and information discrimination is also in the form of pre-order offers for buyers of not-

yet-released products, as exemplified by Google’s recent pre-order bonus for the Pixel 8. By

contrast, well-known products are typically sold via a single posted price, coupled with a single

timeframe for free return to all buyers.

What leads to these diverse selling strategies? In particular, when is a single posted price and

disclosure policy optimal and conversely, when is it necessary to provide a screening menu of

prices and information? In addition, is there any benefit from offering random mechanisms?

Given that classical mechanism design results (Myerson (1981)) predict that a posted price is

optimal when the informational environment is fixed, answering these questions explains how

information design shapes optimal selling mechanisms. Regarding the timing, can the seller’s

revenue be improved by contracting with the buyer at the “interim” stage where he knows his

type but before the seller’s information disclosure? Or equivalently, should she allow the buyer

to walk away at the “posterior” stage where he observes both his type and the information pro-

vided? Answering this question helps understand the impact of consumer protection regula-

tions that grant the consumer a withdrawal right such as the European directive 2011/83/EU.1

Finally, if the buyer privately observes the information disclosed by the seller, can the buyer

enjoy any rent induced from such an endogenously private information?

This paper aims to answer these questions. The model, as formally described in Section 2,

features a seller (she) who sells an object to a buyer (he) with a privately known initial valuation

(initial type). The seller controls how much the buyer learns about an additional component

in his valuation. For example, this additional component represents what the buyer learns via

product trials. The seller designs a menu of information policies for different types of the buyer,

and allocation rules for different types and signals. Therefore, she solves a joint mechanism

and information design problem in which information plays a dual role. First, it allows the

seller to screen the buyer’s type through discriminatory disclosure policies. Second, disclosed

information serves as input for designing allocation rules. We focus on the case where the buyer

privately observes the new information (private signals) and investigate the case with public

signals as a benchmark.

1For a detailed discussion on such policies, see Krähmer and Strausz (2015b).
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1.1 Summary of results

First, we establish a revenue-equivalence result regarding sequential vs. static screening. Specif-

ically, we show that for any feasible and deterministic mechanism, there exists a mechanism that

generates the same revenue for the seller and non-negative payoff for the buyer at any type and

signal realization. As a consequence, there is no revenue loss if contracting at the posterior stage

when the buyer knows both his type and signal. This result counters the well-established idea in

sequential screening suggesting that the seller’s revenue is strictly higher if contracting with the

buyer before, rather than after, he learns additional information.2 The basic intuition is that the

seller’s ability to flexibly design information can crowd out the advantages of sequential over

static screening. A practical implication is that afore-mentioned consumer protections do not

necessarily harm the seller, rationalizing the prevalence of free information in many markets.

Second, we investigate the (ir)relevance of signal privacy. In the benchmark problem with pub-

lic signals, only expected allocations and payments (over signals) matter. Hence, this bench-

mark admits multiple solutions, including M⋆, a screening menu of threshold disclosures π⋆

and prices paid conditional on trade.3 We provide a simple way to verify the (ir)relevance of

signal privacy, which is to check if, under M⋆, the highest type pays the lowest price. If this is

true, privacy of signals is irrelevant and M⋆ solves the seller’s original problem. We find that this

is not always the case and consequently, not observing signals generally hurts the seller. More-

over, per-signal allocations and payments matter, which significantly complicates the charac-

terization of optimal mechanisms In particular, it is not a priori clear how many signals are

needed and which incentive compatibility (IC) constraints are relevant. The seller must also

handle double deviations when the buyer lies about both his type and observed signal. Lever-

aging techniques for mechanisms with non-convex type spaces, we make it always possible for

the buyer to "correct his lie," facilitating the characterization of optimal double deviations and

thereby, optimal mechanisms.

Our main result characterizes optimal mechanisms, starting with binary types. The seller faces

a trade-off between maximizing virtual surplus and minimizing the posterior rent. A threshold

disclosure rule, under which signal realization is either "good news" if the state is above some

cutoff or "bad news" otherwise, is optimal in both targets.4 Under the optimal mechanism, the

seller either screens the buyer’s types (via a menu of threshold disclosures and posted prices) or

bunches them (via a single posted price and threshold disclosure), depending on whether the

threshold disclosure π⋆ induces a threshold flip of type order: the high type’s value after "bad

2See Courty and Li (2000) and Krähmer and Strausz (2015b).
3See Definition 4 for a formal description of M⋆.
4See Definition 1 for our formal definition of a threshold disclosure.
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news" is lower than the low type’s after "good news." Specifically, screening is optimal when this

flip of type order occurs, and bunching otherwise.

To grasp the intuition, note that such a flip of type order occurs when the variation of valuations

is mainly driven by the unknown component, leaving some room for the threshold disclosure

π⋆ to reverse the ranking of valuation. Information (about the unknown component) matters,

serving as a screening tool. Conversely, if the buyer’s type is the main driver, which prevents π⋆

from flipping the type order, information is not crucial and screening disappears. The optimal

mechanism echoes its counterpart in standard mechanism design where the buyer’s valuation

is his type: a posted price (but associated with threshold disclosure) is optimal.

The significance of this bunching vs. screening result is two-fold. First, it implies that in the

above-mentioned scenarios, eliciting signals and random mechanisms are worthless. Second,

it rationalizes observed mechanisms in practice. For coming-soon items, the unknown com-

ponent’s impact on the variation of valuations is large and a screening menu is employed. By

contrast, its impact is marginal for well-known products where bunching comes into play. The

significance of the unknown component also varies across different industries. In the realm

of hotels, it matters much more than in software or mobile apps, leading to screening for the

former and bunching for the latter.

Having characterized the optimal mechanism for the binary-type setting, we consider larger

type spaces. With more than two types, there are also cases where an information policy re-

verses the ranking of valuations within a group of types but fails to do so for another. Con-

sequently, not only information but also trading probabilities are needed to screen the buyer,

leading to a random solution. However, the two scenarios of bunching/screening extend to the

case with finitely many types, under stronger notions of flip (no flip) of type order. Specifically,

a screening menu is optimal under a partition flip by π⋆ of type order - which generalizes the

threshold flip of type order by π⋆, taking into account medium types and their associated cut-

off states. Instead, bunching via a fixed price and threshold disclosure maximizes the seller’s

revenue when there is uniformly no threshold flip of type order under which, the type order is

to be preserved between any pair of types and after any threshold disclosure. This strong re-

quirement of type order preservation helps deal with the challenge of determining the lowest

type being served in a rich type space.

As binding (IC) constraints can involve local, global, and upward ones, characterizing optimal

random mechanisms becomes difficult. We thus focus on shedding light on how random mech-

anisms outperform their deterministic counterparts.5 We first establish the "no randomization

5In the Online Appendix, we solve for the optimal random mechanism in several examples.
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at the top" result, extending the well-known "no distortion at the top" to a setting with informa-

tion design: the highest type receives an efficient (and hence, deterministic) allocation. In turn,

this implies an optimal contract for this type, featuring a posted price and no disclosure. While

randomization is not needed for the highest type, it can be helpful for the lower types, leading

to a better balance of the efficiency vs. rent trade-off.6 We analyze, by examples, how random

mechanisms facilitate screening distant types as well as screening signals.

Finally, we consider a setting with a continuum of types. In this case, the optimality of a screen-

ing menu of posted prices and threshold disclosures under a partition flip of type order extends

readily. Particularly, in a "continuous" model when valuation shifts smoothly across types and

states, this notion corresponds to the ranking of valuations at the zero-virtual-value states by

types being reversed. On the other hand, the fact that there are always types whose valuations

are close to others’ makes it impossible to flip the ranking of willingness to pay across all types.

We show that when the type order is almost preserved, bunching via a fixed price-threshold

disclosure bundle is approximately optimal. If there is only two states, we establish the "exact"

optimality of bunching within the class of deterministic mechanisms..

1.2 Related literature

We contribute to the literature on joint mechanism and information design, comprising two

main strands. The first, more related, strand endows the buyer with a private type, initiated by

Eső and Szentes (2007) who focus on full disclosure. Most other papers focus on posted-price

mechanisms,7 which in turn, makes it without loss of generality to focus on binary-signal infor-

mation structures (Li and Shi (2017), Guo et al. (2022), Wei and Green (2023), Smolin (2023)).8

Our findings imply that these restrictions are not innocuous in general.

Our model builds on Eső and Szentes (2007) who focus on full disclosure and an environment

with (i) the above-mentioned "continuous" model and (ii) certain assumptions on the valuation

function. Under such an environment, they show that the upper bound of revenue with public

signals can be achieved via full disclosure, associated with a screening menu of prices (for the

6While it is natural to expect the two-dimensionality feature of the buyer’s valuation to lead to random mecha-

nisms, the seller has another tool for randomization: the distribution of signals, which potentially makes random

mechanisms redundant. However, signal misreporting off-path shuts off this additional instrument. Thus, random

mechanisms arise to deter double deviations, minimizing the posterior rent.
7In posted-price mechanisms, each type receives a posted price for the good and in some cases, a posted fee for

information.
8Exceptions include Zhu (2023) and Krähmer (2020) who establish full surplus extraction results when the seller

can correlate information disclosed to multiple buyers, and when randomizing over information structures is al-

lowed and the buyer’s type correlates with the unknown component, respectively.
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good) and information fees. However, their optimal mechanism is not incentive compatible

and moreover, privacy of signals generally matters outside their environment.9 Not only do

we allow for general information structures, we also characterize a joint design of information

and allocation rules in a more general environment of type space and valuation functions. This

allows us to uncover how information design reshapes the optimal selling mechanism which

features not just screening, but also bunching and a random mechanism. At the same time, we

strengthen Eső and Szentes (2007)’s finding by showing that the irrelevance of signals extends

to other (but not all) environments, with appropriate information design.

Bergemann and Wambach (2015) and Wei and Green (2023) revisit Eső and Szentes (2007)’s con-

tinuous model, showing that the latter’s optimal allocation can be implemented under stronger

participation constraints. We show that with deterministic allocations (including Eső and Szentes

(2007)’s), this is true for any feasible allocations, not just optimal. In turn, this provides an alter-

native proof for Wei and Green (2023).10

In the second, less related, strand of this literature, the buyer’s valuation is the unknown com-

ponent itself. See, for example, Lewis and Sappington (1994), Bergemann and Pesendorfer

(2007), Bergemann et al. (2022). Without the buyer’s private types, information cannot serve

as a screening tool. Moreover, the buyer’s private information (about his valuation) arrives only

once, making the seller’s problem static.11

We also contribute to the literature on dynamic mechanism design in which handling off-path

misreporting is a notable issue. Eső and Szentes (2007) explicitly characterize an agent’s opti-

mal double deviation, which is to "correct the lie". However, such a lie correction is feasible

only if the agent’s payoff shares a common support across types, which is rather restrictive. We

show that by leveraging mechanism design techniques for a non-convex type space, lie correc-

tion is feasible even with non-common supports. Moreover, the existing literature (for instance,

Battaglini (2005), Eső and Szentes (2007), Pavan et al. (2014)) extensively relies on the first-order

approach considering only local incentive compatibility constraints.12 Instead, we character-

ize different scenarios of binding constraints, showing that global deviations (associated with

double deviation off-path) lead to bunching and random solutions.13

9See Krähmer and Strausz (2015a) for a detailed discussion
10Wei and Green (2023) also shows that information disclosure triggers reverse price discrimination. We show

that this can also be derived from the properties of Eső and Szentes (2007)’s optimal mechanism.
11If the buyer in our model has no private type, the seller fully extracts the surplus by offering no disclosure and

a posted price for the good, which is equal to the expected valuation.
12The validity of this approach usually requires certain regularity conditions, which are not easy to satisfy, see

Battaglini and Lamba (2019).
13Even with full disclosure, which makes our problem become a standard dynamic screening problem, random
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Finally, we contribute to the recent literature on Bayesian persuasion following Kamenica and

Gentzkow (2011), where a sender designs only information disclosure to affect a receiver’s ac-

tion. When the latter has a private type, Kolotilin et al. (2017) show that with binary actions and

linear valuation functions, non-discriminatory disclosure is optimal. In our joint design prob-

lem, the buyer’s action space (which is the menu of allocations and payments) is endogenous

and can consist of more than two options. We show that the optimality of non-discriminatory

disclosure, while not being true in general, holds in some environments even if the seller also

designs allocation rules and the valuation function is non-linear.

2 Model

2.1 Environment

The principal, a seller (she) sells an object to an agent, the buyer (he). The buyer’s valuation for

the object, v(θ, x) ∈ R+, depends on two components: (i) the buyer’s type θ ∈Θ ⊂ R and (ii) an

unknown state x ∈ X ⊂ R. There are a finite number of possible types and states, i.e., |Θ| < ∞
and |X | <∞.14 Random variables θ and x are independent. Let f (θ) be the probability of each

type θ and µ(x) of each state x. Without loss of generality, assume f (θ) > 0 and µ(x) > 0 for all θ

and x.

The realization of θ ∈Θ is privately known by the buyer. Neither the seller nor the buyer knows

the state x ∈ X . The seller commits to a policy of information disclosure about the state, for-

mally defined in Section 2.2.

To define payoffs, let q ∈ [0,1] be the trading probability and p ∈ R the expected transfer from

the buyer to the seller. The seller’s ex post payoff is then p and the buyer’s is v(θ, x)q −p.

For expositional clarity, we use the following notations θ ≡ maxΘ, θ ≡ minΘ, θ+ ≡ min
θ′∈Θ

{θ′ | θ′ >
θ} for θ < θ, θ− ≡ max

θ′∈Θ
{θ′ | θ′ < θ} for θ > θ, and θ

+ = θ, θ− = θ. We define x and x similarly. Let

φ(θ, x) ≡ v(θ, x)− [v(θ+, x)− v(θ, x)]

∑
θ′>θ f (θ)

f (θ)

denote the buyer’s virtual value. Throughout, assume that both the valuation and virtual valu-

ation increase in the buyer’s type and the state.

Assumption 1 (Monotone value). v(θ, x) increases in θ and x.

mechanisms can outperform their deterministic counterparts. See Example 3(b).
14We study the infinite type and state spaces in Section 7.
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Assumption 2 (Monotone virtual value). φ(θ, x) increases in θ and x.

2.2 Selling mechanism

The seller designs, and ex ante commits to a grand mechanism or a menu of (i) information

policies for different types of the buyer and (ii) allocation rules for different types and informa-

tion received by the buyer.

Information policies: We model information policies as information structures (experiments)

Π ≡ (S,π), which consists of a countable set of signals S ⊂ R,15 and a mapping π, which asso-

ciates to each state θ a distribution over signals π(· | x) ∈∆(S). Given a mapping π and a signal

realization s ∈ S, the corresponding posterior belief Ψ(·|s) ∈ ∆(X ) is obtained by Bayes’ rule

whenever possible, and is given by

µs,π(x) = µ(x)π(s | x)∑
x ′∈x g (x ′)π (s | x ′)

An example of information structures is the threshold rule, defined as follows.

Definition 1 (Threshold diclosure). If the information policy follows a threshold rule, each signal

realization is classified as either "good news" or "bad news". Moreover,

π(“good news", x) =


1 if x > x̂,

λ if x < x̂,

λ if x = x̂,

for some x̂ ∈ X and λ ∈ [0,1].

Thus, a threshold disclosure is represented by a pair (x̂,λ) where x̂ is the cut-off state and λ the

probability with which "good news" is sent at the cut-off state. It informs the buyer whether the

state is (weakly) higher or lower than x̂. To simplify notations, throughout the paper, we use

"sg " to represent "good news" and "sb" for "bad news".

A menu of experiments is a set {πθ}θ∈Θ. The paper focuses on the case in which the buyer

privately observes the signal. The benchmark case with public signals is examined in Section

3.3.

Without loss of generality, assume that signals are ordered such that upon observing a higher

signal, the buyer’s posterior valuation is higher, as follows.

Assumption 3 (Ranking of signals).

s > s′ ⇔∑
x

v(θ, x)µs,πθ (x) ≥∑
x

v(θ, x)µs′,πθ (x)

15Assuming S is a countable set of R is without loss.
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Allocation rules: An allocation rule specifies the trading probability, q , and the expected trans-

fer from the buyer to the seller, p. Given the information structure, by the revelation principle

(see, for example, Myerson (1986)), we focus on direct allocation rules {q(θ, s), p(θ, s)}θ,s .

Thus, a selling mechanism is a tuple M ≡
{
πθ,

(
q(θ, s), p(θ, s)

)}
θ,s

. The formal definitions of a

deterministic mechanism and its random counterpart are as follows.

Definition 2. An mechanism M is deterministic if under M, q(θ, s) ∈ {0,1} for all θ ∈Θ and s ∈ S.

M is random otherwise.

Timing: The timing of interactions is as follows:

1. The seller offers a selling mechanism M.

2. The buyer learns his type θ and decides to accept or reject the offer. In case of acceptance,

he reports a type θ̂ to receive information generated from πθ̂.

3. The buyer privately observes a signal s and reports a signal ŝ.

4. The allocation (q(θ̂, ŝ), p(θ̂, ŝ)) is implemented.

According to this timing, the buyer’s participation is decided at the interim state, as commonly

assumed in the mechanism design literature. See our discussion on the timing structure in

Section 3.2.

2.3 Seller’s problem

An optimal mechanism refers to a revenue-maximizing mechanism. By the revelation principle,

it is without loss of generality to focus on direct mechanisms such that the buyer finds it optimal

to (i) participate in the mechanism, (ii) truthfully report his type, and (iii) truthfully report his

signal conditional on being truthful about his type. Let

u(θ,θ′, s, s′) ≡∑
x

[v(θ, x)q(θ′, s′)−p(θ′, s′)]Ψθ(x|s)

denote the ex post payoff for type-θ buyer, who reports θ′, observes s, and reports s′. Note that

if the buyer lies about his type, he may want to lie again about the signal. In other words, double

deviations from truth-telling may be attractive. Let

s⋆(θ,θ′, s) ∈ argmax
s′

u(θ,θ′, s, s′)

9



be the optimal signal reporting of type-θ buyer who reports θ′ and observes signal s.16 The ex

ante payoff for type-θ buyer, who reports θ′ and then s⋆(θ,θ′, s), is then given by

U (θ,θ′) ≡∑
x

∑
s

u(θ,θ′, s, s⋆(θ,θ′, s))π(s|x).

With abuse of notation, let u(θ, s) ≡ u(θ,θ, s, s), u(θ, s, s′) ≡ u(θ,θ, s, s′), and U (θ) ≡U (θ,θ). For

the buyer to truthfully report his signal on the equilibrium path (conditional on reporting his

type truthfully), it must be that for all θ and s,

u(θ, s) ≥ u(θ, s, s′). (IC-signal)

For the buyer to truthfully report his type, it must be that for all θ and θ′,

U (θ) ≥U (θ,θ′). (IC-type)

Finally, the buyer participates in the mechanism if and only if

U (θ) ≥ 0. (IR)

Definition 3. A mechanism is feasible if it satisfies all constraints (IR), (IC-type), and (IC-signal),

Formally, the seller’s maximization problem is given by

sup{
πθ ,q(θ,s),p(θ,s)

}
s,θ

∑
θ

∑
x

∑
s

p(θ, s)π(s|x)µ(x) f (θ)

s.t . (IR), (IC-type), (IC-signal).

3 Preliminary results

3.1 No distortion at the top and no rent at the bottom

First, we establish that the solution to the seller’s joint design problem bears commonly known

features: the highest type receives an efficient allocation while the lowest is fully extracted.

Lemma 1. Under any optimal mechanism,

(a) the lowest type gets a zero payoff: U (θ) = 0, and

16In case the buyer is indifferent between signals off the equilibrium path, fix arbitrarily one of the seller-

preferred signals.
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(b) the highest type an efficient allocation: q(θ, x) =
1 if v(θ, x) > 0,

∈ [0,1] if v(θ, x) = 0.
.

To prove Part (a) or the "no rent at the bottom" feature, we first show that the buyer’s rent

U (θ) increases in θ under any incentive-compatible mechanism. For this purpose, consider

the buyer of type θ > θ. He reveals his type only if his payoff from truth-telling is at least that

obtained by mimicking some type θ′ < θ and reporting signals truthfully. Formally,

U (θ) ≥∑
x

[
v(θ, x)q(θ′, s)−p(θ′, s)

]
πθ′(s|x)g (x) (1)

As v(θ, x) ≥ v(θ′, x) for all x, (1) implies U (θ) ≥∑
x[v(θ′, x)q(θ′, s)−p(θ′, s)]πθ′(s|x)g (x) =U (θ′).

Therefore, U (·) is an increasing function. Armed with this result, we now show that U (θ) = 0

under optimal mechanisms. By contradiction, suppose U (θ) = ε > 0 under an optimal mech-

anism. Then, if increasing p(θ, s) by ε for all θ and s, the seller strictly increases her revenue

while not violating any IC and IR conditions. A contradiction. Thus, U (θ) = 0 at optimum.

We leave the proof of Part (b) or the "no distortion at the bottom" result in Appendix A.1. The

idea is that whenever this type does not trade with probability 1 (at some state), it is possible to

improve the seller’s revenue by letting him always trade under no disclosure and a posted price

being equal to his original expected payment, adding the new surplus.

It is worth noting that by Lemma 1(b), random allocations are not needed for the highest type.

This is not necessarily true for the lower types to which, offering efficient allocations is generally

sub-optimal. See Section 6.1 for a detailed discussion.

3.2 Sequential vs. static screening

This section establishes an irrelevance result regarding the timing structure of interactions. We

show that contracting at the posterior stage (after the buyer observes both his type and signal)

does not necessarily hurt the seller. Specifically, within the class of deterministic mechanisms,

there is no revenue loss if the buyer can walk away after information disclosure.

Proposition 1. For any deterministic and feasible mechanism, there exists a mechanism which

generates the same revenue for the seller and a non-negative ex post pay-off for the buyer.

Let Md ≡ {q(θ, s), p(θ, s),πθ} be an arbitrary deterministic and feasible mechanism. Hence, un-

der Md , q(θ, s) ∈ {0,1} for any θ and s. Fix θ ∈Θ. Let Sg
θ
≡ {s | q(θ, s) = 1} and Sb

θ
≡ {s | q(θ, s) = 0}.

To induce signal truth-telling by θ, p(θ, s) = p(θ, s′) = p(θ) if s ∈ Sg
θ

; and p(θ, s) = p(θ, s′) ≡ p(θ)
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and if s ∈ Sb
θ

. Let

Q(θ) ≡∑
x

∑
s∈S

g
θ

πθ(s|x)g (x)

represent type θ’s trade probability. Consider the following two cases:

Case 1: p(θ) < 0. If ∃s such that π(θ, s) < 0, then type θ who observes s (strictly) prefers to

misreport signal s′ with q(θ, s′) = 0 to receive a negative transfer without buying the good. This

contradicts with Md being feasible. Hence, π(θ, s) ≥ 0 for all s in this case.

Case 2: p(θ) ≥ 0. Revise Md as follows. For any s ∈ Sg
θ

, replace s with signal "sg " ; and for any

s ∈ Sb
θ

, replace it with signal "sb". In addition, each type θ now receives a posted price

p̃(θ) = p(θ)+p(θ)
1−Q(θ)

Q(θ)
, (2)

As θ pays only if he decides to buy the good, his payoff is non-negative at any signal realization.

In Appendix A.2 we show that the seller’s revenue remains unchanged under this revision, which

completes the proof for Proposition 1.

Proposition 1 has two implications. First, if only deterministic mechanisms are allowed, there

is no loss for the seller to contract after the buyer observes both type and signal realizations.

Therefore, despite the sequential arrival of his private information, sequential screening the

buyer is not beneficial, unless random mechanisms are necessary.

Second, by the "no rent at the bottom", the lowest type earns a zero payoff under optimal mech-

anisms. Therefore, if there exists θ such that p(θ) < 0, the lowest type mimics θ and not buying

the good to enjoy a positive payoff. Consequently, if Md is optimal, p(θ) ≥ 0 ∀θ. Then, as argued

above, Md do no better than "posted-price" mechanisms, which are signal-independent. As we

will show, such posted-price mechanisms are optimal in several, but not all, environments.

3.3 (Ir)relevance of signal privacy

As the buyer privately observes signals only after the contract is signed, one might expect that

the privacy of signals does not hurt the seller’s revenue. To investigate this conjecture, we first

consider the benchmark problem with public signals. There, the buyer’s payoff and the seller’s

revenue depends only on expected payments and expected allocations over signals, defined as

Q(θ, x) ≡∑
x

∑
s

q(θ, s)πθ(s|x)µ(x), P(θ) ≡∑
x

∑
s

p(θ, s)πθ(s|x)µ(x).
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As a result, the seller’s problem reduces to

(P ) sup
Q,P

∑
θ

P(θ) f (θ)

s.t .
∑

x
v(θ, x)Q(θ, x)µ(x)−P(θ) ≥∑

x
v(θ, x)Q(θ′, x)µ(x)−P(θ′), (IC -type)∑

x
v(θ, x)Q(θ, x)µ(x)−P(θ) ≥ 0. (I R)

Under Assumption 1 and 2, only local IC constraints bind under (P ). By standard arguments

(omitted), this problem reduces to point-wise maximization w.r.t Q only:

sup
Q

∑
θ

∑
x
φ(θ, x)Q(θ, x)µ(x) f (θ). (⋆)

A solution to (⋆) exists and is generically unique:17 Q(θ, x) = 1φ(θ,x)≥0. Expected payment (over

signals) is pinned down by (ICθ+→θ) and (I Rθ). For any θ ≥ θ, let

xθ ≡
min{x |φ(θ, x) ≥ 0} if φ(θ, x) ≥ 0,

+∞ if φ(θ, x) < 0
(3)

denote the lowest state at which type θ’s virtual value is non-negative. Note that x⋆
θ

decreases

in θ by Assumption 2.

Lemma 2 (Benchmark problem). With public signals, the optimal mechanism is generically

unique, given by

Q(θ, x) =1φ(θ,x)≥0, (4)

P(θ+) =P(θ)+ ∑
xθ+≤x<xθ

v(θ+, x)µ(x) ∀θ ≥ θ. (5)

The seller retains a certain level of freedom in designing disclosure and per-signal allocation

rules as long as (i) upon observing any signal, one knows whether the state is above or below

the cut-off xθ and (ii) expected terms are given by equations in Lemma 2. This leads to a mul-

tiplicity of solutions to (P ), including the following menu of threshold disclosures and prices

(paid conditional on trade), under which each type of the buyer (i) knows whether his virtual

value is positive or not and (ii) pays only if trade happens. Formally:

Definition 4. Under M⋆ ≡ {p⋆(θ, s), q⋆(θ, s),π⋆
θ

}θ∈Θ,s∈{sg ,sb } is a menu of threshold disclosures

and prices, in which

17When φ(θ, x) = 0, any Q(θ, x) ∈ [0,1] is optimal.
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1. π⋆
θ

(sg |x) =1x≥xθ , where xθ is given by equation (3).

2.
(
q⋆, (θ, s), p⋆(θ)

)=


(1,
P(θ)∑

x≥xθ µ(x)
) if s = sg ,

(0,0) if s = sb ,

where P(θ) is given by equation (5).

Let V (P ) represent the value of problem (P ). Then, V (P ) is an upper bound on the seller’s

revenue with private signals. Under a mild condition, Proposition 2(a) below shows that if this

upper bound is achieved via some mechanism, it is via M⋆. The basic intuition is that relative

to other solutions to (P ), M⋆ provides less information (just enough to know the sign of virtual

values) and a higher price for the good (payments are paid only when trade happens). Hence,

if there exists a solution that induces truth-telling with private signals, so does M⋆. This is the

case, by Proposition 2(b), if and only if the highest type pays the lowest price under M⋆.

To formally state Proposition 2, let RM represent the revenue level obtained with private signals

from an arbitrary mechanism M.

Proposition 2.

a) Suppose φ(θ, xθ) > 0 ∀θ. If there exists M such that RM =V (P ), then RM⋆ =V (P ).

b) RM⋆ =V (P ) if and only if p⋆(θ, sg ) = min
θ

{p⋆(θ, sg )} .

It seems counter-intuitive that the highest type pays the lowest price (conditional on buying the

good). However, it is worth noting that information disclosure can flip the ranking of (posterior)

willingness to pay across types, leading to non-monotone price discrimination.18 As will be

shown formally in later sections, this occurs in some, but not all environments.

4 A restatement of the seller’s problem

Without loss of generality, assume that each signal induces a single (on-path) posterior valua-

tion. Therefore, each signal s observed by type-θ buyer corresponds to his on-path posterior

value after observing such a signal, given by

ωπθ (θ, s) ≡∑
x

v(θ, x)µs,πθ (x)

18That information disclosure can lead to non-monotone price discrimination has been observed in Bang and

Kim (2013) and Wei and Green (2023) where prices decrease in types. Throughout our paper, several examples are

presented where under M⋆, prices can be decreasing, increasing and even concave in types (see Example 6).
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Moreover, that the buyer reveals the realized signal is equivalent to him reporting his posterior

valuation. For any type θ, let

Ωθ ≡ {ω |ω=ωπθ (θ, s) for some s ∈ S}

be the set of all possible on-path posterior values for type θ. Then, requiring signal truth-telling

on-path is equivalent to ensuring truth-telling about on-path posterior values, or

ωq(θ,ω)−p(θ,ω) ≥ωq(θ,ω′)−p(θ,ω′) ∀θ,∀ω,ω′ ∈Ωθ

As mentioned, the buyer may want to coordinate lies about the realized type and signal. Given

that the signal space is endogenous, this significantly complicates the characterization of truth-

telling conditions. To facilitate characterizing the buyer’s optimal double deviation, we extend

the allocation rule to be defined on the set of all possible on-path and off-path posterior valua-

tions, denoted by

Ω≡ [v(θ, x), v(θ, x)].

Moreover, it is without loss of generality to require truthful signal reporting on this setΩ, rather

than in only {Ωθ}θ,19 i.e.,

ωq(θ,ω)−p(θ,ω) ≥ωq(θ,ω′)−p(θ,ω′) ∀θ,∀ω,ω′ ∈Ω (IC-value)

The characterization of (IC-value) is standard.

Lemma 3 (Myerson, 1981). An allocation rule (q, p) :Θ×Ω→ [0,1]×R satisfies (IC-value) if and

only if

1. ωq(θ,ω)−p(θ,ω) = ω̂q(θ,ω̂)−p(θ,ω̂)+
∫ ω

ω̂
q(θ, z)d z,

2. q(θ,ω) increases in ω.

It then follows from Lemma 3 that the buyer, after having lied about his type, reveals his true

(off-path) posterior valuation.

Lemma 4 (Optimal double deviations). Under any allocation rule (q, p) :Θ×Ω→ [0,1]×R that

satisfies (IC-value), it is optimal for type θ who mimics θ′ and observe signal s to report his off-

path posterior valuation, given by

ωπθ (θ′, s) ≡∑
x

v(θ, x)µs,πθ′ (x)

19See, for example, Skreta (2006), for mechanism design with non-convex type spaces.
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The proof (omitted) is similar to what is called "correcting the lie" in the dynamic mechanism

design literature. Often, this lie correction is made feasible by assuming that the agent’s (new)

private information shares a common support across types.20 This is not applicable in our

model as the buyer’s new private information, which is his posterior valuation, is endogenous.

By extending the allocation rule to be defined in the extended signal spaceΩ, we make it possi-

ble for the buyer to "correct his lie."21

Consider θ,θ′ ∈Θwith θ > θ′. Then,

U (θ,θ′) ≡∑
x

∑
s

[ωπθ′ (θ, s)q(θ′,ωπθ′ (θ, s))−p(θ′,ωπθ′ (θ, s))]πθ′(s|x)µ(x)

=∑
x

∑
s

[
[ωπθ′ (θ′, s)q(θ′,ωπθ′ (θ′, s))−p(θ′,ωπθ′ (θ′, s))]+∑

s

∫ ω
πθ′ (θ,s)

ω
πθ′ (θ′,s)

q(θ′, z)d z

]
πθ′(s|x)µ(x)

=U (θ′)+∑
x

∑
s

∫ ω
πθ′ (θ,s)

ω
πθ′ (θ′,s)

q(θ′, z)d zπθ′(s|x)µ(x).

Thus, θ does not benefit from misreporting θ′ if and only if

U (θ)−U (θ′) ≥∑
x

∑
s

∫ ω
πθ′ (θ,s)

ω
πθ′ (θ′,s)

q(θ′, z)d zπθ′(s|x)µ(x).

By similar arguments, θ′ does not benefit from misreporting θ if and only if

U (θ)−U (θ′) ≤∑
x

∑
s

∫ ωπθ (θ,s)

ωπθ (θ′,s)
q(θ, z)d zπθ(s|x)µ(x).

To sum up, the seller’s problem can be expressed as follows.

(P ) max
(π,q,U )

∑
θ

f (θ)
[∑

x

∑
s

v(θ, x)q(θ,ωπθ (θ, s))πθ(s|x)µ(x)−U (θ)
]

s.t : ∀θ, U (θ)−U (θ′) ≥∑
x

∑
s

∫ ω
πθ′ (θ,s)

ω
πθ′ (θ′,s)

q(θ′, z)d zπθ′(s|x)µ(x) ∀θ′ < θ (dwIC-type)

U (θ)−U (θ′) ≤∑
x

∑
s

∫ ωπθ (θ′,s)

ωπθ (θ,s)
q(θ, z)d zπθ(s|x)µ(x) ∀θ′ > θ (uwIC-type)

U (θ) ≥ 0 (I R)

q(θ,ω) increases in ω. (MON )

5 Optimal mechanism for |Θ| = 2

In this section, we characterize the optimal mechanism for binary types. We derive two findings.

First, screening is optimal if and only if the ranking of willingness to pay is flipped under a

20See Eső and Szentes (2007) and Krähmer and Strausz (2015b) for example.
21This trick can also be helpful in other dynamic mechanism design problems where the agent(s)’ private infor-

mation does not share common support across types.
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certain threshold disclosure and bunching is optimal otherwise. Second, eliciting signals and

random mechanisms are worthless. Formally,Θ= {h, l } and hence, the seller’s problem reduces

to (Pb), given by

(Pb) max
(π,q,U )

∑
θ

f (θ)
[∑

x

∑
s

v(θ, x)q(θ,ωπθ (θ, s))πθ(s|x)µ(x)−U (θ)
]

s.t : U (h)−U (l ) ≥∑
x

∑
s

∫ ωπl (h,s)

ωπl (l ,s)
q(l , z)d zπl (s|x)µ(x) (IChl )

U (h)−U (l ) ≤∑
x

∑
s

∫ ωπh (h,s)

ωπh (l ,s)
q(h, z)d zπh(s|x)µ(x) (IClh)

U (h) ≥ 0 (I Rh)

U (h) ≥ 0 (I Rl )

q(θ,ω) increases in ω.

To state the main result of this section, we introduce the following notion of type order flip,

which shapes the optimal mechanism. Recall that π⋆ is the threshold disclosure associated

with M⋆ formally defined in Definition 4, with π⋆l (sg |x) =1x≥xl .

Definition 5 (Threshold flip of type order by π⋆l ).

If π⋆l induces the threshold flip of type order, E[v(h, x) | x < xl ] ≤ E[v(l , x) | x ≥ xl ].

By Definition 5, π⋆l induces the threshold flip of type order when ωπ
⋆
l (h, sb) ≤ ωπ

⋆
l (h, sg ). In

words, this threshold disclosure overturns the ranking of willingness to pay with h’s valuation

after "bad news" being lower than l ’s after "good news". Intuitively, this is the case when the un-

known component x causes significant variations of valuations, creating room for π⋆l to flip the

type order. By contrast, it does not happen in, for example, an extreme case in which valuation

is constant with respect to this component (i.e., g (·) is a degenerate distribution with x = x), as

in standard mechanism design problems.

We are now ready to state the main result of this section, assuming that type l ’s virtual value

is either strictly positive or negative, i.e., φ(l , xl ) > 0. Accordingly, the benchmark allocation is

unique, given by Q(l , x) =1x≥xl .

Theorem 1 (Binary types). Fix Θ= {h, l }. There exists some λ ∈ [0,1] and x̂l ∈, such that in the

unique optimal mechanism, the allocation is given by

q(h, x) = 1 ∀x, q(l , x) =


1 if x > x̂l ,

0 if x < x̂l ,

λ if x = x̂l .

17



Moreover,

(a) If π⋆l induces the threshold flip of type order,
(
x̂l ,λ

) = (
xl ,1

)
. A menu of posted prices and

threshold disclosures is optimal.

(b) Ifπ⋆l does not induce the threshold flip of type order,
(
x̂l ,λ

) ̸= (
xl ,1

)
. A posted price, associated

with a uniform threshold disclosure, is optimal.

In short, Theorem 1 states that the optimal mechanism features screening whenever π⋆l leads to

the threshold flip of type order and bunching otherwise. Intuitively, when the unknown com-

ponent x dominates the buyer’s private type θ in triggering the variation of the buyer’s valuation

(to induce the threshold flip of type order), the new information matters and helps screen the

buyer. Conversely, when the ranking of willingness to pay mainly depends on the buyer’s type,

screening disappears. Then, the optimal mechanism closely resembles its counterpart in stan-

dard mechanism design where the state is known: a posted price (but associated with threshold

disclosure) is optimal. The optimal mechanism in each case is explicitly characterized in the re-

mainder of this section. To illustrate Theorem 1, consider the following examples.

Example 1 (Binary types and states). Θ= {l ,h} and X = {b, g }. Types and states are equally likely.

Assume that φ(θ1, x1) < 0 <φ(θ1, x2) to make the problem non-trivial.

In this simple binary-type, binary-state setting, there are two scenarios of optimal mechanisms.

If v(θ3, x1) ≥ v(θ1, x2), thenπ⋆ does not induce the threshold flip of type order. By Theorem 1(a),

a fixed price and threshold disclosure is optimal. On the other hand, if v(θ3, x1) < v(θ1, x2), then

π⋆ leads to the threshold flip of type order. By Theorem 1(b), a menu of prices and threshold

disclosures is optimal.

Example 2. Θ= {l ,h} and X is a finite subset ofN. Types and states are equally likely. Valuations

are given by: v(θ, x) = θ+x.

Let

∆θ ≡ v(h, x)− v(l , x) = h − l ∀x,

∆x ≡ v(θ, x)− v(θ, x) = x −x ∀θ.

Then, ∆θ represents the variation of valuation due to the buyer’s type, whereas ∆x due to the

state x. For any state x̂ ∈Ω,

E[v(h, x) | x < x̂]−E[v(l , x) | x ≥ x̂] =
(
h + x̂ −1+x

2

)
−

(
l + x̂ +x

2

)
=∆θ−

∆x +1

2
,

Thus, the threshold flip of type order happens if and only if

∆θ ≤
∆x +1

2
, (6)
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which is the case when the impact of the buyer’s type is relatively small, relative to that of the

unknown component. By Theorem 1, when (6) holds, it is optimal to offer a menu of thresh-

old disclosures and posted prices. Otherwise, a posted price, coupled with uniform threshold

disclosure, maximizes the seller’s revenue.22

Remark 1. Theorem 1 and its proof extends readily to the case with a continuum of states. As an

example, fix Θ= {l ,h} and X = [0,10], and both θ and x are uniformly distributed. Then, for any

state x̂ ∈Ω, E[v(h, x) | x < x̂]−E[v(l , x) | x ≥ x̂] =∆θ−5. Thus, a menu of prices and information

is optimal if ∆≥ 5 and a fixed price coupling with a threshold disclosure (for all types) is optimal

if ∆< 5.

Theorem 1 has two important implications:

Corollary 1. With |Θ| = 2, privacy of signals does not matter when the threshold flip of type order

happens under π⋆l . It matters otherwise.

Corollary 2. With |Θ| = 2, the seller does not strictly benefit from using random mechanisms, nor

from eliciting signals.

What leads to the (ir)relevance of signal privacy and the optimality of deterministic mecha-

nisms, signal-independent allocations will be explained when we present the key steps of the

proof of Theorem 1, to which we turn next.

5.1 Proof of Theorem 1

To prove Theorem 1, we solve a relaxed problem, denoted by (RP b), ignoring (IClh) and (I Rh)

and provide an implementation. Formally, this relaxed problem is as follows.

(RP b) max
(π,q,U )

∑
θ

f (θ)
[∑

x

∑
s

v(l , x)q(θ,ωπθ (θ, s))πθ(s|x)µ(x)−U (θ)
]

s.t : U (h)−U (l ) ≥∑
x

∑
s

∫ ωπl (h,s)

ωπl (l ,s)
q(l , z)d zπl (s|x)µ(x) (ICh→l )

U (l ) ≥ 0 (I Rl )

q(θ,ω) increases in ω. (MON )

The characterization of the solution to (RP b) is done via the following steps. First, we prove

the optimality of deterministic allocation rules. This step, while standard, is helpful in decom-

posing the buyer’s rent into two components: the ex ante rent (due to privacy of types) and

22In particular, when ∆θ is too high, the seller does not benefit from information disclosure. In this case, the

optimal threshold for type l is the highest state (x̂l = x), which means no disclosure is provided.
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the posterior rent (due to privacy of signals). Using this rent decomposition, we establish the

optimality of binary-signal experiments and furthermore, of threshold disclosures. Finally, we

characterize the optimal allocation and implement it.

First, to obtain the optimality of deterministic allocations, note that (ICh→l ) and (I Rl ) must

bind in (RP b),i.e.,

U (l ) = 0, U (h) =∑
x

∑
s

∫ ωπl (h,s)

ωπl (l ,s)
q(l , z)d zπl (s|x)µ(x),

Thus, transfers have been eliminated, reducing the seller’s relaxed problem to

max
q,π

f (h)
∑

x

∑
s

v(h, x)q(h,ωπθ (θ, s))πh(s|x)µ(x)

+ f (l )
∑

x

∑
s

[
v(l , x)q(l ,ωπθ (θ, s))−

∫ ωπl (h,s)

ωπl (l ,s)
q(l , z)d z

]
πl (s|x)µ(x)

s.t q(θ,ω) increases in ω. (MON )

Fix π. Given that the objective function is linear and the only constraint is (MON), there exists

an optimal allocation rule that is deterministic and exhibits a cut-off structure. Moreover, as

v(h, x) is always non-negative, h receives an efficient allocation.

Lemma 5 (Deterministic allocations). In (RP b), there exists an optimal allocation rule, given

by q(θ,ω) =1ω≥ω̂θ , where ω̂h = v(l , x).

Second, we derive the sufficiency of binary-signal experiments. As q(h, s) = 1 for all s, any πh is

optimal. The relaxed problem reduces to finding the optimal πl . Let

Rl ≡ f (l )
∑

x

∑
s

[
v(l , x)q(l ,ωπl (l , s))−

∫ ωπl (h,s)

ωπl (l ,s)
q(l , z)d z

]
πl (s|x)µ(x)

denote the term involvingπl in the seller’s objective function (revenue) in (RP b). Using q(l ,ω) =
1ω≥ω̂l by Lemma 5, we obtain

Rl = f (l )
∑

x

[ s∑
ŝl

v(l , x)πl (s|x)−
s∑
ŝl

∫ ωπl (h,s)

ωπl (l ,s)
d z

f (h)

f (l )
πl (s|x)−

ŝl∑
s

∫ ωπl (h,s)

ωπl (l ,ŝl )
d z

f (h)

f (l )
πl (s|x)

]
µ(x)

= f (l )
∑

x

[ s∑
ŝl

v(l , x)︸ ︷︷ ︸
l ’s surplus

−
s∑
ŝl

[ωπl (h, s)−ωπl (l , s)]
f (h)

f (l )︸ ︷︷ ︸
h’s ex ante rent

−
ŝl∑
s

[ωπl (h, s)−ωπl (l , ŝl )]
f (h)

f (l )︸ ︷︷ ︸
h’s posterior rent

]
πl (s|x)µ(x).

Rl depends on (i) the buyer’s expected value (on path for l and off path for h), conditional on

whether s ≥ ŝl or s < ŝl , and (ii) the cut-off signal, ŝl . By (i), there is no revenue loss in replacing

all signals s ≥ ŝl with "good news" (sg ) and all s < ŝl with "bad news" (sb). At the same time, such
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a binary-signal experiment for type l increases the cut-off signal because ωπl (l , sg ) = E[v(l , x) |
s ≥ ŝl ] ≥ ŝl . In turn, this improves Rl , which increases in the cut-off signal. We thus obtain the

optimality of binary-signal experiments.

Lemma 6 (Binary signals). In (RP b), there exists an optimal experiment for type l where the

signal realization can be either "good news" (sg ) or "bad news" (sb).

Third, we prove the optimality of threshold disclosures. By replacing all signals s ≥ ŝl (resp.,

s < ŝl ) with "good news" (resp., "bad news"), Rl becomes

f (l )
∑

x

[
v(l , x)πl (sg |x)︸ ︷︷ ︸

l ’s surplus

− [v(h, x)− v(l , x)]
f (h)

f (l )
πl (sg |x)︸ ︷︷ ︸

h’s ex ante rent

− [ωπl (h, sb)−ωπl (l , sg )]
f (h)

f (l )
πl (sb |x)︸ ︷︷ ︸

h’s posterior rent

]
µ(x)

= f (l )
∑

x
φ(l , x)πl (sg |x)µ(x)︸ ︷︷ ︸

l ’s virtual value

− f (l )
∑

x
max

{[
ωπl (h, sb)−ωπl (l , sg )

] f (h)

f (l )
,0

}
πl (sb |x)µ(x)︸ ︷︷ ︸

h’s posterior rent

.

Fix πl (sb). Then, a threshold disclosure minimizes h’s posterior rent by simultanenously max-

imizing ωπl (h, sb) and minimizing ωπl (h, sb). Moreover, as φ(l , x) increases in x, a threshold

disclosure maximizes l ’s expected virtual value. Therefore:

Lemma 7 (Threshold structure). In (RP b), a threshold disclosure for l is optimal.

Last, we characterize the optimal allocation and provide an implementation. Let x̂l ∈ X be the

cut-off state associated with the optimal threshold disclosure for l and λ ∈ [0,1] be the proba-

bility with which "good news" is sent at x̂l . Then, by Lemmas 5, 6, and 7, the optimal allocation

is given by

q(h, x) = 1 ∀x, q(l , x) =


1 if x > x̂l ,

0 if x < x̂l ,

λ if x = x̂l .

Solving for the optimal allocation reduces to solving for the optimal
(
x̂l ,λ

)
. As will be shown,

there are two cases, depending on whether π⋆l triggers the threshold flip of type order. In the

first case, when this flip happens, offering π⋆l with
(
x̂l ,λ

) = (
xl ,1

)
is optimal. Not only does it

induce zero posterior rent for h, given that

ωπ
⋆
l (h, sb)−ωπ⋆l (l , sg ) ≤ 0

when the threshold flip occurs under π⋆l , but it also creates the highest expected virtual value

for l ’s, given by f (l )
∑

x≥xl
φ(l , x)πl (sg |x)µ(x).
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With
(
x̂l ,λ

) = (
xl ,1

)
, l ’s allocation coincides with the benchmark Q(l , x) = 1x≥xl . To find out

payments, without loss of generality, assume the buyer pays only if "good news" is realized (or

trade happens). Thus, p(h, sb) = p(l , sb) = 0. Then, p(l , sg ) =ωπ
⋆
l (l , sg ) by (I Rl ), and p(h, sg ) is

such that (ICh→l ) holds, or U (h) =U (h, l ), which implies

p(h, sg ) =E[v(h, x)]− [
ωπ

⋆
l (h, sg )−p(l , sg )

]
π⋆l (sg ).

Now, verify that ignored constraints are satisfied. First,(I Rh) hold because

U (h) =[
ωπ

⋆
l (h, sg )−ωπ⋆l (l , sg )

]
π⋆l (sg ) ≥ 0

Second, ICl→h is satisfied given that

U (l ,h) = E[v(l , x)]−p(h, sg )

= E[v(l , x)]−E[v(h, x)]+ [
ωπ

⋆
l (h, sg )−p(l , sg )

]
π⋆l (sg )

= E[v(l , x)]−E[v(h, x)]+ [
ωπ

⋆
l (h, sg )−ωπ⋆l (l , sg )

]
π⋆l (sg )

= [
ωπ

⋆
l (l , sb)−ωπ⋆l (h, sb)

]
π⋆l (sb) < 0 =U (l )

Moreover, under no threshold flip of type order by π⋆, ωπ
⋆
l (h, sb) ≤ωπ

⋆
l (l , sg ) = p(l , sg ). There-

fore, if h mimics l , it is optimal for him to report signals truthfully. This deviating behavior is

not beneficial for h by the construction of p(h, sg ). We thus obtain Theorem 1(a):

Lemma 8 (With threshold flip by π⋆l ). If π⋆l induces the threshold flip of type order, q(l , x) =
Q(l , x) =1x≥x̂l , and M⋆ ≡ {p⋆(θ),π⋆

θ
}θ is optimal.

By contrast, whenπ⋆
θ

preserves the type order, orωπ
⋆
l (h, sb) >ωπ⋆l (l , sg ), offeringπ⋆l to l induces

a strictly positive posterior rent for h. Consequently, the seller trades off between l ’s expected

virtual value and h’s posterior rent. On the one hand, she wants the threshold to be close to

the cut-off xl , maximizing l ’s expected value. On the other hand, she desires to induce a small

posterior rent for h.

Let π⋆⋆l be an optimal experiment for l , associated with
(
x⋆⋆(l ),λ⋆⋆

)
. Suppose, π⋆⋆l can flip

the type order, i.e., vπ
⋆⋆
l (h, sb) <ωπ⋆⋆l (l , sg ). Then, given thatωπ

⋆
l (h, sb) ≤ωπ⋆l (l , sg ), we can con-

struct π̃l associated with
(
ω̃, λ̃

)
such that (i)

(
x⋆⋆(l ),λ⋆⋆

)
is closer to

(
x⋆l ,1

)
and (ii) v π̃l (h, sb) ≤

v π̃l (l , sg ). By (i), l ’s expected virtual value under π̃l is higher than that under π⋆l , whereas by

(ii), h’s poterior rent is zero under π̃l . This contradicts with π⋆⋆l being optimal. Therefore, π⋆⋆l

must not affect the type order. Formally:

Claim 1. ωπ
⋆⋆
l (h, sb) ≥ωπ⋆⋆l (l , sg ).

22



The detailed proof is in Appendix B.1. By Claim 1, Rl reduces to

f (l )
∑

x
φ(l , x)π⋆⋆l (sg |x)µ(x)− f (h)

[
ωπ

⋆⋆
l (h, sb)−ωπ⋆⋆l (l , sg )

]
πl (sb)

=ωπ⋆⋆l (l , sg )
[

f (l )π⋆⋆l (sg |x)µ(x)+ f (h)
]−E[v(h, x)].

Therefore,

π⋆⋆l ∈ argmax
πl

ωπl (l , sg )
[

f (l )π⋆⋆l (sg , x)+ f (h)
]
. (7)

To find optimal transfers, note that by Claim 1, h’s value after "bad news" is higher than l ’s after

"good news." Hence, if h mimics l , he always reports "good news," and always buys the good.

Consequently, l ’s allocation is the same as h ’s from the latter’s perspective. This leads to a

bunching solution. As information is of no value for h, the seller can offer π⋆⋆l to both types.

Moreover, as h always gets the good either on or off-path, by (ICh→l ), both types receive the

same posted price.23 Then, by (I Rl ),

p⋆⋆(h) = p⋆⋆(l ) =ωπ⋆⋆l (l , sg ). (8)

This bunching mechanism satisfies ignored constraints, and hence, is optimal.

Lemma 9 (No threshold flip byπ⋆l ). Ifπ⋆l does not induce the threshold flip of type order,
(
x̂l ,λ

) ̸=(
xl ,1

)
. A single-option menu, {π⋆⋆l , p⋆⋆(l )} given by (7) and (8), is optimal.

6 Optimal mechanism for |Θ| ≥ 3

With binary types, there are two scenarios of the optimal mechanism (screening/bunching),

depending on whether after information disclosure, the threshold flip of type order occurs or

not. With richer type sets, it can be the case that information disclosure flips the order of a

group of types but fails to do so for another group. Consequently, the characterization of op-

timal mechanisms cannot be obtained as a simple extension of that in the binary-type case.

Moreover, as we will show, random mechanisms could be used to effectively screen signals and

distant types. Despite these complications, we show that the optimality of a rich (respectively,

single-option) menu of prices and threshold disclosure extends beyond the binary-type setting

to a general model under stronger notions of type order flip (respectively, preservation). This

result is presented in Section 6.2, followed by an analysis on the role of random mechanisms in

6.1.
23With deterministic allocations, it is without loss to offer a menu of posted prices. See Proposition 1.
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6.1 Revenue improvement via random mechanisms

Using Example 3 below, we illustrate how random mechanisms outperform their deterministic

counterparts in two aspects (i) screening distant types and (ii) screening signals to improve the

seller’s revenue and efficiency.24

Example 3. Θ= {θ1,θ2,θ3} and X = {x1, x2}. Types and states are equally likely. Valuations are as

follows.

v(θ, x) x1 x2

θ3 6.5 10

θ2 0 7

θ1 0 4

Table 1: Example 3(a)

v(θ, x) x1 x2

θ3 5 5

θ2 2 5

θ1 0 4

Table 2: Example 3(b)

Example 3(a) - Screening distant types: In this example, type θ3’s value is always higher than

type θ1’s. This leaves room for random mechanisms to “separate" these two types. To see this,

note the following. If the seller employs deterministic mechanisms, type θ1 either trades or not

at any signal realization. Therefore, if type θ1 trades (with probability 1) for some signal, it is

optimal for θ3 whose posterior value is always higher than type θ1’s, having mimicked θ1, to

(mis)report the realized signal such that he always trades. Then, θ1 ’s allocation is the same as

θ3’s from the latter’s perspective, leading to bunching these types.25 In turn, this gives too much

rent for type θ3, making it optimal to exclude type θ1.

Claim 2. In Example 3(a), if only deterministic mechanisms are allowed, it is optimal to offer type

θ3 with no disclosure and a posted price p(θ3) = 6.75, type θ2 with full disclosure and a posted

price p(θ2) = 7, and to exclude type θ1.

The story, however, is different with random allocations. The key is that if θ1 trades with a

small probability (for any signal), this type’s allocation becomes unattractive to θ3. To see this,

modify the optimal deterministic mechanism by letting θ1 trade with a probability ε ∈ [0, 3
4 ] and

24In the Online Appendix, we fully characterize the optimal random mechanism in several examples.
25In Example 3(a), if the seller employs deterministic mechanisms and serves type θ1, a fixed price p = 4, associ-

ated with full disclosure is optimal.
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adjusting transfers such that truth-telling remains satisfied, as follows:

q(θ3, x) = 1∀x, q(θ2, x) =1x=b , q(θ1, x) =
ε if x = g ,

0 if x = b,

p(θ3) = 6.5−ε, p(θ2) = 7−2ε, p(θ1) = 5 paid conditional on trade occurs.

Then, expected payment by θ3 and θ2 reduces by ε; however, that by θ2 increases by 5ε
2 . Overall,

the seller’s revenue increases by f (θ1) 5ε
2 − [

f (θ2)+ f (θ3)
]
ε = 3ε

2 > 0. Therefore, random alloca-

tion helps the seller screen effectively distant types (types θ3 and θ1), thereby, improving trade

surplus extensively as well as the seller’s revenue.

Example 3(b) - Screening signals: In this example, type θ2’s value varies significantly across

states. This makes it optimal to exclude type θ2 at state x1, rather than "pooling" the two states

under deterministic mechanisms which allow either trade or no trade at any signal realization.

Formally, the optimal deterministic mechanism, stated in Claim 3 below, specifies:

q(θ3, x) = 1∀x, q(θ2, x) = q(θ1, x) =1x=x2 ,

which are implemented via full disclosure and a fixed price.

Claim 3. In Example 3(b), if only deterministic mechanisms are allowed, it is optimal to offer full

disclosure and a posted price p = 4.

Random mechanisms, on the other hand, arm the seller with the flexibility in designing trade

probabilities. This helps her screen realized states by allowing trade to happen at a small prob-

ability at low states. To see this, revise the optimal deterministic mechanism by letting θ2 trade

with probability δ≤ 1
3 , such that now:

q(θ3, x) = 1∀x, q(θ1, x) =1x=x2 , p(θ3) = p(θ1) = 4,

(
q(θ2, x), p(θ2, x)

)=
(1,4) if x = x2

(δ,2δ) if x = x1

, with δ≤ 1

3
.

This revised mechanism differs from the optimal deterministic mechanism only in the new

trade created with type θ2 at state x1. Therefore, as long as this new trade creation preserves

incentive compatibility, the seller’s revenue increases by 2 f (θ2)g (x1)δ> 0. We show that this is

the case in the Online Appendix.

6.2 Screening vs. Bunching

This section generalizes the finding of optimal mechanisms with binary types (Theorem 1) to a

general model with finitely many types.
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6.2.1 Optimality of screening

Recall that information disclosure can be used to screen the buyer of binary types when it in-

duces a threshold flip of type order. Similarly, information serves as a screening tool in a richer

type space under the following notion of type order flip:

Definition 6 (Partition flip of type order).

The partition flip of type order happens if E[v(θ+, x) | xθ+ ≤ x < xθ] decreases in θ.

Under the partition flip of type order, the expected valuations over relevant partitions of states

decrease in types. As the relevant partition for a higher type consists of lower states, such a type

order flip requires the new information (about the state) to sufficiently dominate the buyer’s

initial type in driving valuation fluctuations. Indeed, it coincides with the threshold flip nota-

tion when there are only two types. In a richer type set, more than one interior threshold is

involved under the menu of threshold disclosure {π⋆
θ

}θ, leading to relevant partitions of states.

Theorem 2 below states the optimal mechanism under the partition flip of type order, which

features discriminatory information and prices.

Theorem 2 (Screening). Under the partition flip of type order, the optimal allocation is given by

Q(θ, x) =1x≥xθ . A menu of posted prices and threshold disclosures is optimal.

This result extends Theorem 1(a) to a model with more than two types, following the same logic:

when information disclosure matters sufficiently, it helps screen the buyer. The only difference

is that the partition flip of type order is required here, taking into account interior types.

The proof proceeds by showing that under the partition flip of type order, M⋆ induces truth-

telling even if the seller does not observe signals. Therefore, offering M⋆ with the buyer pri-

vately observing signals is equivalent to offering a menu of posted prices and threshold disclo-

sures {p⋆(θ),π⋆
θ

}θ, where the posted price is equal to the payment paid after "good news" in

M⋆: p⋆(θ) = p⋆(θ, sg ). This menu helps the seller achieve the upper bound of revenue attained

when signals are public signals; hence, it is optimal.

We close this section with an illustrative example.

Example 4. Θ= {h,m, l }. X is a finite subset of N. Types and states are equally likely. Valuations

are given by v(h, x) = x +∆θ, v(m, x) = x, v(l , x) = x −∆θ. Accordingly, virtual values are given by

φ(h, x) = x +∆θ, φ(m, x) = x −∆θ, φ(m, x) = x −3∆θ.

In this example, v(θ+, x)− v(θ, x) = ∆θ ∀x and ∆x ≡ v(θ, x)− v(θ, x) = x − x ∀θ. In addition,
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x⋆h = x, x⋆m =∆θ, and x⋆l = 3∆θ, which implies

E[v(h, x) | x⋆h ≤ x < xm] = 3∆θ−1+x

2
,

E[v(m, x) | xm ≤ x < xl ] = 4∆θ−1

2
,

E[v(l , x) | xl ≤ x ≤ x)] = ∆θ+x −1

2

Thus, the partition flip of type order happens if

3∆θ−1+x ≤ 4∆θ−1 ≤∆θ+x −1 ⇔ x ≤∆θ ≤∆x ,

which requires the impact of the unknown component to be higher than that of the buyer’s

type (and is of at least x). If this is the case, by Theorem 2, it is optimal to screen the buyer’s type

using different bundles of posted prices and threshold disclosure.

6.2.2 Optimality of bunching

In the binary-type case, the benefit of screening disappears if the threshold disclosure rule π⋆l
fails to flip the ranking of willingness to pay by types. A similar story holds with more than two

types under a stronger notion of (no) threshold flip of type order:

Definition 7 (Uniformly no threshold flip of type order). Under uniformly no threshold flip of

type order,

E[v(θ+, x | x < x̂] ≥ E[v(θ, x) | x ≥ x̂] ∀θ ∈Θ,∀x̂ ∈ X .

In words, this condition satisfies if under any threshold disclosure and for any type θ: θ+’s value

after "bad news" must be higher than θ’s after "good news". This is more likely to hold when

valuation heterogeneity is mainly driven by the buyer’s type. For instance, when θ+’s values are

always higher regardless of states, i.e., v(θ+, x) ≥ v(θ, x), it is impossible to flip their ranking of

valuation after any rule of information disclosure, not just the threshold ones.

We are now ready to state the main result of this section.

Theorem 3 (Bunching). Under uniformly no threshold flip of type order, a posted price, associ-

ated with a threshold disclosure, is optimal.

This result extends Theorem 1(b), carrying the same intuition: when valuation heterogeneity

is mainly due to the buyer’s types, information about the state becomes inessential for (most

types of) the buyer; as a result, its screening function shuts off. The only difference is that no

type order flip by any threshold disclosure is required here, of which the role is to be explained.
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The proof proceeds by solving a relaxed problem considering only deviating behaviors under

which all types mimic the lowest type being served. This problem mirrors that for the binary-

type caseΘ= {h, l }, with the lowest type being served representing type l and all the other types

echoing type h. The optimality of bunching under uniformly no threshold flip of type order

follows similar arguments for that in the binary-type setting under no threshold flip by π⋆l . The

lowest type being served, and thereby, the optimal posted price and threshold disclosure can be

explicitly characterized, leveraging the fact that no threshold flip holds uniformly regardless of

pairs of types and threshold rule.

To end this section, revisit Example 4 for an illustration. In this example, for any x̂ ∈ X ,

E[v(h, x) | x < x̂]−E[v(m, x) | x ≥ x̂] = (
∆θ + x̂ −1+x

2

)− (
m + x + x̂

2

)=∆θ− ∆x −1

2
,

E[v(m, x) | x < x̂]−E[v(l , x) | x ≥ x̂] = (
m + x̂ −1+x

2

)− (
l −∆θ+

x + x̂

2

)=∆θ− ∆x −1

2
,

where, just to recall,∆θ and∆x measure the impact of the buyer’s private type and the unknown

component in valuation variations, respectively. Therefore, uniformly no threshold flip of type

order occurs if

∆θ ≥
∆x −1

2
,

which requires the buyer’s type to be significantly impactful, relative to the unknown compo-

nent. If this is the case, by (Theorem 3), information is not leveraged to screen the buyer. A

single price-threshold disclosure bundle is optimal.

7 Infinite-type setting

All the proofs of our results extend readily if there is a continuum of states. The extension to

the infinite-type case, however, is not trivial. Nevertheless, we find that the previous insights

remain valid: Section 7.1 shows that a menu of prices and threshold disclosure is optimal under

the partition flip the ranking of willingness to pay across cut-off types; and Section 7.2 shows

that a fixed price- threshold disclosure bundle is approximately optimal when the type order is

almost preserved.

Throughout this section, consider a continuum of typesΘ= [θ,θ] ⊂R, endowed with the distri-

bution F (θ). We assume that F (θ) is differentiable in θ with density f (θ), and moreover, v(θ, x)

is differentiable in θ. Then, the virtual value in this environment is given by

φc (θ, x) = v(θ, x)− vθ(θ, x)
1−F (θ)

f (θ)
.

Similar to the finite-type case, we assume that φc (θ, x) increases in θ and x.
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7.1 Optimality of a screening menu

By the monotonicity of the virtual values, each state x is associated with a cut-off type θx above

(respectively, below) which the buyer’s virtual value is non-negative (respectively, negative).

Formally,

θx ≡ inf{θ |φc (θ, x) ≥ 0}.

Moreover, as φc (θ, x) increases in x, this cut-off type θx decreases in x. We use

Θx ≡ {θx}x∈X

to denote the type space consisting of only cut-off types. Even with a continuum of types, there

are finitely many cut-off types {θx}x∈X due to the finiteness of the state space. Accordingly, M⋆

comprises |Θx | options of prices and disclosure rules because each interval of types [θx+ ,θx) is

assigned the same option. Then, the following proposition can be obtained following the proof

of Theorem 2 for a type space consisting of only the cut-off types.

Proposition 3. Fix Θ = [θ,θ] and |X | < ∞. If there is a partition flip of type order within Θx , a

menu of threshold disclosures and posted prices is optimal.

This result holds even if there is a continuum of states X = [x, x] and the valuation function

is continuous over states, by approximating an associated finite-state model as the distance

between states approaches zero. In this case, the partition flip of type order reduces to the

valuation at the cut-off state v(θ, xθ) decreasing in types.26

7.2 (Approximate) optimality of bunching

When valuations shift smoothly across (a continuum of) types, there are always types whose

valuations are sufficiently close to others’. This makes it impossible to preserve the ranking of

willingness to pay uniformly across the types. Consequently, the optimality of bunching cannot

be derived as an extension of Theorem 3 which shows that under the uniformly no threshold

flip of valuation ranking across finitely many types, a fixed price-information bundle is opti-

mal. Nevertheless, we establish the approximate optimality of bunching under ε-uniformly no

threshold flip of type order, formally defined below.

Definition 8 (ε-uniformly no threshold flip of type order). ε-uniformly no threshold flip of type

order occurs if for some ε> 0,

E[v(θ+ε, x) | x ≤ x̂] ≥ E[v(θ, x) | x ≥ x̂] ∀θ, x̂.
26This is the case in, for example, the environments studied in Eső and Szentes (2007) and Wei and Green (2023)

under which the valuation function is concave in types and states, and the cross derivative is positive.
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The following proposition shows that as ε vanishes, the seller’s maximized revenue can be ap-

proximated by offering via a fixed price-threshold disclosure bundle. Formally, let Rε represent

the revenue guarantee if the seller offers a single posted price and threshold disclosure rule

under the ε-uniformly no threshold flip of type order, we find that:

Proposition 4. Rε→V (P ) as ε→ 0

Moreover, if there are only two states Ω= {b, g } with b < g , we establish the exact optimality of

a fixed price and disclosure rule within the class of deterministic mechanisms.

Proposition 5. Fix Θ = [θ,θ] and X = {b, g }. If v(θb ,b > v(θg , g ) and only deterministic alloca-

tions are allowed, a posted price, associated with full disclosure, is optimal.

The idea of the proof is as follows. With binary states X = {b, g }, there are only two cut-off

types θg and θb . Hence, the partition flip of type order reduces to v(θb ,b) ≤ v(θg , g ). If this is

the case, a menu of prices and threshold disclosures is optimal by Proposition 3. If by contrast,

v(θb ,b) ≤ v(θg , g ), the seller adjusts the cut-off types to θ̃b , θ̃g just enough to restore the partition

flip of type order: v(θ̃b ,b) = v(θ̃g , g ). In turn, at this boundery of the partition flip, the seller is

indifferent between offering a screening menu and a single option of price and information.

Put differently, bunching is optimal.

We end this section with a numerical example to illustrate Proposition 5.

Example 5. v(θ, x) = 3θ2 +6θ+x,Θ= [0,2], X = {8,12}. Types and states are likely equally.

In this example, φ(θ, x) = 3θ2 +6θ+ x − (6θ+6)(2−θ) = 9θ2 + x −12. Thus, θ12 = 0 and θ8 = 2
3 .

Hence, v(θ8,8) = 43
3 and v(θ12,12) = 12. As v(θ8,8) > v(θ12,12), no flip of type order occurs. By

Proposition 5, within the class of deterministic mechanism, offering a fixed bundle of price and

threshold disclosure to all types is optimal.

8 Discussion

8.1 Posterior rent and privacy of signals

As explained in the binary-type model, not observing signals generally hurts the seller due to

the presence of the buyer’s posterior rent. Specifically, implementing the benchmark allocation

requires the seller to pay the buyer’s posterior rent (apart from his ex ante rent), making V (P ) <
V (P ). When valuation shifts smoothly across (infinite) types, the relevance of signal privacy

comes from a different reason. Indeed, any allocations implementable with private signals can
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be implemented without generating posterior rent to the buyer.27 Therefore, if the seller fails

to achieve the upper bound of revenue V (P ), it is due to an implementability issue. In such

a scenario, information design can expand the set of implementable allocations. To illustrate,

consider the following example where the benchmark allocation is implementable with private

signals only if uninformative experiments are possible.

Example 6. v(θ, x) = θ2+θ+x −2. Types and states are uniformly distributed overΘ= [0,1] and

Ω= [0,3].

In this example, p⋆(θ, sg ) = −θ2 + 2
3θ + 1. Moreover, p⋆(θ, sg ) is a concave function in [0,1]

with p(0, sg ) = 1, p(1, sg ) = 2
3 . Thus, p⋆(θ, sg ) = minθ p⋆(θ, sg ). Then by Proposition 2, the seller

implements the benchmark allocation via M⋆. Suppose the seller provides full disclosure to all

types. To implement the benchmark allocation, it must be that for any θ and x, q(θ, x) = 1x≥xθ .

For the buyer to report truthfully their states, it is necessary that

p(θ, x) =
p(θ) if x ≥ xθ,

p(θ) otherwise.

To prevent the lowest type θ from mimicking some type θ and always report x < xθ, it must be

that p(θ) ≥ 0. Therefore,∫
x≥xθ

µ(x)d xp⋆(θ, sg ) =
∫

x≥xθ
µ(x)d xp(θ)+p(θ)

∫
x≤xθ

µ(x)d x ≥
∫

x≥xθ
µ(x)d xp(θ)

where the equality uses the fact that all mechanisms implementing the benchmark allocation

share the same expected payment. Thus, p⋆(θ) ≥ p(θ) for all type θ.

Consider θ = 1
3 , we have p⋆( 1

3 , sg ) = 10
9 , and v( 1

3 , x 1
3

) = 13
9 . Thus, v( 1

3 , x( 1
3 )) > p⋆( 1

3 , sg ) ≥ p( 1
3 ).

Then, if the buyer observes any state x ∈ (p
(1

3 ), v( 1
3 , x( 1

3 ))
)
, it is optimal for him to misreport

state x, receiving the good at a price lower than his valuation. Thus, the benchmark allocation

is not implementable under full disclosure.

8.2 Alternative proof for Wei and Green (2023)

Wei and Green (2023) revisit Eső and Szentes (2007)’s “continuous" model, adding a twist that

the buyer can walk away after information disclosure. In this section, we solve the former’s

problem by directly modifying the latter’s optimal mechanism.28

27We omit the formal proof, which extends the arguments in Krähmer and Strausz (2015a) to a setting with

information design and possibly finitely many states.
28Indeed, this modified mechanism coincides with Wei and Green (2023)’s solution.
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Under Eső and Szentes (2007)’s optimal mechanism, the seller offers full disclosure and a menu

of "information fees" ĉ(·) and "strike prices" p̂(·) for the good to implement the benchmark

optimal allocation. Thus,
(
q(θ), p(θ)

) ∈ {(
0, ĉ(θ)

)
,
(
1, ĉ(θ)+ p̂(θ)

)}
. This menu is a deterministic

mechanism. Therefore, following the arguments in the proof of Proposition 1, it is revenue-

equivalent to a persuasive-posted price mechanism which offers type θ (i) a binary-signal ex-

periment which sends "good news" if x ≥ xθ and "bad news" otherwise, and (ii) a posted price.

p̃(θ) = ĉ(θ)+ p̂(θ)+
ĉ(θ) [1−Q(θ)]

Q(θ)
= p̂(θ)+

ĉ(θ)

Q(θ)
.

In addition, Wei and Green (2023) show that information design leads to reverse price discrimi-

nation in the continuous model. This feature can also be obtained by leveraging the properties

of Eső and Szentes (2007)’s optimal mechanism. Let X(θ) ≡ 1
Q(θ) represent the inverted trade

probability for θ. Then, p̃(θ) = p̂(θ)+ ĉ(θ)X(θ), and

p̃ ′(θ) = p̂ ′(θ)+ ĉ ′(θ)X(θ)+ ĉ(θ)X′(θ) = ĉ(θ)X′(θ) < 0,

where the second equality uses the fact that under Eső and Szentes (2007)’s optimal mecha-

nism, ĉ(θ) and ĉ(θ) solves ĉ ′(θ) = p̂ ′(θ)Q(θ) = p̂ ′(θ) 1
X(θ) , and the last uses X′(θ) < 0. Thus, p̃(·) is

a decreasing function.

8.3 On the number of signals

As we have seen, it is without loss of generality to offer binary-signal experiments with deter-

ministic allocation. This is no longer true when random mechanisms are necessary. When the

variations vary significantly across states, a rich menu is needed to screen the states effectively.

As a result, binary-signal experiments are not sufficient. In this section, we illustrate this with a

simple example where an optimal experiment sends at least three signals to some type.

Example 7. Θ= {t3,θ2,θ1}, X = {x1, x2, x3, x4}. Types and states are equally likely.

v(θ, x) x1 x2 x3 x4

θ3 7 7 7 7

θ2 0 3 7 7

θ1 0 0 0 6

In this example, θ2’s valuation varies significantly across states with that at state x1 being suf-

ficiently low. If restricted to binary-signal experiments, the seller can only separate the state

space for type θ2 into two partitions which, under the optimal mechanism, include {x1, x2} and

{x3, x4}. Armed with three signals, the seller can distinguish a very unfavorable state x1 from a

better one x, fine-tuning the design of allocations. The formal proof is in the Online Appendix.
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A Preliminary results: omitted proofs

A.1 Proof of Lemma 1

Let M ≡ {πθ, q(θ, s), p(θ, s)}θ,s be an optimal mechansim. Toward a contradiction, assume that

there exists x such that q(θ, x) < 1. Then, the seller can improve her revenue by revising type θ

contract to C̃ ≡ {π̃
θ

, p̃(θ)} in which π̃
θ

provides no information and p̃(θ) is a posted price for the

good, given by:

p̃(θ) =∑
s

p(θ, s)π
θ

(s)+E[v(θ, x)]−∑
x

v(θ, x)
∑

s
q(θ, s)π

θ
(s|x)g (x)

To see this, note the following. If type θ buys the good at the price p̃(θ) and no disclosure, he

obtains:

E[v(θ, x)]− p̃(θ) =∑
x

v(θ, x)
∑

s

[
q(θ, s)−p(θ, s)

]
π
θ

(s|x)g (x),

which is equal to that under the original mechanism M. Moreover, if type θ mimics θ, he either

does not buy the good to get a zero payoff or buys the good, to obtain

E[v(θ, x)]− p̃(θ)

=E[v(θ, x)]−E[v(θ, x)]+∑
x

∑
s

[v(θ, x)q(θ, s)π
θ

(s|x)g (x)−∑
x

∑
s

p(θ, s)π
θ

(s|x)g (x)

=E[v(θ, x)]−∑
x

∑
s

v(θ, x)[1−q(θ, s)]π
θ

(s|x)g (x)−∑
x

∑
s

p(θ, s)π
θ

(s|x)g (x)

≤E[v(θ, x)]−∑
x

∑
s

v(θ, x)[1−q(θ, s)]π
θ

(s|x)g (x)−∑
x

∑
s

p(θ, s)π
θ

(s|x)g (x)

=∑
x

∑
s

[
v(θ, x)q(θ, s)−p(θ, s)

]
π
θ

(s|x)g (x),

which is exactly type θ’s from mimicking θ and report signals truthfully under the M. Therefore,

C̃ weakly increases type θ’s on-path payoff and weakly reduces the other types’ off-path pay-

off. Consequently, the buyer reveals his true type. While payments by the other types remain

unchanged, type θ now pays

p̃(θ) =∑
s

p(θ, s)π
θ

(s)+E[v(θ, x)]−∑
x

v(θ, x)
∑

s
q(θ, s)π

θ
(s|x)g (x)

>∑
s

p(θ, s)π
θ

(s),

which his expected payment under M. This contradicts with M. being optimal.
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A.2 Proof of Proposition 1

We complete the arguments in the main text by showing that under Case 2: p(θ) > 0, the seller’s

revenue remains weakly higher under the revised mechanism. Fix type θ. if θ mimics type θ′,
he receives weakly less information and pays weakly higher for each action (buy or do not buy

the good). Thus, his off-path payoff is weakly lower under the revised mechanism. On the other

hand, by revealing his type and buying the good if and only if sg is realized, he obtains:

Ũ (θ) ≡∑
x

[v(θ, x)− p̃(θ)]Q(θ, x)g (x) =∑
x

[v(θ, x)−p(θ)]Q(θ, x)g (x)−p(θ)[1−Q(θ)], (9)

which is his payoff under the original mechanism Md . As Md induces truth-telling, it follows

that θ finds it optimal to reveal his type under the revised mechanism. Moreover, by (9) and the

fact that the buyer’s payoff is non-negative under Md , Ũ (θ) ≥ 0. As a result, the buyer’s payoff

from buying the good a upon observing sg , given by Ũ (θ)
Q(θ) , is non-negative. Hence, the buyer

buys the good after sg , and accordingly, pays the seller

p̃(θ)Q(θ) = p(θ)Q(θ)+p(θ)[1−Q(θ)], (10)

which is exactly type θ’s expected payment under Md . Thus, the seller’s revenue cannot de-

crease under the revised mechanism.

A.3 Proof of Proposition 2

Part (a): Given that φ(θ, xθ) > 0 ∀θ, the optimal allocation in (P ) is uniquely given by Q(θ, x) =
1x≥xθ . Therefore, if there exists M such that RM = V (P ), (i) M must be deterministic and (ii),

upon observing any signal, type θ knows whether x ≥ xθ or not. Because of (i) and the fact that

the buyer pays the same expected payment under M and M⋆, the buyer pays more to get the

good under M⋆. Because of (ii), the buyer receives weakly less information under M⋆. To sum

up, the buyer pays more to get the good and gets weakly less information under M⋆. Therefore,

if M is incentive compatible with private signals, so is M⋆. Thus, RM⋆ =V (P ).

Part (b):“If": Suppose p⋆(θ, sg ) = minθ{p⋆(θ, sg )}, we now show that M⋆ induces truth-telling

even if the seller does not observe signals. Note that M⋆, as a solution to (P ), induces truth-

telling with public signals. Therefore, it suffices to show that under M⋆, for any type θ and θ′, it

is not beneficial for θ to report θ′ and then either (i) always report sb , (iii) always report sg or (ii)

always misreporting signals. By always reporting sb off-path, θ obtains a zero payoff; hence, (i)

is not beneficial. If (ii) is beneficial, then θ also benefits from mimicking θ and reporting signals

truthfully (type θ always observes sg and pays the least after sg ), which contradicts M⋆ being

incentive compatible with public signals. Now, consider the last deviating behavior. Note that
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if type θ, who reports θ′, prefers to misreport sg (buys the good) rather than truthfully sb (and

gets a zero payoff), it must be optimal for him to buy the good (or report sg upon observing this

signal. Hence, if (ii) is beneficial, so is (iii), a contradiction,

Part (b): “Only If": Suppose ∃θ such that p(θ, sg ) > p(θ, sg ). By mimicking θ and always reporting

sg , type θ always gets the good at a lower price p(θ, sg ). Therefore, θ prefers to misreport θ than

truth-telling. Consequently, if the seller offers M⋆ with private signals, she obtains RM⋆ <V (P ).

B Screening vs. Bunching: omitted proofs

B.1 Proof of Claim 1

Let

αl ≡max
{

x ′ | x ≤ x̂⋆l : E[v(h, x) | x > x ′] < E[v(l , x) | x > x ′]
}

,

βl ≡min
{

x ′ | x ≥ x̂⋆l : E[v(h, x) | x < x ′] < E[v(l , x) | x > x ′]
}

.

If x⋆⋆(l ) ∈ [x,αl ], the seller can do strictly better by offering a threshold disclosure π̃(l ) under

which (i) the threshold is α+
l and (ii) with probability λ, "good news" is sent at α+

l , such that

such that ωπ̃(h, sg ) =ωπ̃(h, sb). Note that λ exists because by definition of αl ,

E[v(h, x) | x >α+
l ] > E[v(L, x) | x >α+

l ],

E[v(h, x) | x >αl ] < E[v(l , x) | x >αl ].

Thus, it must be that x⋆⋆(l ) >αl . By similar arguments, we also have x⋆⋆(l ) <βl . Thus, x⋆⋆(l ) ∈
(αl ,βl ). Hence,

E[v(h, x) | x > x⋆⋆(l )] > E[v(l , x) | x > x⋆⋆(l )],

which implies ωπ
⋆⋆(l )(h, sb) ≥ωπ⋆⋆(l )(l , sg ).

B.2 Proof of Theorem 2

The proof leverages Lemma B.1 below, which provides two expressions of the price gap between

two adjacent types under M⋆.

Lemma B.1. There exist positive functions λ(θ) and β(θ) such that:

(a) p⋆(θ+, sg )−p⋆(θ, sg ) =
[
E[v(θ+, x) | xθ+ ≤ x <]−p⋆(θ, sg )

]
λ(θ), ∀ θ ≥ θ.

(b) p⋆(θ, sg )−p⋆(θ−, sg ) =
[
E[v(θ,ω) | xθ ≤ x < xθ−]−p⋆(θ, sg )

]
β(θ), ∀ θ ≥ θ+.
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Proof of Lemma B.1. To examine the ranking of p⋆(·), we start with the expected paymentP(θ) =
p⋆(θ)

∑
x≥xθ µ(x). By its definition (see equations (5)),

P(θ+)−P(θ) = ∑
xθ+≤x<xθ

v(θ+, x)µ(x) ∀θ ≥ θ,

P(θ) = ∑
xθ≤x<xθ−

v(θ, x)µ(x).

Using ∑
xθ+≤x<xθ

v(θ+, x)µ(x) =P⋆(θ+)−P⋆(θ) = p⋆(θ+, sg )
∑

x≥xθ+
µ(x)−p⋆(θ, sg )

∑
x≥xθ

µ(x) (11)

Part (a). Write the RHS of (11) as
∑

x≥xθ+
µ(x)[p⋆(θ+, sg )−p⋆(θ, sg )]+p⋆(θ, sg )

∑
xθ+≤x<xθ

µ(x). Then,

we obtain

p⋆(θ+, sg )−p⋆(θ, sg ) =

∑
xθ+≤x<xθ

v(θ+, x)µ(x)−p⋆(θ), sg )
∑

xθ+≤x<xθ
µ(x)∑

x≥xθ+
µ(x)

=
[
E[v(θ+, x) | xθ+ ≤ x < xθ]−p⋆(θ, sg )

] ∑
xθ+≤x<xθ

µ(x)∑
x≥xθ+

µ(x)

∝ E[v(θ+, x) | xθ+ ≤ x < xθ]−p⋆(θ, sg ).

Part (b). Write the RHS of (11) as
∑

x≥xθ
µ(x)[p⋆(θ+, sg )−p⋆(θ, sg )]+p⋆(θ+, sg )

∑
xθ+≤x<xθ

µ(x), and

the rest followed by similar arguments.

Armed with Lemma B.1, we now show that the highest type pays the lowest price under M⋆. It

follows from Lemma B.1 that if for all θ ≥ θ,

E[v(θ+, x) | x(θ+) ≤ x < xθ] ≤ E[v(θ, x) | xθ ≤ x < xθ−], (12)

then the sign of [p⋆(θ+, sg )− p⋆(θ, sg )] is decreasing in θ. Moreover, this sign is non-positive

because by (6.2.1) for θ,

E[v(θ+, x) | x(θ+) ≤ x < x(θ)] ≤ E[v(θ, x) | x(θ) ≤ x < x(θ−)] = p⋆(θ, sg ),

implying p⋆(θ+, sg )−p⋆(θ, sg ) ≤ 0, by part (1) of Lemma B.1. Therefore,

p⋆(θ+, sg )−p⋆(θ, sg ) ≤ 0 ∀θ ≥ θ. (13)

This implies that p⋆(θ, sg ) is the lowest price. Then by Proposition 2, RM⋆ = V (P ). Moreover,

as M⋆ induces truth-telling with private signals, the seller can simply offer a menu of posted

prices and threshold disclosure {π⋆
θ

, p⋆(θ)}θ, where p⋆(θ) = p⋆(θ, sg ).
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B.3 Proof of Theorem 3

Let L be the lowest type being served under an optimal mechanism. Consider the following

relaxed problem (RP L), under which all types mimics L off-path:

(RP L) max
(π,q,U )

∑
θ≥L

[∑
x

∑
s

v(θ, x)q(θ,ωπθ (θ, s))πθ(s|x)µ(x)−U (θ)
]

f (θ)

s.t . U (θ)−U (L) ≥∑
s

∫ ωπL (θ,s)

ωπL (L,s)
q(L, z)d zπL(s) ∀θ > L (IC)

U (L) ≥ 0 (I RL)

q(θ,ω) increases in ω. (MON)

We will show that the solution to this relaxed problem, which features a posted price and a

threshold disclosure, solves the original problem. Obviously, (I RL) and (ICθ→L) bind for all

θ > L under (RP L), reducing the seller’s relaxed problem to

max
q,π

∑
θ

∑
x

v(θ, x)q(θ,ωπθ (θ, s))πθ(s|x)µ(x) f (θ)−∑
θ

∑
x

∑
s

∫ ωπL (θ,s)

ωπL (L,s)
q(L, z)d zπL(s|x)µ(x) f (θ)

s.t . q(θ,ω) increases in ω.

Fix π, it is a linear problem in q with (MON) being the only constraint. Thus, the optimal allo-

cation is generally unique, given by

q(L,ω) =1s≥ŝl , q(θ, x) = 1∀x∀θ > L.

Fix q(L, s) =1s≥ŝl . The term involving πL in the seller’s objective (revenue) is given by

R(πL) ≡∑
x

s∑
ŝL

v(L, x)πL(s|x) f (L)g (x)

− ∑
θ≥L+

[ s∑
ŝL

[
ωπL (θ, s)−ωπL (L, ŝL)

]− ∑
θ≥L+

ŝL∑
s

max
{
ωπL (θ, s)−ωπL (L, ŝL),0

}]
πL(s|x) f (θ)

=∑
x

s∑
ŝL

v(L, x)πL(s|x) f (L)g (x)

− ∑
θ≥L+

[ s∑
ŝL

[
ωπL (θ, s)−ωπL (L, ŝL)

]− ∑
θ≥L+

ŝL∑
s

[ωπL (θ, s)−ωπL (L, ŝL),0]
]
πL(s|x) f (θ)

=∑
x

s∑
ŝL

v(L, x)πL(s|x) f (L)g (x)− ∑
θ≥L+

s∑
s

[
ωπL (θ, s)−ωπL (L, ŝL)

]
πL(s|x) f (θ)

≡ R(πL).
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R(πL) is an upper bound of R(πL). We now show that this bound is tight. By replacing all signals

s ≥ ŝL with "good news" and all signals s < ŝL with "bad news," R(πL) weakly increases, and R(πL)

reduces to

R(πL) =ωπL (L, sg )
[ ∑
θ≥L+

f (θ)+ f (L)πL(sg )
]
− ∑
θ≥L+

E[v(θ, x)] f (θ),

Let

π⋆⋆L ≡ argmax
πL

ωπL (L, sg )
[ ∑
θ≥L+

f (θ)+ f (L)πL(sg )
]
− ∑
θ≥L+

E[v(θ, x)] f (θ)

By the same arguments used for the binary-type case, π⋆⋆L features a disclosure rule. Next,

we find an optimal payment schedule. As optimal allocation is deterministic, without loss

of generality to focus on posted-price mechanisms. By (I RL), p⋆⋆(L) = ωπ
⋆⋆
L (L, sg ) . Con-

sider type θ who mimics L. Under no uniformly no threshold flip of type order, ωπ
⋆⋆
L (θ, sg ) ≥

ωπ
⋆⋆
L (θ, sg ) ≥ ωπ

⋆⋆
L (L, sg ). Hence, it is optimal for θ to always buy the good after mimicking L.

Hence, by (I R) p⋆⋆(θ) = p⋆⋆(L) for all θ > L. Obviously, this single option of price and informa-

tion {π⋆⋆L , p⋆⋆(L)} satisfies ignored constraints and hence, solves the original problem.

Remark 2. Let V
(
RP θ

)
denote the value of program RP θ in which θ is the lowest type being

served. Under no threshold flip of type order, it is optimal to serve only types above (including) L,

where L solves L ∈ argmaxθV
(
RP 2(θ)

)
.

C Random mechanisms: omitted proofs

This section provides proofs of Claims 2 and 3, which rely on the following lemma.

Lemma C.1. If only deterministic mechanisms are allowed, it is optimal to offer a menu {α(θ, x), p(θ)}θ,x

under which each type θ trades with probability α(θ, x) at state x and pays p(θ) for the good.

The proof for Lemma C .1 is as follows. If only deterministic mechanisms are allowed, by Propo-

sition 1, it is optimal to offer each type θ receives a posted price p(θ) for the good and a binary-

signal experiment with S = {sg , sb}. Hence, an experiment can be represented by the probability

that signal sg is realized at state x for type θ, α(θ, x).

C.1 Proof of Claim 2

To characterize the optimal deterministic mechanism, or the optima menu {α(θ, x), p(θ)}θ,x ,

consider the following relaxed problem in which (i) only IR condition for θ1 is kept, and (ii) off
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the equilibrium path, θ2 mimics θ1 and buys the good only after sg whereas θ3 mimics θ1 and

always buys the good.

max
{p,α}

∑
θ

∑
x

p(θ)α(θ, x)µ(x) f (θ)

s.t .
∑

x

[
v(θ2, x)−p(θ2)

]
α(θ2, x)µ(x) ≥∑

x

[
v(θ2, x)−p(θ1)

]
α(θ1, x)µ(x) (IC21)∑

x

[
v(θ3, x)−p(θ3)

]≥ E[v(θ3, x)]−p(θ1) (IC21)∑
x

[
v(θ1, x)−p(θ1)

]
α(θ1, x)µ(x) ≥ 0 (I R1)

As trading with θ3 and θ2 generates no rent for others, these types receive efficient allocations:

α(θ3, x2) =α(θ3, x1) = 1,α(θ2, x) = 1x=g .

If α(θ1, x1) > 0, then reduce α(θ1, x1) and increase p(θ1) such that
∑

x p(θ1)α(θ1, x)µ(x) remains

unchanged. By doing so, the seller’s revenue increases. Moreover, no constraints are violated

because (i) the right-hand side of (IC21) decreases (as v(θ3, x1) > 0) and (ii) the right-hand

side of (IC21) and left-hand side of (I R1) remains unchanged (as v(θ2, x1) = v(θ1, x1) = 0).Thus,

α(θ1, x1) = 0.

If α(θ1, x2) < 1, then reduces α(θ1, x2) by ε and increases p(θ3) by [v(θ3, x2)−p(θ2)]ε and p(θ2)

by [v(θ3,x2)−p(θ2)]ε
α(θ1,x2)µ(x2) . By doing so, no constraint is affected while the seller’s revenue increases by

[ f (θ3) + f (θ2)][v(θ3, x2) − p(θ2)]µ(x2)ε− f (θ1)v(θ1, x2)µ(x2)ε = φ(θ1, x2) f (θ1)µ(x2) > 0. Thus,

α(θ1, x2) = 1.

If (I R1) does not bind, increase p(θ1) until it binds. This increases the seller’s revenue while not

violating any constraints. Thus, (I R1) binds and hence, p(θ1) = v(θ1, x2) = 4.

If (IC31) does not bind, increase p(θ3) until it binds. This increases the seller’s revenue while

not violating any constraints. Thus, (I R3) binds and hence, p(θ3) = p(θ1) = 4.

If (IC21) does not bind, increase p(θ2) until it binds. This increases the seller’s revenue while

not violating any constraints. Thus, (IC21) binds, or p(θ2) = p(θ1) = 4.

To sum up, we obtain α(θ3, x2) = α(θ3, x1) = 1, α(θ2, x) = α(θ1, x) = 1x=x2 , and p(θ3) = p(θ2) =
p(θ1) = 5. The seller’s revenue is 4 · [ f (θ3)+ [ f θ2)+ f (θ1)]µ(x2)

] = 10
3 . As p(θ3) = 4, type θ3 buys

the good at any state. Thus, the maximized revenue can be obtained via a posted price of 4 and

full disclosure to all types.

39



C.2 Proof of Claim 3

To characterize the optimal deterministic mechanism, or the optima menu {α(θ, x), p(θ)}θ,x ,

consider the following relaxed problem in which (i) only IR condition for θ1 is kept, and (ii) off

the equilibrium path, m mimics θ1 and buys the good only after sg whereas θ3 mimics θ1 and

always buys the good.

max
{p,α}

∑
θ

∑
x

p(θ)α(θ, x)µ(x) f (θ)

s.t .
∑

x

[
v(θ2, x)−p(θ3)

]
α(θ2, x)µ(x) ≥ E[v(θ3, x)]−p(θ2) (IC32)∑

x

[
v(θ2, x)−p(θ2)

]
α(θ2, x)µ(x) ≥∑

x

[
v(θ2, x)−p(θ1)

]
α(θ1, x)µ(x) (IC21)∑

x

[
v(θ1, x)−p(θ1)

]
α(θ1, x)µ(x) ≥ 0 (I Rl )

If α(θ1, x1) > 0, reduce α(θ2,b) and and increase p(θ1) such that p(θ1)
∑

x α(θ1, x)µ(x) remains

unchanged, and increase p(θ2) such that (IC21) remains satisfied. By doing so, no constraints

are affected, whereas the seller’s revenue strictly increases. Thus, α(θ1, x1) = 0.

Note that to ensure that type θ2’s on-path payoff is non-negative, it is necessary that v(θ2, x2) ≥
p(θ2). Hence, if α(θ2, x2) < 1, by increasing α(θ2, x2), we strictly improve the seller’s revenue

while not violating any constraints. Thus α(θ2, x2) = 1.

If α(θ1, x2) < 1. Then, set p(θ1) = v(θ1, x2) = 4, increase α(θ1, x2) by ε and reduce p(m) and p(h)

by ε∑
x α(θ2,x)µ(x) . Under this change, no constraints are violated. Moreover, the seller’s revenue

increases by f (θ1)4ε− f (θ3) ε∑
x α(θ2,x)µ(x) − f (θ2)ε> 0. Thus α(θ1, x2) = 1.

If (I R1) does not bind, we can increase p(θ1) up to it becoming binding, thereby increasing the

seller’s revenue without violating any constraints. Thus, (I R1) binds. Given that α(θ1, x1) = 0,

we thus have p(θ1) = v(θ1, x2).

If (IC32) does not bind, increase p(θ3) until it binds. This increases the seller’s revenue while

not violating any constraints. Thus, (IC21) binds, and hence, p(θ3) = p(θ2).

If (IC21) does not bind, increase p(θ2) until it binds. This increases the seller’s revenue while not

violating any constraints. Thus, (IC21) binds. Given that α(θ2, x2) = α(θ1, x2) = 1, α(θ1, x1) = 0

and p(θ1) = v(θ1, x2), this implies

[v(θ2, x1)−p(θ2)]α(θ2, x1)µ(x1)+ [v(θ2, x2)−p(θ2)]µ(x2) = [v(θ2, x2)− v(θ1, x2)]µ(x2)

⇔ p(θ2) =
v(θ2, x1)α(θ2, x1)µ(b)+ v(θ2, x2)µ(x2)− [v(θ2, x2)− v(θ1, x2)]µ(x2)

α(θ2, x1)µ(x1)+µ(x2)
. (14)

40



Then, the objective problem of the relaxed problem becomes

[
f (θ3)+ f (θ2)[α(θ2, x1)µ(x1)+µ(x2)]

]v(θ2, x1)α(θ2, x1)µ(x1)+ v(θ2, x2)µ(x2)− [v(θ2, x2)− v(θ1, x2)]µ(x2)

α(θ2, x1)µ(x1)+µ(x2)

≡ H(α(θ2, x1))

Under the specification in Example 3(b), the relaxed problem becomes

max
α(θ2,x1)

H(α(θ2, x1)) ≡ (α(θ2, x1)+3)
(α(θ2, x1)+2)

α(θ2, x1)+1
=α(θ2, x1)+2+

2(α(θ2, x1)+2)

α(θ2, x1)+1

Thus, H ′(α(θ2, x1)) = 1− 1
(α(θ2,x1)+1)2 and H"(α(θ2, x1)) = 2

(α(θ2,x1)+1)3 > 0. Therefore, H(α(θ2, x1))

is a convex function. Moreover, R(0) = R(1) = 6. Thus, α(θ2, x1) = 0 is optimal. This implies

that p(θ3) = p(θ2) = p(θ1) = 4. Hence, a posted price p = 4 and full disclosure is an optimal

deterministic mechanism.

D Infinite types: omitted proofs

D.1 Proof of for Proposition 3

We first solve the seller’s benchmark problem with public signals whenΘ= [θ,θ]. With P(θ) and

Q(θ, x) representing the expected payment and allocation over signals, this problem writes:

(P
c
) sup

P,Q

∫
θ
P(θ)dF (θ)

s.t . ∀θ,θ′ :
∑

x
v(θ, x)Q(θ, x)µ(x)−P(θ) ≥∑

x
v(θ, x)Q(θ′, x)µ(x)−P(θ′) (15)∑

x
v(θ, x)Q(θ, x)µ(x)−P(θ) ≥ 0. (16)

By the Envelope condition, (15) implies U ′(θ) = ∑
x vθ(θ, x)Q(θ, x)µ(x) ∀θ ≥ θ̃g . By integration

by parts,

U (θ) =U (θ̃g )+
∫ θ

θ̃g

∑
x

vθ(θ′, x)Q(θ′, x)µ(x)dθ′. (17)

Consider a relaxed problem which keeps (17) and the partition constraint for the lowest type θ.

Using U (θ) = 0 at optimum, this relaxed problem becomes:

sup
π,q

∫
θ
φc (θ, x)Q(θ, x)µ(x)]dF (θ),
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where φc (θ, x) ≡ v(θ, x) − vθ(θ, x) 1−F (θ)
f (θ) . As φc (θ, x) increases in θ and x, it is optimal to se

Q(θ, x) = 1θ≥θx or equivalently, Q(θ, x) = 1x≥xθ . Fix an arbitrary x ∈ X . For any θ ∈ [θx ,θx−],

Q(θ) =Q(θx) and P(θ) =P(θx). Payments are backed out using U (θ̃) = 0 and (17), given by:

P(θ) = ∑
x≥xθ

v(θ, x)µ(x)−
∫
θ

∑
x≥xθ′

vθ(θ′, x)µ(x)dθ′

Moreover,∫ θ−x

θx

∑
x≥xθ′

vθ(θ′, x)µ(x)dθ′ =
∫ θ−x

θx

∑
x≥xθx

vθ(θ′, x)µ(x)dθ′ = ∑
x≥xθx

∫ θ−x

θx

vθ(θ′, x)µ(x) = ∑
x≥xθx

[v(θ−x , x)− v(θx , x)]µ(x),

which implies

P(θ) = ∑
x≥xθ

v(θ, x)µ(x)− ∑
θx≤θ

∑
x≥xθx

[v(θx− , x)− v(θx , x)]µ(x).

Therefore, M⋆ for this problem consists of Θx options {π⋆
θ

, p⋆(θ, sg ), p⋆(θ, sb)}θ∈Θx . Then, fol-

lowing similar arguments in the proof of Theorem 2 for the type spaceΘx , we get

p⋆(θx , sg ) = min
θ∈Θ

p⋆(θ, sg )

under the partition flip of type order withinΘx . As a result, M⋆ induces truth-telling even if the

seller does not observe signals. Then, offering M⋆ is equivalent to offering a menu of threshold

disclosures and posted prices {π⋆
θ

, p⋆(θ)}θ∈Θx , where p⋆(θ) = p⋆(θ, sg ). Hence, this menu helps

the seller achieve the upper bound of revenue V (P
c
); hence, it is optimal.

D.2 Proof of for Proposition 4

Suppose it is optimal to exclude all types below L, or q(θ, x) = 1 for all x and θ < L. Then,

the seller’s revenue must be weakly lower than that obtained from selling to the buyer whose

types is distributed by f̂ over Θ, where f̂ (θ) = f (θ) ∀θ ∉ [L,L + ε], f̂ (θ) = 0 ∀θ ∈ [L,L + ε), and

f̂ (L+ε) = ∫ θ=L+ε
θ=L f (θ)dθ. Let (P̂ ) represent the seller’s problem when θ ∼ f̂ and V (P̂ ) the corre-

sponding value. Consider the following relaxed problem of (P̂ ) where all types mimic L +ε off

the equilibrium path:

(RP L+ε) max
(π,q,U )

∑
θ≥L+ε

∑
x

∑
s

p(θ,ωπθ (θ, s))πθ(s|x)µ(x) f̂ (θ)

s.t . U (θ)−U (L+ε) ≥∑
s

∫ ωπL (θ,s)

ωπL (L+ε,s)
q(L+ε, z)d zπL+ε(s) ∀θ > L+ε (ICθ→L+ε)

U (L+ε) ≥ 0 (I RL+ε)

q(θ,ω) increases in ω. (MON)
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By the same arguments as the proof of Theorem 3, a posted price p̂L+ε, associated with a thresh-

old disclosure π̂L+ε, solves this relaxed problem. Note that (π̂L+ε, p̂L+ε) does not necessary solve

the original problem. In case it does, the seller’s revenue is the value of problem (RP L+ε), de-

noted by V ((RP L+ε)). Let Rε represent the seller’s revenue if she offers (π̂L+ε, p̂L+ε) (regardless

of whether it solves the original problem or not). Then,

Rε ≥V (RP L+ε)−E[v(L+2ε, x)]
∫ L+2ε

L+ε
f̂ (θ)dθ

≥V (P̂ )−E[v(L+2ε, x)]
∫ L+2ε

L+ε
f̂ (θ)dθ

Therefore,

lim
ε→0

Rε ≥V (P̂ )− lim
ε→0

E[v(L+2ε, x)]
∫ L+2ε

L+ε
f̂ (θ)dθ =V (P̂ )

On the other hand, lim
ε→0

Rε ≤V (P̂ ). Therefore, lim
ε→0

Rε =V (P̂ ).

D.3 Proof of Proposition 5

Let M be an arbitrary optimal (deterministic) mechanism, which is, without loss of generality,

a menu of trade probabilities and posted prices M = {p(θ),α(x,θ)}x,θ. Let θ̃b ≡ inf{θ | α(θ, x) =
1∀x} represents the lowest type who receives an efficient allocation under M, and θ̃g ≡ inf{θ |
α(θ, x) > 0 for some x} be the lowest type being served. With Θ̃ ≡ {θ | θ ≥ θ̃b}, M must solve the

following problem:

(P ) sup
p,α

∫
θ

p(θ)dF (θ)

s.t . α(θ, x) = 1 ∀x,θ ≥ θ̃b∑
x

[
v(θ, x)−p(θ)

]
α(θ, x)µ(x) ≥∑

x
[v(θ, x)−p(θ′)]α(θ′, x)µ(x) ∀θ,θ′ ∈ Θ̃∑

x

[
v(θ, x)−p(θ)

]
α(θ, x)µ(x) ≥ 0 ∀θ ∈ Θ̃.

By IR condition for θ̃g , p(θ̃g ) ≤ v(θ̃g , g ). Consider θ ∈ [θ̃b ,θ]. If p(θ) > v(θ̃g , g ), then θ prefers to

mimic θ̃g and always buy the good at a lower price. Thus, to incentivize θ to reveal his type, it

must be that

p(θ) ≤ v(θ̃g , g ) ∀θ ∈ [θ̃b ,θ].

Suppose v(θ̃b ,b) > v(θ̃g , g ). Then, ∃θ̂ such that for any θ′ ∈ [θ̂, θ̃b],

v(θ′,b) ≥ v(θ̃g , g ) ≥ p(θ).
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It then induces θ′ to mimic θ and always buy the good. By doing so, he gets the good a higher

expected surplus at a lower price. Therefore, it must be that

v(θ̃b ,b) ≤ v(θ̃g , g ).

By Envelope condition, for the buyer to report truthfully his type, it is necessary that U ′(θ) =∑
x vθ(θ, x)α(θ, x)µ(x). Then, by integration by parts,

U (θ) =U (θ̃g )+
∫ θ

θ̃g

∑
x

vθ(θ, x)α(θ, x)µ(x)dθ. (18)

Consider a relaxed problem that keeps only the IR condition for θ̃g and the necessary enve-

lope condition for truth-telling. Using (18) and the fact that U (θ̃g ) = 0 at optimum, this relaxed

problem reduces to

sup
q

∫
θ
φc (θ, x)q(θ, x)µ(x) f (θ) s.t . q(θ, x) = 1 ∀x,∀θ ≥ θ̃b ,

where φc (θ, x) ≡ v(θ, x)− vθ(θ, x) 1−F (θ)
f (θ) . Solving this point-wise maximization problem yields

q(θ, x) =
1 if θ ≥ min

{
θb , θ̃b

}
1x=g if max

{
θg , θ̃g

}≤ θ ≤ min
{
θb , θ̃b

}
.

Prices are pinned down using binding constraints, given by

p(θ) =
v

(
min

{
θb , θ̃b

}
,b

)
µ(b)+ v

(
max

{
θg , θ̃g

}
, g

)
µ(g ) if θ ≥ min

{
θb , θ̃b

}
v

(
max

{
θg , θ̃g

}
, g

)
if max

{
θg , θ̃g

}≤ θ ≤ min
{
θb , θ̃b

}
Consider θ ≥ min

{
θb , θ̃b

}
and θ′ ∈ [

max
{
θg , θ̃g

}
,min

{
θb , θ̃b

}]
. As v(θ̃b ,b) ≤ v(θ̃g , g ), we have

v
(
min

{
θb , θ̃b

}
,b

)≤ v
(
max

{
θg , θ̃g

}
, g

)
,

which implies p(θ) ≤ p(θ′). Thus, this two-option menu of prices and threshold disclosure in-

duces participation and truth-telling. As M solves the original problem, by definition of θ̃b and

θ̃g , it must be that

min
{
θb , θ̃b

}= θ̃b , max
{
θg , θ̃g

}= θ̃g .

Suppose v
(
min

{
θb , θ̃b

}
,b

) < v
(
max

{
θg , θ̃g

}
, g

)
, then p(θ) < p(θ′). Then, it is optimal to set

θ̂ ≡ inf{θ ≥ θg | v
(
min

{
θb , θ̃b

}
,b

) ≤ v(max{θ̂, θ̃g }, g )} as the lowest type being served, a con-

tradiction. Therefore,

v
(
min

{
θb , θ̃b

}
,b

)= v
(
max

{
θg , θ̃g

}
, g

)
.

This implies that all types receive the same price. Moreover, all types θ ≥ min
{
θb , θ̃b

}
always

buy the good regardless of signal realization. Thus, it is optimal to offer full disclosure for all

types.

44



References

Bang, S. H. and Kim, J. (2013), ‘Price discrimination via information provision’, Information

Economics and Policy 25(4), 215–224.

Battaglini, M. (2005), ‘Long-term contracting with markovian consumers’, American Economic

Review 95(3), 637–658.

Battaglini, M. and Lamba, R. (2019), ‘Optimal dynamic contracting: The first-order approach

and beyond’, Theoretical Economics 14(4), 1435–1482.

Bergemann, D., Heumann, T. and Morris, S. (2022), ‘Screening with persuasion’, arXiv preprint

arXiv:2212.03360 .

Bergemann, D. and Pesendorfer, M. (2007), ‘Information structures in optimal auctions’, Journal

of economic theory 137(1), 580–609.

Bergemann, D. and Wambach, A. (2015), ‘Sequential information disclosure in auctions’, Jour-

nal of Economic Theory 159, 1074–1095.

Courty, P. and Li, H. (2000), ‘Sequential screening’, The Review of Economic Studies 67(4), 697–

717.
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