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Abstract 

Despite scarcity being central to economics, the scarcity of brain’s internal resources has 

largely been ignored. Neuroscience research increasingly points to the brain evolving as a 

prediction engine in response to this internal-resource scarcity. The brain meets every 

situation with subconscious expectations, which are contrasted with information to 

generate error-signals.  Selective processing of such error-signals, in lieu of the entire 

information-stream, saves brain-resources. We show that applying this predictive-

processing framework to asset pricing gives rise to an alpha in CAPM. Several empirically 

observed phenomena (value, momentum, size, high-alpha-of-low-beta, profitability, 

investment, and time-specific changes in SML slopes) correspond to either cross-sectional or 

time-specific variations in this alpha. Additional insights about these phenomena emerge 

that are consistent with empirical evidence. Hence, potentially, a unified explanation for 

several asset pricing anomalies emerges as ultimately due to the brain’s optimal response to 

its own internal resource scarcity, suggesting a synthesis of neoclassical and behavioral 

finance. 
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Asset Pricing in the Resource-Constrained Brain 

 

Even though resource scarcity has long been a defining notion in economics, the fact that 

the brain resources (neurons and energy) are also finite has largely been ignored.1 Perhaps, 

not having a clear framework for analyzing the implications of such internal resource 

scarcity has played a role in this neglect. However, over the past decade and a half, 

neuroscience research has been converging to a framework which views the brain as a 

‘prediction machine’ that uses predictions to conserve internal brain resources.2 In this 

article, we show that this framework, known as ‘predictive processing’, provides appropriate 

conceptual tools for studying the implications of internal-resource scarcity.  Specifically, we 

show that incorporating the predictive-processing framework into asset pricing gives rise to 

an alpha in the CAPM. Several empirically observed phenomena (value, momentum, size, 

high-alpha-of-low-beta, profitability, investment, and time-specific changes in SML slopes) 

correspond to either cross-sectional or time-specific variations in this alpha.3 4Additional 

insights about these phenomena emerge that are consistent with empirical evidence. 

Hence, potentially, a unified explanation for several asset pricing anomalies emerges as 

ultimately due to the brain’s optimal response to its own internal resource scarcity. 

The predictive processing framework says that the brain uses its prior knowledge of 

the world to form subconscious expectations in every situation, which are contrasted with 

available information to generate error signals. Such error signals are then selectively 

 
1 A few exceptions are Alonso et al (2014), Siddiqi and Murphy (2023), and Siddiqi (2023). McKenzie (2018) 
argues that the neoclassical toolbox extends to behavioral economics if the brain resource scarcity is 
acknowledged.  
2 There is a large body of literature in the cognitive science/neuroscience that considers the brain to be a 
prediction machine (Nave et al 2020, Clark 2013, Hohwy 2013, Friston 2010, Bubic et al 2010 among others). A 
sample based on writings of various cognitive scientists, which is suitable for non-specialist audience, includes 
Clark (2023), chapter 3 in Hawkins, J. (2021), chapter 4 in Feldman, L. B. (2021a), chapter 4 in Seth, A. (2021), 
and chapters 4 and 5 in Goldstein (2020).  Feldman, L. B. (2021b) also provides a discussion of key ideas.  
3 Fama and French (2016) find deviations from the implications of the model, such as related to beta, size, 
value, and momentum building on early studies by Black (1972), Stoll and Whaley (1983), Fama and French 
(1993), and Jegadeesh and Titman (1993) among others.  This suggests that there is misspecification in the 
CAPM, and additional risk factors have been proposed (Fama and French 2016, 2011, 1993).  
4 Specific times when the SML slope is steeper include: Months when inflation is low or negative (Cohen, Polk, 
and Vuolteenaho 2005), days when news about inflation, unemployment, or Federal Open Markets Committee 
(FOMC) interest rate decisions are scheduled to be announced (Savor and Wilson 2014), periods of pessimistic 
investor sentiment (Antoniou et al 2015), and overnight (Hendershott et al 2020). 
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incorporated into predictions based on the brain’s assessment of their relative value. By 

selectively processing error signals and mostly just leveraging prior knowledge to fill in the 

gaps, the brain greatly cuts down on the amount of information it processes.5 All 

expectations, from the mundane (what you expect to see around the corner) to the 

sophisticated (risk and reward expectations), are constructed in the brain in this way.6  

 The four components of the predictive-processing framework are: (i) an internal 

model, which captures typical/average behavior, based on a synthesis of prior experiences 

in similar situations, (ii) subconscious predictions generated by the internal model (iii) error-

signals that result from contrasting such expectations with available information, and (iv) 

importance weights assigned to error-signals and predictions, leading to adjusted 

predictions, which are consciously experienced.7  

We keep the same above components in the asset pricing context and specify the 

following: (i) the relevant internal model (captures average behavior) is based on a synthesis 

of prior experiences with similar firms8, (ii) subconscious equity risk and reward 

expectations are generated by the internal model, (iii) error-signals result from contrasting 

such expectations with available information, and (iv) relative importance weights on error-

signals and initial expectations are such the exploitable arbitrage opportunities against the 

decision-maker (DM) are prioritized and eliminated, leading to adjusted risk and reward 

expectations that are consciously experienced.9 

 
5 See chapter 4 in Hawkins, J. (2021) (and references therein) for a more detailed discussion on the common 
observation in neuroscience that much less brain activity happens when expectations match incoming 
information compared to when they do not (error-signal processing). 
6 Predictive Processing is more appropriately termed Hierarchical Predictive Processing as it views the mind as 
being organized in layers with a higher-level layer making predictions about the level just below with only the 
error-signals reaching the higher-level from the level just below. In this way, the lowest level predicts the 
incoming sensory signals, whereas a higher level makes predictions about the underlying causes such as 
changing risk and reward. Hence, this framework offers a unified theory of the mind ranging from sensory 
perception to higher cognition (see Clark (2013)).  
7 For illustrations of how these components work together to create various experiences, see the appendix in 
Clark (2023). 
8 It is more efficient for the brain to categorize closely related firms together as it reduces information load. 
Such categorization is a critical part of the way the brain puts the world in order and has a dedicated neuronal 
mechanism in the brain (Lech et al 2016). 
9 As the marginal benefit of eliminating an exploitable arbitrage opportunity against the DM is very large, it is 
optimal for the DM’s brain to prioritize elimination of such arbitrage opportunities over other error-signals. 
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In general, the initial subconscious expectations that come from the internal model are 

adjusted towards rational expectations to the extent that (exploitable) arbitrage 

opportunities are eliminated without necessarily achieving full convergence. Hence, the 

consciously experienced final expectations retain some influence of the initial internally 

generated expectations. It is this influence which shows up as the alpha term in the CAPM.  

The key novel insight is that the relative resource allocation between processing of 

risk error-signals vs. reward error-signals matters. We show that if the resources are 

diverted away from the processing of reward error-signals to risk error-signals then the 

security -market-line (SML) steepens. The observed times when the SML is steeper are all 

times when the DM’s brain has strong reasons to consider risk as relatively more important, 

which tilts the internal resource allocation towards risk resulting in a steeper SML. These 

times include: Months when there is weak inflation/deflation indicating higher macro risks 

(Cohen et al 2005), periods of pessimistic investor sentiment (Antoniou et al 2015), and 

around market open (Hendershott et al 2020) when highly leveraged intraday traders enter 

the market (leverage increases risk by magnifying both gains and losses).  Hence, empirical 

evidence on SML slopes appears to align well with this novel insight. 

If the brain gives more importance reward error-signals than risk error-signals, then 

betting-against-beta (BAB) effect arises (Frazzini and Pederson 2014, Black 1972) which gets 

stronger with the resource tilt favoring reward. It follows that the brain-based model 

predicts stronger BAB performance during periods of optimism when the brain likely 

allocates less resources to risk. This prediction is consistent with empirical evidence 

(Antoniou et al 2015).  

If the resources allocated to the processing of reward error-signal processing are not 

just larger but sufficiently larger, then the size effect also emerges. Intuitively, subconscious 

initial expectations (being a cluster average) tend to overestimate both reward and risk for 

small-size firms. If reward error-signal processing is much stronger in the DM’s brain, then 

ultimately, risk overestimation dominates in alpha, leading to the size effect. One expects to 

see this for high quality firms (high profits, high growth, and high safety), where available 

information mostly shows high and growing profitability without any major red flags 
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showing risk related concerns. This prediction matches the empirical findings on the size 

effect (Asness et al 2018).  

A novel prediction is that the size effect is stronger when ex-ante equity premium, 

reflecting macroeconomic downturn risk, is high. Even though ex-ante equity premium is 

unobservable, central banks (in the US and other advanced economies) generally respond to 

high downturn risk with monetary policy easing (reduction in discount rate and effective 

federal funds rate), so monetary policy easing can be considered a proxy for high ex-ante 

equity premium. Hence, the brain-based model predicts that during monetary policy easing, 

the size effect must be stronger. Recent empirical findings are consistent with this 

prediction (Simpson and Grossmann 2024). 

Value effect emerges in the brain-based framework as two firms with identical 

fundamentals may belong to different clusters; hence, have their initial subconscious 

expectations generated by different internal models. The impact of such inter-cluster 

variation is dampened if the brain assigns different importance-weights to error-signals 

across clusters. However, if such firms are in the same industry (an industry is generally 

divided into several distinct clusters), then their error-signals are highly correlated, 

indicating similar importance-weights on their error-signals. This sharpens the inter cluster 

variation, making value an intra-industry phenomena in the brain-based model, consistent 

with empirical findings on its intra-industry strength (Campbell, Giglio, and Polk 2023).  

As the value effect emerges from inter-cluster variation in internal models, it follows 

that when reliance on internal models is weaker, the value effect is weaker. So, one expects 

to see a weaker value effect when events indicate a major break from the past. This 

prediction is consistent with the empirical findings on the particular weakness of the value 

effect during the dot.com bubble peak (1999-early 2000), GFC 2008-2009, and during the 

Covid-19 pandemic (Campbell, Giglio, and Polk 2023). 

Overall, value is quite a robust intra-industry phenomenon in the brain-based model, 

which only disappears completely on occasions, if there is a major break from the past or 

when the resource allocation decisions in the brain are such that the inter-cluster variation 

in reward and risk cancel out each other (a knife-edge condition). This appears to be in 

contradiction with empirical research documenting the poor performance/disappearance of 
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the value effect in the past 20-30 years (see the discussion in Asness et al (2015), Arnott et 

al (2021), Lev and Srivastava (2022), and Fama and French (2020) among others). However, 

the value effect has been restored as a robust phenomenon in Wang (2024) who uses a new 

superior measure, the ratio of cash-based operating profitability to price, suggesting that 

value’s disappearance in earlier research was due to inferior measures of value. The new 

superior measure restores the robustness of value, in agreement with the prediction here. 

Firms that have shown substantial deviation from the norm, such as recent 

substantially superior or inferior performance, may see a shift in importance weights 

towards error-signals and away from internally generated subconscious expectations. This 

weakening of the importance given to internal models in favor of error-signals generates 

price momentum (and makes it negatively correlated with value). Hence, the brain-based 

approach predicts that the momentum effect is ultimately driven by changing fundamentals, 

which is consistent with empirical findings on the momentum effect (Novy-Marx 2015). 

As, in the brain-based model, the momentum effect arises due to an adjustment in 

the importance-weights on error-signals, the momentum premium depends on how much 

adjustment has already taken place. Hence, after larger (smaller) adjustments in the 

formation period, smaller (larger) momentum premiums should follow. This prediction 

matches the empirical findings in Huang (2022). Also, one expects the speed of adjustment 

to be higher in liquid market states when compared with illiquid market states. So, another 

prediction is that the momentum premiums are higher in liquid market states, which is 

consistent with the empirical findings in Avramov et al (2016). 

 In the brain-based model, the profitability effect arises directly from the observation 

that the internal model tends to underestimate large expected payoffs and overestimate 

small expected payoffs. The brain-based model’s prediction that the profitability effect is 

stronger in market declines and in periods of high volatility has empirical support (Yu, H. et 

al 2022). The source of investment effect is underestimation of large risks and 

overestimation of small risks by the internal model with the prediction that the effect is 

weaker overnight finding empirical support (Chen, J. and Kawaguchi, Y. 2018).  

Intriguingly, a wide range of quite distinct empirically observed phenomena appear 

consistent with the predictions of the brain-based model. 
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2. The Brain-Based Capital Asset Pricing Model 

We rely on a standard derivation of CAPM (for example, as in Frazzini and Pedersen (2014)) 

and consider an overlapping generations (OLG) economy. The only innovation is that we use 

the predictive processing framework to specify expectations, which makes perfectly rational 

expectations a special case instead of the only case. Each agent lives for two periods. Agents 

that are born at 𝑡 aim to maximize their utility of wealth at 𝑡 + 1. Their utility functions are 

identical and exhibit mean-variance preferences. They trade securities 𝑠 = 1,⋯ , 𝑆 where 

security 𝑠 pays dividends 𝑑𝑡
𝑠and has 𝑛𝑠

∗ shares outstanding and invest the rest of their 

wealth in a risk-free asset that offers a rate of 𝑟𝐹. 

The market is described by a representative agent who is a mean-variance 

maximizer: 

max𝑛′{𝐸𝑡(𝑃𝑡+1 + 𝑑𝑡+1) − (1 + 𝑟𝐹)𝑃𝑡} −
𝛾

2
𝑛′Ω𝑡𝑛  

where 𝑃𝑡 is the vector of prices, Ω𝑡 is the variance-covariance matrix of 𝑃𝑡+1 + 𝑑𝑡+1, and 𝛾 is 

the risk-aversion parameter. 

It follows that the price of a security, 𝑠, is given by: 

𝑃𝑡
𝑠 =

𝐸(𝑋𝑡+1
𝑠 ) − 𝛾𝐶𝑜𝑣(𝑋𝑡+1

𝑠 , 𝑋𝑡+1
𝑀 )

1 + 𝑟𝐹
                                                                                               (2.1) 

where security 𝑠 payoff is 𝑋𝑡+1
𝑠 = 𝑃𝑡+1

𝑠 + 𝑑𝑡+1
𝑠   

and the aggregate market payoff is: 

𝑋𝑡+1
𝑀 = 𝑛1

∗(𝑃𝑡+1
1 + 𝑑𝑡+1

1 ) + 𝑛2
∗(𝑃𝑡+1

2 + 𝑑𝑡+1
2 ) +∙∙∙∙∙∙∙∙∙∙∙∙ +𝑛𝑆

∗(𝑃𝑡+1
𝑆 + 𝑑𝑡+1

𝑆 ). 

 As discussed in the introduction, we apply the predictive processing framework, 

which says that an internal model (trained on prior experiences with similar firms and 

capturing average or typical behavior) generates subconscious risk and reward expectations. 

The DM is not aware of the formation of such subconscious expectations. Nevertheless, 

they play a critical role in the formation of adjusted expectations that are consciously 

experienced. 
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The brain clusters or categorizes closely related firms together. It is more efficient for the 

brain to do so as this reduces information load. In fact, such co-categorization is a critical 

part of the way the brain puts the world in order and has a dedicated neuronal mechanism 

in the brain (Lech et al 2016). We use 𝑞 as the cluster identifier and denote the number of 

firms in cluster 𝑞 by 𝑁𝑞. In general, the available information about a firm 𝑠, 𝐼𝑠, can be split 

into two subsets. A smaller set 𝛬𝑞, which only contains attributes that are common to all 

firms in the cluster 𝑞, and a larger/richer set 𝛬𝑠, which contains firm specific information not 

already in 𝛬𝑞. That is, 𝐼𝑠 = 𝛬𝑞 + 𝛬𝑠. Note that compared to 𝛬𝑠, 𝛬𝑞 is relatively stable and 

only changes slowly overtime.  

The brain relies on 𝛬𝑞 and uses an internal model to generate subconscious reward 

and risk expectations: 

𝐸𝑞 = ∑
𝐸[𝑋𝑡+1

𝑖 ]

𝑁𝑞
                                                                                                                               (2.2)

𝑁𝑞

𝑖=1

 

𝐶𝑜𝑣𝑞 = ∑
𝐶𝑜𝑣[𝑋𝑡+1

𝑖 , 𝑋𝑡+1
𝑀 ]

𝑁𝑞
                                                                                                           (2.3)

𝑁𝑞

𝑖=1

 

The above subconscious expectations are automatically generated (without any conscious 

control). Prior experiences with similar firms have been synthesized into an internal model 

that supplies these subconscious expectations.  

These subconscious expectations are contrasted with the richer information set, 𝛬𝑠, 

to generate error-signals. Based on the brain’s assessment of their relative importance, 

error-signals are further processed (incorporated into expectations). In particular, error-

signals that create exploitable arbitrage opportunities against the DM are prioritized over 

others. In general, in a resource-constrained brain, the initial subconscious expectations are 

adjusted in the direction of rational expectations without achieving full convergence. This 

process, which leads to adjusted expectations that are consciously experienced, is described 

by introducing a parameter, 𝑚1: 

𝐸′(𝑋𝑡+1
𝑠 ) = 𝐸𝑞 − 𝑚1𝐷1                                                                                                                     (2.4) 
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where 𝐷1 = 𝐸𝑞 − 𝐸(𝑋𝑡+1
𝑠 ) is the correct adjustment needed, and 𝑚1 is the fraction of 

correct adjustment reached so 0 ≤ 𝑚1 ≤ 1. Rational expectations, 𝐸′(𝑋𝑡+1
𝑠 ) = 𝐸(𝑋𝑡+1

𝑠 ), 

correspond to processing of all error-signals and achievement of full adjustment: 𝑚1 = 1.  

Similarly, the adjusted risk expectation is: 

𝐶𝑜𝑣′((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )) = 𝐶𝑜𝑣𝑞 − 𝑚2𝐷2                                                                                            (2.5) 

where 𝐷2 = 𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )) is the correct adjustment needed, and 𝑚2 is the 

fraction of correct adjustment, 0 ≤ 𝑚2 ≤ 1, achieved. Rational expectations, 

𝐶𝑜𝑣′((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )) = 𝐶𝑜𝑣((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )) , correspond to elimination of all gaps and 

achievement of full adjustment: 𝑚2 = 1.  

If the brain has unlimited resources, then of course, it can process all error-signals 

and always form rational expectations; however, a resource-constrained brain prioritizes 

error-signals that create exploitable arbitrage opportunities against the DM over others, 

which in general adjusts expectations in the direction of rational expectations without 

necessarily achieving full convergence. A simple re-arrangement of (2.4) and (2.5) leads to: 

𝐸′(𝑋𝑡+1
𝑠 ) = 𝐸(𝑋𝑡+1

𝑠 ) + (1 − 𝑚1)(𝐸
𝑞 − 𝐸(𝑋𝑡+1

𝑠 ))                                                                      (2.6) 

𝐶𝑜𝑣′(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ) =  𝐶𝑜𝑣(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ) + (1 − 𝑚2) (𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )))            (2.7)

  

The consciously experienced reward and risk expectations, 𝐸′(𝑋𝑡+1
𝑠 ) and  𝐶𝑜𝑣′(𝑋𝑡+1

𝑠 , 𝑋𝑡+1
𝑀 ) 

in (2.6) and (2.7), follow from the predictive processing framework as applied to asset 

pricing. Rational expectations are a special case in the framework corresponding to 𝑚1 = 1 

and 𝑚2 = 1.  

  The predictive processing framework gives rise to an alpha term in the CAPM as 

proposition 1 shows. 
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Proposition 1 (The Brain-Based CAPM) Predictive processing changes the classical CAPM in 

only one way: an additional term alpha appears whose value depends on the resource 

allocation decisions in the brain. The brain-based CAPM takes the following form:  

𝑬[𝑹𝒕+𝟏
𝒔 ] − 𝑹𝑭 = 𝜶𝒔 + (𝑬[𝑹𝒕+𝟏

𝑴 ] − 𝑹𝑭) ∙ 𝜷𝒔                                                                               (𝟐. 𝟖) 

where 𝑬[𝑹𝒕+𝟏
𝒔 ] is the expected (gross) return from stock 𝒔, 𝑹𝑭 is the (gross) risk-free 

return, 𝑬[𝑹𝒕+𝟏
𝑴 ] is the expected (gross) return from the aggregate market portfolio, 𝜷𝒔 is 

the beta of the stock 𝒔, and 𝜶𝒔 takes the form given below:  

𝜶𝒔 = (
�̅�

𝒘𝒔
− 𝜷𝒔

(𝒎𝟏 − 𝒎𝟐)

(𝟏 − 𝒎𝟐)
)

(𝟏 − 𝒎𝟐)𝜹𝑴

𝒎𝟏
− 

(𝟏 − 𝒎𝟏)

𝒎𝟏
(
𝑬𝑹̅̅ ̅̅

𝒘𝒔
− 𝑹𝑭)                                (𝟐. 𝟗) 

where �̅� = ∑
𝝋𝒊𝒘𝒊𝜷𝒊

𝑵𝒒

𝑵𝒒

𝒊=𝟏
 is the average market-value weighted beta in the cluster, 𝒘𝒊 =

𝒏𝒊
∗𝑷𝒕

𝒊

𝑷𝒕
𝑴 , 

(𝑷𝒕
𝒊  is the share price of firm 𝒊, 𝒏𝒊

∗is the number of shares of firm 𝒊 outstanding, and 𝑷𝒕
𝑴is 

the price of the aggregate market portfolio), 𝝋𝒊 =
𝒏𝒔

∗

𝒏𝒊
∗, 𝑬𝑹̅̅ ̅̅ = ∑

𝝋𝒊𝒘𝒊𝑬[𝑹𝒕+𝟏
𝒊 ]

𝑵𝒒

𝑵𝒒

𝒊=𝟏
is the average 

market-value weighted expected return in the cluster,  𝒘𝒔 =
𝒏𝒔

∗𝑷𝒕
𝒔

𝑷𝒕
𝑴  is the market-value 

weight of firm s, and 𝜹𝑴 = 𝑬[𝑹𝒕+𝟏
𝑴 ] − 𝑹𝑭. 

Proof: 

See Appendix A. 

▪ 

Note, that when the brain has sufficient resources to fully process both the reward error-

signals and the risk error-signals, that is, when 𝑚1 = 1 and 𝑚2 = 1, then 𝛼𝑠 = 0. 

 

3. Asset Pricing Anomalies: A Brain-Based Perspective 

The enriched CAPM has intriguing implications for the slope of the security-market-line 

(SML). It also generates betting-against-beta (BAB), size, value, momentum, profitability and 

investment effects, which generally arise as variations in the alpha term in (2.9) depending 
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on the internal resource allocation decisions. Additional insights emerge, which are 

empirically supported. 

 

3.1 The Slope of the Security Market Line (SML) 

If more (less) resources are allocated to reward error-signal processing or less (more) 

resources are allocated to risk error-signal processing, that is, when 𝑚1rises (falls) or 𝑚2 

falls (rises), then the SML rotates in the clockwise (counter clockwise) direction or the SML 

flattens (steepens). Intuitively, this is due to the changes in the relative underestimation of 

variation in risk across firms. If the relative underestimation of variation in risk rises, SML 

flattens, if such underestimation falls, SML steepens. Figure 1 and figure 2 illustrate. 

 

Proposition 2 (SML slope) If more (less) resources are allocated to reward error-signal 

processing or less (more) resources are allocated to risk error-signal processing, that is, 

when 𝒎𝟏rises (falls) or 𝒎𝟐 falls (rises) then the SML rotates in the clockwise (counter 

clockwise) direction. 

Proof 

See appendix B. 

▪ 

 

The intuition behind proposition 2 is easy to see. If resources are diverted away from risk 

error-signal processing, then all else constant, the relative underestimation of variation in 

risk in the cross-section rises. This lowers the observed variation in average returns when 

plotted against estimated firm betas. This leads to a flatter SML when compared with the 

SML with rational expectations.  

 

 



12 
 

 

 

 

 

 

 
 

𝛽 
 
Figure 1 - Slope of the SML when 𝒎𝟏rises or 𝒎𝟐 falls 
When 𝑚1rises or 𝑚2 falls, SML rotates in the clockwise direction as there is a threshold value, 𝛽∗, 

below which 𝛼 rises (or becomes less negative) and above which 𝛼 falls (or becomes more negative). 

The solid line indicates the brain-based SML whereas the dotted line indicates the classical SML.  
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Figure 2 - Slope of the SML when 𝒎𝟏falls or 𝒎𝟐 rises 
When 𝑚1falls or 𝑚2 rises, SML rotates in the counter clockwise direction as there is a threshold 

value, 𝛽∗, below which 𝛼 falls (or becomes more negative) and above which 𝛼 rises (or becomes less 

negative). The solid line indicates the brain-based SML whereas the dotted line indicates the classical 

SML. 
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The empirically observed variation in the SML slope at specific times appears to align well 

with the brain-based model: 

• Around market open, the SML slope typically steepens and then gradually flattens 

during most of the day (Hendershott et al 2020). Intraday traders who are typically 

highly leveraged enter around market open and then gradually close out their 

position during the day (Bogousslavsky 2021). Being highly leveraged, such traders’  

brains assign higher importance weights to risk error-signals. This increases 𝑚2, 

which steepens SML as relative underestimation of risk variation across firms falls as 

a result. SML slope flattens during the day as intraday traders exit the market by 

closing out their positions for the day, lowering 𝑚2 in the process. 

• SML slope is steeper when there is anemic inflation or deflation indicating a weak 

economy (Cohen et al 2005). It is also steeper in periods of pessimistic investor 

sentiment (Antoniou et al 2015). It makes sense that the DM’s brain gives more 

importance to risk error-signals during such times. So 𝑚2 rises, which lowers the 

relative underestimation in risk variation across firms. This steepens the SML slope in 

the brain-based model. 

• SML slope is steeper on macroeconomic announcement days (Savor and Wilson 

2014). As most traders have already adjusted their portfolios leading up to the 

announcement day, trades on the actual announcement day are generally by those 

whose expectations turned out to be incorrect and, consequently, need to re-adjust 

their portfolios. The resulting higher importance weights to risk error-signals in the 

brains of such surprised traders steepens the SML slope (𝑚2 rises). 
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High-alpha-of-low-beta effect  

                               1 

 

  𝑚2 

 

 

   

          0                                 𝑚1                                     1 

Figure 3 High-alpha-of-low-beta effect is observed in the lined region. 

 

3.2 High-alpha-of-low-beta/ Betting-against-beta 

In the brain-based CAPM, high-alpha-of-low-beta or betting-against-beta arises under the 

following condition (taking the partial derivative of alpha in (2.9) with respect to 𝛽𝑠):  

𝜕𝛼𝑠

𝜕𝛽𝑠
= −

𝛿𝑀(𝑚1 − 𝑚2)

𝑚1
< 0                                                                                                             (3.1) 

Figure 3 shows the region in which high-alpha-of-low-beta or betting-against-beta (BAB) 

effect is observed in the space of parameters 𝑚1 and 𝑚2. The effect is observed if 𝑚1 > 𝑚2.  

 

Proposition 3 (High-alpha-of-low-beta/Betting-against-beta (BAB)) High-alpha-of-low-beta 

effect arises if the importance weights assigned to reward error-signals are higher than 

the importance weights assigned to risk error-signals such that 𝒎𝟏 > 𝒎𝟐. 

 

The brain-based approach predicts that the high-alpha-of-low-beta effect is not universally 

observed. The effect is only observed when 𝑚1 > 𝑚2, and it gets stronger when 𝑚1 − 𝑚2 
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rises. Intuitively, when underestimation of variation in risk rises relative to underestimation 

of variation in reward (due to less brain resources going to risk error-signal processing), the 

SML flattens. One expects to see this doing periods of optimism. It follows that during 

periods of optimism, BAB premium must be larger, a prediction that matches empirical 

findings (Antoniou et al 2015). It also follows from (3.1) that BAB premium is predicted to be 

larger when ex-ante equity premium is high.10  

 

3.3 The Size Effect 

In the predictive brain, the stock price of firm 𝑠 is given by: 

𝑃𝑡
𝑠 =

𝐸(𝑋𝑡+1
𝑠 )+(1−𝑚1)(𝐸𝑞−𝐸(𝑋𝑡+1

𝑠 ))−𝛾[𝐶𝑜𝑣(𝑋𝑡+1
𝑠 ,𝑋𝑡+1

𝑀 )+(1−𝑚2)(𝐶𝑜𝑣𝑞−𝐶𝑜𝑣((𝑋𝑡+1
𝑠 ,𝑋𝑡+1

𝑀 )))]

1+𝑟𝐹
               (3.2)  

Consider the cross-section of stocks for which 𝐸𝑞 > 𝐸(𝑋𝑡+1
𝑠 ) and 𝐶𝑜𝑣𝑞 >

𝐶𝑜𝑣((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )). Such stocks are likely to be small-size firms. For such stocks, compared 

to the rational benchmark, reward is overestimated by (1 − 𝑚1)(𝐸
𝑞 − 𝐸(𝑋𝑡+1

𝑠 )) and risk is 

overestimated by (1 − 𝑚2)𝛾 (𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ))). If 𝑚1 is sufficiently larger than 

𝑚2, then the net effect is lower price (and higher alpha). This is the size effect as it emerges 

in the brain-based model.  

 The above intuition can be seen more formally by taking the partial derivative of 

alpha in (2.9) w.r.t the market-cap, 𝑤𝑠: 

𝜕𝛼𝑠

𝜕𝑤𝑠
= −𝛿𝑀

�̅�

𝑤𝑠
2

(1 − 𝑚2)

𝑚1
+

(1 − 𝑚1)

𝑚1

𝐸𝑅̅̅ ̅̅

𝑤𝑠
2
                                                                                (3.2𝑎)  

⇒
𝜕𝛼𝑠

𝜕𝑤𝑠
< 0 if 𝑚1 > 1 −

�̅�𝛿𝑀

𝐸𝑅̅̅ ̅̅
(1 − 𝑚2)                                                                                         (3.2𝑏)  

 

 
10 Even though ex-ante equity premium is unobservable, monetary policy easing (lower discount rate and 
federal funds rate) is likely a good proxy for high ex-ante equity premium as Fed typically engages in such a 
policy when macro downside risk is high (when ex-ante equity premium is high).  
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 The Size Effect 

                               1 

 

  𝑚2 

 

 

   

          0                                 𝑚1            1 −
�̅�𝛿𝑀

𝐸𝑅̅̅ ̅̅
                 1 

Figure 4 The size effect is observed in the lined region. 

 

So, the size effect arises due to resource allocation decisions in the brain if the importance 

assigned to reward error-signals is sufficiently larger than the importance assigned to risk error-

signals such that 𝑚1 is sufficiently larger than 𝑚2. Figure 4 illustrates. 

 

Proposition 4 (The Size Effect) The size effect arises when the importance weights assigned 

to reward error-signals are sufficiently larger than the importance weights assigned to risk 

error-signals such that 𝒎𝟏 > 𝟏 −
�̅�𝜹𝑴

𝑬𝑹̅̅ ̅̅
(𝟏 − 𝒎𝟐). 

Corollary 4.1 The size effect is stronger when ex-ante equity premium is high. 

 

A comparison of figure 4 and figure 3 reveals that the size effect is observed in a much 

smaller region when compared with the BAB effect. The fleeting nature of size effect has 

been extensively documented in the empirical literature with the effect only observed if 

certain conditions are met (see Simpson and Grossman (2024), Asness et al (2018) and 
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references therein). It also follows that when the size effect is present, the BAB effect is 

necessarily present, but the reverse may not be true. 

 For firms that have high profitability, high growth and high safety, the importance 

weights assigned by the DM’s brain to reward error-signals are likely much larger than the 

importance weights assigned to risk error-signals. So, the size effect is expected to matter 

among high quality firms. Empirical evidence shows that this is indeed the case (Asness et al 

2018).  

It also follows from (3.2b) that the size effect is more likely to be observed, when ex-

ante equity premium is higher. Even though ex-ante equity premium is unobservable, 

monetary easing is a proxy for high ex-ante equity premium as Fed typically lowers the 

discount rate as well as the effective federal funds rate in response to high macro downturn 

risk (when ex-ante equity premium is high). So, it is in the monetary policy easing periods 

when high quality firms are more likely to show the size effect, as even such firms may not 

show the size effect in periods of monetary policy tightening. Hence, the brain-based model 

predicts that the size effect is stronger in periods of monetary easing. This prediction is 

consistent with recent empirical evidence (Simpson and Grossmann 2024). 
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The Value Effect 

                               1 

 

  𝑚2 

 

 

   

          0                                 𝑚1            1 −
∆�̅�𝛿𝑀

∆𝐸𝑅̅̅ ̅̅
                 1 

Figure 5 The value effect, which is observed for firms in the same industry, gets stronger in the 

direction of the arrows in the two regions split by the line 𝑚1 = 1 −
∆�̅�𝛿𝑀

∆𝐸𝑅̅̅ ̅̅
(1 − 𝑚2).  

 

3.4 The Value Effect 

The value effect arises in the brain-based CAPM due to inter-cluster variation in internal 

models. That is, two firms with identical fundamentals have different prices (and alphas) if 

they belong to different clusters with each cluster having its own internal model. To fix 

ideas, consider two firms, 𝑎 and 𝑏,  that belong to different clusters. Firm 𝑎 belongs to 

cluster 𝑞 and firm 𝑏 belongs to cluster 𝑙. Their prices are: 

𝑃𝑡
𝑎 =

𝐸(𝑋𝑡+1
𝑎 )+(1−𝑚1𝑎)(𝐸𝑞−𝐸(𝑋𝑡+1

𝑎 ))−𝛾[𝐶𝑜𝑣(𝑋𝑡+1
𝑎 ,𝑋𝑡+1

𝑀 )+(1−𝑚2𝑎)(𝐶𝑜𝑣𝑞−𝐶𝑜𝑣((𝑋𝑡+1
𝑎 ,𝑋𝑡+1

𝑀 )))]

1+𝑟𝐹
               (3.3)  

𝑃𝑡
𝑏 =

𝐸(𝑋𝑡+1
𝑏 )+(1−𝑚1𝑏)(𝐸𝑙−𝐸(𝑋𝑡+1

𝑏 ))−𝛾[𝐶𝑜𝑣(𝑋𝑡+1
𝑏 ,𝑋𝑡+1

𝑀 )+(1−𝑚2𝑏)(𝐶𝑜𝑣𝑙−𝐶𝑜𝑣((𝑋𝑡+1
𝑏 ,𝑋𝑡+1

𝑀 )))]

1+𝑟𝐹
             (3.3𝑎)  

If they have the same fundamentals, then: 

𝐸(𝑋𝑡+1
𝑎 ) = 𝐸(𝑋𝑡+1

𝑏 ) = 𝐸(𝑋𝑡+1)                                                                                                     (3.4)  

𝐶𝑜𝑣(𝑋𝑡+1
𝑎 , 𝑋𝑡+1

𝑀 ) = 𝐶𝑜𝑣(𝑋𝑡+1
𝑏 , 𝑋𝑡+1

𝑀 ) = 𝐶𝑜𝑣(𝑋𝑡+1, 𝑋𝑡+1
𝑀 )                                                      (3.4𝑎) 
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In addition, if they also belong to the same industry11, then their error-signals would be 

strongly correlated indicating similar importance-weights: 

𝑚1𝑎 = 𝑚1𝑏 = 𝑚1                                                                                                                             (3.4𝑏) 

 𝑚2𝑎 = 𝑚2𝑏 = 𝑚2                                                                                                                           (3.4𝑐) 

Substituting from (3.4), (3.4a), (3.4b), and (3.4c) into (3.3) and (3.3a), the difference in the 

price of the firms is: 

𝑃𝑡
𝑎 − 𝑃𝑡

𝑏 = ∆𝑃𝑡 =
(1 − 𝑚1)(𝐸

𝑞 − 𝐸𝐿) − 𝛾(1 − 𝑚2)(𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣𝐿)

1 + 𝑟𝐹
                                  (3.5) 

(3.5) shows that the value effect is an intra-industry phenomenon that arises due to inter-

cluster variation in internal models. If the error-signals are uncorrelated (firms belong to 

different industries which implies 𝑚1𝑎 ≠ 𝑚1𝑏 and 𝑚2𝑎 ≠ 𝑚2𝑏), then the impact of such 

inter-cluster variation is dampened. Within the same industry; however, value is quite 

robust and disappears only when the inter-cluster variation in reward cancels out the inter-

cluster variation in risk, which is the following knife-edge condition: 

(1 − 𝑚1)(𝐸
𝑞 − 𝐸𝐿) − 𝛾(1 − 𝑚2)(𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣𝐿) = 0 

⇒ 𝑚1 = 1 − 𝛾(1 − 𝑚2)
𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣𝐿

𝐸𝑞 − 𝐸𝐿
 

⇒ 𝑚1 = 1 − 𝛾(1 − 𝑚2)
∆𝐶𝑜𝑣

∆𝐸
                                                                                                        (3.6) 

The above intuition can be seen more formally by using the alpha in (2.9): 

𝛼𝑎 = (
𝛽𝑞
̅̅ ̅

𝑤𝑠
− 𝛽𝑠

(𝑚1 − 𝑚2)

(1 − 𝑚2)
)

(1 − 𝑚2)𝛿𝑀

𝑚1
− 

(1 − 𝑚1)

𝑚1
(
𝐸𝑅𝑞
̅̅ ̅̅ ̅

𝑤𝑠
− 𝑅𝐹)                                     

𝛼𝑏 = (
�̅�𝑙

𝑤𝑠
− 𝛽𝑠

(𝑚1 − 𝑚2)

(1 − 𝑚2)
)

(1 − 𝑚2)𝛿𝑀

𝑚1
− 

(1 − 𝑚1)

𝑚1
(
𝐸𝑅𝑙
̅̅ ̅̅ ̅

𝑤𝑠
− 𝑅𝐹)                                     

 
11 An industry typically has several dozen firms so, in general, firms in the same industry are sorted by the brain 
into a number of distinct clusters/categories, with each cluster having its own internal model.   
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⇒ ∆𝛼 =
∆�̅�

𝑤𝑠

(1 − 𝑚2)𝛿𝑀

𝑚1
−

(1 − 𝑚1)

𝑚1

∆𝐸𝑅̅̅ ̅̅

𝑤𝑠
                                                                                  (3.9) 

As long as ∆𝛼 is different from zero, the value effect is observed with the low price to 

fundamentals stock outperforming the high price to fundamentals stock. ∆𝛼 = 0 if  

𝑚1 = 1 −
∆�̅�𝛿𝑀

∆𝐸𝑅̅̅ ̅̅
(1 − 𝑚2)(which is a knife-edge condition). Away from this line, the value 

effect gets stronger. Figure 5 illustrates. 

 

Proposition 5 (The Value Effect) If the resource allocation decisions in the brain are such 

that the inter-cluster variation in risk is not exactly balanced by the inter-cluster variation 

in reward, then the value effect is observed. The effect is observed as long as 𝒎𝟏 ≠ 𝟏 −

∆�̅�𝜹𝑴

∆𝑬𝑹̅̅ ̅̅̅
(𝟏 − 𝒎𝟐). 

 

It directly follows from (3.9) that the value effect is stronger among small-cap stocks. That is, 

its magnitude rises as 𝑤𝑠 falls. This provides a theoretical justification for the small-cap value 

strategy popular among professional traders. As the value effect in the brain-based CAPM 

has its roots in inter-cluster variation in internal models, it gets weaker if the brain lowers 

the importance weights assigned to internally generated predictions coming from the 

internal models. This is likely if there are major market movements suggesting a substantial 

break from the norm (making past less of an indicator of the future). This prediction is 

consistent with the empirical findings on the weakness/disappearance of the value effect in 

unusual time periods such as during the peak of the dot.com bubble (1999-early 2000), GFC-

2008-2009, and the Covid-19 pandemic (Campbell, Giglio, and Polk 2023). 

 Overall, the value premium emerges as quite a robust intra-industry phenomenon in 

the brain-based model, only disappearing on occasions when major events compel the brain 

to weaken its reliance on internal models or when the knife-edge condition that cancels the 

inter cluster variation is met. As discussed in the introduction, this is apparently in 

contradiction with empirical research documenting the poor performance/disappearance of 

the value effect in the past 20-30 years. Recently, Wang (2024) uses a new measure of 

value, the ratio of cash-based operating profitability to price, to establish the robustness of 
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value, suggesting that value’s disappearance in earlier research was due to inferior 

measures of value. The new superior measure restores the robustness of value, in 

agreement with the prediction here. 

 

3.5 The Momentum effect 

The empirical findings regarding the price momentum show how stocks with superior 

(inferior) recent performance continue to outperform (underperform) in the short run.  In 

the brain-based framework, the price of a security 𝑠 from (2.1) is: 

𝑃𝑡
𝑠 =

𝐸′(𝑋𝑡+1
𝑠 ) − 𝛾𝐶𝑜𝑣′(𝑋𝑡+1

𝑠 , 𝑋𝑡+1
𝑀 )

1 + 𝑟𝐹
                                                                                          (3.10) 

Where: 

𝐸′(𝑋𝑡+1
𝑠 ) = 𝐸(𝑋𝑡+1

𝑠 ) + (1 − 𝑚1)(𝐸
𝑞 − 𝐸(𝑋𝑡+1

𝑠 )) 

⇒ 𝐸′(𝑋𝑡+1
𝑠 ) = 𝑚1𝐸(𝑋𝑡+1

𝑠 ) + (1 − 𝑚1)𝐸
𝑞                                                                                 (3.11) 

And,  

𝐶𝑜𝑣′(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ) =  𝐶𝑜𝑣(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ) + (1 − 𝑚2) (𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )))          (3.12) 

⇒ 𝐶𝑜𝑣′(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ) =  𝑚2𝐶𝑜𝑣(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ) + (1 − 𝑚2)𝐶𝑜𝑣𝑞                                             (3.13) 

In the brain-based CAPM, price momentum arises due to an increase in the importance 

weights given to error-signals that follow a large change in the fundamentals of momentum 

winners and losers. To fix ideas, suppose the reward fundamentals of a firm (the 

momentum winner) improve, so 𝐸(𝑋𝑡+1
𝑠 ) and consequently, 𝐸′(𝑋𝑡+1

𝑠 ) goes up, which 

increases the stock price immediately. The reward fundamentals of another firm (the 

momentum loser) deteriorate. So, its price falls. This change in fundamentals, then triggers 

a change in the importance weights given to reward error-signals. So, 𝑚1 goes up. For 

momentum winners (drawn from top 10% of firms by recent performance), the internal 

model typically underestimates reward, 𝐸𝑞 < 𝐸(𝑋𝑡+1
𝑠 ), whereas for momentum losers 

(bottom 10% by recent performance), the internal model typically overestimates reward, 

𝐸𝑞 > 𝐸(𝑋𝑡+1
𝑠 ). So, this increase in 𝑚1, which follows a large change in fundamentals, 
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increases the price of the momentum winner further and lowers the price of the 

momentum loser further. Similarly, a large positive (negative) change in fundamentals could 

be a reduction (an increase) in risk, 𝐶𝑜𝑣(𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 ), increasing (decreasing) the price 

initially, with subsequent increases (decreases) coming from the importance-weight 

adjustments that increase 𝑚2. 

The brain-based model predicts that the price momentum is a robust fundamentals-

driven phenomena where an initial large change in fundamentals subsequently triggers an 

increase in importance weights given to error-signals. This prediction is consistent with the 

empirical findings on momentum effect being fundamentals driven (Novy-Marx 2015). As 

the increase in importance weights given to error-signals comes at the expense of the 

importance weights on initial expectations that come from the internal models, momentum 

and value (which captures inter-cluster variation in internal models) are negatively 

correlated.  

 

Proposition 6 (The Momentum Effect) Firms with recent large positive changes in earning 

fundamentals show a further increase in their market prices, and firms with recent large 

negative changes in earning fundamentals show a further decline in their market prices 

due to an increase in brain resources allocated to their valuations.  

 

In the brain-based framework, it is the increases in importance-weights on relevant error-

signals that generates the price momentum. It immediately follows that the momentum 

premium should depend on (i) how much room is left to adjust the importance-weights, and 

(ii) the speed of adjustment.  

If most of error-signal adjustment has already taken place in the portfolio formation 

period, then there is less room to adjust in the evaluation period. However, if little 

adjustment has taken place in the formation period, then most of the adjustment takes 

place in the evaluation period. Dividing stock performance in the formation period in 

percentiles in increasing order of returns, the return difference between the 90th percentile 

and the 10th percentile (momentum gap) is a measure of adjustment in the formation 
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period, with a small difference indicating that little adjustment has taken place in the 

formation period. The brain-based model predicts that the subsequent evaluation period 

returns should be inversely related to the momentum gap in the formation period. That is, a 

small (large) formation period momentum gap should be followed by a large (small) 

evaluation period momentum returns. Empirical findings in Huang (2022) are in accord with 

this prediction. 

In liquid market states, the speed of adjustment should be higher. It follows that the 

brain-based model predicts a higher momentum premium in liquid market states. This 

prediction is consistent with empirical evidence on the role of market liquidity in 

momentum premiums (Avramov et al 2016). 

 

3.5.1 The Impact of Financial Constraints 

A further novel prediction also follows: Consider a cross-section of firms for which the 

internal model underestimates both the reward (in (3.11)) as well as the risk (in (3.13)). That 

is, 𝐸(𝑋𝑡+1
𝑠 ) > 𝐸𝑞  and 𝐶𝑜𝑣(𝑋𝑡+1

𝑠 , 𝑋𝑡+1
𝑀 ) > 𝐶𝑜𝑣𝑞. This cross-section likely consists of large 

firms. For such firms, if an event triggers a resource re-allocation away from reward error-

signal processing to risk error-signal processing, then the reward underestimation rises 

(𝑚1falls), whereas the risk underestimation falls (𝑚2 rises). Both of which lead to a 

reduction in price (in (3.10)). Hence, the brain-based model predicts that, for large firms, 

such resource re-allocation towards risk error-signal processing lowers price and improves 

alpha. An event triggering such a re-allocation could be further tightening of financial 

constraints that a firm face, as this increases the risk of cashflows. It follows that the brain-

based model predicts that a portfolio that goes long in large firms that face financial 

constraints and shorts large firms that are unconstrained should earn excess returns. 

Consistent with this prediction, by using a novel textual analysis to capture financial 

constraints, Buehlmaier and Whited (2018) show that financial constraints are indeed priced 

in this way.  
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3.6 The Profitability Effect 

To fix ideas, consider two firms, 𝑅 and 𝑊, that belong to the same cluster 𝑞, and are chosen 

such that they have similar risk; however, the internal model underestimates the expected 

reward of 𝑅 and overestimates the expected reward of 𝑊. In other words, the following 

condition holds: That is, 𝐸(𝑋𝑡+1
𝑅 ) > 𝐸𝑞 > 𝐸(𝑋𝑡+1

𝑊 ). Compared to the rational benchmark 

(without brain-resource scarcity), the magnitude of underestimation in the expected reward 

of 𝑅 is (1 − 𝑚1)(𝐸(𝑋𝑡+1
𝑅 ) − 𝐸𝑞), whereas the magnitude of overestimation in the expected 

reward of 𝑊 is (1 − 𝑚1)(𝐸
𝑞 − 𝐸(𝑋𝑡+1

𝑊 )). So, if one takes a long position in 𝑅 and a short 

position in 𝑊, then the additional average payoff, ∆𝜋𝑅−𝑊, from such a portfolio is: 

∆𝜋𝑅−𝑊 = (1 − 𝑚1)(𝐸(𝑋𝑡+1
𝑅 ) − 𝐸𝑞) + (1 − 𝑚1)(𝐸

𝑞 − 𝐸(𝑋𝑡+1
𝑊 )) 

⇒ ∆𝜋𝑅−𝑊 = (1 − 𝑚1)(𝐸(𝑋𝑡+1
𝑅 ) − 𝐸(𝑋𝑡+1

𝑊 ))                                                                        (3.14) 

In a given cross-section of stocks, firms for which the condition 𝐸(𝑋𝑡+1
𝑠 ) > 𝐸𝑞  holds, are 

likely to be firms with robust profitability, and firm for which the condition 𝐸𝑞 > 𝐸(𝑋𝑡+1
𝑠 ) is 

true, likely have weak profitability. So, if one takes a long position in firms with robust 

profitability (aggregating across all clusters) and a short position in firms with weak 

profitability, then such a portfolio earns excess returns. This is the Fama and French (2015) 

profitability factor as it arises in the brain-based model.  

 It follows from (3.14) that when resources are diverted away from reward error-

signal processing towards risk error-signal processing, that is, when 𝑚1 falls, the profitability 

premium goes up. Such resource diversion is expected to happen when the market is in a 

decline and volatility is high indicating rising risk concerns. Hence, the brain-based model 

predicts stronger profitability premium in periods of market declines and when volatility is 

high. This prediction has empirical support (Yu, H. et al 2022). 
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3.7 The Investment Effect 

Consider two firms, 𝐶 and 𝐴, that belong to the same cluster 𝑞, and are chosen such that 

they have the same profitability; however, the internal model overestimates the risk of 𝐶 

and underestimates the risk of 𝐴. That is, 𝐶𝑜𝑣(𝑋𝑡+1
𝐶 , 𝑋𝑡+1

𝑀 ) < 𝐶𝑜𝑣𝑞 < 𝐶𝑜𝑣(𝑋𝑡+1
𝐴 , 𝑋𝑡+1

𝑀 ). The 

magnitude of risk overestimation in firm 𝐶 is: 𝛾(1 − 𝑚2) (𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1
𝐶 , 𝑋𝑡+1

𝑀 ))), 

whereas the magnitude of risk underestimation in firm 𝐴 (both the overestimation and the 

underestimation are w.r.t rational benchmark) is: 𝛾(1 − 𝑚2)(𝐶𝑜𝑣((𝑋𝑡+1
𝐴 , 𝑋𝑡+1

𝑀 )) − 𝐶𝑜𝑣𝑞). 

So, if one takes a long position in 𝐶 and a short position in 𝐴, then the additional average 

payoff, ∆𝜋𝐶−𝐴, from such a portfolio is: 

∆𝜋𝐶−𝐴 = 𝛾(1 − 𝑚2) (𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1
𝐶 , 𝑋𝑡+1

𝑀 )))

+ 𝛾(1 − 𝑚2)(𝐶𝑜𝑣((𝑋𝑡+1
𝐴 , 𝑋𝑡+1

𝑀 )) − 𝐶𝑜𝑣𝑞) 

⇒ ∆𝜋𝐶−𝐴 = 𝛾(1 − 𝑚2) (𝐶𝑜𝑣((𝑋𝑡+1
𝐴 , 𝑋𝑡+1

𝑀 )) − 𝐶𝑜𝑣((𝑋𝑡+1
𝐶 , 𝑋𝑡+1

𝑀 )))                                  (3.15) 

Substituting 𝛾 =
(𝐸[𝑅𝑡+1

𝑀 ]−𝑅𝐹)

𝑉𝑎𝑟(𝑅𝑡+1
𝑀 )𝑃𝑡

𝑀 from (A3) in the appendix into (3.15): 

∆𝜋𝐶−𝐴 =
𝛿𝑀

𝑉𝑎𝑟(𝑅𝑡+1
𝑀 )𝑃𝑡

𝑀
(1 − 𝑚2) (𝐶𝑜𝑣((𝑋𝑡+1

𝐴 , 𝑋𝑡+1
𝑀 )) − 𝐶𝑜𝑣((𝑋𝑡+1

𝐶 , 𝑋𝑡+1
𝑀 )))               (3.16) 

In a given cross-section of stocks, firms for which the condition 𝐶𝑜𝑣𝑞 < 𝐶𝑜𝑣(𝑋𝑡+1
𝐴 , 𝑋𝑡+1

𝑀 ) 

holds, are likely to be firms that aggressively invest in their assets (need to aggressively 

invest in their assets to maintain their level of profitability). Similarly, firms for which the 

condition 𝐶𝑜𝑣(𝑋𝑡+1
𝐶 , 𝑋𝑡+1

𝑀 ) < 𝐶𝑜𝑣𝑞 holds are likely to be conservative firms that do not 

need to invest much in their assets to maintain profitability. So, if one takes a long position 

in conservative firms (aggregating across all clusters) and a short position in firms with high 

asset growth, then such a portfolio earns excess returns. This is the Fama and French (2015) 

investment factor as it arises in the brain-based model. 

 From (3.16), one can see that if the resources are diverted towards risk error-signal 

processing, which increases 𝑚2, and, at the same time, macro conditions deteriorate, which 

increases 𝛿𝑀 and/or decreases 𝑃𝑡
𝑀, then the net impact on investment premium is 

ambiguous. That is, it is unclear what happens to the investment premium if resources are 
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diverted towards risk error-signal processing due to macro conditions worsening. However, 

if resources are diverted towards risk error-signal processing without macro conditions 

worsening, then the investment premium weakens. This happens, for example, around 

market open, when highly leveraged intra-day traders enter the market, whose brains are 

compelled to allocate more resources to risk error-signal processing due to the embedded 

leverage in such traders’ portfolios irrespective of the macro conditions. So, the brain-based 

model predicts that the investment premium is weaker overnight (close to open). This 

prediction has empirical support (Chen, J. and Kawaguchi, Y. 2018).   

 

4. Conclusions 

Camerer, Lowenstein, and Prelec (2005) emphasize that neuroscience research suggests 

that the human behavior requires fluid dynamics between ‘automatic’ and ‘consciously 

controlled’ processes. Consistent with this early realization, in the past decade and a half, 

predictive processing has emerged as a dominant paradigm in neuroscience for thinking 

about the brain. This paradigm has ‘subconscious expectations’ that are automatically 

generated by an internal model. Error-signals are selectively incorporated into such initial 

expectations in a more ‘consciously controlled’ way to arrive at final adjusted expectations. 

In this way, by leveraging the fluid dynamics between ‘automatic’ and ‘consciously 

controlled’ processes, predictive processing offers a window into how internal resource 

allocation decisions about what type of ‘error-signals’ to prioritize matter.  

We show that, in asset pricing context, applying the predictive processing framework 

gives rise to an alpha term in the CAPM, which reflects the internal tension between 

competing demands on limited brain resources. We show that a wide range of quite distinct 

empirical phenomena can be seen as arising out of shifting priorities regarding the types of 

‘error-signals’ to process.  

Overall, this article shows that predictive processing potentially offers a synthesis of 

behavioral and neoclassical finance as, in this framework, behavioral biases ultimately can 

be thought of as emerging from the brain’s optimal response to its own internal resource 
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scarcity.12Perhaps, the most intriguing aspect is that applying the predictive processing 

framework to asset pricing provides a parsimonious way of making sense of quite a wide 

range of distinct anomalies within a unified framework, consistent with the vision set out in 

Camerer et al (2005) of neuroscience providing a radical contribution to the science of 

economics. 
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Appendix A 

Substituting from (2.6) and (2.7) into (2.1) and solving for expected return of 𝑠, 𝐸[𝑅𝑡+1
𝑠 ]: 

𝐸[𝑅𝑡+1
𝑠 ] = 𝑅𝐹 +

𝛾

𝑃𝑡
𝑠 [𝐶𝑜𝑣(𝑋𝑡+1

𝑠 , 𝑋𝑡+1
𝑀 ) + (1 − 𝑚2) (𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1

𝑠 , 𝑋𝑡+1
𝑀 )))]

−
(1 − 𝑚1)

𝑃𝑡
𝑠 [𝐸𝑞 − 𝐸(𝑋𝑡+1

𝑠 )]                                                                                   (𝐴1) 

Multiplying (A1) by the market-value weight, 𝑤𝑠 =
𝑛𝑠

∗𝑃𝑡
𝑠

𝑃𝑡
𝑀 , and aggregating across all firms in 

the market: 

𝐸[𝑅𝑡+1
𝑀 ] = 𝑅𝐹 +

𝛾

𝑃𝑡
𝑀  𝑉𝑎𝑟(𝑋𝑡+1

𝑀 )                                                                                                       (𝐴2)    

(A2) follows as 𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )), which is the difference between cluster average 

covariance and firm s covariance, aggregates to zero. Similarly, 𝐸𝑞 − 𝐸(𝑋𝑡+1
𝑠 ) aggregates to 

zero. One can solve for 𝛾 as follows: 

𝛾 =
(𝐸[𝑅𝑡+1

𝑀 ] − 𝑅𝐹)

𝑉𝑎𝑟(𝑅𝑡+1
𝑀 )𝑃𝑡

𝑀                                                                                                                            (𝐴3) 

Substituting (A3) into (A1): 

𝐸[𝑅𝑡+1
𝑠 ] = 𝑅𝐹 +

(𝐸[𝑅𝑡+1
𝑀 ] − 𝑅𝐹)

𝑉𝑎𝑟(𝑅𝑡+1
𝑀 )𝑃𝑡

𝑀𝑃𝑡
𝑠 [𝐶𝑜𝑣(𝑋𝑡+1

𝑠 , 𝑋𝑡+1
𝑀 )

+ (1 − 𝑚2) (𝐶𝑜𝑣𝑞 − 𝐶𝑜𝑣((𝑋𝑡+1
𝑠 , 𝑋𝑡+1

𝑀 )))] −
(1 − 𝑚1)

𝑃𝑡
𝑠 [𝐸𝑞 − 𝐸(𝑋𝑡+1

𝑠 )]    (𝐴4) 

Substituting 𝛿𝑀 = 𝐸[𝑅𝑡+1
𝑀 ] − 𝑅𝐹, recognizing that 𝛽𝑠 =

𝐶𝑜𝑣(𝑅𝑡+1
𝑠 ,𝑅𝑡+1

𝑀 )

𝑉𝑎𝑟(𝑅𝑡+1
𝑀 )

, 𝛽𝑖 =
𝐶𝑜𝑣(𝑅𝑡+1

𝑖 ,𝑅𝑡+1
𝑀 )

𝑉𝑎𝑟(𝑅𝑡+1
𝑀 )

,  

substituting from (2.2) for 𝐸𝑞, and from (2.3) for 𝐶𝑜𝑣𝑞 leads to: 

𝐸[𝑅𝑡+1
𝑠 ] = 𝑅𝐹 + 𝛿𝑀 𝛽𝑠 + (1 − 𝑚2)𝛿𝑀 [

∑ 𝑃𝑡
𝑖𝛽𝑖

𝑁𝑞

𝑖

𝑃𝑡
𝑠𝑁𝑞

− 𝛽𝑠]

− (1 − 𝑚1) [
∑ 𝑃𝑡

𝑖𝐸[𝑅𝑡+1
𝑖 ]

𝑁𝑞

𝑖

𝑃𝑡
𝑠𝑁𝑞

− 𝐸[𝑅𝑡+1
𝑠 ]]                                                           (𝐴5) 
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⇒ 𝐸[𝑅𝑡+1
𝑠 ] = 𝑅𝐹 + 𝛿𝑀 𝛽𝑠 + (1 − 𝑚2)𝛿𝑀 [

∑ 𝑤𝑖𝛽𝑖 (
𝑛𝑠

∗

𝑛𝑖
∗)

𝑁𝑞

𝑖

𝑤𝑠𝑁𝑞
− 𝛽𝑠]

− (1 − 𝑚1)

[
 
 
 
 ∑ 𝑤𝑖𝐸[𝑅𝑡+1

𝑖 ]
𝑁𝑞

𝑖
(
𝑛𝑠

∗

𝑛𝑖
∗)

𝑤𝑠𝑁𝑞
− 𝐸[𝑅𝑡+1

𝑠 ]

]
 
 
 
 

                                                (𝐴6) 

Inserting 𝜑𝑖 =
𝑛𝑠

∗

𝑛𝑖
∗ , defining �̅� = ∑

𝜑𝑖𝑤𝑖𝛽𝑖

𝑁𝑞

𝑁𝑞

𝑖=1
, and 𝐸𝑅̅̅ ̅̅ = ∑

𝜑𝑖𝑤𝑖𝐸[𝑅𝑡+1
𝑖 ]

𝑁𝑞

𝑁𝑞

𝑖=1
 leads to: 

𝐸[𝑅𝑡+1
𝑠 ] = 𝑅𝐹 + 𝛿𝑀 𝛽𝑠 + (1 − 𝑚2)𝛿𝑀 [

�̅�

𝑤𝑠
− 𝛽𝑠] − (1 − 𝑚1) [

𝐸𝑅̅̅ ̅̅

𝑤𝑠
− 𝐸[𝑅𝑡+1

𝑠 ]]                  (𝐴6) 

⇒𝑚1𝐸[𝑅𝑡+1
𝑠 ] = 𝑅𝐹 + 𝛿𝑀 𝛽𝑠 + (1 − 𝑚2)𝛿𝑀 [

�̅�

𝑤𝑠
− 𝛽𝑠] − (1 − 𝑚1)

𝐸𝑅̅̅ ̅̅

𝑤𝑠
                                  (𝐴7) 

Dividing both sides by 𝑚1 and re-arranging leads to (2.8). 

 

Appendix B 

𝜕𝛼𝑠

𝜕𝑚1
=

1

𝑚1
2 [

𝐸𝑅̅̅ ̅̅ − �̅�(1 − 𝑚2)𝛿𝑀

𝑤𝑠
− 𝑅𝐹 − 𝛽𝑠𝛿𝑀𝑚2]                                                                   (𝐵1) 

For low values of 𝛽𝑠, 
𝜕𝛼𝑠

𝜕𝑚1
> 0 and for high values of 𝛽𝑠, 

𝜕𝛼𝑠

𝜕𝑚1
< 0. It follows that when 𝑚1 

rises, SML rotates in the clockwise direction. That is, SML flattens. 

𝜕𝛼𝑠

𝜕𝑚2
=

−�̅�𝛿𝑀

𝑚1𝑤𝑠
+

𝛽𝑠𝛿𝑀

𝑚1
                                                                                                                       (𝐵2) 

For low values of 𝛽𝑠,  
𝜕𝛼𝑠

𝜕𝑚2
< 0 and for high values, 

𝜕𝛼𝑠

𝜕𝑚2
> 0. It follows that when 𝑚2 rises, 

SML rotates in the counter-clockwise direction. That is, SML steepens. 


